
Title
Feature Interaction Verification of
Telecommunication Services and Home Network
Services Using Model Checking

Author(s) 松尾, 尚文

Citation 大阪大学, 2009, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/417

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Feature Interaction Verification of

Telecommunication Services and

Home Network Services Using Model Checking

January 2009

Takafumi Matsuo

Feature Interaction Verification of

Telecommunication Services and

Home Network Services Using Model Checking

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2009

Takafumi Matsuo

Abstract

Everywhere in our daily life many computer systems, such as telecommunication

systems and networked home appliances, are in use. Many new services for these

systems are developed to meet various requirements of customers. However, the

new services may have conflict with existing services. These conflicts are called

feature interaction. Feature interaction can occur when several services are exe-

cuted at the same time.

In many cases feature interactions cause undesirable behaviors of a system.

Hence, to develop new services, it is very important to prevent occurrence of fea-

ture interactions. However, detecting feature interactions of concurrent systems is

very difficult because such systems have many execution patterns. In addition, the

concurrency causes the low repeatability of feature interaction.

Model checking has attracted recent attention as one of the powerful verifi-

cation techniques to deal with such complex systems. Model checking allows an

automatic and exhaustive verification of software and system designs modeled as

state machines. The correctness criteria are specified in a temporal logic. When

the design fails to meet the correctness criteria, model checking tools can usually

produce a counterexample. Using this counterexample, one can easily detect the

cause of the error.

i

ii

This dissertation focuses on model checking and proposes methods for detect-

ing feature interactions of services in two types of systems: telecommunication

systems and home network systems.

First, this dissertation proposes a new unbounded model checking method for

feature interaction verification for telecommunication systems. To deal with the

concurrency of telecommunication systems, we propose to use a new scheme for

encoding the behavior of the system and adapt the unbounded model checking

algorithm to this encoding. To demonstrate the effectiveness of our approach, we

conduct experiments where 21 pairs of telecommunication services are verified

using several methods including ours. The results show that our approach ex-

hibits significant speed-up over unbounded model checking using the traditional

encoding.

Second, a framework for detecting feature interactions in home network sys-

tems is proposed. Our proposed method consists of two steps. In the first step, a

model is developed to capture the behavior of the services. In the second step, the

model is automatically analyzed to see if possible interactions exist. This auto-

matic analysis can be effectively performed with model checking techniques. The

usefulness of the proposed approach is demonstrated through a case study.

List of Major Publications

[1] Takafumi Matsuo, Tatsuhiro Tsuchiya, and Tohru Kikuno, “Feature Interac-

tion Verification Using Unbounded Model Checking with Interpolation,”

IEICE Transaction on Information and systems. (conditional acceptance)

[2] Takafumi Matsuo, Pattara Leelaprute, Tatsuhiro Tsuchiya, and Tohru Kikuno,

“Verifying Feature interactions in Home Network Systems,” IPSJ Journal,

vol. 49, no. 6, pp. 2129-2143, June 2008. (In Japanese)

[3] Takafumi Matsuo, Tatsuhiro Tsuchiya, and Tohru Kikuno, “Safety Verifica-

tion on Networked Appliance Systems,” The Journal of Reliability Engi-

neering Association of Japan, vol. 30, no. 3, pp. 243-251, May 2008. (In

Japanese)

[4] Pattara Leelaprute, Takafumi Matsuo, Tatsuhiro Tsuchiya, and Tohru Kikuno,

“Detecting Feature Interactions in Home Appliance Networks,” In Proc. of

9th Int’l Conference on Software Engineering, Artificial Intelligence, Net-

working, and Parallel/Distributed Computing (SNPD 2008), pp. 895-903,

August 2008.

[5] Fuminori Makikawa, Takafumi Matsuo, Tatsuhiro Tsuchiya, and Tohru Kikuno,

iii

iv

“Constructing Overlay Networks with Low Link Costs and Short Paths,” In

Proc. 6th International Symposium on Network Computing and Applica-

tions (NCA 2007), pp. 299-302, July 2007.

[6] Takafumi Matsuo, “A Model of Home Network System for Detecting Feature

Interactions by Applying Model Checking,” In Supplemental Proceedings

of DSN 2007, pp. 300-302, June 2007.

[7] T. Matsuo, P. Leelaprute, T. Tsuchiya, T. Kikuno, M. Nakamura, H. Igaki,

and K. Matsumoto,”Automatically Verifying Integrated Services in Home

Network Systems”, In Proc. of 2006 International Technical Conference

on Circuits/Systems, Computers and Communications (ITC-CSCC2006),

Vol.2, pp.173-176, July 2006.

[8] Takafumi Matsuo, Tatsuhiro Tsuchiya, and Tohru Kikuno, “Verification of

a Distributed Consensus Algorithm Against Safety Properties with Model

Checking,” In Supplemental Proceedings of DSN 2006, pp. 180-181, June

2006.

Acknowledgments

During the course of this work, I have been fortunate to have received assistance

from many individuals. Especially I would like to thank my supervisor Professor

Tohru Kikuno for his continuous support, encouragement, and guidance for this

work.

I am also very grateful to the members of my dissertation review committee:

Professor Takao Onoye and Professor Shinji Kusumoto for their invaluable com-

ments and helpful criticism of this dissertation.

I would like to express my special thanks to the members of my advisory com-

mittee: Dr. Yoshiki Kinoshita, Dr. Masayuki Hirayama, and Associate Professor

Kiyoharu Hamaguchi for their insightful comments and suggestions of this work.

I would like to express my special thanks to Associate Professor Tatsuhiro

Tsuchiya for his continuous assistance and helpful advice.

I am also indebted to Dr. Pattara Leelaprute and Associate Professor Masahide

Nakamura of Kobe University for their advice and suggestions.

Finally, I wish to thank many friends in the Graduate School of Information

Science and Technology at Osaka University, who gave much help.

v

Contents

1 Introduction 1

1.1 Background . 1

1.2 Main Results . 3

1.2.1 Feature Interaction Verification in Telecommunication Sys-

tems . 3

1.2.2 Feature Interaction Verification in Home Network Systems 3

1.3 Overview of Dissertation . 4

2 Preliminary 6

2.1 Feature Interaction . 6

2.1.1 Feature Interaction in Telecommunication Systems 6

2.1.2 Feature Interaction in Home Network Systems 7

2.2 Model Checking . 8

2.2.1 Unbounded Model Checking 8

2.2.2 SPIN . 9

3 Feature Interaction Verification in Telecommunication Systems 11

3.1 Introduction . 11

vi

CONTENTS vii

3.2 Telecommunication Services . 13

3.2.1 Examples of Services . 13

3.2.2 Feature Interaction . 14

3.2.3 System Model . 15

3.3 Proposed Method . 18

3.3.1 Symbolic Representation 18

3.3.2 Boolean Encoding of Telecommunication Systems 20

3.3.3 Unbounded Model Checking 25

3.4 Experiment Results . 31

3.5 Summary . 37

4 Feature Interaction Verification in Home Network Systems 38

4.1 Introduction . 38

4.2 Preliminaries . 39

4.2.1 Home Network Systems 39

4.2.2 Services in Home Network Systems 40

4.2.3 Feature Interactions of Services 41

4.3 Detection of Feature Interactions with SPIN 42

4.3.1 Describing Home Network Systems and Users in Promela 42

4.3.2 Representing Correctness Claims as LTL Formulas 49

4.4 Experiment . 55

4.4.1 Verification Results . 56

4.4.2 Discussion . 60

4.5 Summary . 63

4.6 Appendix . 63

viii CONTENTS

5 Conclusion 73

5.1 Achievements . 73

5.2 Future Research . 74

Bibliography 76

List of Tables

3.1 Verification result of violation of invariant 34

3.2 Verification result of nondeterminism 35

4.1 Interactions detected between service examples in home network

system . 57

4.2 Interaction with appliances between the HVAC service and the

air-cleaning service . 58

4.3 Interaction with the environment between the HVAC service and

the air-cleaning service . 59

ix

List of Figures

3.1 Rule-based specification for POTS 16

3.2 Algorithm for ordering transitions 24

3.3 Unbounded model checking for given (SS,G) 27

3.4 Function FINITERUN for given ��� �� 29

4.1 An example of home network system 39

4.2 System model for home network systems 43

4.3 Description of a method of an appliance 46

4.4 The behavior part of the HVAC service 47

4.5 The communication part of the HVAC Service 48

4.6 The execution of HVAC service by user A 48

4.7 Feature interactions in home network systems 49

4.8 Method SetMode of the air-conditioner 52

x

Chapter 1

Introduction

1.1 Background

Everywhere in our daily life many computer systems, such as telecommunication

systems and networked home appliances, are in use. Many new services for these

systems are developed to meet various requirements of customers. However, the

new services may have conflict with existing services. These conflicts are called

feature interaction [10]. Feature interaction can occur when several services are

executed at the same time.

In many cases feature interactions cause undesirable behaviors of a system.

Hence, to develop new services, it is very important to prevent occurrent of fea-

ture interactions. In practical development, however, ad hoc testing is usually

conducted to prevent feature interactions. This leads to services which have no

interaction-free guarantee.

Many approaches have been proposed to deal with feature interactions. The

term “feature interaction problem” in telecommunication systems was proposed

1

2 CHAPTER 1. INTRODUCTION

by E.J. Cameron and N. Griffeth of Bellcore in the early 1980s. The first effort to

provide a framework for the field of feature interaction had been made by Bowen

et. al. [6] in 1989. Since then, much research focusing on feature interactions has

been studied by researchers from academia, research centers and industries [2,

5, 8, 12, 15, 16, 26, 45]. Keck and Kuehn surveyed approaches for overcoming

feature interactions [24].

Today, feature interaction is not unique to the field of the telecommunication

systems. Feature interactions have become problematic in other fields, such as,

Web services [48] and building control systems [37]. In the field of home network

systems, several studies have been conducted [27, 39].

This dissertation focuses on feature interaction in telecommunication systems

and in home network systems. Detection of feature interactions of these concur-

rent systems is very difficult because such systems have many execution patterns.

In addition, the concurrency causes the low repeatability of feature interaction.

Model checking [13] has attracted recent attention as one of the powerful ver-

ification techniques to deal with such complexity. Model checking allows an au-

tomatic and exhaustive verification of software and system designs modeled as

state machines. The correctness criteria are specified in a temporal logic. When

the design fails to meet the correctness criteria, model checking tools can usually

produce a counterexample. Using this counterexample, one can easily detect the

cause of the error.

This dissertation proposes model checking-based methods for detecting fea-

ture interactions of services in two types of systems: telecommunication systems

and home network systems by using model checking.

1.2. MAIN RESULTS 3

1.2 Main Results

1.2.1 Feature Interaction Verification in Telecommunication Sys-

tems

As for the first contribution, this dissertation proposes a new unbounded model

checking method for feature interaction verification for telecommunication sys-

tems. The application of unbounded model checking to asynchronous systems,

such as telecommunication systems, has rarely been practiced. This is because,

with the conventional encoding the behavior of an asynchronous system can only

be represented as a large propositional formula, thus resulting in large compu-

tational cost. To overcome this problem we propose to use a new scheme for

encoding the behavior of the system and adapt the unbounded model checking

algorithm to this encoding. By exploiting the concurrency of an asynchronous

system, this encoding scheme allows a very concise formula to represent system’s

behavior.

To demonstrate the effectiveness of our approach, we conduct experiments

where 21 pairs of telecommunication services are verified using several methods

including ours. The results show that our approach exhibits significant speed-up

over unbounded model checking using the traditional encoding.

1.2.2 Feature Interaction Verification in Home Network Sys-

tems

As for the second contribution, this dissertation proposes a framework for detect-

ing feature interactions in home network systems. Our proposed method consists

4 CHAPTER 1. INTRODUCTION

of two steps. In the first step, a model is developed to capture the behavior of the

services and the feature interactions in home network systems are classified based

on their causes. In the second step, the model is automatically analyzed to see if

possible interactions exist. This automatic analysis can be effectively performed

with model checking techniques.

At the first step, we propose a model which consists of four parts: users,

services, appliances and environment and classified feature interactions into five

types based on their causes. At the second step, we propose a method for trans-

lating from our proposed model into Promela, which is the input language of the

model checker SPIN. A property that represents the occurrence of each type of

feature interactions is also proposed. By using Promela code and properties ob-

tained by our approach, one can detect feature interactions automatically.

The usefulness of the proposed approach is demonstrated through a case study.

The result shows that the proposed method can successfully detect any of five

types of feature interactions.

1.3 Overview of Dissertation

This dissertation is organized as follows: Chapter 2 describes feature interaction

and model checking method. Chapter 3 describes the first contribution, enti-

tled “Feature Interaction Verification with Interpolant-based Unbounded Model

Checking.” In this chapter, some examples of practical telecommunication ser-

vices and feature interactions between those services are described. Next, our pro-

posed encoding is shown and a method for detecting those interactions by using

the proposed encoding is also presented. In Chapter 4, entitled “Feature Interac-

1.3. OVERVIEW OF DISSERTATION 5

tions Verification in Home network system,” the second contribution is described.

