Osaka University Knowledg

Feature Interaction Verification of
Title Telecommunication Services and Home Network
Services Using Model Checking

Author(s) |#ME, MX

Citation |KFRAKZ, 2009, EHIFHwmX

Version Type| VoR

URL https://hdl. handle.net/11094/417

rights

Note

Osaka University Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

Osaka University

Feature Interaction Verification of
Telecommunication Services and

Home Network Services Using Model Checking

January 2009

Takafumi Matsuo

Feature Interaction Verification of
Telecommunication Services and

Home Network Services Using Model Checking

Submitted to
Graduate School of Information Science and Technology
Osaka University

January 2009

Takafumi Matsuo

Abstract

Everywhere in our daily life many computer systems, such as telecommunication
systems and networked home appliances, are in use. Many new services for these
systems are developed to meet various requirements of customers. However, the
new services may have conflict with existing services. These conflicts are called
feature interaction. Feature interaction can occur when several services are exe-

cuted at the same time.

In many cases feature interactions cause undesirable behaviors of a system.
Hence, to develop new services, it is very important to prevent occurrence of fea-
ture interactions. However, detecting feature interactions of concurrent systemsis
very difficult because such systems have many execution patterns. In addition, the

concurrency causes the low repeatability of feature interaction.

Model checking has attracted recent attention as one of the powerful verifi-
cation techniques to deal with such complex systems. Model checking allows an
automatic and exhaustive verification of software and system designs modeled as
state machines. The correctness criteria are specified in a temporal logic. When
the design fails to meet the correctness criteria, model checking tools can usually
produce a counterexample. Using this counterexample, one can easily detect the

cause of the error.

This dissertation focuses on model checking and proposes methods for detect-
ing feature interactions of services in two types of systems: telecommunication
systems and home network systems.

First, this dissertation proposes a new unbounded model checking method for
feature interaction verification for telecommunication systems. To deal with the
concurrency of telecommunication systems, we propose to use a new scheme for
encoding the behavior of the system and adapt the unbounded model checking
algorithm to this encoding. To demonstrate the effectiveness of our approach, we
conduct experiments where 21 pairs of telecommunication services are verified
using several methods including ours. The results show that our approach ex-
hibits significant speed-up over unbounded model checking using the traditional
encoding.

Second, a framework for detecting feature interactions in home network sys-
temsis proposed. Our proposed method consists of two steps. In the first step, a
model is devel oped to capture the behavior of the services. In the second step, the
model is automatically analyzed to see if possible interactions exist. This auto-
matic analysis can be effectively performed with model checking techniques. The

usefulness of the proposed approach is demonstrated through a case study.

List of Major Publications

[1] Takafumi Matsuo, Tatsuhiro Tsuchiya, and Tohru Kikuno, “Feature Interac-
tion Verification Using Unbounded Model Checking with Interpolation,”

|EICE Transaction on Information and systems. (conditional acceptance)

[2] Takafumi Matsuo, Pattara L eelaprute, Tatsuhiro Tsuchiya, and Tohru Kikuno,
“Verifying Feature interactions in Home Network Systems,” IPSJ Journal,
vol. 49, no. 6, pp. 2129-2143, June 2008. (In Japanese)

[3] Takafumi Matsuo, Tatsuhiro Tsuchiya, and Tohru Kikuno, “ Safety Verifica-
tion on Networked Appliance Systems,” The Journal of Reliability Engi-
neering Association of Japan, vol. 30, no. 3, pp. 243-251, May 2008. (In
Japanese)

[4] PattaralLeelaprute, Takafumi Matsuo, Tatsuhiro Tsuchiya, and Tohru Kikuno,
“Detecting Feature Interactionsin Home Appliance Networks,” In Proc. of
9th Int’l Conference on Software Engineering, Artificial Intelligence, Net-
working, and Parallel/Distributed Computing (SNPD 2008), pp. 895-903,
August 2008.

[5] Fuminori Makikawa, Takafumi Matsuo, Tatsuhiro Tsuchiya, and Tohru Kikuno,

“Constructing Overlay Networkswith Low Link Costs and Short Paths,” In
Proc. 6th International Symposium on Network Computing and Applica
tions (NCA 2007), pp. 299-302, July 2007.

[6] Takafumi Matsuo, “A Model of Home Network System for Detecting Feature
Interactions by Applying Model Checking,” In Supplemental Proceedings
of DSN 2007, pp. 300-302, June 2007.

[7] T. Matsuo, P. Leelaprute, T. Tsuchiya, T. Kikuno, M. Nakamura, H. Igaki,
and K. Matsumoto,” Automatically Verifying Integrated Services in Home
Network Systems’, In Proc. of 2006 International Technical Conference
on Circuits/Systems, Computers and Communications (1TC-CSCC2006),
Vol .2, pp.173-176, July 2006.

[8] Takafumi Matsuo, Tatsuhiro Tsuchiya, and Tohru Kikuno, “Verification of
a Distributed Consensus Algorithm Against Safety Properties with Model
Checking,” In Supplemental Proceedings of DSN 2006, pp. 180-181, June
2006.

Acknowledgments

During the course of thiswork, | have been fortunate to have received assistance
from many individuals. Especially | would like to thank my supervisor Professor
Tohru Kikuno for his continuous support, encouragement, and guidance for this
work.

| am aso very grateful to the members of my dissertation review committee:
Professor Takao Onoye and Professor Shinji Kusumoto for their invaluable com-
ments and helpful criticism of this dissertation.

| would like to express my special thanks to the members of my advisory com-
mittee: Dr. Yoshiki Kinoshita, Dr. Masayuki Hirayama, and Associate Professor
Kiyoharu Hamaguchi for their insightful comments and suggestions of this work.

I would like to express my special thanks to Associate Professor Tatsuhiro
Tsuchiyafor his continuous assistance and helpful advice.

| am also indebted to Dr. Pattara L eelaprute and Associate Professor Masahide
Nakamura of Kobe University for their advice and suggestions.

Finally, 1 wish to thank many friends in the Graduate School of Information
Science and Technology at Osaka University, who gave much help.

Contents

1 Introduction 1
1.1 Background 1
1.2 ManResults 3

1.2.1 Featurelnteraction Verification in Telecommunication Sys-

1.2.2 Feature Interaction Verification in Home Network Systems 3

1.3 Overview of Dissertation 4

2 Preliminary 6
2.1 Featurelnteraction 6
211 FeatureInteraction in TelecommunicationSystems 6

2.1.2 Feature Interaction in Home Network Systems 7

22 Mode Checking. 8
221 Unbounded Model Checking 8

222 SPIN ... 9

3 Featurelnteraction Verification in Telecommunication Systems 11
31 Introduction 11

CONTENTS Vii

3.2 TelecommunicationServices 13
321 Examplesof Services. 13
3.22 Featurelnteraction 14
323 SyssemModd 15
33 ProposedMethod 18
331 Symbolic Representation 18

3.3.2 Boolean Encoding of Telecommunication Systems 20

3.3.3 Unbounded Model Checking 25

34 ExperimentResults, 31
35 Summary 37

4 Featurelnteraction Verification in Home Network Systems 38
4.1 Introduction 38
42 Preiminaries 39
421 HomeNetwork Systems 39

4.2.2 ServicesinHomeNetwork Systems 40

4.2.3 FeaturelInteractionsof Services 41

4.3 Detection of Feature InteractionswithSPIN 42

4.3.1 Describing Home Network Systems and Usersin Promela 42
4.3.2 Representing CorrectnessClaimsasLTL Formulas 49

44 EXperiment e 55
441 VeificationResults.o oL 56
442 Discussion 60

45 SUMMAYo e 63

4.6 AppendiXx 63

Viii CONTENTS

5 Conclusion 73
5.1 Achievements e 73
52 FutureResearch 74

Bibliography 76

List of Tables

31
3.2

4.1

4.2

4.3

Verification result of violation of invariant 34

Verification result of nondeterminism 35

I nteractions detected between service examples in home network

Interaction with appliances between the HVAC service and the
ar-cleaningservice o 58
Interaction with the environment between the HVAC service and

theair-cleaningservice, 59

List of Figures

31
3.2
33
34

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Rule-based specificationfor POTS 16
Algorithm for ordering transitions 24
Unbounded model checking for given(SSG) 27
Function FINITERUN for given (M, k) 29
Anexampleof homenetwork system. 39
System model for home network systems 43
Description of amethod of anappliance 46
The behavior part of theHVAC service. 47
The communication part of theHVAC Service 48
The execution of HVAC serviceby user A 48
Feature interactionsin home network systems 49
Method SetMode of the air-conditioner 52

Chapter 1

| ntroduction

1.1 Background

Everywherein our daily life many computer systems, such as telecommunication
systems and networked home appliances, are in use. Many new services for these
systems are developed to meet various requirements of customers. However, the
new services may have conflict with existing services. These conflicts are called
feature interaction [10]. Feature interaction can occur when several services are
executed at the same time.

In many cases feature interactions cause undesirable behaviors of a system.
Hence, to develop new services, it is very important to prevent occurrent of fea-
ture interactions. In practical development, however, ad hoc testing is usually
conducted to prevent feature interactions. This leads to services which have no
interaction-free guarantee.

Many approaches have been proposed to deal with feature interactions. The

term “feature interaction problem” in telecommunication systems was proposed

1

2 CHAPTER 1. INTRODUCTION

by E.J. Cameron and N. Griffeth of Bellcore in the early 1980s. The first effort to
provide a framework for the field of feature interaction had been made by Bowen
et. a. [6] in 1989. Since then, much research focusing on feature interactions has
been studied by researchers from academia, research centers and industries [2,
5, 8, 12, 15, 16, 26, 45]. Keck and Kuehn surveyed approaches for overcoming

feature interactions [24].

Today, feature interaction is not unigue to the field of the telecommunication
systems. Feature interactions have become problematic in other fields, such as,
Web services [48] and building control systems[37]. Inthefield of home network
systems, several studies have been conducted [27, 39].

This dissertation focuses on feature interaction in telecommunication systems
and in home network systems. Detection of feature interactions of these concur-
rent systemsis very difficult because such systems have many execution patterns.

In addition, the concurrency causes the low repeatability of feature interaction.

Model checking [13] has attracted recent attention as one of the powerful ver-
ification techniques to deal with such complexity. Model checking allows an au-
tomatic and exhaustive verification of software and system designs modeled as
state machines. The correctness criteria are specified in a temporal logic. When
the design fails to meet the correctness criteria, model checking tools can usually
produce a counterexample. Using this counterexample, one can easily detect the

cause of the error.

This dissertation proposes model checking-based methods for detecting fea-
ture interactions of servicesin two types of systems. telecommunication systems

and home network systems by using model checking.

1.2 MAIN RESULTS 3

1.2 Main Results

1.2.1 Featurelnteraction Verification in Telecommunication Sys-

tems

As for the first contribution, this dissertation proposes a new unbounded model
checking method for feature interaction verification for telecommunication sys-
tems. The application of unbounded model checking to asynchronous systems,
such as telecommunication systems, has rarely been practiced. This is because,
with the conventional encoding the behavior of an asynchronous system can only
be represented as a large propositional formula, thus resulting in large compu-
tational cost. To overcome this problem we propose to use a new scheme for
encoding the behavior of the system and adapt the unbounded model checking
algorithm to this encoding. By exploiting the concurrency of an asynchronous
system, this encoding scheme allows a very concise formulato represent system’s
behavior.

To demonstrate the effectiveness of our approach, we conduct experiments
where 21 pairs of telecommunication services are verified using several methods
including ours. The results show that our approach exhibits significant speed-up

over unbounded model checking using the traditional encoding.

1.2.2 Feature Interaction Verification in Home Network Sys-

tems

Asfor the second contribution, this dissertation proposes a framework for detect-

ing feature interactions in home network systems. Our proposed method consists

4 CHAPTER 1. INTRODUCTION

of two steps. In the first step, amodel is developed to capture the behavior of the
services and the feature interactions in home network systems are classified based
on their causes. In the second step, the model is automatically analyzed to see if
possible interactions exist. This automatic analysis can be effectively performed
with model checking techniques.

At the first step, we propose a model which consists of four parts: users,
services, appliances and environment and classified feature interactions into five
types based on their causes. At the second step, we propose a method for trans-
lating from our proposed model into Promela, which is the input language of the
model checker SPIN. A property that represents the occurrence of each type of
feature interactions is also proposed. By using Promela code and properties ob-
tained by our approach, one can detect feature interactions automatically.

The usefulness of the proposed approach is demonstrated through a case study.
The result shows that the proposed method can successfully detect any of five

types of feature interactions.

1.3 Overview of Dissertation

This dissertation is organized as follows: Chapter 2 describes feature interaction
and model checking method. Chapter 3 describes the first contribution, enti-
tled “Feature Interaction Verification with Interpolant-based Unbounded Model
Checking.” In this chapter, some examples of practical telecommunication ser-
vices and feature interactions between those services are described. Next, our pro-
posed encoding is shown and a method for detecting those interactions by using

the proposed encoding is aso presented. In Chapter 4, entitled “ Feature Interac-

1.3. OVERVIEW OF DISSERTATION 5

tions Verification in Home network system,” the second contribution is described.
First, this chapter shows examples of home network services and interactions in
home network systems. Next, our proposed model and classification of feature
interactions are presented. Finally, our proposed method for detecting feature in-
teractions in home network systems are described. Chapter 5 summarizes this

dissertation and discusses future work.