First, this chapter shows examples of home network services and interactions in

home network systems. Next, our proposed model and classification of feature

interactions are presented. Finally, our proposed method for detecting feature in-

teractions in home network systems are described. Chapter 5 summarizes this

dissertation and discusses future work.

Chapter 2

Preliminary

2.1 Feature Interaction

Feature interaction refers to situations where the behavior of different services

affect each other. Feature interactions may cause the undesirable behavior of ser-

vicesm and thus are considered a very serious problem in developing new services.

2.1.1 Feature Interaction in Telecommunication Systems

In telecommunication systems, many services are provided by modifying basic

telecommunication services. For example, the Call Forwarding (CF) service al-

lows the user to forward incoming calls to another address, and the Originating

Call Screening (OCS) service restricts outgoing calls according to a screening list.

When the new services have conflict with existing services or other new services,

feature interactions occur.

We show an example of feature interaction in telecommunication systems.

Consider a situation where user � has subscribed to the OCS service and specified

6

2.1. FEATURE INTERACTION 7

user � in the screening list. User � has activated the CF service to user �. In this

situation, if � calls �, the call is forwarded to � by the CF service. As a result,

the feature of the OCS service is ignored.

2.1.2 Feature Interaction in Home Network Systems

As home appliances are becoming increasingly interconnected, the use of home

network systems is being expanded [38, 47, 41, 17]. Home network systems in-

tegrate different features of appliances to provide value-added services. For ex-

ample, by integrating an air-conditioner, a ventilator and thermometers, one can

implement an energy-saving HVAC (heating, ventilation and air-conditioning)

service. Another example could be an air-cleaning service which automatically

cleans the room air by controlling a ventilator and a smoke sensor.

Here, an example of feature interactions in home network systems is shown.

Assume that the HVAC service is operating the air-conditioner to warm up the

room temperature and that at the same time the air-cleaning service is using the

ventilator to clean the room air. If the room temperature is higher than the outside

temperature, then cool outside air is taken into the room by the ventilator, which

results in the low efficiency of the HVAC service.

In home network systems, the “physical” environment is an important factor to

deal with feature interactions. The change of the environment is not explicit as the

change of the state of the appliances. For example, the temperature of room does

not immediately reach the value of the temperature setting of an air-conditioner

just after the air-conditioner is turned on. In dealing with the feature interaction

problem for home network systems, such a property of the environment must be

taken into consideration.

8 CHAPTER 2. PRELIMINARY

2.2 Model Checking

Model checking is a technique for verifying state transition systems. Model

checking explores the state space to determine whether or not a given property

holds in the system. This method allows an automatic and exhaustive verification

of software and system designs. The correctness criteria are specified in a tempo-

ral logic. When the design fails to meet the correctness criteria, model checking

tools can usually produce a counterexample. Using this counterexample, one can

easily detect the cause of the error.

For realistic systems, however, the number of states of the system model can

be very large, making the model checking problem intractable. This problem

is called the state explosion problem. This problem is one of the most serious

problems with model checking. To deal with this problem, many methods have

been proposed.

2.2.1 Unbounded Model Checking

One of the approaches to the state explosion problem is bounded model check-

ing [4, 14]. The main idea of bounded model checking is to look for counterex-

amples that are shorter than some fixed length � for a given property. This limita-

tion allows one to reduce the model checking problem to the satisfiability (SAT)

checking problem for a formula of some logic such that its satisfiability implies

the existence of a counterexample. Thus if the formula turns out to be satisfi-

able, then it is possible to conclude that the violation of the property occurs in the

system.

Although effective in detecting property violation, bounded model checking

2.2. MODEL CHECKING 9

cannot be directly used for proving the absence of violation. To cope with this dis-

advantage, McMillan proposed unbounded model checking [36], which combines

bounded model checking and interpolation. In the field of hardware verification,

unbounded model checking has been successful in verifying the properties of the

circuits that cannot be verified by other model checking methods [23].

The key observation used in McMillan’s method is that when bounded model

checking fails to find a counterexample, in which case the formula is unsatisfi-

able, an over-approximation of the state set reachable in one step can be derived

from the unsatisfiability proof produced by the SAT solver. Technically this over-

approximation is obtained in the form of an interpolant of the tested formula,

using an interpolation procedure. By repeatedly executing the interpolant proce-

dure, an over-approximation of the reachable state set can be obtained. If this

over-approximation contains no state violating a given property, then it is ensured

that the system meets that property.

2.2.2 SPIN

The SPIN model checker [21] is a verification tool for concurrent systems. In this

tool the partial order reduction [42] is used to reduce the state space to be checked.

To use SPIN, the behavior of a system needs to be described in the Promela lan-

guage, the input language of SPIN. Properties to be verified are represented as

Linear-Time Temporal Logic (LTL) [43].

In a Promela program, a system is defined as a collection of processes which

run asynchronously. These processes communicate via buffered channels and

shared global variables. Each process consists of a sequence of local variable

declarations, message channel declarations and statements.

10 CHAPTER 2. PRELIMINARY

An LTL formula represents properties about the execution traces of the Promela

program, where a trace is sequence of states. The model checker determines

whether or not all traces starting with the initial state satisfies a given LTL for-

mula. LTL formulas are translated into processes called never-claims in Promela.

The never-claim processes are equivalent to Büchi Automata [7]. Such processes

represents undesirable behavior of the system.

Chapter 3

Feature Interaction Verification in

Telecommunication Systems

3.1 Introduction

This chapter proposes a method for verifying feature interactions in telecommu-

nication systems [34]. This method uses unbounded model checking with inter-

polant.

The application of unbounded model checking to asynchronous systems has

rarely been practiced. Indeed we are not aware of any application to telecommu-

nication systems. This can be explained by the fact that with the conventional

encoding, the behavior of an asynchronous system can only be represented as a

large formula, thus resulting in large computational cost.

In our proposed method, we use a new scheme for encoding the behavior

of the system. By exploiting the concurrency of the telecommunication system,

this encoding scheme allows a very concise representation of system’s behavior.

11

12 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

By adapting unbounded model checking to this encoding, we obtain our model

checking method. The effectiveness of our approach is demonstrated through

experiments.

Previous attempts to improve the performance of unbounded model checking

include, for example, [30, 1, 46]. In [30], the method of reusing interpolants is

proposed to efficiently obtain an over-approximation of the reachable state set. In

[1], hybridization of interpolation and abstraction refinement is studied. In [46],

a new interpolation algorithm which is based on linear programming is proposed.

These studies aim to improve the interpolation procedure but do not focus on

the representation of the behavior of the system. The central idea behind our

encoding can also be seen in [49, 40]. In [40] a similar encoding is proposed in

the context of the verification of safe Petri nets. The encoding proposed in [49] is

used to represent telecommunication systems, as is done in this chapter. However

transition ordering, which will be explained in Section 3.3.2 is not applied in the

encoding of [49]. More importantly, in contrast to this chapter where unbounded

model checking is discussed, these early attempts only deal with bounded model

checking.

The rest of this chapter is organized as follows: In Section 3.2, examples of

services and feature interaction in telecommunication systems are shown. Section

3.3 shows a new scheme for encoding the behavior of the system. Next, a method

for adapting unbounded model checking to this encoding is described. In Sec-

tion 3.4, the effectiveness of our approach is demonstrated through experiments.

Finally, Section 3.5 summarizes this chapter.

3.2. TELECOMMUNICATION SERVICES 13

3.2 Telecommunication Services

3.2.1 Examples of Services

In this chapter we consider seven telecommunication services taken from ITU-U

recommendation [22] and Bellcore’s feature standard [3].

Call Waiting (CW): This service allows the subscriber to receive a second in-

coming call while he or she is already talking.

Call Forwarding (CF): This service allows the subscriber to have his or her in-

coming calls forwarded to another address.

Originating Call Screening (OCS): This service allows the subscriber to spec-

ify that outgoing calls be either restricted or allowed according to a screen-

ing list.

Terminating Call Screening (TCS): This service allows the subscriber to spec-

ify that incoming calls be either restricted or allowed according to a screen-

ing list.

Denied Origination (DO): This service allows the subscriber to disable any call

originating from the terminal. Only terminating calls are permitted.

Denied Termination (DT): This service allows the subscriber to disable any call

terminating at the terminal. Only originating calls are permitted.

Directed Connect (DC): This service is a so-called hot line service. Suppose

that � subscribes to DC and that � specifies � as the destination address.

Then, by only off-hooking, � is directly calling �. It is not necessary for �

to dial �.

14 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

3.2.2 Feature Interaction

Two types of feature interaction are considered. The freedom from these types

of interaction can be viewed as safety properties. In order to detect these types

of interactions, it suffices to check the reachability the initial state to undesirable

states where feature interaction occurs.

Invariant Violation

It is usually the case that services require some specific properties to be satisfied

at any time. For example, the OCS service requires that if � specifies � in the

screening list, then � is never calling � at any time. Such a property is generally

referred to as an invariant. However, combining multiple services can result in

violation of this property. Consider a situation where user � has subscribed to

OCS service and specified user � in the screening list while user � has activated

CF service to �. In this situation, if � calls �, the call is forwarded to � by the

CF service. As a result, the invariant property of OCS is violated.

Nondeterminism

Nondeterminism is one of the best known types of feature interactions [18, 25].

Nondeterminism refers to a situation where a single event can simultaneously

activate two or more functionalities of different services, and as a result, it cannot

be determined exactly which functionality should be activated. For example, this

type of interaction can occur between the CW service and the CF service. Suppose

that user � subscribes both services. Now consider the situation where � is talking

with user � while user � is in �’s forwarding address list. If user � dials �, then

3.2. TELECOMMUNICATION SERVICES 15

either the call from � to � may be received by � because of CW, or the call may

be forwarded to � because of CF.

3.2.3 System Model

We use State Transition Rules (STR) [20] to describe services and to model the

behavior of the system. A service is defined as a 6-tuple �	�
� �� ��� ������,

where 	 is a finite set of service users,
 is a finite set of variables, � is a set of

predicates, � is a finite set of events, is a finite set of rules, and ����� is the initial

state. A predicate � � � is of the form ����� ��� � � � � where �� �
 . An event

� � � is of the form ����� ��� � � � � where �� �
 . A rule � � is of the form:

� � ������������� ������� ��������������

The pre-condition is a set of predicates or negations of predicates, or both, while

the post-condition is a set of predicates.

Figure 3.1 shows an example of a service specification expressed in STR. This

specification describes the Plain Old Telephone Service (POTS). Additional com-

munication features can be described by modifying this specification (for exam-

ple, by adding new rules).

A predicate (or an event or a rule) is instantiated by substituting a user � � 	

for each variable � �
 occurring in the predicate (event or rule, respectively)

such that no two variables are substituted by the same user. That is, given a pred-

icate ����� ��� � � � � � � � and a substitution � � ������� ������ � � � �, ��� �� � �� � �

�� �� ��, we have a predicate instance ����� ��� � � � �. An event instance or a rule

instance is defined similarly. We let � � ���� � � � � ��� denote the set of all predi-

cate instances and � denote the number of the predicate instances (i.e. � � ����.

16 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

	������

���� ��

����������� ������������ �	
���������

��������� ��� ������� ���

������������� ���������� ��������

��

���
� �����������������������������������

���
� �����������������������������������

���
� �������������� ���������������������������������

���
� ��������������	���������������������	
����������

���
� ���������������������������������� ���������

���
� ������������������������������������ �����������

���
� ������������ ������������������������������ �	
����������

���
� ���	
������������������������������

���
� ���������������������������	
����������

�

��������������� ��������

Figure 3.1: Rule-based specification for POTS

3.2. TELECOMMUNICATION SERVICES 17

Also we denote by
 � ���� ��� � � � � ��� the set of all rule instances and by � the

number of the rule instances (i.e. � � �
�).

A state is defined as a set of predicate instances and is regarded as representing

the predicate instances that hold in that state. We denote by � the set of states,

that is, � � �� .

The execution semantics is as follows. For a rule instance � �
, let ������

denote the set of predicate instances in the pre-condition of � and ������� denote

the set of predicate instances whose negations are in the pre-condition. Also let

��
� ��� denote the set of the predicate instances in the post-condition of � and ����

denote the event instance of �. � is enabled for ���� in a state � iff all instances in

������ hold and no instance in ������� hold in �; that is, ������ � � and �������� �

�. Exactly one enabled rule instance is selected for execution at a time. The

execution of an enabled rule � causes a state transition from � to the next state ��,

by deleting all instances in ������ from � and adding all instances in ��
� ���; that

is �� � �� � ������� � ��
� ���.

Example 1 Consider the specification of POTS in Figure 3.1. Let � be the rule

instance of � � ���
� based on � � �����. Then ������ � ���������, ������� �

�, and ��
� ��� � �������������. In state � � ��������� �������� � is enabled

for event ��������� — the event that subscriber � picks up the phone. If � is

executed in �, then a transition to state �� � ������������� �������� occurs.

In general a state transition system is represented as ��� �� � where � is the

set of states, � � � � � is the transition relation, and � � is the set of initial

states. Now, for each rule instance �, let �� � � � � be the relation over states

such that ��� ��� � �� iff � is enabled in � for some event instance and its execution

18 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

causes a state transition to ��. The state transition system ��� �� � defined by

an STR specification �� � �	�
� �� ��� ������ is such that � �
�

��� �� and

 � �������. We denote by �
�
� �� iff ��� ��� � ��.

3.3 Proposed Method

3.3.1 Symbolic Representation

We propose a propositional SAT-based unbounded model checking method. In

order to use propositional SAT solvers for model checking, it is essential to encode

the state space and the transition relation with Boolean variables.

Recall that � � ���� � � � � ��� is the set of predicate instances. A state can be

represented as a Boolean �-vector such that it has a ��	� in the �th position iff

�� holds in that state. In the following of the chapter, we represent states with �

Boolean variables � � �!�� � � � � !��; that is, a state is a truth assignment of these

� variables.

Any set �� � � of states can be represented as a Boolean function " �

���	�� ���
��� � ���	�� ���
�� such that:

"��� �

���
��
��	� � � ��

���
� �������
�

For example, the state set where the pre-condition of a rule instance � holds is

represented as:

����� �
�

���������

!� �
�

����������

	!�

3.3. PROPOSED METHOD 19

The relation over states is also represented as a Boolean function with �� Boolean

variables, since the relation is simply a set of state pairs. We therefore identify a

set of states or of transitions with its corresponding Boolean function. For exam-

ple, �� is represented as:

����� �
�� � �����

�
�

������� ���

!�� �
�

�����������������

	!��

�
�

��������� �������� ����

�!� � !���

where � � �!�� � � � � !�� and �� � �!��� � � � !
�
��. The operator � means that two

operands have same value.

Example 2 For simplicity, we use the name of a predicate instance to denote

its corresponding Boolean variable. Let � be the instance of the rule ����� in

Figure 3.1 with substitution � � �����. Then we have ����� �
�� � ������� �

�������������	����������������� � ���������������������� � �������������

� ��	
��������� �	
����������� ��	
�������� � �	
����������� �������-

����� � �������������� ������������� ������������� � �����������

����������� � ���������� � �����������.

The transition relation � is represented as:

� ��� ��� �
�
���

����� �
��

For simplicity, assume that we know that � is a total relation [13]. Then whether

state set # is reachable from the initial state in � steps can be determined by

checking the satisfiability of the following formula:

 ���� � � ���� ��� � � � � � � ������ ��� �
�
#���� � � � � �#����

�

20 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

This is the basic formula used in SAT-based model checking.

3.3.2 Boolean Encoding of Telecommunication Systems

The obstacle to applying SAT-based model checking to asynchronous systems

like telecommunication systems is that the transition relation � for such a system

can only be represented as a large formula. This can be understood by seeing

Example 2: To represent the transitions for each rule instance �, �� must contain

conjuncts �!� � !��� for all Boolean variables !� that represent predicate instances

not engaged in that rule. Our encoding overcomes this disadvantage.

The intuitive idea is as follows: We introduce a new semantics for system

execution that maintains safety properties of the original model. In this semantics

the � rule instances are totally ordered and a step is represented as a sequence of

� “micro” steps. The �th micro step is either the state transition by the �th rule

instance or a stuttering step. Because only two state transitions are possible at

each micro step, this semantics can avoid a blow-up in the formula size, which is

inherent to symbolic representation of asynchronous systems.

Let ����� denote the set of predicate instances that change their truth value

as a result of the execution of rule instance �; that is, ����� � ���
� ������������

������� � ��
� ����. Our encoding can avoid generating a large subformula related

to �� �����.

Now let ����� ��� be defined as follows:

3.3. PROPOSED METHOD 21

����� �
�� � ����� �

�� �
�
����

�!� � !���

�
	� �

���������

!� �
�

����������

	!� �
�

������� ������� ���

!�� �
�

�������������� ���

	!��
�

�
�

���	
�� ���

�!� � !���

�
�

�����	
�����

�!� � !���

Example 3 Let � be the rule instance of ���
� in Figure 3.1 with substitution

� � �����. Then ����� � ��������� ������������ and thus we have ����� �
�� �	�

���������������������	��������
�
�
�
�������� � �����������������������

������������
�

� �������� � ��������� � ������������ � ������������� �

��	
�������� � �	
���������� � ��	
�������� � �	
���������� � �������-

����� � �������������� ������������� ������������� � �����������

����������� � ���������� � �����������.

By definition ����� �
�� � ��	� iff �

�
� �� or � � ��. Using this property, a step

(or more) can be represented by a conjunction of ����� ��� as follows:

����� � � � � ��� �
�

�����

��������� ���

����� � � � � ��� evaluates to true iff any � � � � �, ����
��� �� or ���� � ��.

This means that if this function evaluates to true, �� is reachable from �� in at

most � steps (including 0 steps), and that if there is at least one �� such that �
��� ��,

����� � � � � ��� evaluates to true under an assignment such that � � �� � � � � �

����, ����
��� ��, and �� � � � � � �� � ��.

22 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

Consequently, the following formula !" � can be used for the verification.

!" � � ���� �
�

�����

������� � � � � ��������� � #������

If !" � is satisfiable, then some state in # is reachable from the initial state

in at most � �� steps. If !" � is unsatisfiable, then no state in # can be reached

from the initial state in � steps.

A major benefit of using this formula is that it can be shortened to a consider-

able extent and thus in turn the run time of SAT solving can be reduced. The idea

is as follows. Note that in !" �, term �!� � !��� for any �� � � � ����� occurs

as a conjunct (See the definition of ����� ����. Replacing !�� with !�, such a term can

safely be removed from !" � without altering the satisfiability, because !" �

is satisfiable only if !� and !�� have the same truth value.

The effect of this optimization is significant, since for practical telecommu-

nication services, a rule execution affects only a small fraction of the predicate

instances. Compared to the conventional formula shown in Section 3.3.1, a reduc-

tion of around 60 to 90 percent in the number of literal occurrences has typically

been observed in the examples tested in Section 3.4.

Remark 1 For presentation purpose we explain our model checking method us-

ing the original !" �; but this optimization is always used in the implementa-

tion.

Transition Ordering

In practice, the state transitions represented by � critically depend on the order

of rule instances. This can be intuitively explained as follows: Consider two rule

3.3. PROPOSED METHOD 23

instances �� and �� and suppose that the execution of �� cause the precondition of

�� to hold but not vice versa. In this case, if �� occurs before �� in �, then � can

represent the successive execution of �� and �� . On the other hand, if �� comes after

�� , then � can only express the execution of only one of the two rule instances.

We propose a heuristic algorithm for transition ordering, by extending the one

in [40], which is proposed in the context of safe Petri nets. The basic idea is to

select a rule instance � when each predicate instance in ������ occurs in ����� or

in the post-condition of an already selected rule instance. Figure 3.2 shows the

algorithm.

The FIFO queue#��� is used for storing rule instances that have already been

ordered. The set ������ of predicate instances is used to maintain those occur-

ring in the initial state or in the post-condition of rule instances ordered already.

The main part of the algorithm calls procedure CHECK with each predicate in-

stance occurring in the initial state. In the procedure, first � is added to ������ .

Then, for each rule instance � such that � � ������, the following is done: If �

has not yet been ordered and all predicate instances in ������ have been stored

in ������ , then � is enqueued and the procedure is recursively called with each

predicate instance in ��
� ���. Since a rule instance � is ordered only after all pred-

icate instances in ������ are stored in ������ , for any predicate instance � in

������, it occurs in the initial state or there must be at least one already ordered

rule instance �� such that � � ��
� ����.

In case a given service specification is ill-formed, this algorithm may fail to

order all rule instances. It is easy to show that in such a case, the rule instances not

selected for ordering are always unenabled, and thus they can safely be omitted.

Example 4 Consider the service specification in Figure 3.1 and let �� � ����� ����

24 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

1: set ������ �� � ; �Keeps predicate instances.�

2: queue #��� �� � ; �Keeps ordered rule instances.�

3: for all � � ����� do

4: call CHECK���;

5: end for

6:

7: Procedure: CHECK���

8: add � to ������ ;

9: for all � such that � � ������ do

10: if � $� #��� and ��� � ��������� � ������ � then

11: enqueue � to #���;

12: for all �� such that �� � ��
� ��� and �� $� ������ do

13: call CHECK����;

14: end for

15: end if

16: end for

17: end Procedure

Figure 3.2: Algorithm for ordering transitions

3.3. PROPOSED METHOD 25

and �� � ����� ����. The algorithm orders a total of 18 rule instances as follows:

���� � � � � ���� = (���
���, ���
� ��, ���
���, ���
� ��, ���
���, ���
� ��, ���
���,

���
���, ���
� ��, ���
���, ���
���, ���
���, ���
� ��, ���
� ��, ���
���, ���
���,

���
���, ���
���), where �� denotes the instance of a rule � with a substitution �.

With this ordering, ���� allows reachability checking for 12 states, including

state ����������� ���������� which requires �� � ���
���, �	 � ���
���, and

��� � ���
� �� to occur in this order to be reached. On the other hand, if the rule in-

stances were reversely ordered, the efficiency would be much deteriorated. In this

case !" � can check the reachability of only four states: ��������� ��������,

������������� �������� , ��������� ������������, and ������������� ������������.

3.3.3 Unbounded Model Checking

State Exploration Using Interpolants

For two first-order logic formulas � and �, if � � � is unsatisfiable, then the

interpolant � for � and � is a formula with the following properties:

� � � � ,

� � �� is unsatisfiable, and

� � refers only to the common variables of � and �.

Several interpolation methods have been proposed, including [36, 44, 46]. Us-

ing an interpolation method with a SAT solver, one can simultaneously perform

satisfiability checking and, if the formula is unsatisfiable, interpolant generation.

26 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

We divide !" � into �$%& and '(&& � as follows:

�$%& � ���� ������ � � � � ���

'(&& � �
�

�����

������� � � � � ��������� �#������

If �$%& � '(&& � is satisfiable, then the system can reach a state in #. On the

other hand, if �$%& � '(&& � is unsatisfiable, then an interpolant of �$%& and

'(&& � can be generated.

The interpolant refers only to the common variables of �$%& and '(&& �.

Hence, it is a formula over state ��. We denote by)�������������� this inter-

polant and by)�������������������� the formula obtained from)��������������

by replacing Boolean variables for �� with those for �.

Since the interpolant is implied by �$%& , it follows that the)��������������

������ is true in the initial state and in every state reachable from the initial state in

one step. In other words,)�������������������� is an over-approximation of the

state set reachable from the initial state within one step.

In effect this interpolant usually contains more reachable states than those

reachable in one step, because � can represent, in addition to all single steps,

up to � consecutive steps. This property contributes to effective state exploration

of our method.

Overview of the Algorithm

The overview of the algorithm is shown in Figure 3.3. The input of the al-

gorithm is a service specification �� � �	�
� �� ��� ������ and the state set #

whose reachability is to be verified.

3.3. PROPOSED METHOD 27

1: Construct � � � ���#� from �� and #;

2: while true do

3: � �� �;

4: FINITERUN��� ��;

5: if ������� then

6: � �� � 	 �;

7: else if true is returned then

8: return Reachable;

9: else if false then

10: return Unreachable;

11: end if

12: end while

Figure 3.3: Unbounded model checking for given (SS,G)

First, we build the symbolic representations of the transition system � �

� ���#� from the given service specification �� � �	�
� �� ��� ������.

The function FINITERUN is at the heart of the algorithm. It has two arguments

� and �. The function returns true if it determines, by performing SAT solving

for !" �, that a state in # is reachable and returns false if it determines that

no state in # is reachable. In these cases, the algorithm can terminate simply

by returning Reachable or Unreachable, according to the result of FINTERUN.

FINTERUN aborts if it is impossible to determine whether or not # is reachable

by using given �. In this case, the algorithm increases � and calls FINITERUN

again.

28 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

The function FINITERUN

The function FINITERUN is shown in Figure 3.4. The basic design of this

function follows that of [36] but is adapted to subtle but important differences in

the encoding of system behaviors, elaborated in Section 3.3.2.

This function first checks the satisfiability of �$%& � '(&& �. If �$%& �

'(&& � is satisfiable, then at least one of the states in # is reachable from the

initial state (line 9). Hence, this function returns true. On the other hand, if

�$%&�'(&& � is unsatisfiable, then state exploration is performed by repeatedly

computing interpolants.