Chapter 2

Preliminary

2.1 Featurelnteraction

Feature interaction refers to situations where the behavior of different services
affect each other. Feature interactions may cause the undesirable behavior of ser-

vicesm and thus are considered avery serious problem in devel oping new services.

2.1.1 Featurelnteraction in Telecommunication Systems

In telecommunication systems, many services are provided by modifying basic
telecommunication services. For example, the Call Forwarding (CF) service al-
lows the user to forward incoming calls to another address, and the Originating
Call Screening (OCS) service restricts outgoing calls according to a screening list.
When the new services have conflict with existing services or other new services,
feature interactions occur.

We show an example of feature interaction in telecommunication systems.

Consider asituation where user A has subscribed to the OCS service and specified

6

2.1. FEATURE INTERACTION 7

user B inthe screening list. User C' has activated the CF service to user B. Inthis
situation, if A calls C, the call isforwarded to B by the CF service. As aresult,
the feature of the OCS service isignored.

2.1.2 Featurelnteraction in Home Network Systems

As home appliances are becoming increasingly interconnected, the use of home
network systems is being expanded [38, 47, 41, 17]. Home network systemsin-
tegrate different features of appliances to provide value-added services. For ex-
ample, by integrating an air-conditioner, a ventilator and thermometers, one can
implement an energy-saving HVAC (heating, ventilation and air-conditioning)
service. Another example could be an air-cleaning service which automatically
cleans the room air by controlling a ventilator and a smoke sensor.

Here, an example of feature interactions in home network systemsis shown.
Assume that the HVAC service is operating the air-conditioner to warm up the
room temperature and that at the same time the air-cleaning service is using the
ventilator to clean theroom air. If the room temperature is higher than the outside
temperature, then cool outside air is taken into the room by the ventilator, which
resultsin the low efficiency of the HVAC service.

In home network systems, the “physical” environment isan important factor to
deal with feature interactions. The change of the environment is not explicit asthe
change of the state of the appliances. For example, the temperature of room does
not immediately reach the value of the temperature setting of an air-conditioner
just after the air-conditioner is turned on. In dealing with the feature interaction
problem for home network systems, such a property of the environment must be

taken into consideration.

8 CHAPTER 2. PRELIMINARY

2.2 Mode Checking

Model checking is a technique for verifying state transition systems. Model
checking explores the state space to determine whether or not a given property
holds in the system. This method allows an automatic and exhaustive verification
of software and system designs. The correctness criteria are specified in a tempo-
ral logic. When the design fails to meet the correctness criteria, model checking
tools can usually produce a counterexample. Using this counterexample, one can
easily detect the cause of the error.

For realistic systems, however, the number of states of the system model can
be very large, making the model checking problem intractable. This problem
is called the state explosion problem. This problem is one of the most serious
problems with model checking. To deal with this problem, many methods have
been proposed.

2.2.1 Unbounded Model Checking

One of the approaches to the state explosion problem is bounded model check-
ing [4, 14]. The main idea of bounded model checking isto look for counterex-
amplesthat are shorter than some fixed length & for a given property. Thislimita-
tion allows one to reduce the model checking problem to the satisfiability (SAT)
checking problem for a formula of some logic such that its satisfiability implies
the existence of a counterexample. Thus if the formula turns out to be satisfi-
able, then it is possible to conclude that the violation of the property occursin the
system.

Although effective in detecting property violation, bounded model checking

2.2, MODEL CHECKING 9

cannot be directly used for proving the absence of violation. To copewiththisdis-
advantage, McMillan proposed unbounded model checking [36], which combines
bounded model checking and interpolation. In the field of hardware verification,
unbounded model checking has been successful in verifying the properties of the
circuits that cannot be verified by other model checking methods[23].

The key observation used in McMillan’s method is that when bounded model
checking fails to find a counterexample, in which case the formula is unsatisfi-
able, an over-approximation of the state set reachable in one step can be derived
from the unsatisfiability proof produced by the SAT solver. Technically this over-
approximation is obtained in the form of an interpolant of the tested formula,
using an interpolation procedure. By repeatedly executing the interpolant proce-
dure, an over-approximation of the reachable state set can be obtained. If this
over-approximation contains no state violating a given property, then it is ensured

that the system meets that property.

2.2.2 SPIN

The SPIN model checker [21] isaverification tool for concurrent systems. In this
tool the partial order reduction [42] isused to reduce the state space to be checked.
To use SPIN, the behavior of a system needs to be described in the Promela lan-
guage, the input language of SPIN. Properties to be verified are represented as
Linear-Time Temporal Logic (LTL) [43].

In a Promela program, a system is defined as a collection of processes which
run asynchronously. These processes communicate via buffered channels and
shared global variables. Each process consists of a sequence of local variable

declarations, message channel declarations and statements.

10 CHAPTER 2. PRELIMINARY

AnLTL formularepresents properties about the execution traces of the Promela
program, where a trace is sequence of states. The model checker determines
whether or not all traces starting with the initial state satisfies a given LTL for-
mula. LTL formulas are translated into processes called never-claimsin Promela.
The never-claim processes are equivalent to Buchi Automata [7]. Such processes

represents undesirable behavior of the system.

Chapter 3

Feature I nteraction Verification in

Telecommunication Systems

3.1 Introduction

This chapter proposes a method for verifying feature interactions in telecommu-
nication systems [34]. This method uses unbounded model checking with inter-
polant.

The application of unbounded model checking to asynchronous systems has
rarely been practiced. Indeed we are not aware of any application to telecommu-
nication systems. This can be explained by the fact that with the conventional
encoding, the behavior of an asynchronous system can only be represented as a
large formula, thus resulting in large computational cost.

In our proposed method, we use a new scheme for encoding the behavior
of the system. By exploiting the concurrency of the telecommunication system,

this encoding scheme allows a very concise representation of system’s behavior.

11

12 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

By adapting unbounded model checking to this encoding, we obtain our model
checking method. The effectiveness of our approach is demonstrated through

experiments.

Previous attempts to improve the performance of unbounded model checking
include, for example, [30, 1, 46]. In [30], the method of reusing interpolantsis
proposed to efficiently obtain an over-approximation of the reachable state set. In
[1], hybridization of interpolation and abstraction refinement is studied. 1n [46],
anew interpolation algorithm which is based on linear programming is proposed.
These studies aim to improve the interpolation procedure but do not focus on
the representation of the behavior of the system. The central idea behind our
encoding can also be seen in [49, 40]. In [40] a similar encoding is proposed in
the context of the verification of safe Petri nets. The encoding proposed in [49] is
used to represent telecommunication systems, asis done in this chapter. However
transition ordering, which will be explained in Section 3.3.2 is not applied in the
encoding of [49]. More importantly, in contrast to this chapter where unbounded
model checking is discussed, these early attempts only deal with bounded model

checking.

The rest of this chapter is organized as follows. In Section 3.2, examples of
services and feature interaction in telecommunication systems are shown. Section
3.3 shows a new scheme for encoding the behavior of the system. Next, a method
for adapting unbounded model checking to this encoding is described. In Sec-
tion 3.4, the effectiveness of our approach is demonstrated through experiments.

Finally, Section 3.5 summarizes this chapter.

3.2, TELECOMMUNICATION SERVICES 13

3.2 Telecommunication Services

3.2.1 Examplesof Services

In this chapter we consider seven telecommunication services taken from ITU-U

recommendation [22] and Bellcore's feature standard [3].

Call Waiting (CW): This service allows the subscriber to receive a second in-

coming call while he or sheis already talking.

Call Forwarding (CF): This service alows the subscriber to have his or her in-

coming calls forwarded to another address.

Originating Call Screening (OCS): This service alows the subscriber to spec-
ify that outgoing calls be either restricted or allowed according to a screen-
ing list.

Terminating Call Screening (TCS): This service allows the subscriber to spec-
ify that incoming calls be either restricted or alowed according to a screen-

ing list.

Denied Origination (DO): This service allows the subscriber to disable any call

originating from the terminal. Only terminating calls are permitted.

Denied Termination (DT): Thisservice allowsthe subscriber to disable any call

terminating at the terminal. Only originating calls are permitted.

Directed Connect (DC): This service is a so-called hot line service. Suppose
that x subscribes to DC and that = specifies y as the destination address.
Then, by only off-hooking, = isdirectly calling y. It is not necessary for x
to dial y.

14 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS
3.2.2 Featurelnteraction

Two types of feature interaction are considered. The freedom from these types
of interaction can be viewed as safety properties. In order to detect these types
of interactions, it suffices to check the reachability the initial state to undesirable

states where feature interaction occurs.

Invariant Violation

It is usually the case that services require some specific properties to be satisfied
at any time. For example, the OCS service requires that if x specifies y in the
screening list, then z is never calling y at any time. Such a property is generally
referred to as an invariant. However, combining multiple services can result in
violation of this property. Consider a situation where user A has subscribed to
OCS service and specified user B in the screening list while user C' has activated
CF serviceto B. Inthissituation, if A callsC, the call isforwarded to B by the

CF service. Asaresult, the invariant property of OCS isviolated.

Nondeter minism

Nondeterminism is one of the best known types of feature interactions [18, 25].
Nondeterminism refers to a situation where a single event can simultaneously
activate two or more functionalities of different services, and as aresult, it cannot
be determined exactly which functionality should be activated. For example, this
type of interaction can occur between the CW service and the CF service. Suppose
that user A subscribesboth services. Now consider the situation where A istalking

with user B whileuser C'isin A’sforwarding addresslist. If user D dials A, then

3.2, TELECOMMUNICATION SERVICES 15

either the call from D to A may be received by A because of CW, or the call may
be forwarded to C' because of CF.

3.2.3 System Model

We use State Transition Rules (STR) [20] to describe services and to model the
behavior of the system. A service is defined as a 6-tuple (U, V, P, E, R, snit),
where U is afinite set of service users, V' isafinite set of variables, P is a set of
predicates, E isafinite set of events, R isafinite set of rules, and s;,,;; istheinitial
state. A predicate p € P isof the form p(z, xs,...) where z; € V. An event

e € Eisof theforme(zy, xq,...) Wherex; € V. Aruler € R isof the form:
r: pre-condition [event] post-condition

The pre-condition is a set of predicates or negations of predicates, or both, while
the post-condition is a set of predicates.

Figure 3.1 shows an example of a service specification expressed in STR. This
specification describes the Plain Old Telephone Service (POTS). Additional com-
munication features can be described by modifying this specification (for exam-
ple, by adding new rules).

A predicate (or an event or arule) isinstantiated by substitutingauser a € U
for each variable x € V occurring in the predicate (event or rule, respectively)
such that no two variables are substituted by the same user. That is, given a pred-
icate p(xy,xo,...,) € P and asubstitution 0 = (x1|ay, xs|ay, ...), Vi, j,i # j :
a; # aj, we have a predicate instance p(ay, as, ...). An event instance or arule
instance is defined similarly. Welet P = {p1, ..., p,} denotethe set of all predi-

cate instances and m denote the number of the predicate instances (i.e. m = |P]).

16

CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

U=1{A, B}

V={z,y}

P={idle(z), dialtone (), busytone (),
calling(z, y), path(z, y)}

E={onhook(z), offhook (x), dial(z)}

R={
pots1 : {idle(z)}offhook (x)|{ dialtone(z)}.
pots2 : { dialtone(x)}onhook (x)] {idle(x)}.
pots3 : { dialtone(z), idle(y) }[dial(zy)]{ calling(zy)}.
pots) - { dialtone(z), ~idle(y) }[dial(zy)]{ busytone(z)}.
pots5 : { calling(z,y)}onhook ()] {idle(x), idle(y)}.
pots6 :{ calling(xy) }[offhook (y)|{ path(xy), path(y.x)}.
pots7 :{path(zy), path(yx)} onhook(z)|{idle(x), busytone(y)}.
pots8 : { busytone (x)} [onhook (z)]{idle(z)}.
pots9 - { dialtone(x)} | dial (1,0)] { busytone (z)}.

}

Sinit={1idle(A), idle(B)}

Figure 3.1: Rule-based specification for POTS

3.2, TELECOMMUNICATION SERVICES 17

Also we denoteby R = {t1,ts, - ,t,} the set of al ruleinstances and by n the
number of the ruleinstances (i.e. n = |R|).

A stateisdefined asaset of predicate instances and isregarded as representing
the predicate instances that hold in that state. We denote by S the set of states,
thatis, S = 27.

The execution semantics is as follows. For aruleinstancet € R, let Prelt]
denote the set of predicate instances in the pre-condition of ¢ and Pre[t] denote
the set of predicate instances whose negations are in the pre-condition. Also let
Post|t] denote the set of the predicate instancesin the post-condition of ¢ and e|¢]
denote the event instance of ¢. ¢ is enabled for e[t] in a state s iff all instancesin
Pre[t] hold and noinstancein Pre[t] holdin s; thatis, Pre[t] C s and Pre[t]ns =
(. Exactly one enabled rule instance is selected for execution at a time. The
execution of an enabled rule ¢ causes a state transition from s to the next state s/,
by deleting al instancesin Pre|t] from s and adding all instancesin Post|t]; that
iss" = (s \ Pre[t]) U Post[t].