In the function is used to represent the set of explored states. Initially

only represents the initial state. In each iteration of the while loop, is updated

to the interpolant for �$%& and '(&& � (line 19) and �$%& is updated with

being replaced with (line 5). At the end of the �th execution of the while loop,

 represents an over-approximation of a set of states that are reachable within �

steps.

As discussed in Section 3.3.3 in detail, the iteration of the while loop eventu-

ally terminates (or aborts) in either of two ways. The first case is where �$%& �

'(&& � turns out to be satisfiable. Then the function aborts (line 11), since the

satisfiability of �$%& � '(&& � only means the reachability of # from which

may contain unreachable states.

The second case is where reaches a fixed point — the point from which

will never grow further. At this point contains all reachable states and thus the

unreachability of # is immediately concluded from the unsatisfiability of�$%&�

'(&& �. If this happens, the function terminates by returning false (line 17).

3.3. PROPOSED METHOD 29

1: Function: FINITERUN(� � � ���#�� � % �)

2: �� ;

3: while true do

4: � � �� ����#�;

5: Generate �$%& � '(&& � from � �

6: Run SAT on �$%& � '(&& �;

7: if satisfiable then

8: if � then

9: return true; �Can be reached only in the 1st iteration.�

10: else

11: abort;

12: end if

13: else

14: Generate interpolant()��������������) of �$%& � '(&& �;

15: � ��)�����������������$���;

16: if � � then

17: return false;

18: else

19: �� �;

20: end if

21: end if

22: end while

23: end Function

Figure 3.4: Function FINITERUN for given ��� ��

30 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

Correctness of the Algorithm

Lemma 1 FINITERUN��� �� terminates for every ��� ��.

Proof: First, suppose that # is reachable from the initial state. If !" � is sat-

isfiable, then the function terminates by returning true. If !" � is unsatisfiable,

then the function proceeds to the iterative generation of interpolants. In this it-

erative process, gradually increases until it reaches a fixed point. Such a fixed

point must exist since the state space is finite and contains all reachable states.

Thus always grows to the extent where !" � is satisfiable, in which case the

function aborts (at line 11) since �� .

Next, suppose # is unreachable from the initial state. Since !" � is un-

satisfiable at the first time (at line 6), the function tries to compute the over-

approximate set of states reachable from the initial state. During this computation,

if !" � becomes satisfiable, then the function aborts since �� . Otherwise,

the process of computing the over-approximation of the reachable state set termi-

nates because the state space is finite. In this case, � � holds at line 16 and

thus false is returned (at line 17).

Lemma 2 For every � , there exists � such that FINITERUN��� �� terminates

without aborting.

Proof: If # is reachable, then the result of the first run of SAT must be “satisfi-

able” when � � ��� � �, in which case the function returns true and terminates.

Now suppose that # is unreachable and let �� be the maximum length (the

number of transitions) of the shortest path from any state in � to any state in

#. Of course such a path only contains unreachable states. Let � be �� 	 �.

Then �$%& � '(&& � is always unsatisfiable in any run of SAT. This can be ex-

plained by showing that never contains unreachable states. In the first iteration,

3.4. EXPERIMENT RESULTS 31

this trivially holds since � . In any later iteration, is an interpolant for

�$%& and '(&& �, and thus ���� � '(&&
� is unsatisfiable. This implies that

 contains no unreachable state, because if an unreachable state existed in , then

���� � '(&&
� would be satisfiable since # can be reached within �� � � � �

steps from that state. Since the number of states of the system is finite, eventu-

ally reaches a fixed point, at which time the function returns false and terminates.

Lemma 3 When FINITERUN��� �� terminates, it returns true if # is reachable

and false if # is unreachable.

Proof: First suppose the function returns true. This means that !" � (at line

6) is satisfiable; hence # is reachable from initial state. Next suppose that the

function returns false. In this case, represents an over-approximation of the set

of reachable states and �$%& � '(&& � is unsatisfiable with that . Since any

reachable state is contained in , the fact that �$%& � '(&& � is unsatisfiable

implies that no state in # is reachable.

Theorem 1 The algorithm shown in Figure 3.3 terminates. It returns Reachable

if # is reachable from the initial state; it returns Unreachable, otherwise.

Proof: The proof straightforwardly follows from Lemmas 1, 2 and 3.

3.4 Experiment Results

To evaluate the effectiveness of our proposed method, we conducted experiments.

We verified 21 pairs of telecommunication services described in Section 3.2.1

using the proposed unbounded model checking method, McMillan’s unbounded

model checking method [36] and the model checker SPIN [21]. We implemented

32 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

these two unbounded model checking methods using McMillan’s FOCI tool for

both SAT solving and interpolant generation. In the proposed unbounded model

checking method, the new encoding and the proposed algorithm are used. On

the other hand, McMillan’s method uses conventional encoding with � and the

interpolant procedure proposed in [36].

SPIN, a very well-known model checker, uses explicit state representation, in

the sense that it does not employ Boolean state space encoding. We construct

Promela models for telecommunication services as follows. We represent each

predicate instance by a Boolean variable. We use a single Promela process to

represent the behavior of the whole system. The Promela process has, in turn, a

single big do statement, in which every rule instance is represented as a guarded

command. At any point of time, a single guarded command whose guard is true

is nondeterministically selected for execution.

The experiments were performed on a Linux (kernel 2.4) PC with a 2.8 GHz

CPU and about 3 Gbyte memory.

We consider invariant properties for four of the seven services as follows:

OCS: If x puts y in the OCS screening list, x is never calling y at any time.

(* '��� �� � 	��������� ��)

TCS: If x puts y in the TCS screening list, y is never calling x at any time.

(+ ' ��� �� � 	��������� ��)

DO: If x subscribes DO, x never receives dialtone at any time. (#*��� �

	�����������)

DT: If x subscribes DT, y is never calling x at any time. (#+ ����	��������� ��)

3.4. EXPERIMENT RESULTS 33

Consequently a total of 18 pairs that contain at least one of the four services are

verified against these invariant properties. Because of the symmetry of users, we

check the violation with a single variable substitution by users. For example, the

invariant of OCS is verified by checking reachability to #��� � 	�	* ' ������

	������������, where* '����� and ����������� are Boolean variables rep-

resenting predicate instances * ' ����� and �����������.

Nondeterminism occurs in states where two rules simultaneously become en-

abled for the same event. Due to user symmetry, it suffices to check all event

instances obtained from any single variable substitution �� of users. Thus we let:

#��� �
�

	
�
	��

�
���������� ������
���������������

������ � ������

Here ��� is an event instance obtained by the substitution �� and �� and �� are

two different rule instances that have the same event instance ���. For example,

consider the specification shown in Figure 3.1 and let �� � ����� ����. Three

event instances, namely, ���������, ��������� and ���������, are shared by

more than one rule instance. Specifically, ��������� triggers ���
���, ���
���,

���
��� and ���
���, ��������� triggers ���
��� and ���
���, and ���������

triggers ���
� �� and ���
� ��. Hence we have #��� �
	�

�����
�����������
����
�
�

�
�����
�����������
����

�
�
�
�����
�����������
����

�
�
�
������
�����������
����

�
�

�
������
���� � ������
����

�
�
�
������
���� � ������
����

�

�
	
������
����

� ������
����

�
	
������
���� � ������
����

.

Table 3.1 shows the results of the verification of the violation of invariant

properties, while Table 3.2 shows the results of the verification of nondetermin-

ism. The two leftmost columns represent the combination of services tested and

whether feature interaction occurs in that combination.

34 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

Table 3.1: Verification result of violation of invariant

Proposed method McMillan’s method SPIN

Service Interaction time(s) (k,r) time(s) (k,r) time(s)

CW + DO NA (2754.0) (4,3) NA (15311.3) (11,3) 1.5

CW + DT
�

0.8 (2,0) 6595.3 (10,0) 1.4

CW + OCS
�

0.7 (2,0) 3819.6 (10,0) 1.6

CW + TCS
�

0.7 (2,0) 8130.8 (10,0) 1.6

CF + DO NA (1346.5) (4,7) NA (4973.5) (7,4) 1.5

CF + DT
�

0.6 (2,0) 19.6 (6,0) 1.2

CF + OCS
�

0.5 (2,0) 49.9 (6,0) 1.3

CF + TCS
�

0.5 (2,0) 37.7 (6,0) 1.2

DC + DO 6.6 (3,3) NA (4266.9) (8,5) 0.9

DC + DT 0.4 (2,2) 0.7 (2,2) 0.9

DC + OCS
�

0.3 (2,0) 1.3 (3,0) 0.9

DC + TCS
�

0.3 (2,0) 1.3 (3,0) 1.0

DO + DT 1149.4 (4,5) NA (8892.3) (8,4) 0.8

DO + OCS 1023.4 (4,6) NA (6037.8) (7,4) 0.9

DO + TCS 257.1 (3,6) NA (1249.2) (7,4) 0.9

DT + OCS 16.1 (3,5) NA (29077.8) (7,4) 1.0

DT + TCS 14.0 (3,4) NA (13662.3) (8,4) 1.0

OCS + TCS [B]
�

0.3 (2,0) 1.5 (3,0) 0.9

3.4. EXPERIMENT RESULTS 35

Table 3.2: Verification result of nondeterminism
Proposed method McMillan’s method SPIN

Service Interaction time(s) (k,r) time(s) (k,r) time(s)

CW + CF
�

3.9 (2,0) NA (1365.9) (6,2) 2.1

CW + DC NA (12326.5) (4,2) NA (4776.5) (7,1) 1.9

CW + DO NA (6512.2) (5,1) NA (4453.4) (8,1) 1.6

CW + DT
�

3.2 (2,0) 1004.3 (8,0) 1.6

CW + OCS
�

2.0 (2,0) 3049.8 (8,0) 1.8

CW + TCS
�

2.1 (2,0) 3910.2 (8,0) 1.7

CF + DC NA (1033.9) (2,4) NA (7664.3) (7,2) 2.3

CF + DO NA (1346.5) (4,7) NA (8177.8) (8,2) 1.5

CF + DT
�

0.7 (2,0) 31.8 (5,0) 1.3

CF + OCS
�

0.5 (2,0) 39.5 (5,0) 1.3

CF + TCS
�

0.5 (2,0) 53.8 (5,0) 1.3

DC + DO
�

0.3 (2,0) 0.4 (2,0) 1.3

DC + DT 25.7 (3,3) NA (35501.1) (6,4) 0.9

DC + OCS 74.5 (3,4) NA (3749.4) (5,3) 1.2

DC + TCS 45.6 (3,3) NA (3485.2) (4,5) 1.2

DO + DT 4.8 (2,4) NA (7057.7) (3,8) 1.0

DO + OCS 16.3 (2,5) NA (2922.1) (3,7) 0.9

DO + TCS 19.6 (2,5) NA (1700.3) (3,6) 0.9

DT + OCS
�

0.3 (2,0) 0.7 (2,0) 0.9

DT + TCS
�

0.3 (2,0) 0.3 (2,0) 0.9

OCS + TCS
�

0.3 (2,0) 0.5 (2,0) 1.0

36 CHAPTER 3. FEATURE INTERACTION VERIFICATION IN TELECOMMUNICATION SYSTEMS

For all the three methods, the execution time needed for verification is pre-

sented. The execution time is the total time that elapsed between when a service

specification was input and when the verification was completed. NA means that

we could not complete verification since an error was caused by memory over-

flow when the program was generating an interpolant. (The number inside the

parentheses shows the elapsed time till the error occurred.)

For the proposed method and McMillan’s method, ��� �� shows the value of �

of the finally executed instance of FINITERUN and the number of times of com-

puting an interpolant in that execution of FINITERUN.

For all cases where the verification was completed, our proposed method out-

performed the McMillan’s ordinary unbounded model checking in execution time.

In particular, when a violation required a relatively large number of transitions to

occur, the proposed method could conclude the existence of the violation using a

much smaller value �. Such cases include: CW + DT, CW + OCS, CW + TCS, CF

+ DT, CF + OCS, CF + TCS in Table 3.1 and CW + CF, CW + DT, CW + OCS,

CW + TCS, CF + DT, CF + OCS, CF + TCS in Table 3.2. This clearly shows that

when � is fixed, our encoding scheme allows a larger state space to be explored.

SPIN consistently exhibited good performance; but our proposed method out-

performed SPIN for many cases, including: CW + DT, CW + OCS, CW + TCS,

CF + DT, CF + OCS, CF + TCS, DC + DT, DC + OCS, DC + TCS, OCS + TCS in

Table 3.1 and CF + DT, CF + OCS, CF + TCS, DC + DO, DT + OCS, DT + TCS,

OCS + TCS in Table 3.2. When our method showed lower performance or even

aborted, a large � was (or would be) needed for the algorithm to terminate. This

fact is explained by the fact the time needed for generating an interpolant rapidly

increases with the size of the input formula.

3.5. SUMMARY 37

One might think that the result is somewhat discouraging; but we think there

is still plenty of room for improving our method. We will discuss this point in the

final chapter.

3.5 Summary

In this chapter, we proposed a verification method for checking whether or not fea-

ture interaction occurs in telecommunication services. We used a new encoding

scheme that effectively represents the behaviors of asynchronous systems such as

telecommunication systems. Based on this encoding, we developed an unbounded

model checking method. To show the effectiveness of our method, we conducted

experiments. To the best of our knowledge this was the first time to adapt un-

bounded model checking to the interleaving concurrency of asynchronous sys-

tems.

Chapter 4

Feature Interaction Verification in

Home Network Systems

4.1 Introduction

In this chapter, we propose a method for detecting feature interactions by means

of the SPIN model checker [32, 28]. The main contributions of this chapter are as

follows: First, we propose a method for describing a home network system and its

users in Promela [31, 33]. Our proposed approach focuses only on the high-level

behavior of services, and thus can be used independently of underlying network

protocols, such as [47, 19, 17]. Second, we classify feature interactions based on

their causes. We also devise an LTL formula for each type of feature interaction.

This chapter is structured as follows. Section 4.2 introduces a running ex-

ample of a home network system. Section 4.3 presents our proposed method for

detecting feature interactions between services in home network systems. First, a

method for describing home network systems and its users is presented. Then, the

38

4.2. PRELIMINARIES 39

Light

Thermometer
Air conditioner

DVD Player

Ventilator

Home Server TV set
Illuminometer

Smoke

sensor

Curtain

blind

Figure 4.1: An example of home network system

classification of feature interactions and the LTL formula describing each classi-

fied type are presented. Section 4.4 shows the results of an experiment to demon-

strate the usefulness of the proposed approach. Section 4.5 concludes this chapter.

4.2 Preliminaries

4.2.1 Home Network Systems

An example of a home network system is shown in Figure 4.1. The home network

system consists of an air-conditioner, a ventilator, a smoke sensor, two thermome-

ters (inside and outside a room), a DVD player, a TV set, lights, a curtain blind,

an illuminometer and a home server.

40 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

4.2.2 Services in Home Network Systems

By integrating features of different appliances, convenient services can be im-

plemented. These value-added services are one of the main advantages of home

network systems. Below we present such services in our running example. Some

of the services are taken from [27].

HVAC service (Heating): The HVAC service integrates the features of the

air-conditioner, the two thermometers, and the ventilator. This service achieves

energy-efficient air-conditioning of a room. If the room is cooler than the tem-

perature set point, the HVAC service operates the air-conditioner in the heating

mode. To efficiently warm the room up, the HVAC service turns the ventilator on

to provide warmer outside air if the room temperature is cooler than the outside

temperature. In this case the ventilator will be kept operating until the room tem-

perature reaches the outside temperature. If the room temperature is warmer than

the temperature set point, the HVAC service operates the air-conditioner in the fan

mode.

Air-cleaning service: The air-cleaning service uses the smoke sensor and the

ventilator to automatically clean the air in the room. When smoke is detected, this

service automatically turns on the ventilator. The ventilator is kept operating until

the sensor senses no smoke. When the air is cleaned, the ventilator will be turned

off.

Home theater service: The home theater service uses the TV set, the DVD

player, the illuminometer, the lights and the curtain blinds. When activated, this

service turns on the TV set and the DVD player. At the same time, the curtain

blinds in the room are drawn down, and the lights are adjusted to the optimal level

based on the current brightness of the illuminometer.

4.2. PRELIMINARIES 41

Energy saving service: This service aims to conserve energy consumption by

turning off unnecessary appliances. For example, when the power of the TV set is

off, it is useless to keep the power of the DVD player turned on. This service will

turn off the DVD player in such a situation.

4.2.3 Feature Interactions of Services

In this section, we show several examples of interactions between the services

shown in Section 4.2.2.

Example 5 A feature interaction occurs between the HVAC service and the air-

cleaning service. Consider the following situation: The room temperature is 15 C̊,

the outside temperature is 8 C̊, and there is smoke in the room. The temperature

set point of the HVAC service is 21 C̊. Now suppose that the HVAC service is

operating the air-conditioner in the heating mode. In this case, the HVAC service

tries to turn off the ventilator to prevent cool outside air from flowing into the

room. On the other hand, the air-cleaning service tries to turn on the ventilator to

clean the room air.

Example 6 This interaction occurs between the home theater service and the en-

ergy saving service. Consider the following scenario: The power of the TV set is

OFF at the beginning. The energy saving service checks the power of the TV set.

The service comes to know that the TV set is OFF and thus tries to turn off the

DVD player. At the same time, the home theater service is activated and turns on

the TV set. As a result, the DVD player is turned off, while the TV set is turned

on.

42 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

Example 7 Suppose that the HVAC service is operating the air-conditioner in the

heating mode to warm up the room temperature and that the air-cleaning service

is using the ventilator to clean the room air. If the room temperature is higher than

the outside temperature, cool outside air is taken by the ventilator. This lowers the

efficiency of the HVAC service.

4.3 Detection of Feature Interactions with SPIN

To use SPIN, the system to be verified needs to be described in the Promela lan-

guage and properties to be verified are represented as LTL formulas. In Section

4.3.1, we show a method for describing home network systems and its users. Next,

in Section 4.3.2, we show a classification of feature interactions based on their

causes. We also devise LTL formulas to detect these feature interactions.

4.3.1 Describing Home Network Systems and Users in Promela

This section shows a method for describing home network systems and its users

in Promela. A home network system is modeled as three components: the envi-

ronment, appliances and services. The environment consists of several elements,

such as the room temperature and smoke. The state of these elements is changed

by the effects from appliances. The appliances are operated by services. Users

execute these services.

Figure 4.2 shows a model of home network systems and its users. In Figure

4.2, there are two users, two services (the HVAC service and the air-cleaning

service), three appliances (an air-conditioner, a ventilator and a smoke sensor),

and three elements of the environment (room temperature, smoke, and brightness).

4.3. DETECTION OF FEATURE INTERACTIONS WITH SPIN 43

UserA UserB

HVAC service Air-cleaning service

Air-conditioner Ventilator Smoke Sensor

Temperature Smoke Brightness

user

service

appliance

environment

Home Appliance Network

Figure 4.2: System model for home network systems

In this figure, the arrows represent relations between the four components. UserA

executes the HVAC service. The HVAC service operates the air-conditioner and

the ventilator. The air-conditioner has an effect on the room temperature, and the

ventilator has effects on the room temperature and the smoke.

In this section, we present a method for describing these four components: the

environment, appliances, services and users.

In Promela programs, the states of these components are represented by vari-

ables. The types of these variables are defined, for example, as follows:

#define tTemp int

#define tPower int /* ON or OFF */

#define OFF 0

#define ON 1

tTemp is the type of the variables that represent temperatures. tPower is the

44 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

type of the variables that represent the power of appliances. Variables of tPower

type can take OFF or ON, which is internally represented as an integer 0 or 1.

The Environment

The elements of the environment are defined as global variables. A room tempera-

ture temp_in and an outside temperature temp_out can be defined as follows:

tTemp temp_in; tTemp temp_out;

To model an unpredictable environment we let these variables take arbitrary

values when they are read by appliances. For example, the room temperature

changes even when the air-conditioner is not working. This modeling technique

can be found in, for example, [11]．

We represent the effects of the appliances on the environment by Boolean-

valued formulas over the variables that represent the state of appliances and the

state of the environment. As shown later, these formulas allow us to detect con-

flicting effects. For example, the effect temp_in_up, which indicates the pres-

ence of some appliance that is warming the room up, is defined as follows:

#define temp_in_up

((AC_power == ON && AC_Mode == Heater)

||(ventilator_power == ON && temp_in < temp_out))

Here AC_power, AC_mode and ventilator_power respectively represent

the power of the air-conditioner, the mode of the air-conditioner, and the power of

the ventilator. This Boolean formula evaluates to true when the air-conditioner is

working in the heating mode or when the outside temperature is warmer than the

room and the ventilator is working.

4.3. DETECTION OF FEATURE INTERACTIONS WITH SPIN 45

Appliances

Appliances are described with variables and macros. The variables represent the

state of the appliances. The macros represent the methods of the appliances, such

as setting the power to ON and setting the mode to a particular mode.

The state of the appliance is defined as global variables as was done with

the environment. For example, the variables power, AC_temp and AC_Mode,

which represent the power, the temperature set point and the mode of the air con-

ditioner, are defined as follows:

tPower AC_power=OFF; tTemp AC_Temp=25;

tMode AC_Mode=FAN;

The methods of the appliances are invoked by services. The methods can have

arguments. The behavior of each method consists of reading the variables of the

environment, writing/reading the variables of its own appliance and returning a

value to the caller service.

Each method has a pre-condition and a post-condition. The method can be

executed when the pre-condition is true. The post-condition need to become true

immediately after the method is executed.

Each method is defined as a macro of Promela, as shown in Figure 4.3.

pre condition, post condition are Boolean expressions which rep-

resent a pre-condition and a post-condition respectively. In Promela, if a Boolean

expression is used as a statement, it blocks system execution until the Boolean

expression evaluates to true. Hence, when the pre-condition is true, the method

executes the statements described at line 3. If the post-condition is also true, then

return_value will be sent back to the caller service.

46 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

1 #define Appliance_method(argument){\

2 (pre_condition);\

3 ... /* The beavior of the method */

4 (post_condition);\

5 rvalue = return_value;}

Figure 4.3: Description of a method of an appliance

Services

Each service is modeled by two Promela processes, one of which represents the

behavior of the service and the other of which represents the communication be-

tween the service and users.

The process representing the behavior controls appliances by executing their

methods. A method invocation is performed by executing the macro correspond-

ing to the method. Special local variable r_value is used to store the return

value from a method.

Figure 4.4 shows the Promela code of the process that describes the behavior

of the HVAC service. At lines 2, 3, local variables are defined. At lines 4 – 13,

the behavior of the HVAC service is described. At line 4, this service waits until

the variable HVAC_State is set to START. Line 5 is a do-statement which is an

iteration statement of Promela. At lines 6 – 10, several macros are executed.

The state of a service is represented by a set of global variables. The process

that deals with communication updates the state in response to the reception of a

message from a user. Figure 4.5 shows the process for the HVAC service.

For each Service, global variable Service_State is declared to con-

trol the start and the stop of the service. This variable takes two values: STOP，

4.3. DETECTION OF FEATURE INTERACTIONS WITH SPIN 47

1 proctype HVAC(){

2 int rvalue;

3 tTemp Ti_temp,To_temp; /* Local variables*/

4 (HVAC_state == START);

5 do ::!(HVAC_state == STOP)->

6 Thermometer_in_SetPower(ON);

7 Thermometer_out_SetPower(ON);

8 AC_SetPower(ON);

9 Thermometer_in_Measure(); Ti_temp = r_value;

10 Thermometer_out_Measure(); To_temp = r_value;

11 do ::(Ti_temp < user_temp)->

12 AC_SetMode(HEATER);

13 :

14 }

Figure 4.4: The behavior part of the HVAC service

START. The service waits until a user sets this variable to START. When this

variable is set to START, the service performs its execution. When the variable

is set to STOP by a user, the service stops and waits until a user sets this variable

to START again. In addition to Service_State other global variables may be

used. For example, the HVAC service has variable HVAC_SetTemp to represent

the temperature set point.

For each such global variable, a message channel is declared. MC_HVAC_

State and MC_HVAC_SetTemp are the message channels for HVAC_State

and HVAC_SetTemp. To set the variable to a particular value, users send a mes-

sage in the message channel. For example, MC_HVAC_state?HVAC_state

48 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

1 proctype HVAC_cont(){

2 do

3 ::MC_HVAC_State?HVAC_State

4 ::MC_HVAC_SetTemp?HVAC_SetTemp

5 od;

6 }

Figure 4.5: The communication part of the HVAC Service

takes a message in the message channe MC_HVAC_State and stores it in vari-

able HVAC_State.

Users

Users control services by sending messages to message channels. For example,

in the case of the HVAC service, a user may send the value of the temperature set

point, as well as a signal for start and stop, as shown in Figure 4.6. In this figure,

UserA sets the variable SetTemp, a temperature set point, to 21 C̊ and sets the

variable HVAC_State to START. After the HVAC service starts, the user sets

HVAC_State to STOP to stop the HVAC service.