Example 1 Consider the specification of POTS in Figure 3.1. Let ¢ be the rule
instance of r = pots! based on § = (x|A). Then Pre[t] = {idle(A)}, Pre[t] =
(0, and Post[t] = {dialtone(A)}. In state s = {idle(A), idle(B)} t is enabled
for event offhook(A) — the event that subscriber A picks up the phone. If ¢ is

executed in s, then atransition to state s” = { dialtone(A), idle(B)} occurs.

In general a state transition system is represented as (S, 7, I) where S is the
set of states, 7' C S x S isthe trangition relation, and I C S isthe set of initial
states. Now, for each rule instance ¢, let 7, C S x S be the relation over states

suchthat (s, s") € T} iff t isenabled in s for some event instance and its execution

18 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

causes a state transition to s’. The state transition system (S, 7', I) defined by
an STR specification SS = (U,V,P,E, R, 5i,4) issuchthat T = |J,.x T; and
I = {$ini}. Wedenoteby s 5 s' iff (s, s') € T,.

3.3 Proposed Method

3.3.1 Symbolic Representation

We propose a propositional SAT-based unbounded model checking method. In
order to use propositional SAT solversfor model checking, it isessential to encode
the state space and the transition relation with Boolean variables.

Recall that P = {py, ..., pn} isthe set of predicate instances. A state can be
represented as a Boolean m-vector such that it has a true in the ith position iff
p; holdsin that state. In the following of the chapter, we represent states with m
Boolean variables s = (b4, ..., b,,); that is, a state is a truth assignment of these
m variables.

Any set S, C S of states can be represented as a Boolean function f

{true, false}™ — {true, false} such that:

true s €Sy
f(s) =
false otherwise

For example, the state set where the pre-condition of a rule instance ¢ holds is

represented as.

Et(S) = /\ bz A\ /\ _|bz'

pi€Pre]t] pi€Pre[t]

3.3, PROPOSED METHOD 19

Therelation over statesisalso represented as a Boolean function with 2m Boolean
variables, since the relation is simply a set of state pairs. We therefore identify a
set of states or of transitions with its corresponding Boolean function. For exam-

ple, T} isrepresented as:
Ty(s,s') = Eu(s)

O AN Y AN

p; € Post|t] p; € Pre[t]\ Post[t]

A A (b; < b))

p; €P\(Pre[t]UPost]t])
where s = (by,---,b,) and s’ = (b}, ---0),). The operator <» means that two

operands have same value.

Example 2 For simplicity, we use the name of a predicate instance to denote
its corresponding Boolean variable. Let ¢ be the instance of the rule pots1 in
Figure 3.1 with substitution 6 = (z|A). Then we have Ti(s,s’) = idle(A) A
dialtone(A)'N—idle(A)' A(idle(B) < idle(B)")\(dialtone(B) <> dialtone(B)")
A (busytone(A) < busytone(A)") A (busytone(B) <> busytone(B)") A (calling-
(A, B) <> calling(A, B)') A (calling(B, A) < calling(B, A)') A (path(A, B) <>
path(A, B)') A (path(B, A) <> path(B, A)").

Thetransition relation 7' is represented as:

T(s,s") = \/ Ti(s, s")

teR

For ssimplicity, assume that we know that 7" is atotal relation [13]. Then whether
state set GG is reachable from the initial state in k£ steps can be determined by
checking the satisfiability of the following formula:

I(s0) AT (s0,81) A=+ AT (sp=1, 56) A (G(s0) V-V G(s))

20 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

Thisisthe basic formula used in SAT-based model checking.

3.3.2 Boolean Encoding of Telecommunication Systems

The obstacle to applying SAT-based model checking to asynchronous systems
like telecommunication systems s that the transition relation 7" for such a system
can only be represented as a large formula. This can be understood by seeing
Example 2: To represent the transitions for each rule instance ¢, 7, must contain
conjuncts (b; <> b)) for al Boolean variables b; that represent predicate instances

not engaged in that rule. Our encoding overcomes this disadvantage.

The intuitive idea is as follows: We introduce a new semantics for system
execution that maintains safety properties of the original model. In this semantics
the n rule instances are totally ordered and a step is represented as a sequence of
n “micro” steps. The ith micro step is either the state transition by the ith rule
instance or a stuttering step. Because only two state transitions are possible at
each micro step, this semantics can avoid a blow-up in the formulasize, which is

inherent to symbolic representation of asynchronous systems.

Let Chng|t] denote the set of predicate instances that change their truth value
asaresult of the execution of ruleinstancet; that is, Chng[t] = (Post[t]\ Pre[t])U
(Pre[t] \ Post[t]). Our encoding can avoid generating a large subformularelated
to P\ Chnglt].

Now let d;(s, s") be defined as follows:

3.3, PROPOSED METHOD 21

di(s,s') = Ty(s,)V)\ (b <> b))

pi€P
= (C A on A bn A BA A)
p; EPrelt] pi€Prelt] pi € Post|[t]\ Pre[t] pi € Pre[t]\ Post[t]
VoA (bi<—>b;)>
p; € Chng|t]

AN e b))
pi€P\ Chngli]
Example 3 Let ¢ be the rule instance of pots? in Figure 3.1 with substitution
6 = (xz|A). Then Chnglt] = {idle(A), dialtone(A)} and thuswe have d,(s, s') =
((idle(A)/\dialtone(A)’/\—'idle(A)’)\/((idle(A) < idle(A))A(dialtone(A) <>
dialtone(A)’)) A (idle(B) <« idle(B)") A (dialtone(B) < dialtone(B)') A
(busytone(A) <> busytone(A)") A (busytone(B) <> busytone(B)') A (calling-
(A, B) <> calling(A, B)') A (calling(B, A) < calling(B, A)') A (path(A, B) <>
path(A, B)') A (path(B, A) <> path(B, A)").

By definition d;(s, s') = true iff s L &' or s = s'. Using this property, a step

(or more) can be represented by a conjunction of d,(s, ") asfollows:

D(sg,-++,8,) = /\ dy, (si-1, $;)
1<i<n
D(sg,- -+ ,s,) evaluatesto true iff any 1 < i < n, si_lisi or s;_; = sj.
This means that if this function evaluates to true, s,, is reachable from s, in at
most n steps (including O steps), and that if thereis at least one¢; such that s NP
D(so,- -+, s,) evaluates to true under an assignment such that s = s = -+ =

t; !
Si_l,Si_1—>Si,and5i:"':Sn:S.

22 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

Consequently, the following formula BMC* can be used for the verification.

BMC* = I(so) A N\ D(sjun-25Gsm) A Gl(Skm)
0<j<k

If BMC* is satisfiable, then some state in G is reachable from the initial state
inat most k * n steps. If BMC* isunsatisfiable, then no state in G' can be reached
from theinitial statein & steps.

A major benefit of using thisformulaisthat it can be shortened to a consider-
able extent and thusin turn the run time of SAT solving can be reduced. Theidea
isasfollows. Notethat in BMC*, term (b; <+ b.) for any p; € P\ Chnglt] occurs
asaconjunct (Seethe definition of d,(s, s')). Replacing b; with b;, such aterm can
safely be removed from BMC* without altering the satisfiability, because BMC*
is setisfiable only if b; and b have the same truth value.

The effect of this optimization is significant, since for practical telecommu-
nication services, a rule execution affects only a small fraction of the predicate
instances. Compared to the conventional formula shown in Section 3.3.1, areduc-
tion of around 60 to 90 percent in the number of literal occurrences has typically

been observed in the examples tested in Section 3.4.

Remark 1 For presentation purpose we explain our model checking method us-
ing the original BMC*; but this optimization is always used in the implementa-

tion.

Transition Ordering

In practice, the state transitions represented by D critically depend on the order

of rule instances. This can be intuitively explained as follows. Consider two rule

3.3, PROPOSED METHOD 23

instances ¢; and t; and suppose that the execution of ¢; cause the precondition of
t; to hold but not vice versa. Inthiscase, if ¢; occurs before t; in D, then D can
represent the successive execution of ¢; and t;. On the other hand, if ¢; comes after
t;, then D can only express the execution of only one of the two rule instances.

We propose a heuristic algorithm for transition ordering, by extending the one
in [40], which is proposed in the context of safe Petri nets. The basic ideais to
select a rule instance ¢ when each predicate instance in Pre[t] occurs in s;,;; or
in the post-condition of an already selected rule instance. Figure 3.2 shows the
algorithm.

The FIFO queue Done isused for storing rule instancesthat have already been
ordered. The set Checked of predicate instances is used to maintain those occur-
ring in the initial state or in the post-condition of rule instances ordered already.
The main part of the algorithm calls procedure CHECK with each predicate in-
stance occurring in the initial state. In the procedure, first p is added to Checked.
Then, for each rule instance ¢ such that p € Pre[t], the following is done: If ¢
has not yet been ordered and all predicate instances in Pre[t] have been stored
in Checked, then ¢ is enqueued and the procedure is recursively called with each
predicate instance in Post[t]. Since aruleinstancet isordered only after all pred-
icate instances in Pre[t| are stored in Checked, for any predicate instance p in
Pre[t], it occurs in the initial state or there must be at least one already ordered
ruleinstance t’ such that p € Post|[t'].

In case a given service specification is ill-formed, this algorithm may fail to
order al ruleinstances. It iseasy to show that in such acase, the rule instances not

selected for ordering are always unenabled, and thus they can safely be omitted.

Example 4 Consider theservice specificationinFigure3.1andlet61 = (x| A, y|B)

24 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

1: set Checked := () ; {Keeps predicate instances. }

N

: queue Done := () ; {Keeps ordered rule instances. }

w

. for all p € s, do

4. cal CHECK(p);
5. end for
6:

7: Procedure: CHECK (p)

8 addpto Checked;

9: for all t suchthat p € Pre[t] do

10: if t ¢ Done and Vp' € Pre(t][p’ € Checked] then

11: enqueuet to Done;

12: for all p’ suchthat p' € Post[t] andp’ ¢ Checked do
13: call CHECK (p');

14: end for

15: end if

16: end for

17: end Procedure

Figure 3.2: Algorithm for ordering transitions

3.3, PROPOSED METHOD 25

and 02 = (z| B, y|A). The agorithm orders atotal of 18 rule instances as follows:
(t1,- -, tis) = (pots101, pots102, pots201, pots262, pots361, pots362, potss 01,
pots 02, potsb01, potshH02, pots601, pots602, pots701, pots7602, pots8§01, pots§62,
pots901, pots9602), where 6 denotes the instance of arule r with a substitution 6.
With this ordering, BM C'* alows reachability checking for 12 states, including
state { path(A, B), path(B, A)} which requirest, = pots101, t; = pots361, and

t11 = pots6 61 tooccur inthisorder to bereached. Ontheother hand, if therulein-
stances were reversely ordered, the efficiency would be much deteriorated. Inthis
case BMC' can check the reachability of only four states: {idle(A), idle(B)},
{dialtone(A),idle(B)}, {idle(A), dialtone(B)}, and { dialtone(A), dialtone(B)}.

3.3.3 Unbounded Model Checking

State Exploration Using I nterpolants

For two first-order logic formulas A and B, if A A B is unsatisfiable, then the

interpolant P for A and B isaformulawith the following properties:
e A— P,
e P A Bisunsdtisfiable, and
e P refersonly to the common variables of A and B.

Several interpolation methods have been proposed, including [36, 44, 46]. Us
ing an interpolation method with a SAT solver, one can simultaneously perform

satisfiability checking and, if the formulais unsatisfiable, interpolant generation.

26 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

We divide BMC* into PREF and SUFF* asfollows:

PREF = 1I(so) AD(sg,"* ,5n)
SUFF* =\ D(Sin,-+ S(41)m) A G(Sken)
1<i<k
If PREF A SUFF* is satisfiable, then the system can reach a state in G.. On the
other hand, if PREF A SUFF* is unsatisfiable, then an interpolant of PREF and
SUFF* can be generated.

The interpolant refers only to the common variables of PREF and SUFF*.
Hence, it is a formula over state s,,. We denote by Interpolant(s,,) this inter-
polant and by Interpolant(s,)(s,|s) the formula obtained from Interpolant(s,)
by replacing Boolean variables for s,, with those for s.

Since theinterpolant isimplied by PREF, it followsthat the Interpolant(s,,)
(sn|s) istrueintheinitial state and in every state reachable from theinitial statein
one step. In other words, Interpolant(s,)(s,|s) is an over-approximation of the
state set reachable from the initial state within one step.

In effect this interpolant usualy contains more reachable states than those
reachable in one step, because D can represent, in addition to all single steps,
up to n. consecutive steps. This property contributes to effective state exploration

of our method.

Overview of the Algorithm

The overview of the algorithm is shown in Figure 3.3. The input of the al-
gorithm is a service specification SS = (U, V, P, E, R, s;,;;) and the state set G

whose reachability is to be verified.

3.3, PROPOSED METHOD 27

1: Construct M = (I, D,G) from SS and G;
2. whiletruedo

3 k=2

4 FINITERUN(M, k);

5 if aborted then

6: k:=k+1;

7. eseif trueisreturned then

8: return Reachable;

9. elseif falsethen
10: return Unreachable;
11: endif
12: end while

Figure 3.3: Unbounded model checking for given (SS,G)

First, we build the symbolic representations of the transition system M =
(I, D, G) from the given service specification SS = (U, V, P, E, R, Sint)-

Thefunction FINITERUN isat the heart of the algorithm. It has two arguments
M and k. The function returns true if it determines, by performing SAT solving
for BMC*, that a state in G is reachable and returns false if it determines that
no state in G is reachable. In these cases, the algorithm can terminate simply
by returning Reachable or Unreachable, according to the result of FINTERUN.
FINTERUN aborts if it isimpossible to determine whether or not G is reachable

by using given k. In this case, the agorithm increases k£ and calls FINITERUN

again.

28 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

The function FINITERUN

The function FINITERUN is shown in Figure 3.4. The basic design of this
function follows that of [36] but is adapted to subtle but important differencesin
the encoding of system behaviors, elaborated in Section 3.3.2.

This function first checks the satisfiability of PREF A SUFF*. If PREF A
SUFF* is satisfiable, then at least one of the states in G is reachable from the
initial state (line 9). Hence, this function returns true. On the other hand, if
PREF ASUFF* isunsatisfiable, then state exploration is performed by repeatedly

computing interpolants.

In the function R is used to represent the set of explored states. Initidly R
only represents the initial state. In each iteration of the while loop, R is updated
to the interpolant for PREF and SUFF* (line 19) and PREF is updated with T
being replaced with R (line 5). At the end of the ;th execution of the while loop,
R represents an over-approximation of a set of states that are reachable within i
steps.

Asdiscussed in Section 3.3.3 in detail, the iteration of the while loop eventu-
ally terminates (or aborts) in either of two ways. Thefirst case iswhere PREF A
SUFF* turns out to be satisfiable. Then the function aborts (line 11), since the
satisfiability of PREF A SUFF* only means the reachability of G' from R which

may contain unreachabl e states.

The second case is where R reaches a fixed point — the point from which R
will never grow further. At this point R contains all reachable states and thus the
unreachability of G isimmediately concluded from the unsatisfiability of PREF A
SUFF*. If this happens, the function terminates by returning false (line 17).

3.3, PROPOSED METHOD 29

1: Function: FINITERUN(M = (I,D,G),k > 1)

2
3

4:

10:
11
12:
13:
14:
15:
16:
17
18:
19:
20:
21:

22:

R:=1,
whiletrue do
M' = (R,D,G),
Generate PREF , SUFF* from M’
Run SAT on PREF A SUFF¥;
if satisfiable then
if R =1 then
return true; {Can be reached only in the 1st iteration. }
else
abort;
end if
else
Generate interpolant(Interpolant(s,)) of PREF , SUFF*;
R’ := Interpolant(sy)(sn/s0);

if R = Rthen
return false;
else
R:= R,
end if
end if
end while

23: end Function

Figure 3.4: Function FINITERUN for given (M, k)

30 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

Correctness of the Algorithm

Lemmal FINITERUN(M, k) terminatesfor every (M, k).

Proof: First, suppose that G' is reachable from the initial state. If BMC* is sat-
isfiable, then the function terminates by returning true. If BMC* is unsatisfiable,
then the function proceeds to the iterative generation of interpolants. In this it-
erative process, i gradually increases until it reaches a fixed point. Such a fixed
point must exist since the state space is finite and contains all reachable states.
Thus R always grows to the extent where BMC* is satisfiable, in which case the
function aborts (at line 11) since R # 1.

Next, suppose G is unreachable from the initial state. Since BMC* is un-
satisfiable at the first time (at line 6), the function tries to compute the over-
approximate set of statesreachable from theinitial state. During this computation,
if BMC* becomes satisfiable, then the function aborts since R # I. Otherwise,
the process of computing the over-approximation of the reachable state set termi-
nates because the state space is finite. In thiscase, R = R’ holds at line 16 and

thusfalseisreturned (at line 17).

Lemma2 For every M, there exists £ such that FINITERUN (M, k) terminates
without aborting.
Proof: If GG isreachable, then the result of the first run of SAT must be “satisfi-
able” when k& = |S| — 1, in which case the function returns true and terminates.
Now suppose that G is unreachable and let k£ be the maximum length (the
number of transitions) of the shortest path from any state in S to any state in
G. Of course such a path only contains unreachable states. Let k& be kg + 1.
Then PREF A SUFF* is aways unsatisfiable in any run of SAT. This can be ex-
plained by showing that R never contains unreachable states. In thefirst iteration,

3.4. EXPERIMENT RESULTS 31

this trivially holds since R = [. In any later iteration, R is an interpolant for
PREF and SUFF*, and thus R(s,,) A SUFF* is unsatisfiable. Thisimplies that
R contains no unreachable state, because if an unreachable state existed in R, then
R(s,) A SUFF* would be satisfiable since G can be reached within kg = &k — 1
steps from that state. Since the number of states of the system isfinite, R eventu-

aly reaches afixed point, at which time the function returns fal se and terminates.

Lemma 3 When FINITERUN (M, k) terminates, it returns true if G is reachable
and falseif G isunreachable.

Proof: First suppose the function returns true. This means that BMC* (at line
6) is satisfiable; hence G is reachable from initial state. Next suppose that the
function returns false. In this case, R represents an over-approximation of the set
of reachable states and PREF A SUFF* is unsatisfiable with that R. Since any
reachable state is contained in R, the fact that PREF A SUFF* is unsatisfiable
impliesthat no state in G isreachable.

Theorem 1 The algorithm shown in Figure 3.3 terminates. It returns Reachable
if G isreachable from theinitia state; it returns Unreachable, otherwise.

Proof: The proof straightforwardly follows from Lemmas 1, 2 and 3.

3.4 Experiment Results

To evaluate the effectiveness of our proposed method, we conducted experiments.
We verified 21 pairs of telecommunication services described in Section 3.2.1
using the proposed unbounded model checking method, McMillan’s unbounded
model checking method [36] and the model checker SPIN [21]. We implemented

32 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

these two unbounded model checking methods using McMillan’s FOCI tool for
both SAT solving and interpolant generation. In the proposed unbounded model
checking method, the new encoding and the proposed algorithm are used. On
the other hand, McMillan’s method uses conventional encoding with 7" and the
interpolant procedure proposed in [36].

SPIN, avery well-known model checker, uses explicit state representation, in
the sense that it does not employ Boolean state space encoding. We construct
Promela models for telecommunication services as follows. We represent each
predicate instance by a Boolean variable. We use a single Promela process to
represent the behavior of the whole system. The Promela process has, in turn, a
single big do statement, in which every rule instance is represented as a guarded
command. At any point of time, a single guarded command whose guard is true
is nondeterministically selected for execution.

The experiments were performed on a Linux (kernel 2.4) PC with a 2.8 GHz
CPU and about 3 Gbyte memory.

We consider invariant properties for four of the seven services as follows:

OCS: If x puts 'y in the OCS screening list, x is never caling y at any time.
(—OCS(z,y) V —calling(z,y))

TCS. If x puts 'y in the TCS screening list, y is never calling x at any time.
(- TCS(x,y) V —calling(y, x))

DO: If x subscribes DO, x never receives dialtone at any time. (—DO(z) V

—dialtone(x))

DT: If x subscribesDT,y isnever callingx at any time. (=D T (x)V—calling(y, x))

3.4. EXPERIMENT RESULTS 33

Consequently atotal of 18 pairs that contain at least one of the four services are
verified against these invariant properties. Because of the symmetry of users, we
check the violation with a single variable substitution by users. For example, the
invariant of OCSisverified by checking reachability to G(s) = ~(=OCS(A, B)V
—calling(A, B)), where OCS (A, B) and calling(A, B) are Boolean variablesrep-
resenting predicate instances OCS (A, B) and calling(A, B).

Nondeterminism occurs in states where two rules simultaneously become en-
abled for the same event. Due to user symmetry, it suffices to check all event

instances obtained from any single variable substitution ¢, of users. Thuswe let:

Gs)= \/ \V E.(s) AEy(s)
R T ey

Here ef, is an event instance obtained by the substitution 6, and ¢; and ¢, are
two different rule instances that have the same event instance ef,. For example,
consider the specification shown in Figure 3.1 and let 6, = (z|A,y|B). Three
event instances, namely, onhook(A), offhook(A) and dial(A, B), are shared by
more than one rule instance. Specifically, onhook(A) triggers pots26,, potss by,
pots76y and pots80y, offhook(A) triggers pots1 6, and pots66,, and dial(A, B)
triggers pots36, and pots4 0,. Hencewehave G(s) = ((Epotsggo(s)/\Epotswo(s))\/
(Epotsggo(S)/\Epots'ygo(S))\/(Epotsggo(S)/\Epotsggo(S))\/(Epotsggo(S)AEpotS'ygo(S))\/
(Bpotss00 () A Epotss10(5)) ¥ (Epots00 () A Epotssao ()) V. (Epossran(5)
A Epotssn (5)) V (Egorssnn (5) A Epotsg,(5)).

Table 3.1 shows the results of the verification of the violation of invariant
properties, while Table 3.2 shows the results of the verification of nondetermin-

ism. The two leftmost columns represent the combination of services tested and

whether feature interaction occurs in that combination.

34 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

Table 3.1: Verification result of violation of invariant

Proposed method McMillan's method SPIN
Service Interaction time(s) | (k) time(s) | (k,r) | time(s)
CW + DO NA (2754.0) | (4,3) | NA (15311.3) | (11,3) 15
CW + DT v 0.8 | (2,0) 6595.3 | (10,0) 1.4
CW + OCS v 0.7 | (2,0) 3819.6 | (10,0) 1.6
CW +TCS v 0.7 | (2,0) 8130.8 | (10,0) 1.6
CF+DO NA (1346.5) | (4,7) | NA (49735) | (7,4 15
CF+DT v 0.6 | (2,0) 19.6 | (6,0) 1.2
CF+ OCS v 05 | (2,0) 499 | (6,0) 1.3
CF+TCS v 05 | (2,0) 37.7 | (6,0 1.2
DC + DO 6.6 | (33) | NA (4266.9) | (85) 0.9
DC+ DT 04 | (2,2) 0.7 | (22 0.9
DC + OCS v 03| (2,0 13| (3,0 0.9
DC+ TCS v 03| (2,0 13| (30 1.0
DO + DT 11494 | (45) | NA (8892.3) | (84) 0.8
DO + OCS 10234 | (4,6) | NA (6037.8) | (7.4) 0.9
DO+ TCS 257.1 | (36) | NA (1249.2) | (7,9 0.9
DT + OCS 16.1 | (35) | NA (29077.8) | (7.4) 1.0
DT + TCS 14.0 | (3,4) | NA (13662.3) | (8,4) 1.0
OCS+ TCS|[B] v 03| (2,0 15| (3,0 0.9

3.4. EXPERIMENT RESULTS

Table 3.2: Verification result of hondeterminism

35

Proposed method McMillan’s method SPIN
Service Interaction time(s) | (k,r) time(s) | (k,r) | time(s)
CW +CF v 39| (200 | NA (1365.9) | (6,2) 2.1
CW +DC NA (12326.5) | (4,2) | NA (4776.5) | (7,2) 1.9
CW + DO NA (6512.2) | (5,1) | NA (4453.4) | (8,1) 1.6
CW + DT v 3.2 | (2,0 1004.3 | (8,0) 1.6
CW + OCS v 2.0 | (2,0 3049.8 | (8,0) 1.8
CW +TCS 21| (2,0 3910.2 | (8,0) 1.7
CF+DC NA (1033.9) | (24) | NA (7664.3) | (7,2) 2.3
CF+DO NA (13465) | (47) | NA (8177.8) | (82 15
CF+DT v 0.7 | (2,0) 318 | (5,0) 1.3
CF + OCS v 0.5 | (2,0) 395 | (5,0) 1.3
CF+TCS v 05 | (2,0) 53.8 | (5,0) 1.3
DC + DO v 0.3 | (2,0) 04 | (2,0) 1.3
DC + DT 25.7 | (3,3) | NA (35501.1) | (6,4) 0.9
DC + OCS 745 | (34) | NA (3749.4) | (5.3) 1.2
DC +TCS 456 | (3,3) | NA (3485.2) | (4,5 1.2
DO + DT 48| (24) | NA (7057.7) | (38) 1.0
DO + OCS 163 | (2,5) | NA (2922.1) | (3,7) 0.9
DO + TCS 19.6 | (2,5) | NA (1700.3) | (3,6) 0.9
DT + OCS v 0.3 | (2,0 0.7 | (2,0) 0.9
DT + TCS v 0.3 | (2,0 0.3 | (2,0) 0.9
OCS+TCS v 0.3 | (2,0) 0.5 | (2,0) 1.0

36 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

For all the three methods, the execution time needed for verification is pre-
sented. The execution time is the total time that elapsed between when a service
specification was input and when the verification was completed. NA means that
we could not complete verification since an error was caused by memory over-
flow when the program was generating an interpolant. (The number inside the

parentheses shows the elapsed timettill the error occurred.)

For the proposed method and McMillan’s method, (&,) shows the value of &
of the finally executed instance of FINITERUN and the number of times of com-

puting an interpolant in that execution of FINITERUN.