1 proctype UserA(){

2 MC_HVAC_SetTemp!21;

3 MC_HVAC_State!START;

4 MC_HVAC_State!STOP;

5 }

Figure 4.6: The execution of HVAC service by user A

4.3. DETECTION OF FEATURE INTERACTIONS WITH SPIN 49

UserA UserB

HVAC service Air-cleaning service

Air-conditioner Ventilator Smoke Sensor

Temperature Smoke Brightness

user

service

appliance

environment

Home Appliance Network

Figure 4.7: Feature interactions in home network systems

4.3.2 Representing Correctness Claims as LTL Formulas

In this section, we classify feature interactions based on their causes. To detect

feature interactions using SPIN, we need to represent the absence of each type of

feature interactions as an LTL formula. Two kinds of temporal operators are used

in this chapter: always and eventually. The operator “always” is represented as

[]. A formula [] P evaluates to true if P is always true in all system executions.

The operator “eventually” is represented as <>. A formula <> P evaluates to true

if P eventually becomes true in all system executions.

In general, feature interaction occurs when conflicting accesses are attempted

to the same resource. Since there are four types of components (i.e., users, ser-

vices, appliances and the environment), we have a simple classification as follows:

Interaction with services: Two users send conflicting commands to the same

service.

50 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

Interaction with appliances: Two services are attempting conflicting operations

on the same appliance.

Interaction with the environment: Two appliances have conflicting effects on

the same element of the environment.

Figure 4.7 shows the examples of these interactions. In this figure, UserA

and UserB can send conflicting commands to the HVAC service. The HVAC

service and the air-cleaning service can operate the ventilator with conflicting

purposes. The air-conditioner and the ventilator have conflicting effects on the

room temperature.

Interactions with Services

Interactions occur with services when two users send conflicting commands to the

same service. This type of interaction can be detected by checking if an incoming

message conflicts with the previous message.

We consider a message � from a user to a service to be conflicting if the fol-

lowing three conditions are met: the service has already received another message

��; �� was issued by a different user; and the command of � is different from

that of ��.

To detect conflicting messages, we modify send/receive statements of user and

service processes in two respects. First, the identity of sender users is attached to

every message. Second, additional Promela code is inserted immediately after

each receive statement of a service. For example, the receive statement of line 3

in Figure 4.5 will be modified as follows:

MC_HVAC_State?user,HVAC_State;

4.3. DETECTION OF FEATURE INTERACTIONS WITH SPIN 51

if

::(MC_HVAC_State?[_,_] &&

!MC_HVAC_State?[eval(user),_] &&

!MC_HVAC_State?[_,eval(HVAC_State)])

-> HVAC_error = 1;

::else -> skip;

fi;

MC?[a1,a2] evaluates to true iff in channel MC a message (a1,a2) exists. Un-

derscore (_) is used as a wildcard. eval() is a function that returns the current

value of the variable given as an argument.

The variable HVAC_error is used to record the occurrence of interactions.

We let each Service have variable Service_error. If there is a conflict-

ing message in the message channel, Service_error is set to 1. As a result

interactions with each Service can be detected by checking the following LTL

formula:

!<> (Service_error == 1)

Interactions with Appliances

Application-level interactions occur when several services try to execute conflict-

ing operations on the same appliance. This type of interaction occurs in two sit-

uations: A1) two services try to change the state of the appliance to different

states and A2) one service reads the state of an appliance when another service is

changing the state.

52 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

We define variable appliance_error for each appliance to represent wheth-

er or not a feature interaction has occurred (0: not occurred, 1: A1, 2: A2).

appliance_error is updated when a feature interaction occurred.

Detection of A1: Interaction A1 occurs when two services try to set the same

variable of an appliance to different values. To detect this interaction, we can use

a similar way as interaction S1. We translate a variable assignment statement into

a pair of a send statement and a receive statement, mimicking value assignment

as message passing. When the send statement is executed, interaction A1 can

be detected by checking whether or not a conflicting message has already been

sent. For example, Figure 4.8 shows method AC_SetMode(mode) of the air-

conditioner.

1 #define AC_SetMode(mode){\

2 AC_Power == ON;\

3 if\

4 ::(MC_AC_Mode?[_] && !(MC_AC_Mode?[mode]))\

5 -> AC_error = 1;\

6 ::else -> skip;\

7 fi;\

8 MC_AC_Mode!mode;\

9 MC_AC_Mode?AC_Mode;}

Figure 4.8: Method SetMode of the air-conditioner

In Promela, if a message channel is full, the send statement waits until the

message channel becomes non-full. For a method to receive the message sent by

itself, the buffer size of message channel must be 1. This guarantees that, for

4.3. DETECTION OF FEATURE INTERACTIONS WITH SPIN 53

example, when the receive statement is executed at line 9 in Figure 4.8, the only

message in the message channel is the message sent at line 8. Hence, the message

that can be received at line 9 is only the message sent at line 8.

Detection of A2: Interaction A2 occurs in the situation where one service tries

to read a variable when another service is changing the value of the variable.

As a result of this interaction, the value obtained by the former service becomes

different from the actual value of the variable. This interaction can be detected

by checking, whenever a method reads a variable, if the channel associated with

that variable contains a new value different from the current one. For example,

the macro TV_CheckPower, which is used to check the power of the TV set by

services, is described as follows:

#define TV_CheckPower(){\

true;\

if\

::(MC_TV_Power?[_] && \

!(MC_TV_Power?[eval(TV_Power)]))\

-> TV_error = 2;\

::else -> skip;\

fi;\

r_value = TV_Power;}

For each appliance, interactions on it can be detected by checking if the value

of Appliance_error is 1 or 2. If checking interaction A1, for example, one

can use the following LTL formula:

!<> AC_error == 1

54 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

Interactions with the Environment

Interactions with the environment occur when two appliances have conflicting

effects on the same element of the environment. Hence this interaction occurs in

the following two situations: E1) there are two different kinds of effects occurring

on the same element of the environment simultaneously, and E2) some appliance

reads the state of an environment element while some effect on that element is

existing.

Detection of E1: This interaction can be detected by checking that continuous

conflicting effects on the same environment element never occurs. This property

is represented by an LTL formula as follows:

LTL:!<> [](e_eff1 && e_eff2)

where e_eff� is the formula that represents that some appliance has an effect

eff� on the element e. This LTL formula asserts that the two different effects on

the same element never occurs simultaneously. When the number of the types of

effects is more than 2, by checking all pairs of effects, one can detect this type of

interactions. For example, when the number of types is 3, the LTL formula can be

described as follows:

LTL:!<>([](e_eff1 && e_eff2) || [](e_eff1 && e_eff3)

|| [](e_eff2 && e_eff3))

Detection of E2: This interaction can be detected by checking if some effect is

existing on an element of the environment when a service reads the state of the

same environment element. For each environment element e, variable e_read

is used to detect such a situation. We add the following statements to all methods

4.4. EXPERIMENT 55

that read the value of the element e at the point just before a statement that reads

the value of the element.

e_read = 1; e_read = 0;

The value of e_read becomes 1 only if some method has just read the state

of e. As a result this type of interaction can be detected by using the following

LTL formula:

LTL:!<> (e_read && (e_eff1 || .. || e_effn))

(e_eff1 || .. || e_effn) represents that no effect is occurring on

e. Hence, this LTL formula asserts that effects on the environment element e

never exist while the state of e is being read.

4.4 Experiment

We conducted an experiment, in which we attempted to detect interactions caused

by any pair of the four services of our running example (see Section 4.2.2). In this

experiment, we assumed that there are two users and each user executes a single

service. The experiment was conducted on a WindowsXP PC with a 900MHz

PentiumIII and 512MB memory. SPIN was used with partial order reduction en-

abled.

In our running example, there are ten appliances as shown in Figure 4.1. Each

appliance has one or two variables and two to six methods. The lines of code of

the HVAC service, of the air-cleaning service and of the home theater service are

all approximately 50 lines. The energy saving service is described in around ten

lines.

56 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

Detection of service-level interactions was conducted by enforcing the two

users to run the same service. Unlike the other three services, the HVAC service

requires the user to specify the temperature set point. In this experiment, this value

is set to 21 C̊ or 25 C̊.

For each of the two interaction types, A1 and A2, we check whether or not the

interaction occurs for the ten appliances. Hence, we run a verification 20 times

for each pair of services.

To detect interactions with the environment, we run a verification eight times,

because there are two types, E1 and E2, of interactions and four environment

elements.

4.4.1 Verification Results

The verification results are summarized in Table 4.1: This table shows the inter-

actions detected between two services. S1, A1, A2, E1 and E2 indicate the type of

interactions (services (S1), appliances (A1, A2), the environment (E1, E2)). Each

symbol is followed by the component with which the interaction occurs. For ex-

ample, when one user executes the HVAC service and the other user executes the

air-cleaning service, a type A1 interaction with ventilator can occur. In the same

case, type E1 and type E2 interactions with the room temperature and a type E2

interaction with smoke can occur.

Some performance figures are shown in Table 4.2 and Table 4.3 for the pair

of the HVAV service and the air-cleaning service. Table 4.2 shows the results for

interactions with appliances, while Table 4.3 shows those for interactions with the

environment. These tables show the verification results (true indicates that an

interaction was found), the execution time, and the number of states explored for

4.4. EXPERIMENT 57
Ta

bl
e

4.
1:

In
te

ra
ct

io
ns

de
te

ct
ed

be
tw

ee
n

se
rv

ic
e

ex
am

pl
es

in
ho

m
e

ne
tw

or
k

sy
st

em

H
V

A
C

se
rv

ic
e

A
ir

-c
le

an
in

g
se

rv
ic

e
H

om
e

th
ea

te
r

se
rv

ic
e

E
ne

rg
y

sa
vi

ng
se

rv
ic

e

S1
(H

V
A

C
se

rv
ic

e)
A

1(
ve

nt
ila

to
r)

E
2(

ro
om

te
m

pe
ra

tu
re

)
E

2(
ro

om
te

m
pe

ra
tu

re
)

H
V

A
C

se
rv

ic
e

E
2(

ro
om

te
m

pe
ra

tu
re

)
E

1(
ro

om
te

m
pe

ra
tu

re
)

E
2(

br
ig

ht
ne

ss
)

E
2(

ro
om

te
m

pe
ra

tu
re

)

E
2(

sm
ok

e)

S1
(A

ir
-c

le
an

in
g

se
rv

ic
e)

E
2(

sm
ok

e)
E

2(
sm

ok
e)

A
ir

-c
le

an
in

g
se

rv
ic

e

E
2(

sm
ok

e)
E

2(
br

ig
ht

ne
ss

)

S1
(H

om
e

th
ea

te
r

se
rv

ic
e)

A
1(

D
V

D
pl

ay
er

)
H

om
e

th
ea

te
r

se
rv

ic
e

E
2(

br
ig

ht
ne

ss
)

A
2(

T
V

se
t)

E
2(

br
ig

ht
ne

ss
)

S1
(E

ne
rg

y
sa

vi
ng

se
rv

ic
e)

E
ne

rg
y

sa
vi

ng
se

rv
ic

e

58 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

Table 4.2: Interaction with appliances between the HVAC service and the air-

cleaning service

appliance type result time(s) state

Air-conditioner A1 true ��
�� ��� �� ��	

A2 true ���
� ��� �� ��	

Thermometer A1 true ����� ��� �� ��	

(inside) A2 true ���
� ��� �� ��	

Thermometer A1 true ��

� ��� �� ��	

(outside) A2 true ����� ��� �� ��	

smoke sensor A1 true ��
�� ��� �� ��	

A2 true ���
� ��� �� ��	

ventilator A1 false ���
� ���� ���� ���

A2 true ���� ��� �� ��	

each appliance or environment element. The results for the appliances that are not

used by the two services are omitted. As shown in these tables, the time required

for verification is fairly reasonable.

Using counterexamples provided by SPIN, we detected scenarios leading to

interactions. Below we show several examples of such scenarios.

Type A1 interaction with the ventilator between the HVAC service and the

air-cleaning service: The room temperature is warmer than the outside temper-

ature, and there is smoke in the room. The HVAC service and the air-cleaning

service are both running. The HVAC service calls method SetPower(OFF) of

the ventilator to turn it off, to prevent cool outside air from flowing into the room.

On the other hand, the air-cleaning service executes method SetPower(ON)

4.4. EXPERIMENT 59

Table 4.3: Interaction with the environment between the HVAC service and the

air-cleaning service

element type result time(s) state

room E1 false ��
�� ���� ���� ���

temperature E2 false ����� ���� ���� ���

outside E1 true ����� ��� �� ��	

temperature E2 true ��
�� ��� �� ��	

smoke E1 true ���
� ��� �� ��	

E2 false ��
�� ���� ���� ���

brightness E1 true ����� ��� �� ��	

E2 true ����� ��� �� ��	

of the ventilator to turn it on to clean the room air. As a result, the conflicting

operations of the ventilator are executed at the same time.

Type E1 interaction with the room temperature between the HVAC service

and the air-cleaning service: This scenario is the same as the third example in

Section 4.2.3.

Type E2 interaction with the room temperature between the HVAC service

and the air-cleaning service: Suppose that the room temperature is cooler than

the outside temperature and that the air-cleaning service is operating the ventilator

to clean the room air. In this situation, the ventilator warms the room up. Now the

HVAC service executes the method that measures the current room temperature.