For all cases where the verification was completed, our proposed method out-
performed the McMillan’s ordinary unbounded model checking in execution time.
In particular, when a violation required arelatively large number of transitions to
occur, the proposed method could conclude the existence of the violation using a
much smaller value k. Such casesinclude: CW + DT, CW + OCS, CW + TCS, CF
+ DT, CF + OCS, CF + TCSin Table 3.1 and CW + CF, CW + DT, CW + OCS,
CW + TCS, CF + DT, CF + OCS, CF + TCSin Table 3.2. Thisclearly showsthat

when £ isfixed, our encoding scheme allows alarger state space to be explored.

SPIN consistently exhibited good performance; but our proposed method out-
performed SPIN for many cases, including: CW + DT, CW + OCS, CW + TCS,
CF+DT,CF+0OCS,CF+TCS,DC +DT,DC+ OCS, DC + TCS, OCS+ TCSin
Table3.1and CF + DT, CF + OCS, CF+ TCS, DC + DO, DT + OCS, DT + TCS,
OCS + TCSin Table 3.2. When our method showed lower performance or even
aborted, a large k£ was (or would be) needed for the algorithm to terminate. This
fact is explained by the fact the time needed for generating an interpolant rapidly

increases with the size of the input formula.

3.5, SUMMARY 37

One might think that the result is somewhat discouraging; but we think there
isstill plenty of room for improving our method. We will discuss this point in the

final chapter.

3.5 Summary

In this chapter, we proposed a verification method for checking whether or not fea-
ture interaction occurs in telecommunication services. We used a new encoding
scheme that effectively represents the behaviors of asynchronous systems such as
telecommunication systems. Based on this encoding, we devel oped an unbounded
model checking method. To show the effectiveness of our method, we conducted
experiments. To the best of our knowledge this was the first time to adapt un-
bounded model checking to the interleaving concurrency of asynchronous sys-

tems.

Chapter 4

Feature Interaction Verification in

Home Network Systems

4.1 Introduction

In this chapter, we propose a method for detecting feature interactions by means
of the SPIN model checker [32, 28]. The main contributions of this chapter are as
follows: First, we propose a method for describing ahome network system and its
usersin Promela[31, 33]. Our proposed approach focuses only on the high-level
behavior of services, and thus can be used independently of underlying network
protocols, such as[47, 19, 17]. Second, we classify feature interactions based on
their causes. We also devise an LTL formulafor each type of feature interaction.
This chapter is structured as follows. Section 4.2 introduces a running ex-
ample of a home network system. Section 4.3 presents our proposed method for
detecting feature interactions between services in home network systems. First, a

method for describing home network systemsand its usersis presented. Then, the

38

4.2. PRELIMINARIES 39

_
=

Smoke

Light A e
Ventilatorsensor | Air conditioner

|
I |
-E@

Home Server TV set pyp player

ki

llluminometer

Figure 4.1: An example of home network system

classification of feature interactions and the LTL formula describing each classi-
fied type are presented. Section 4.4 shows the results of an experiment to demon-

strate the usefulness of the proposed approach. Section 4.5 concludesthis chapter.

4.2 Preiminaries

4.2.1 Home Network Systems

An example of ahome network system isshownin Figure 4.1. The home network
system consists of an air-conditioner, a ventilator, a smoke sensor, two thermome-
ters (inside and outside a room), a DVD player, a TV set, lights, a curtain blind,

an illuminometer and a home server.

40 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS
4.2.2 Servicesin Home Network Systems

By integrating features of different appliances, convenient services can be im-
plemented. These value-added services are one of the main advantages of home
network systems. Below we present such services in our running example. Some
of the services are taken from [27].

HVAC service (Heating): The HVAC service integrates the features of the
air-conditioner, the two thermometers, and the ventilator. This service achieves
energy-efficient air-conditioning of a room. If the room is cooler than the tem-
perature set point, the HVAC service operates the air-conditioner in the heating
mode. To efficiently warm the room up, the HVAC service turns the ventilator on
to provide warmer outside air if the room temperature is cooler than the outside
temperature. In this case the ventilator will be kept operating until the room tem-
perature reaches the outside temperature. If the room temperature is warmer than
the temperature set point, the HVAC service operates the air-conditioner in the fan
mode.

Air-cleaning service: The air-cleaning service uses the smoke sensor and the
ventilator to automatically clean the air in the room. When smoke is detected, this
service automatically turns on the ventilator. The ventilator is kept operating until
the sensor senses no smoke. When the air is cleaned, the ventilator will be turned
off.

Home theater service: The home theater service uses the TV set, the DVD
player, the illuminometer, the lights and the curtain blinds. When activated, this
service turns on the TV set and the DVD player. At the same time, the curtain
blindsin the room are drawn down, and the lights are adjusted to the optimal level

based on the current brightness of the illuminometer.

4.2. PRELIMINARIES 41

Energy saving service: This service ams to conserve energy consumption by
turning off unnecessary appliances. For example, when the power of the TV setis
off, it is useless to keep the power of the DV D player turned on. This service will
turn off the DVD player in such a situation.

4.2.3 Featurelnteractionsof Services

In this section, we show several examples of interactions between the services
shown in Section 4.2.2.

Example5 A feature interaction occurs between the HVAC service and the air-
cleaning service. Consider the following situation: The room temperatureis 15°C,
the outside temperature is 8°C, and there is smoke in the room. The temperature
set point of the HVAC service is 21°C. Now suppose that the HVAC service is
operating the air-conditioner in the heating mode. In this case, the HVAC service
tries to turn off the ventilator to prevent cool outside air from flowing into the
room. On the other hand, the air-cleaning service tries to turn on the ventilator to

clean the room air.

Example 6 Thisinteraction occurs between the home theater service and the en-
ergy saving service. Consider the following scenario: The power of the TV setis
OFF at the beginning. The energy saving service checks the power of the TV set.
The service comes to know that the TV set is OFF and thus tries to turn off the
DVD player. At the same time, the home theater service is activated and turns on
the TV set. Asaresult, the DVD player is turned off, while the TV set is turned

on.

42 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

Example 7 Suppose that the HVAC serviceis operating the air-conditioner in the
heating mode to warm up the room temperature and that the air-cleaning service
isusing the ventilator to clean the room air. If the room temperature is higher than
the outside temperature, cool outside air is taken by the ventilator. Thislowersthe

efficiency of the HVAC service.

4.3 Detection of Feature I nteractionswith SPIN

To use SPIN, the system to be verified needs to be described in the Promela lan-
guage and properties to be verified are represented as LTL formulas. In Section
4.3.1, we show amethod for describing home network systemsand itsusers. Next,
in Section 4.3.2, we show a classification of feature interactions based on their

causes. We also devise LTL formulas to detect these feature interactions.

4.3.1 DescribingHomeNetwork Systemsand Usersin Promela

This section shows a method for describing home network systems and its users
in Promela. A home network system is modeled as three components: the envi-
ronment, appliances and services. The environment consists of several elements,
such as the room temperature and smoke. The state of these elements is changed
by the effects from appliances. The appliances are operated by services. Users
execute these services.

Figure 4.2 shows a model of home network systems and its users. In Figure
4.2, there are two users, two services (the HVAC service and the air-cleaning
service), three appliances (an air-conditioner, a ventilator and a smoke sensor),

and three el ements of the environment (room temperature, smoke, and brightness).

4.3. DETECTION OF FEATURE INTERACTIONS WITH SPIN 43

Home Appliance Network

service - - - -
HVAC service | Air-cleaning service |

A
" 1

/.5 A
appliance / \ l

| Air-conditioner | | Ventilator | | Smoke Sensor |
N Lo
environment \ / \

|Tempemuue| |Snwke

Figure 4.2: System model for home network systems

In thisfigure, the arrows represent relations between the four components. UserA
executes the HVAC service. The HVAC service operates the air-conditioner and
the ventilator. The air-conditioner has an effect on the room temperature, and the
ventilator has effects on the room temperature and the smoke.

In this section, we present a method for describing these four components:. the
environment, appliances, services and users.

In Promela programs, the states of these components are represented by vari-

ables. Thetypes of these variables are defined, for example, as follows:

#define tTemp int
#define tPower int /* ON or OFF =x/
#define OFF O

#define ON 1

t Temp isthetype of the variablesthat represent temperatures. t Power isthe

44 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

type of the variables that represent the power of appliances. Variables of t Power

type can take OFF or ON, which isinternally represented as an integer O or 1.

The Environment

The elements of the environment are defined as global variables. A room tempera-

ture temp in and an outside temperature temp out can be defined asfollows:
tTemp temp in; tTemp temp out;

To model an unpredictable environment we let these variables take arbitrary
values when they are read by appliances. For example, the room temperature
changes even when the air-conditioner is not working. This modeling technique
can be found in, for example, [11]0

We represent the effects of the appliances on the environment by Boolean-
valued formulas over the variables that represent the state of appliances and the
state of the environment. As shown later, these formulas allow us to detect con-
flicting effects. For example, the effect temp in_ up, which indicates the pres-

ence of some appliance that is warming the room up, is defined as follows:

#define temp in up
((AC power == ON && AC Mode == Heater)

| | (ventilator power == ON && temp in < temp_ out))

Here AC_power, AC_mode and ventilator power respectively represent
the power of the air-conditioner, the mode of the air-conditioner, and the power of
the ventilator. This Boolean formula evaluates to true when the air-conditioner is
working in the heating mode or when the outside temperature is warmer than the

room and the ventilator is working.

4.3. DETECTION OF FEATURE INTERACTIONS WITH SPIN 45

Appliances

Appliances are described with variables and macros. The variables represent the
state of the appliances. The macros represent the methods of the appliances, such
as setting the power to ON and setting the mode to a particular mode.

The state of the appliance is defined as global variables as was done with
the environment. For example, the variables power, AC_temp and AC Mode,
which represent the power, the temperature set point and the mode of the air con-

ditioner, are defined as follows:

tPower AC power=0FF; tTemp AC Temp=25;

tMode AC Mode=FAN;

The methods of the appliances are invoked by services. The methods can have
arguments. The behavior of each method consists of reading the variables of the
environment, writing/reading the variables of its own appliance and returning a
valueto the caller service.

Each method has a pre-condition and a post-condition. The method can be
executed when the pre-condition is true. The post-condition need to become true
immediately after the method is executed.

Each method is defined as a macro of Promela, as shown in Figure 4.3.

pre_condition, post_condition are Boolean expressions which rep-
resent a pre-condition and a post-condition respectively. In Promela, if a Boolean
expression is used as a statement, it blocks system execution until the Boolean
expression evaluates to true. Hence, when the pre-condition is true, the method
executes the statements described at line 3. If the post-condition is also true, then

return_ value will be sent back to the caller service.

46 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

#define Appliance method(argument) {\

(pre_condition) ;\

1
2
3 ... /x The beavior of the method =x/
4 (post_condition) ;\

5

rvalue = return value;}

Figure 4.3: Description of a method of an appliance

Services

Each service is modeled by two Promela processes, one of which represents the
behavior of the service and the other of which represents the communication be-
tween the service and users.

The process representing the behavior controls appliances by executing their
methods. A method invocation is performed by executing the macro correspond-
ing to the method. Specia local variable r value is used to store the return
value from a method.

Figure 4.4 shows the Promela code of the process that describes the behavior
of the HVAC service. At lines 2, 3, local variables are defined. At lines4 — 13,
the behavior of the HVAC service is described. At line 4, this service waits until
thevariable HVAC State issetto START. Line 5 isado-statement which isan
iteration statement of Promela. At lines 6 — 10, several macros are executed.

The state of a service is represented by a set of global variables. The process
that deals with communication updates the state in response to the reception of a
message from a user. Figure 4.5 shows the process for the HVAC service.

For each Service, global variable Service State is declared to con-

trol the start and the stop of the service. This variable takes two values. STOP[

4.3. DETECTION OF FEATURE INTERACTIONS WITH SPIN 47

© 00 N o 0o B~ wWw N P

[
A W N P O

proctype HVAC () {

int rvalue;

tTemp Ti temp,To temp; /* Local variablesx/
(HVAC state == START);

do ::! (HVAC state == STOP) ->
Thermometer in SetPower (ON) ;
Thermometer out SetPower (ON) ;

AC SetPower (ON) ;

Thermometer in Measure(); Ti_ temp = r_value;
Thermometer out Measure(); To temp = r value;
do ::(Ti temp < user temp)->

AC_SetMode (HEATER) ;

Figure 4.4: The behavior part of the HVAC service

START. The service waits until a user sets this variable to START. When this

variable is set to START, the service performs its execution. When the variable

is set to STOP by a user, the service stops and waits until a user sets this variable

to START again. In additionto Service State other global variables may be

used. For example, the HVAC service has variable HVAC SetTemp to represent

the temperature set point.

For each such global variable, a message channel is declared. MC HVAC

State and MC_HVAC SetTemp are the message channels for HVAC State

and HVAC SetTemp. To set the variable to a particular value, users send a mes-

sage in the message channel. For example, MC_HVAC state?HVAC state

48 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

1 proctype HVAC cont () {

2 do

3 : :MC_HVAC State?HVAC_State

4 : :MC_HVAC SetTemp?HVAC_ SetTemp
5 od;

6)

Figure 4.5: The communication part of the HVAC Service

takes a message in the message channe MC_HVAC State and stores it in vari-

ableHVAC State.

Users

Users control services by sending messages to message channels. For example,
in the case of the HVAC service, a user may send the value of the temperature set
point, aswell asasignal for start and stop, as shown in Figure 4.6. In thisfigure,
UserA setsthe variable Set Temp, atemperature set point, to 21°C and sets the
variable HVAC_State to START. After the HVAC service starts, the user sets

HVAC State to STOP to stop the HVAC service.

proctype UserA() {

MC HVAC SetTemp!21;

1

2

3 MC_HVAC_State!START;
4 MC_HVAC_ State!STOP;
5

}

Figure 4.6: The execution of HVAC service by user A

4.3. DETECTION OF FEATURE INTERACTIONS WITH SPIN 49

user
Home Appliance Network) /

service X - - -
HVAC sgrwce | Air-cleaning service |

A
. 1

1.5 .
appliance / 1
| Air-conditioner| Ventilator | Smoke Sensor|

“'

o

Noodo N
environment \
Temperature Smoke Brightness

Figure 4.7: Feature interactions in home network systems

4.3.2 Representing Correctness ClaimsasLTL Formulas

In this section, we classify feature interactions based on their causes. To detect
feature interactions using SPIN, we need to represent the absence of each type of
feature interactionsas an LTL formula. Two kinds of temporal operators are used
in this chapter: aways and eventually. The operator “aways’ is represented as
[1.Aformula [] P evauatestotrueif P isawaystruein all system executions.
The operator “eventually” isrepresented as <>. A formula<> P evaluatesto true
if P eventually becomestruein all system executions.
In general, feature interaction occurs when conflicting accesses are attempted
to the same resource. Since there are four types of components (i.e., users, ser-

vices, appliances and the environment), we have asimple classification asfollows:

Interaction with services. Two users send conflicting commands to the same

service.

50 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

Interaction with appliances. Two services are attempting conflicting operations

on the same appliance.

Interaction with the environment: Two appliances have conflicting effects on

the same e ement of the environment.

Figure 4.7 shows the examples of these interactions. In this figure, UserA
and UserB can send conflicting commands to the HVAC service. The HVAC
service and the air-cleaning service can operate the ventilator with conflicting
purposes. The air-conditioner and the ventilator have conflicting effects on the

room temperature.

I nteractionswith Services

Interactions occur with services when two users send conflicting commandsto the
same service. Thistype of interaction can be detected by checking if an incoming
message conflicts with the previous message.

We consider a message m from a user to a service to be conflicting if the fol-
lowing three conditions are met: the service has already received another message
m'; m' was issued by a different user; and the command of m is different from
that of m/'.

To detect conflicting messages, we modify send/receive statements of user and
service processes in two respects. First, the identity of sender usersis attached to
every message. Second, additional Promela code is inserted immediately after
each receive statement of a service. For example, the receive statement of line 3

in Figure 4.5 will be modified as follows:

MC HVAC State?user,HVAC State;

4.3. DETECTION OF FEATURE INTERACTIONS WITH SPIN 51

if

:: (MC_HVAC State?[,] &&
IMC_HVAC State?[eval (user),] &&
IMC_HVAC_State?[,eval (HVAC_State)])
-> HVAC error = 1;

::else -> skip;

fi;

MC? [al,a2] evaluatesto trueiff in channel MC amessage (a1, a2) exists. Un-
derscore () isused asawildcard. eval () isafunction that returns the current
value of the variable given as an argument.

The variable HVAC error is used to record the occurrence of interactions.
We let each Service have variable Service error. If thereis a conflict-
ing message in the message channel, Service errorissettol. Asaresult
interactions with each Service can be detected by checking the following LTL

formula:

!<> (Service error == 1)

Interactions with Appliances

Application-level interactions occur when several servicestry to execute conflict-
ing operations on the same appliance. This type of interaction occurs in two sit-
uations: A1) two services try to change the state of the appliance to different
states and A 2) one service reads the state of an appliance when another serviceis

changing the state.

52 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

Wedefinevariableappliance error for each applianceto represent wheth-
er or not a feature interaction has occurred (0: not occurred, 1. Al, 2. A2).
appliance error isupdated when afeature interaction occurred.

Detection of ALl: Interaction A1l occurs when two services try to set the same
variable of an appliance to different values. To detect this interaction, we can use
asimilar way asinteraction S1. We trandate a variable assignment statement into
apair of a send statement and a receive statement, mimicking value assignment
as message passing. When the send statement is executed, interaction A1 can
be detected by checking whether or not a conflicting message has already been

sent. For example, Figure 4.8 shows method AC_SetMode (mode) of the air-

conditioner.
1 #define AC_SetMode (mode) {\
2 AC_Power == ON;\
3 if\
4 ::(MC_AC Mode?[] && ! (MC_AC Mode? [mode]))\
5 -> AC error = 1;\
6 ::else -> skip;\
7 f£i;\
8 MC AC Mode!mode;\
9 MC_AC Mode?AC Mode; }

Figure 4.8: Method SetMode of the air-conditioner

In Promela, if a message channdl is full, the send statement waits until the
message channel becomes non-full. For a method to receive the message sent by

itself, the buffer size of message channel must be 1. This guarantees that, for

4.3. DETECTION OF FEATURE INTERACTIONS WITH SPIN 53

example, when the receive statement is executed at line 9 in Figure 4.8, the only
message in the message channel is the message sent at line 8. Hence, the message
that can be received at line 9 is only the message sent at line 8.

Detection of A2: Interaction A2 occurs in the situation where one service tries
to read a variable when another service is changing the value of the variable.
As aresult of thisinteraction, the value obtained by the former service becomes
different from the actual value of the variable. This interaction can be detected
by checking, whenever a method reads a variable, if the channel associated with
that variable contains a new value different from the current one. For example,
the macro TV_CheckPower, which is used to check the power of the TV set by

services, is described as follows:

#define TV CheckPower () {\

true;\

if\

:: (MC_TV _Power?[] && \
! (MC_TV Power? [eval (TV _Power)]))\
-> TV _error = 2;\

::else -> skip;\

£i;\

r value = TV_Power; }

For each appliance, interactions on it can be detected by checking if the value
of Appliance errorislor 2. If checking interaction Al, for example, one

can use the following LTL formula:

!<> AC error ==

54 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

I nter actions with the Environment

Interactions with the environment occur when two appliances have conflicting
effects on the same element of the environment. Hence this interaction occurs in
the following two situations. E1) there are two different kinds of effects occurring
on the same element of the environment simultaneously, and E2) some appliance
reads the state of an environment element while some effect on that element is
existing.

Detection of E1: Thisinteraction can be detected by checking that continuous
conflicting effects on the same environment element never occurs. This property

isrepresented by an LTL formulaasfollows:
LTL:!<> [] (e _effl && e eff2)

where e _ef £ is the formula that represents that some appliance has an effect
effiontheelement e. ThisLTL formula asserts that the two different effects on
the same element never occurs simultaneously. When the number of the types of
effects is more than 2, by checking all pairs of effects, one can detect this type of
interactions. For example, when the number of typesis 3, the LTL formulacan be

described as follows:

LTL:!<>([] (e effl && e eff2) || [l (e effl && e eff3)

|| [1(e eff2 && e eff3))

Detection of E2: This interaction can be detected by checking if some effect is
existing on an element of the environment when a service reads the state of the
same environment element. For each environment element e, variable e _read

is used to detect such a situation. We add the following statements to all methods

4.4. EXPERIMENT 55

that read the value of the element e at the point just before a statement that reads

the value of the element.
e read = 1; e read = 0;

Thevalue of e _read becomes 1 only if some method has just read the state

of e. Asaresult this type of interaction can be detected by using the following

LTL formula
LTL:!<> (e _read && (e effl || .. || e effn))
(e effl || .. || e effn) representsthat no effect is occurring on

e. Hence, this LTL formula asserts that effects on the environment element e

never exist while the state of e is being read.

4.4 EXperiment

We conducted an experiment, in which we attempted to detect interactions caused
by any pair of the four services of our running example (see Section 4.2.2). Inthis
experiment, we assumed that there are two users and each user executes a single
service. The experiment was conducted on a WindowsXP PC with a 900MHz
Pentiumlll and 512MB memory. SPIN was used with partia order reduction en-
abled.

In our running example, there are ten appliances as shown in Figure 4.1. Each
appliance has one or two variables and two to six methods. The lines of code of
the HVAC service, of the air-cleaning service and of the home theater service are
all approximately 50 lines. The energy saving service is described in around ten

lines.

56 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

Detection of service-level interactions was conducted by enforcing the two
users to run the same service. Unlike the other three services, the HVAC service
requiresthe user to specify the temperature set point. Inthisexperiment, thisvalue
isset to 21 °C or 25°C.

For each of the two interaction types, A1 and A2, we check whether or not the
interaction occurs for the ten appliances. Hence, we run a verification 20 times
for each pair of services.

To detect interactions with the environment, we run a verification eight times,
because there are two types, E1 and E2, of interactions and four environment

elements.

4.4.1 Veification Results

The verification results are summarized in Table 4.1: This table shows the inter-
actions detected between two services. S1, Al, A2, E1 and E2 indicate the type of
interactions (services (S1), appliances (A1, A2), the environment (E1, E2)). Each
symbol is followed by the component with which the interaction occurs. For ex-
ample, when one user executes the HVAC service and the other user executes the
air-cleaning service, atype Al interaction with ventilator can occur. In the same
case, type E1 and type E2 interactions with the room temperature and a type E2
interaction with smoke can occur.

Some performance figures are shown in Table 4.2 and Table 4.3 for the pair
of the HVAV service and the air-cleaning service. Table 4.2 shows the results for
interactions with appliances, while Table 4.3 showsthose for interactions with the
environment. These tables show the verification results (t rue indicates that an

interaction was found), the execution time, and the number of states explored for

57

4.4. EXPERIMENT

901MJBS Buines ABiug

(@21nJ8s Buines ABu3)TS

(sseuyBua)z3

(s ALV (ssouyBra)z3
90IAJSS JoTeay) SWOH (ofeid aAQ)TV | (B01nISs JoTEaY) BWOH)TS
(ssouyBra)z3 (@ows)z3a
d0InJss Buiues p-11y @1ows)z3 @fows)z3 | (e01Ass Buluesp-11vY)TS
(@ows)z3
(@nesedwe) wool)z3
(sssuybiq)z3 (®inejedwe) wool)T3 | (@Inreledws) wool)z3
B0IABS DVAH (eanresedwe) woot)z3 (®inresedwe) Woo.)Z3 (Jo|NUBA)T Y (®o1n8s DVYAH)TS
901nJBs Buines ABiug 9JIAJBS JoTeay] SWOH 901AJBS Bulueso-11y 90INIBS DVAH

WIS/S YJoMIBU SLLIoY U1S3 [duexs 301ASS Usamiaq pa1isiep suodeselu| (T a|gel

58 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

Table 4.2 Interaction with appliances between the HVAC service and the air-

cleaning service

appliance type | result | time(s) state

Air-conditioner | A1 |true | 1.57 x 10! | 9.9 x 10°
A2 |true | 1.45x10' |9.9x 10°
Thermometer | A1 | true | 1.46 x 10' | 9.9 x 10°

(inside) A2 |true | 1.45x10' |9.9x 10°

Thermometer | A1 |true | 1.55 x 101 | 9.9 x 10°

(outside) A2 |true | 1.48 x10' | 9.9 x 10°

smokesensor | Al |true | 1.52x 10% | 9.9 x 10°
A2 |true | 1.45x 10" |9.9 x10°
ventilator Al |false | 2.65x 107" | 1.1 x 10?
A2 |true | 1.49 x 10 |9.9 x 10°

each appliance or environment element. The resultsfor the appliances that are not
used by the two services are omitted. As shown in these tables, the time required
for verification isfairly reasonable.

Using counterexamples provided by SPIN, we detected scenarios leading to
interactions. Below we show several examples of such scenarios.

Type Al interaction with the ventilator between the HVAC service and the
air-cleaning service: The room temperature is warmer than the outside temper-
ature, and there is smoke in the room. The HVAC service and the air-cleaning
service are both running. The HVAC service calls method Set Power (OFF) of
the ventilator to turn it off, to prevent cool outside air from flowing into the room.

On the other hand, the air-cleaning service executes method SetPower (ON)

4.4. EXPERIMENT 59

Table 4.3: Interaction with the environment between the HVAC service and the

air-cleaning service

element type | result | time(s) state

room El |fase | 2.50 x 107! | 8.7 x 102
temperature | E2 | false | 2.34 x 107! | 2.0 x 10!

outside E1l |true | 1.47x 10" |99 x10°

temperature | E2 | true | 1.51 x 10! | 9.9 x 10°

smoke E1l |true | 1.45x10' |9.9x10°
E2 |fase | 2.50 x 107! | 2.6 x 10!
brightness | E1 | true | 1.48 x 10' | 9.9 x 10°
E2 |true | 1.44x10' |9.9x10°

of the ventilator to turn it on to clean the room air. As a result, the conflicting
operations of the ventilator are executed at the same time.