Since the ventilator is having an effect on the room temperature, the HVAC service

can erroneously recognize the room temperature as if it were lower than the actual

value, resulting in execution of unnecessary heating.

60 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

Type A1 interaction with the DVD player between the home theater service

and the energy saving service: The power of the TV set is OFF at the beginning.

The energy saving service checks the power of the TV set. The service comes to

know that the TV set is OFF and thus tries to execute SetPower(OFF) to turn

off the DVD player. At this time, the home theater service is activated and tries to

execute SetPower(ON) to turn the DVD player on. As a result, the conflicting

operations to DVD player are executed.

Interaction A2 with the TV set between the home theater service and the

energy saving service: This scenario is the same as the second example in Section

4.2.3.

4.4.2 Discussion

Unlike telecommunication systems, modeling home network systems requires us

to consider the “physical” environment which might involve, for example, tem-

perature or brightness. A method for detecting feature interactions in a telecom-

munication system by using the SPIN model checker is proposed in [9], but it

can not be applied to home network systems. In the context of interaction de-

tection for intelligent building control systems, Metzger and Webel proposed an

approach to deal with such physical elements of the environment [37]. The idea

of their approach is to detect different services that access the same environment

element. Unlike ours, their approach does not consider how the services affect the

environment. As a result it easily yields false negatives.

In our proposed framework, we define the types of effects on the environ-

ment to overcome this problem. For example, consider the situation where both

the HVAC service and the air-cleaning service operate a ventilator. Because the

4.4. EXPERIMENT 61

ventilator has effect on the “Smoke” element of the environment these two ser-

vices access the same element of the environment. Existing methods such as [37]

consider these situations as feature interactions. However, this situation is not un-

desirable because the purpose of each service is not interfered. In our proposed

framework, these situations were correctly considered desirable. This can be seen

in the experiment in Section 4.4. The verification result shows that type E1 inter-

action with smoke between the HVAC service and the air-cleaning service does

not occur.

Research that addressed the feature interaction problem of home network sys-

tems includes [27, 39]. In [27], a runtime detection method and a priority-based

resolution are proposed. Our approach works at a higher abstract level than [27]

in the sense that interactions detected by our approach might be resolved by pri-

oritizing services. Thus, even when such a runtime resolution exists, the results

obtained through our approach can be used to identify the situations where the

mechanism comes into play, resulting in a better understanding of the system be-

havior.

In [39], a static method for detecting feature interactions is proposed. How-

ever, this method is a conservative approximation method and thus can detect false

feature interactions which will never occur in actual runs.

The authors of [29] propose a method for verifying the behavior of services

with the SMV model checker [35]. This method can also be used for feature inter-

action detection, it was not the main objective of [29], though. The work presented

in this chapter improves [29] in several ways: First, we classified interactions and

devised the LTL correctness claim for each category. These LTL formulas allow

systematic interaction detection, while in [29] correctness claims were constructed

62 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

in an ad hoc manner. Another improvement came from our adopting the Promela

language. Unlike the SMV input language, Promela is similar to conventional

procedural programming languages. This makes it much easier to describe the

specification of appliances and services.

Our proposed framework focuses only on the high-level behavior of services,

and thus can be used independently of underlying network protocols. For exam-

ple, we show a way of applying our framework to ECHONET specifications.

Appliances are represented as objects which consist of state variables in ECHO-

NET. Appliances are operated by writing/reading the variables. The variables in

ECHONET specifications can be directly represented as those in our model. Writ-

ing/reading operations on the variables in ECHONET specifications can be trans-

lated into methods in our model. Because the effects on the environment are not

defined in ECHONET specifications, we must define the effects on the environ-

ment for each state of appliances. As a result, applying our proposed framework

to ECHONET specifications proceeds as follows: First, state variables of appli-

ances of ECHONET specifications are translated into variables and methods of

appliances in our model. Second the effects on the environment are defined for

appliances. Finally, the services are described in the format of our model.

As a case study, we describe a ventilator and a service which achieves low

power consumption of houses in the ECHONET standard available from [17] us-

ing our proposed model. This is shown in the appendix of this chapter.

4.5. SUMMARY 63

4.5 Summary

In this chapter, we proposed a method for detecting feature interactions in home

network systems. The proposed method uses SPIN, an LTL model checker. We

classified interactions into several types and devised LTL formulas that repre-

sent the absence of these interactions. To demonstrate the usefulness of the pro-

posed approach, we conducted an experiment. We checked whether or not feature

interactions occur in our running example and successfully detected several in-

teractions. By using counterexamples produced by SPIN, we also succeeded in

obtaining scenarios leading to the interactions.

4.6 Appendix

Description of Ventilator

We show that the specification of a ventilator described in the ECHONET standard

can be represented using our proposed model.

The ventilator has eight variables: OperationStatus, RoomRelative-

Humid, VentilatingStatus,MeasureHumid, VentilatingWindLev-

el, HeatExchangerStatus, CO2Concentration, and SmokeDetec-

tionStatus.

Six variables, OperationStatus, RoomRelativeHumid, Ventilat-

ingStatus, VentilatingWindLevel, HeatExchangerStatus, and

CO2Concentration, and two operations, Get, by which the variable is read,

and Set, by which the variable is written, are defined. Two variables, Measure-

Humid and SmokeDetectionStatus: have only one operation Get. To rep-

64 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

resent these operations as methods, we define the pre-condition and the post-

condition of each method as follows: The pre-conditions for all methods are true.

The post-condition of Set is defined such that it becomes true if the value of the

variable has been correctly updated. The post-condition of Get is defined as true.

Here we only show the pre-conditions and the post-conditions for Set and Get of

OperationStatus, because these for the other variables are identical except

the name of the variable.

Since the effects on the environment are not defined in ECHONET, we define

three types of effects on the environment. When the state of the ventilator is ON,

the smoke is removed. When the state of the ventilator is ON and the room tem-

perature is warmer than the outside, the effect “down” on the element “temp in”

of the environment occurs. On the other hand, when the state of the ventilator is

ON and the room temperature is cooler than the outside, the effect “up” on the

element “temp in” of the environment occurs.

� Ventilation = (F� , M� , EW�). F� is a set of variables, M� is a set of meth-

ods, and EW� (eff) is a formula which represents the state of the ventilator

and the state of the environment when the ventilator has an effect on the

element �"" of the environment.

� F� = (OperationStatus, RoomRelativeHumid, VentilatingStatus, Measured-

Humid, VentilatingWindLevel, HeatExchangerStatus, CO2Concentration,

SmokeDetectionStatus)

� M� = (Get OperationStatus(), Set OperationStatus(status), Get RoomRe-

lativeHumid(), Set RoomRelativeHumid(humid), Get VentilatingStatus(),

Set VentilatingStatus(status), Get MeasuredHumid(), Get VentilatingWind-

4.6. APPENDIX 65

Level(), Set VentilatingWindLevel(level), Get HeatExchangerStatus(), Set-

HeatExchangerStatus(status), Get CO2Concentration(), Set CO2Concent-

ration(concentration), Get SmokeDetectionStatus(status))

– Pre(Get OperationStatus()) = [true]

– Post(Get OperationStatus()) = [true]

– Pre(Set OperationStatus(status)) = [true]

– Post(Set OperationStatus(status)) = [OperationStatus =status]

� EW� (eff):

eff=Smoke removal: [OperationStatus = ON]

eff=Temp in up: [OperationStatus = ON � Temp in&Temp out]

eff=Temp in down: [OperationStatus = ON � Temp in % Temp out]

otherwise: [false]

The Promela description can be obtained by translating the above description.

We show the Get and Set methods for OperationStatus.

/* Definition of types */

#define tStatus int

#define OFF 0

#define ON 1

#define tAuto

#define Auto 2

#define NonAuto 3

#define tSmoke int

66 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

#define Found 4

#Define NotFound 5

/* Definition of Variable */

tStatus Ventilation_OperationStatus;

int Ventilation_RoomRelativeHumid;

tAuto Ventilation_VentilatingStatus;

int Ventilation_MeasuredHumid;

int Ventilation_VentilatingWindLevel;

tStatus Ventilation_HeatExchangerStatus;

int Ventilation_CO2Concentration;

tSmoke Ventilation_SmokeDetectionStatus;

/* variable for detecting interaction */

int Ventilation_error=0;

/* Operations for OperationStatus */

#define Ventilation_Get_OperationStatus(){\

true;\

if::(MC_Ventilation_OperationStatus?[_] &&

!(MC_Ventilation_OperationStatus?

[eval(Ventilation_operationStatus)]))\

-> Ventilation_error = 2;\

::else-> skip;fi;\

r_value = Ventilation_OperationStatus;

}

#define Ventilation_Set_OperationStatus(status){\

true\

4.6. APPENDIX 67

if::(MC_Ventilation_OperationStatus?[_] &&

!(MC_Ventilation_OperationStatus?[mode]))\

->Ventilation_error = 1;\

::else -> skip; fi;

MC_Ventilation_OperationStatus!status;\

MC_Ventilation_OperationStatus?Ventilation_OperationStatus;\

}

Description of the Energy Management Service

Here, EMS (Energy Management Service) in ECHONET is described in Promela.

This service checks the total power consumption of all appliances, and if the

power consumption exceeds a certain value (�) set by users, the service suspends

the appliances based on the priority until the power consumption becomes lower

than the value of �. If the power consumption is lower than the value � and

there are appliances suspended by the service, the service restarts the appliances.

To use this service, users need to set the values of � and �. The behavior of this

service is as follows:

1. This service checks the power consumption of all appliances. If the total

power consumption exceeds �, step 2 is executed. If the power consump-

tion is lower than �, the next step is step 3. Otherwise, it repeats step 1.

2. This service suspends the appliance that has the lowest priority, and returns

to step 1. If there are no appliances that can be suspended, this service gives

the alarm and terminates.

3. If there are suspended appliances, this service restarts one of the appliances.

68 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

After that, this service returns to step 1.

As in the document of the ECHONET standard, we consider a home network

system which consists of an air-conditioner, a ventilator, a freezer, a microwave,

a heater, and a washer. In this case, EMS can be described as follows. We assume

that the priorities and the power consumption of all appliances are given. About

one hundred lines of Promela code for the EMS service is obtained.

int EMS_State;

int priority[6]; /* priority for each appliance*/

int consumption[6];/* power consumption*/

SERVICE EMS(int Is, int Ie){

VAR

int It;

bool cut[6]; # suspended appliance

suspended: 1

int maxpriority, minpriority;

#max: appliance: not suspended and max priority

#min: appliance: suspended and min priority

tStatus Status_tmp;

CONTENT

initialize for cut

cut[0]=0;cut[1]=0;cut[2]=0;

cut[3]=0;cut[4]=0;cut[5]=0;

while(EMS_STATE=START){

4.6. APPENDIX 69

#maxpriority, minpriority

It = 0; maxpriority = 0; minpriority = 255;

#power consumption of air-conditioner

Status_tmp :=

Air_conditioner.Get_OperationStatus();

if(Status_tmp == ON){

It := It + consumption[0];

if(cut[0] = 0 && priority[0] < minpriority){

minpriority := priority[0];}}

if(cut[0] = 1 && priority[0] > maxpriority){

maxpriority := priority[0];}

#power consumption of ventilator

Status_tmp := Ventilater.Get_OperationStatus();

if(Status_tmp = ON){

It := It + consumption[1];

if(cut[1] = 0 && priority[1] < minpriority){

minpriority := priority[1];}}

if(cut[1] = 1 && priority[1] > maxpriority){

maxpriority := priority[1];}

#power consumption of freezer

Status_tmp := Freezer.Get_OperationStatus();

if(Status_tmp = ON){

It := It + consumption[2];

if(cut[2] = 0 && priority[2] < minpriority){

minpriority := priority[2];}}

if(cut[2] = 1 && priority[2] > maxpriority){

maxpriority = priority[2];}

70 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

#power consumption of microwave

Status_tmp := Microwave.Get_OperationStatus();

if(Status_tmp = ON){

It := It + consumption[3];

if(cut[3] = 0 && priority[3] < minpriority){

minpriority := priority[3]; }}

if(cut[3] = 1 && priority[3] > maxpriority){

maxpriority = priority[3];}

#power consumption of heater

Status_tmp := Heater.Get_OperationStatus();

if(Status_tmp = ON){

It := It + consumption[4];

if(cut[4] = 0 && priority[4] < minpriority){

minpriority := priority[4];}}

if(cut[4] = 1 && priority[4] > maxpriority){

maxpriority := priority[4];}

#power consumption of washer

Status_tmp := Washer.Get_OperationStatus();

if(Status_tmp = ON){

It := It + consumption[5];

if(cut[5] = 0 && priority[5] < minpriority){

minpriority := priority[5];}}

if(cut[5] = 1 && priority[5] > maxpriority){

maxpriority := priority[5];}

if(It>Is){/* suspend appliances */

if(minpriority = priority[0]){

4.6. APPENDIX 71

Air_conditioner.Set_OperationStatus(OFF);

cut[0] := 1;}

else if(minpriority = priority[1]){

Ventilater.Set_OperationStatus(OFF);

cut[1] := 1;}

else if(minpriority = priority[2]){

Freezer.Set_OperationStatus(OFF);

cut[2] := 1;}

else if(minpriority = priority[3]){

Microwave.Set_OperationStatus(OFF);

cut[3] := 1;}

else if(minpriority = priority[4]){

Heater.Set_OperationStatus(OFF);

cut[4] := 1;}

else if(minpriority = priority[5]){

Washer.Set_OperationStatus(OFF);

cut[5] := 1;}

else {Alarm.Set_OperationStatus(ON);}}

::(It<Ie) -> /* restart appliances*/

if(maxpriority = priority[0]){

Air_conditioner.Set_OperationStatus(ON);

cut[0] := 0;}

else if(maxpriority = priority[1]){

Ventilater.Set_OperationStatus(ON);

cut[1] := 0;}

else if(maxpriority = priority[2]){

Freezer.Set_OperationStatus(ON);

72 CHAPTER 4. FEATURE INTERACTION VERIFICATION IN HOME NETWORK SYSTEMS

cut[2] := 0;}

else if(maxpriority = priority[3]){

Microwave.Set_OperationStatus(ON);

cut[3] := 0;}

else if(maxpriority = priority[4]){

Heater.Set_OperationStatus(ON);

cut[4] := 0;}

else if(maxpriority = priority[5]){

Washer.Set_OperationStatus(ON);

cut[5] := 0;}

}

}

Chapter 5

Conclusion

5.1 Achievements

In this dissertation, methods for verifying feature interactions in telecommunica-

tion systems and home network systems were described.