Type E1 interaction with the room temperature between the HVAC service
and the air-cleaning service: This scenario is the same as the third example in
Section 4.2.3.

Type E2 interaction with the room temperature between the HVAC service
and the air-cleaning service: Suppose that the room temperature is cooler than
the outside temperature and that the air-cleaning service is operating the ventilator
to clean theroom air. In this situation, the ventilator warms the room up. Now the
HVAC service executes the method that measures the current room temperature.
Sincethe ventilator is having an effect on the room temperature, the HVAC service
can erroneously recognize the room temperature asif it were lower than the actual

value, resulting in execution of unnecessary heating.

60 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

Type Al interaction with the DVD player between the home theater service
and the energy saving service: The power of the TV set is OFF at the beginning.
The energy saving service checks the power of the TV set. The service comesto
know that the TV set is OFF and thus tries to execute Set Power (OFF) to turn
off the DVD player. At thistime, the home theater service is activated and triesto
execute Set Power (ON) to turn the DVD player on. Asaresult, the conflicting
operationsto DVD player are executed.

Interaction A2 with the TV set between the home theater service and the
energy saving service: Thisscenario isthe same asthe second examplein Section

4.2.3.

4.4.2 Discussion

Unlike telecommunication systems, modeling home network systems requires us
to consider the “physical” environment which might involve, for example, tem-
perature or brightness. A method for detecting feature interactions in a telecom-
munication system by using the SPIN model checker is proposed in [9], but it
can not be applied to home network systems. In the context of interaction de-
tection for intelligent building control systems, Metzger and Webel proposed an
approach to deal with such physical elements of the environment [37]. The idea
of their approach is to detect different services that access the same environment
element. Unlike ours, their approach does not consider how the services affect the
environment. Asaresult it easily yields false negatives.

In our proposed framework, we define the types of effects on the environ-
ment to overcome this problem. For example, consider the situation where both

the HVAC service and the air-cleaning service operate a ventilator. Because the

4.4. EXPERIMENT 61

ventilator has effect on the “Smoke” element of the environment these two ser-
vices access the same element of the environment. Existing methods such as [37]
consider these situations as feature interactions. However, this situation is not un-
desirable because the purpose of each service is not interfered. In our proposed
framework, these situations were correctly considered desirable. This can be seen
in the experiment in Section 4.4. The verification result shows that type E1 inter-
action with smoke between the HVAC service and the air-cleaning service does

not occur.

Research that addressed the feature interaction problem of home network sys-
tems includes [27, 39]. In [27], a runtime detection method and a priority-based
resolution are proposed. Our approach works at a higher abstract level than [27]
in the sense that interactions detected by our approach might be resolved by pri-
oritizing services. Thus, even when such a runtime resolution exists, the results
obtained through our approach can be used to identify the situations where the
mechanism comes into play, resulting in a better understanding of the system be-

havior.

In [39], a static method for detecting feature interactions is proposed. How-
ever, thismethod is a conservative approximation method and thus can detect false

feature interactions which will never occur in actual runs.

The authors of [29] propose a method for verifying the behavior of services
with the SMV model checker [35]. This method can also be used for feature inter-
action detection, it was not the main objective of [29], though. Thework presented
in this chapter improves[29] in severa ways: First, we classified interactions and
devised the LTL correctness claim for each category. These LTL formulas allow

systematic interaction detection, whilein [29] correctness claimswere constructed

62 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

in an ad hoc manner. Another improvement came from our adopting the Promela
language. Unlike the SMV input language, Promela is similar to conventional
procedural programming languages. This makes it much easier to describe the

specification of appliances and services.

Our proposed framework focuses only on the high-level behavior of services,
and thus can be used independently of underlying network protocols. For exam-

ple, we show away of applying our framework to ECHONET specifications.

Appliancesare represented as objectswhich consist of state variablesin ECHO
NET. Appliances are operated by writing/reading the variables. The variablesin
ECHONET specifications can be directly represented as those in our model. Writ-
ing/reading operations on the variablesin ECHONET specifications can be trans-
lated into methods in our model. Because the effects on the environment are not
defined in ECHONET specifications, we must define the effects on the environ-
ment for each state of appliances. As aresult, applying our proposed framework
to ECHONET specifications proceeds as follows. First, state variables of appli-
ances of ECHONET specifications are transated into variables and methods of
appliances in our model. Second the effects on the environment are defined for

appliances. Finally, the services are described in the format of our model.

As a case study, we describe a ventilator and a service which achieves low
power consumption of houses in the ECHONET standard available from [17] us-

ing our proposed model. Thisis shown in the appendix of this chapter.

4.5 SUMMARY 63

45 Summary

In this chapter, we proposed a method for detecting feature interactions in home
network systems. The proposed method uses SPIN, an LTL model checker. We
classified interactions into several types and devised LTL formulas that repre-
sent the absence of these interactions. To demonstrate the usefulness of the pro-
posed approach, we conducted an experiment. We checked whether or not feature
interactions occur in our running example and successfully detected several in-
teractions. By using counterexamples produced by SPIN, we also succeeded in

obtaining scenarios leading to the interactions.

4.6 Appendix

Description of Ventilator

We show that the specification of aventilator described inthe ECHONET standard
can be represented using our proposed model.

The ventilator has eight variables: OperationStatus, RoomRelative-
Humid,VentilatingStatus,MeasureHumid,VentilatingWindLev-
el, HeatExchangerStatus, CO2Concentration, and SmokeDetec-
tionStatus.

Six variables, OperationStatus, RoomRelativeHumid, Ventilat-
ingStatus, VentilatingWindLevel,HeatExchangerStatus, and
CO2Concentration, and two operations, Get, by which the variable is read,
and Set, by which the variable is written, are defined. Two variables, Measure-

Humid and SmokeDetectionStatus: have only one operation Get. To rep-

64 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

resent these operations as methods, we define the pre-condition and the post-
condition of each method as follows: The pre-conditions for all methods are true.
The post-condition of Set is defined such that it becomes true if the value of the
variable has been correctly updated. The post-condition of Get is defined as true.
Here we only show the pre-conditions and the post-conditions for Set and Get of
OperationStatus, because these for the other variables are identical except
the name of the variable.

Since the effects on the environment are not defined in ECHONET, we define
three types of effects on the environment. When the state of the ventilator is ON,
the smoke is removed. When the state of the ventilator is ON and the room tem-
perature is warmer than the outside, the effect “down” on the element “temp_in”
of the environment occurs. On the other hand, when the state of the ventilator is
ON and the room temperature is cooler than the outside, the effect “up” on the

element “temp_in” of the environment occurs.

e Ventilation= (Fy,,, My, EWy). Fy, isaset of variables, My is a set of meth-
ods, and EW,, (eff) is a formula which represents the state of the ventilator
and the state of the environment when the ventilator has an effect on the

element ¢f f of the environment.

e Fy = (OperationStatus, RoomRelativeHumid, VentilatingStatus, M easured-
Humid, VentilatingWindLevel, HeatExchangerStatus, CO2Concentration,
SmokeDetectionStatus)

e My = (Get_OperationStatus(), Set_OperationStatus(status), Get_RoomRe-
lativeHumid(), Set_RoomRel ativeHumid(humid), Get_VentilatingStatus(),
Set_VentilatingStatus(status), Get_MeasuredHumid(), Get_VentilatingWind-

4.6. APPENDIX 65

Level(), Set_VentilatingwindLevel (level), Get_HeatExchanger Status(), Set-
_HeatExchanger Status(status), Get_CO2Concentration(), Set_CO2Concent-
ration(concentration), Get_SmokeDetectionStatus(status))

Pre(Get_OperationStatus()) = [true]

Post(Get_OperationStatus()) = [true]

— Pre(Set_OperationStatus(status)) = [true]

Post(Set_OperationStatus(status)) = [OperationStatus =status]
e EW, (eff):

eff=Smoke_removal: [OperationStatus = ON]
eff=Temp_in_up: [OperationStatus = ON A Temp_in<Temp_out]
eff=Temp_in_down: [OperationStatus= ON A Temp_in > Temp_ out]

otherwise: [falsg]

The Promela description can be obtained by trandlating the above description.

We show the Get and Set methodsfor OperationStatus.

/+ Definition of types =*/
#define tStatus int
#define OFF O

#define ON 1

#define tAuto

#define Auto 2

#define NonAuto 3

#define tSmoke int

66 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

#define Found 4

#Define NotFound 5

/+ Definition of Variable x/

tStatus Ventilation OperationStatus;

int Ventilation RoomRelativeHumid;

tAuto Ventilation VentilatingStatus;

int Ventilation MeasuredHumid;

int Ventilation VentilatingWindLevel;
tStatus Ventilation HeatExchangerStatus;
int Ventilation CO2Concentration;

tSmoke Ventilation SmokeDetectionStatus;
/* variable for detecting interaction x/

int Ventilation error=0;

/+ Operations for OperationStatus =/
#define Ventilation Get OperationStatus () {\
true;\
if:: (MC Ventilation OperationStatus?[] &&
! (MC_Ventilation OperationStatus?
[eval (Ventilation operationStatus)]))\
-> Ventilation error = 2;\
::else-> skip;fi;\
r value = Ventilation OperationStatus;
}
#define Ventilation Set OperationStatus (status) {\

true\

4.6. APPENDIX 67

if:: (MC_Ventilation OperationStatus?[] &&
! (MC_Ventilation OperationStatus? [mode]))\
->Ventilation error = 1;\
::else -> skip; fi;
MC Ventilation OperationStatus!status;\

MC Ventilation OperationStatus?Ventilation OperationStatus;\

}

Description of the Energy Management Service

Here, EM S (Energy Management Service) in ECHONET isdescribed in Promela.
This service checks the total power consumption of all appliances, and if the
power consumption exceeds a certain value (/'s) set by users, the service suspends
the appliances based on the priority until the power consumption becomes lower
than the value of Is. If the power consumption is lower than the value Ie and
there are appliances suspended by the service, the service restarts the appliances.
To use this service, users need to set the values of /s and Ie. The behavior of this

serviceis asfollows:

1. This service checks the power consumption of all appliances. If the total
power consumption exceeds [s, step 2 is executed. If the power consump-

tion islower than /¢, the next step is step 3. Otherwise, it repeats step 1.

2. This service suspends the appliance that has the lowest priority, and returns
to step 1. If there are no appliances that can be suspended, this service gives

the adarm and terminates.

3. If there are suspended appliances, this service restarts one of the appliances.

68 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS
After that, this service returnsto step 1.

Asin the document of the ECHONET standard, we consider a home network
system which consists of an air-conditioner, a ventilator, a freezer, a microwave,
aheater, and awasher. In this case, EMS can be described as follows. We assume
that the priorities and the power consumption of all appliances are given. About

one hundred lines of Promela code for the EM S service is obtained.

int EMS_ State;
int priorityl[6]; /% priority for each appliancex/

int consumption([6];/* power consumptions/

SERVICE EMS (int Is, int Ie){
VAR
int It;
bool cut[6]; # suspended appliance
suspended: 1
int maxpriority, minpriority;
#max: appliance: not suspended and max priority
#min: appliance: suspended and min priority

tStatus Status tmp;

CONTENT
initialize for cut
cut [0]=0;cut[1]1=0;cut[2]=0;

cut [3]1=0;cut[4]=0;cut[5]=0;

while (EMS_STATE=START) {

4.6. APPENDIX 69

#maxpriority, minpriority
It = 0; maxpriority = 0; minpriority = 255;
#power consumption of air-conditioner
Status_tmp :=
Air conditioner.Get OperationStatus() ;
if (Status tmp == ON) {
It := It + consumption[0];
if (cut[0] = 0 && priority[0] < minpriority) {
minpriority := priorityI[0];}}
if (cut[0] = 1 && priority[0] > maxpriority)
maxpriority := priorityl[0];}
#power consumption of ventilator
Status tmp := Ventilater.Get OperationStatus/() ;

if (Status_tmp = ON) {

It := It + consumption(l];
if (cut[1] = 0 && priority[1l] < minpriority) {
minpriority := priorityI[1];}}
if (cut[1] = 1 && priority[1l] > maxpriority)
maxpriority := priorityl[1];}

#power consumption of freezer
Status_tmp := Freezer.Get OperationStatus() ;

if (Status tmp = ON) {

It := It + consumption[2];

if (cut[2] = 0 && priority[2] < minpriority)
minpriority := priorityl[2];}}

if (cut[2] = 1 && priority[2] > maxpriority) {

maxpriority = priority[2];}

70 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

#power consumption of microwave
Status_tmp := Microwave.Get OperationStatus() ;

if (Status tmp = ON)

It := It + consumption[3];
if (cut[3] = 0 && priority[3] < minpriority)
minpriority := priorityI[3]1; }}
if(cut[3] = 1 && priority[3] > maxpriority) {

maxpriority = priority[3];}
#power consumption of heater
Status tmp := Heater.Get OperationStatus();

if (Status_tmp = ON) {

It := It + consumption[4];
if (cut[4] = 0 && priority[4] < minpriority)
minpriority := priorityl[4];}}
if(cut[4] = 1 && priority[4] > maxpriority) {
maxpriority := priorityl[4];}

#power consumption of washer
Status tmp := Washer.Get OperationStatus();

if (Status tmp = ON)

It := It + consumption[5];
if (cut[5] = 0 && priority[5] < minpriority)
minpriority := priorityI[5];}}
if(cut[5] = 1 && priority[5] > maxpriority) {
maxpriority := priorityI[5];}

if (It>Is){/* suspend appliances =/

if (minpriority = priority[0]) {

4.6. APPENDIX 71

Air conditioner.Set OperationStatus (OFF) ;
cut [0] := 1;}

else if (minpriority = priority[1]){
Ventilater.Set OperationStatus (OFF) ;
cut [1] := 1;}

else if (minpriority = priority[2]){
Freezer.Set OperationStatus (OFF) ;
cut [2] := 1;}

else if (minpriority = priority[3]){
Microwave.Set OperationStatus (OFF) ;
cut [3] := 1;}

else if (minpriority = priority[4]){
Heater.Set OperationStatus (OFF) ;
cut [4] := 1;}

else if (minpriority = priority[5]){
Washer.Set OperationStatus (OFF) ;
cut [5] := 1;}

else {Alarm.Set OperationStatus (ON) ;}}

:: (It<Ie) -> /% restart appliancesx/

if (maxpriority = priority[0]) {
Air conditioner.Set OperationStatus (ON) ;
cut [0] := 0;}

else if (maxpriority = priority[1])
Ventilater.Set OperationStatus (ON) ;
cut [1] := 0;}

else if (maxpriority = priority[2])

Freezer.Set OperationStatus (ON) ;

72 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

cut [2] := 0;}

else if (maxpriority = priority[3])
Microwave.Set OperationStatus (ON) ;
cut [3] := 0;}

else if (maxpriority = priority[4])
Heater.Set OperationStatus (ON) ;
cut [4] := 0;}

else if (maxpriority = priority[5]) {
Washer.Set OperationStatus (ON) ;

cut [5] := 0;}

Chapter 5

Conclusion

5.1 Achievements

In this dissertation, methods for verifying feature interactions in telecommunica-
tion systems and home network systems were described.

The first achievement is the development of a verification method for veri-
fying feature interactions in telecommunication services with unbounded model
checking. First, a new encoding scheme that effectively represents the behav-
iors of telecommunication systems was proposed. Next, a method for adapting
unbounded model checking to this encoding was described.

To show the effectiveness of our method, we conducted experiments where 21
pairs of telecommunication serviceswere verified using several methodsincluding
ours. The results showed that our approach exhibited significant speed-up over
unbounded model checking using the traditional encoding. Our method exhibited
better or comparable performance comparing to the SPIN model checker in many

cases. In some cases, however, our method could not compl ete verification, while

73

74 CHAPTER 5. CONCLUSION

SPIN solved the verification problem in afew seconds.

The second achievement is the devel opment of a framework for detecting fea-
ture interactions in home network systems. Our proposed approach for verifica
tion of feature interactions consists of two part. First, amodel for home network
system is proposed, and the feature interactions in home network systemsis clas-
sified based on their causes. Next, an automatic translation method from proposed
model into Promela, which istheinput language of the SPIN model checker ispro-
posed. we also proposed LTL formulas which represent the absence of each type
of feature interactions. By using our proposed framework, one can automatically
detect feature interactions in home network systems.

To demonstrate the usefulness of the proposed approach, we conducted an ex-
periment. We checked whether or not feature interactions occur in our running
example and successfully detected severa interactions. By using counterexam-
ples produced by SPIN, we also succeeded in obtaining scenarios leading to the

interactions.

5.2 FutureResearch

Some issues are left for future research. In the research on telecommunication
systems, our implementation is till in its prototype stage. Our current imple-
mentation uses FOCI for interpolant generation. FOCI supports not only pure
propositional logic but also uninterpreted functions or linear arithmetic. By de-
veloping a new, faster interpolation procedure tailored to propositional logic, we
may be able to enhance the performance of our method. This expectation can also

be justified by the facts that the research on interpolation is ill in its early stage,

5.2, FUTURE RESEARCH 75

and that the performance of SAT solving has been improved by several orders of
magnitude in this decade.

In the research on home network systems, atool should be developed in order
to support users to describe and validate home network services based on the
proposed framework. In this dissertation we show how users can verify home
network services; but doing this requires them to have some knowledge about the
framework. Such atool would greatly facilitate ordinary usersto usethe automatic
verification method.

The issue of resolving the detected feature interactions in home network sys-
tems still remains. Many approaches for resolving feature interactions exist. For
example, when feature interaction occurs, the system may ask the users to deter-
mine which service execution is suspended, or the users may assign priorities to
services to automatically abort a service with a lower priority. Finding the best

resolution method for each type of feature interactionsis needed.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

N. Amla and K. L. McMillan. Combining abstraction refinement and sat-based
model checking. In Proc. the 13th International Conference on Tools and Algo-
rithmsfor the Construction and Analysis of Systems (TACAS2007), Vol. 4424, pages
405-419, Braga, Portugal, March 2007.

D. Amyot and L. Logrippo, editors. Feature Interaction in Telecommunications and

Software Systems VII. 2003.

Bellcore. Advanced Intelligent Network (AIN) Release 1, Switching Systems
Generic Requirement. Bellcore Technical Advisory TA-NWT.001123, 1991.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking with-
out bdds. In Proc. the 5th International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS 1999), pages 193-207, London, UK,
1999.

L. G. Bouma and H. Vethuijsen, editors. Feature Interaction in Telecommunica-

tions Systems. 1994.

T. F. Bowen, F. S. Dworack, C. H. Chow, N. Griffeth, G. Herman, and Y. J. Lin.
The feature interaction problem in telecommunications systems. In Proc. the 7th
International Conference on Software Engineering for Telecommunication Switch-

ing Systems, pages 59-62, London, July 1989.

76

BIBLIOGRAPHY 77

[7]

(8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]
[18]

J. R. Biichi. On adecision method in restricted second order aritmetic. In In Pro-
ceedings of the International Congress on Logic, Methodology and Philosophy of
Science, pages 1-11. Stanford University Press, 1960.

M. Cader and E. Magill, editors. Feature Interaction in Telecommunications and
Software Systems VI. 2000.

M. Calder and A. Miller. Feature interaction detection by pairwise analysis of Itl
properties - a case study. Formal Methods in System Design, Vol. 28, No. 3, pages
213-261, May 2006.

E. J. Cameron and H. Velthuijsen. Feature interactions in telecommunications sys-
tems. |EEE Communication Magazine, Vol. 31, No. 8, pages 18-23, 1993.

W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J. D.
Reese. Model checking large software specifications. |EEE Trans. Softw. Eng., Vol.
24, No. 7, 1998.

K. E. Cheng and T. Ohta, editors. Feature Interaction in Telecommunications I11.
1995.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Y. Vardi.
Benefits of bounded model checking at an industrial setting. In Proc. the 13th
International Conference on Computer Aided Verification (CAV 2001), pages 436—
453, London, UK, 2001.

P. Dini, R. Boutaba, and L. Logrippo, editors. Feature Interaction in Telecommuni-
cations Networks V. 1997.

L. du Bousquet and J.-L. Richer, editors. Feature Interaction in Telecommunications
and Software Systems | X. 2007.

ECHONET Consortium. http://www.echonet.gr.jp/.

A. Gammelgaard and J. E. Kristensen. Interaction detection, a logical approach.
In Proc. the 2nd Workshop on Feature Interaction in Telecommunication Systems,

pages 178-196, Amsterdam, The Netherlands, May 1994.

78

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

BIBLIOGRAPHY

Havi. http://www.havi.org/.

Y. Hirakawa and T. Takenaka. Telecommunication service description using state
transition rules. In Proc. the 6th international workshop on Software specification

and design (IWSSD 1991), pages 140-147, Como, Italy, October 1991.

G. J. Holzmann. The model checker SPIN. |EEE Trans. Software Eng., Vol. 23, No.
5, pages 279295, 1997.

ITU-T Recomendations Q.1200 Series, Intelligent Network Capability Set 1 (CS1).
ITU-T, September 1990.

H.-J. Kang and |.-C. Park. SAT-based unbounded symbolic model checking. |IEEE
Transaction on Computer-aided Design of Intergrated Circuit and Systems, Vol. 24,

No. 2, pages 129-140, 2005.

D. O. Keck and P. J. Kuehn. The feature and service interaction problem in
telecommunications systems. a survey. |EEE Transaction of Software Engineer-

ing, 24(10):779-796, October 1998.

A. Khoumsi. Detection and resolution of interactions between services of telephone
networks. In Proc. the 4th Workshop on Feature Interaction in Telecommunication

Systems, pages 78-92, Montréal, Canada, June 1997.

K. Kimber and L. G. Bouma, editors. Feature Interaction in Telecommunications

and Software Systems V. 1998.

M. Kolberg, E. H. Magill, and M. Wilson. Compatibility issues between services
supporting networked appliances. |EEE Communications Magazine, Vol. 41, No.

11, pages 136-147, 2003.

P. Leclaprute, T. Matsuo, T. Tsuchiya, and T. Kikuno. Detecting feature interac-
tions in home appliance networks. In Proc. the 9th Int'| Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Comput-
ing (SNPD 2008), pages 895-903, August 2008.

BIBLIOGRAPHY 79

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

P. Ledaprute, M. Nakamura, T. Tsuchiya, K. Matsumoto, and T. Kikuno. Describ-
ing and verifying integrated services of home network systems. In The 10th Asia-
Pacific Software Engineering Conference (APSEC2005), pages 549-558, December
2005.

J. Marques-Silva. Interpolant learning and reuse in sat-based model checking. Elec-
tronic Notes in Theoretical Computer Science, Vol. 174, No. 3, pages 3143, 2007.
T. Matsuo. A model of home network system for detecting feature interactions
by applying model checking. In Supplemental Volume of the 2007 International
Conference on Dependable Systems and Networks (DSN-2007), pages 300-302,
June 2007.

T. Matsuo, P. Ledlaprute, T. Tsuchiya, and T. Kikuno. Verifying feature interactions
in home network systems. IPSJ Journal (In Japanese), Vol. 49, No. 6, pages 2129—
2143, June 2008.

T. Matsuo, P. Leelaprute, T. Tsuchiya, T. Kikuno, M. Nakamura, H. Igaki, and
K. Matsumoto. Automatically verifying integrated services in home network sys-
tems. In Proc. International Technical Conference on Circuits/Systems, Computers
and Communications (I TC-CSCC2006), Vol. 2, pages 173-176, July 2006.

T. Matsuo, T. Tsuchiya, and T. Kikuno. Feature interaction verification using un-
bounded model checking with interpolation. |EICE Transaction on Information and
systems (conditional acceptance).

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
K. L. McMillan. Interpolation and sat-based model checking. In Proc. the 15th
International Conference on Computer Aided Verification (CAV2003), Vol. 2725,
pages 1 — 13, Boulder, CO, USA, July 2003.

A. Metzger and C. Webel. Feature interaction detection in building control systems
by means of a formal product model. Feature Interactions in Telecommunications

and Software Systems VI, pages 105-122, June 2003.

80

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]
[48]

BIBLIOGRAPHY

S. Moyer, D. Marples, and S. Tsang. A protocol for wide area, secure networked ap-
pliances communication. |EEE Communications Magazine, Vol. 38, No. 10, pages
52-59, October 2001.

M. Nakamura, H. Igaki, and K. Matsumoto. Feature interactions in integrated ser-
vices of networked home appliance. In Proc. of Int’'l. Conf. on Feature Interactions
in Telecommunication Networks and Distributed Systems (ICFI’05), pages 236—
251, June 2005.

S. Ogata, T. Tsuchiya, and T. Kikuno. Sat-based verification of safe petri nets. In
Proc. the 2nd International Symposium on Automated Technology for \erification
and Analysis (ATVA 2004), pages 72-92, November 2004.

OSGi Appliance. The OSGi service platform. http://osgi.org.

D. Peled. Combining partial order reductions with on-the-fly model-checking. In
Proc. the 6th International Conference on Computer Aided Verification (CAV94),
pages 377-390, London, UK, 1994. Springer-Verlag.

A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE sym-
posium on foundation of computer science, pages 46-57. IEEE Computer Society
Press, 1977.

P. Pudlak. Lower bounds for resolution and cutting plane proofs and monaotone
computations. Symbolic Logic, Vol. 62, No. 2, pages 981-998, September 1997.

S. Reiff-marganiec and M. D. Ryan, editors. Feature Interaction in Telecommuni-
cations and Software Systems VII1. 2005.

A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation.
In Proc. the 8th International Conference on Verification, Model Checking and Ab-
stract Interpretation (VMCAI 2007), pages 346-362, Nice, France, January 2007.
UPnP Forum. http://www.upnp.org/.

M. Weiss. Feature interactions in web services. In Feature Interaction in Telecom-

munications and Software Systems VII, pages 149-158, July 2003.

BIBLIOGRAPHY 81

[49] T.Yokogawa, T. Tsuchiya, M. Nakamura, and T. Kikuno. Feature interaction detec-
tion by bounded model checking. |EICE Transactions on Information and Systems,

Vol. E86-D, No. 12, pages 25792587, December 2003.

Feature Interaction Verification of Telecommunication Services and Home Network Services Using Model Checking January 2009 Takafumi Matsuo

	cover
	body
	spine

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