The first achievement is the development of a verification method for veri-

fying feature interactions in telecommunication services with unbounded model

checking. First, a new encoding scheme that effectively represents the behav-

iors of telecommunication systems was proposed. Next, a method for adapting

unbounded model checking to this encoding was described.

To show the effectiveness of our method, we conducted experiments where 21

pairs of telecommunication services were verified using several methods including

ours. The results showed that our approach exhibited significant speed-up over

unbounded model checking using the traditional encoding. Our method exhibited

better or comparable performance comparing to the SPIN model checker in many

cases. In some cases, however, our method could not complete verification, while

73

74 CHAPTER 5. CONCLUSION

SPIN solved the verification problem in a few seconds.

The second achievement is the development of a framework for detecting fea-

ture interactions in home network systems. Our proposed approach for verifica-

tion of feature interactions consists of two part. First, a model for home network

system is proposed, and the feature interactions in home network systems is clas-

sified based on their causes. Next, an automatic translation method from proposed

model into Promela, which is the input language of the SPIN model checker is pro-

posed. we also proposed LTL formulas which represent the absence of each type

of feature interactions. By using our proposed framework, one can automatically

detect feature interactions in home network systems.

To demonstrate the usefulness of the proposed approach, we conducted an ex-

periment. We checked whether or not feature interactions occur in our running

example and successfully detected several interactions. By using counterexam-

ples produced by SPIN, we also succeeded in obtaining scenarios leading to the

interactions.

5.2 Future Research

Some issues are left for future research. In the research on telecommunication

systems, our implementation is still in its prototype stage. Our current imple-

mentation uses FOCI for interpolant generation. FOCI supports not only pure

propositional logic but also uninterpreted functions or linear arithmetic. By de-

veloping a new, faster interpolation procedure tailored to propositional logic, we

may be able to enhance the performance of our method. This expectation can also

be justified by the facts that the research on interpolation is still in its early stage,

5.2. FUTURE RESEARCH 75

and that the performance of SAT solving has been improved by several orders of

magnitude in this decade.

In the research on home network systems, a tool should be developed in order

to support users to describe and validate home network services based on the

proposed framework. In this dissertation we show how users can verify home

network services; but doing this requires them to have some knowledge about the

framework. Such a tool would greatly facilitate ordinary users to use the automatic

verification method.

The issue of resolving the detected feature interactions in home network sys-

tems still remains. Many approaches for resolving feature interactions exist. For

example, when feature interaction occurs, the system may ask the users to deter-

mine which service execution is suspended, or the users may assign priorities to

services to automatically abort a service with a lower priority. Finding the best

resolution method for each type of feature interactions is needed.

Bibliography

[1] N. Amla and K. L. McMillan. Combining abstraction refinement and sat-based

model checking. In Proc. the 13th International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems (TACAS 2007), Vol. 4424, pages

405–419, Braga, Portugal, March 2007.

[2] D. Amyot and L. Logrippo, editors. Feature Interaction in Telecommunications and

Software Systems VII. 2003.

[3] Bellcore. Advanced Intelligent Network (AIN) Release 1, Switching Systems

Generic Requirement. Bellcore Technical Advisory TA-NWT.001123, 1991.

[4] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking with-

out bdds. In Proc. the 5th International Conference on Tools and Algorithms for

Construction and Analysis of Systems (TACAS 1999), pages 193–207, London, UK,

1999.

[5] L. G. Bouma and H. Velthuijsen, editors. Feature Interaction in Telecommunica-

tions Systems. 1994.

[6] T. F. Bowen, F. S. Dworack, C. H. Chow, N. Griffeth, G. Herman, and Y. J. Lin.

The feature interaction problem in telecommunications systems. In Proc. the 7th

International Conference on Software Engineering for Telecommunication Switch-

ing Systems, pages 59–62, London, July 1989.

76

BIBLIOGRAPHY 77

[7] J. R. Büchi. On a decision method in restricted second order aritmetic. In In Pro-

ceedings of the International Congress on Logic, Methodology and Philosophy of

Science, pages 1–11. Stanford University Press, 1960.

[8] M. Calder and E. Magill, editors. Feature Interaction in Telecommunications and

Software Systems VI. 2000.

[9] M. Calder and A. Miller. Feature interaction detection by pairwise analysis of ltl

properties - a case study. Formal Methods in System Design, Vol. 28, No. 3, pages

213–261, May 2006.

[10] E. J. Cameron and H. Velthuijsen. Feature interactions in telecommunications sys-

tems. IEEE Communication Magazine, Vol. 31, No. 8, pages 18–23, 1993.

[11] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J. D.

Reese. Model checking large software specifications. IEEE Trans. Softw. Eng., Vol.

24, No. 7, 1998.

[12] K. E. Cheng and T. Ohta, editors. Feature Interaction in Telecommunications III.

1995.

[13] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[14] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Y. Vardi.

Benefits of bounded model checking at an industrial setting. In Proc. the 13th

International Conference on Computer Aided Verification (CAV 2001), pages 436–

453, London, UK, 2001.

[15] P. Dini, R. Boutaba, and L. Logrippo, editors. Feature Interaction in Telecommuni-

cations Networks IV. 1997.

[16] L. du Bousquet and J.-L. Richer, editors. Feature Interaction in Telecommunications

and Software Systems IX. 2007.

[17] ECHONET Consortium. http://www.echonet.gr.jp/.

[18] A. Gammelgaard and J. E. Kristensen. Interaction detection, a logical approach.

In Proc. the 2nd Workshop on Feature Interaction in Telecommunication Systems,

pages 178–196, Amsterdam, The Netherlands, May 1994.

78 BIBLIOGRAPHY

[19] Havi. http://www.havi.org/.

[20] Y. Hirakawa and T. Takenaka. Telecommunication service description using state

transition rules. In Proc. the 6th international workshop on Software specification

and design (IWSSD 1991), pages 140–147, Como, Italy, October 1991.

[21] G. J. Holzmann. The model checker SPIN. IEEE Trans. Software Eng., Vol. 23, No.

5, pages 279–295, 1997.

[22] ITU-T Recomendations Q.1200 Series, Intelligent Network Capability Set 1 (CS 1).

ITU-T, September 1990.

[23] H.-J. Kang and I.-C. Park. SAT-based unbounded symbolic model checking. IEEE

Transaction on Computer-aided Design of Intergrated Circuit and Systems, Vol. 24,

No. 2, pages 129–140, 2005.

[24] D. O. Keck and P. J. Kuehn. The feature and service interaction problem in

telecommunications systems: a survey. IEEE Transaction of Software Engineer-

ing, 24(10):779–796, October 1998.

[25] A. Khoumsi. Detection and resolution of interactions between services of telephone

networks. In Proc. the 4th Workshop on Feature Interaction in Telecommunication

Systems, pages 78–92, Montréal, Canada, June 1997.

[26] K. Kimber and L. G. Bouma, editors. Feature Interaction in Telecommunications

and Software Systems V. 1998.

[27] M. Kolberg, E. H. Magill, and M. Wilson. Compatibility issues between services

supporting networked appliances. IEEE Communications Magazine, Vol. 41, No.

11, pages 136–147, 2003.

[28] P. Leelaprute, T. Matsuo, T. Tsuchiya, and T. Kikuno. Detecting feature interac-

tions in home appliance networks. In Proc. the 9th Int’l Conference on Software

Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Comput-

ing (SNPD 2008), pages 895–903, August 2008.

BIBLIOGRAPHY 79

[29] P. Leelaprute, M. Nakamura, T. Tsuchiya, K. Matsumoto, and T. Kikuno. Describ-

ing and verifying integrated services of home network systems. In The 10th Asia-

Pacific Software Engineering Conference (APSEC2005), pages 549–558, December

2005.

[30] J. Marques-Silva. Interpolant learning and reuse in sat-based model checking. Elec-

tronic Notes in Theoretical Computer Science, Vol. 174, No. 3, pages 31–43, 2007.

[31] T. Matsuo. A model of home network system for detecting feature interactions

by applying model checking. In Supplemental Volume of the 2007 International

Conference on Dependable Systems and Networks (DSN-2007), pages 300–302,

June 2007.

[32] T. Matsuo, P. Leelaprute, T. Tsuchiya, and T. Kikuno. Verifying feature interactions

in home network systems. IPSJ Journal (In Japanese), Vol. 49, No. 6, pages 2129–

2143, June 2008.

[33] T. Matsuo, P. Leelaprute, T. Tsuchiya, T. Kikuno, M. Nakamura, H. Igaki, and

K. Matsumoto. Automatically verifying integrated services in home network sys-

tems. In Proc. International Technical Conference on Circuits/Systems, Computers

and Communications (ITC-CSCC2006), Vol. 2, pages 173–176, July 2006.

[34] T. Matsuo, T. Tsuchiya, and T. Kikuno. Feature interaction verification using un-

bounded model checking with interpolation. IEICE Transaction on Information and

systems (conditional acceptance).

[35] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[36] K. L. McMillan. Interpolation and sat-based model checking. In Proc. the 15th

International Conference on Computer Aided Verification (CAV2003), Vol. 2725,

pages 1 – 13, Boulder, CO, USA, July 2003.

[37] A. Metzger and C. Webel. Feature interaction detection in building control systems

by means of a formal product model. Feature Interactions in Telecommunications

and Software Systems VII, pages 105–122, June 2003.

80 BIBLIOGRAPHY

[38] S. Moyer, D. Marples, and S. Tsang. A protocol for wide area, secure networked ap-

pliances communication. IEEE Communications Magazine, Vol. 38, No. 10, pages

52–59, October 2001.

[39] M. Nakamura, H. Igaki, and K. Matsumoto. Feature interactions in integrated ser-

vices of networked home appliance. In Proc. of Int’l. Conf. on Feature Interactions

in Telecommunication Networks and Distributed Systems (ICFI’05), pages 236–

251, June 2005.

[40] S. Ogata, T. Tsuchiya, and T. Kikuno. Sat-based verification of safe petri nets. In

Proc. the 2nd International Symposium on Automated Technology for Verification

and Analysis (ATVA 2004), pages 72–92, November 2004.

[41] OSGi Appliance. The OSGi service platform. http://osgi.org.

[42] D. Peled. Combining partial order reductions with on-the-fly model-checking. In

Proc. the 6th International Conference on Computer Aided Verification (CAV94),

pages 377–390, London, UK, 1994. Springer-Verlag.

[43] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE sym-

posium on foundation of computer science, pages 46–57. IEEE Computer Society

Press, 1977.

[44] P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone

computations. Symbolic Logic, Vol. 62, No. 2, pages 981–998, September 1997.

[45] S. Reiff-marganiec and M. D. Ryan, editors. Feature Interaction in Telecommuni-

cations and Software Systems VIII. 2005.

[46] A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation.

In Proc. the 8th International Conference on Verification, Model Checking and Ab-

stract Interpretation (VMCAI 2007), pages 346–362, Nice, France, January 2007.

[47] UPnP Forum. http://www.upnp.org/.

[48] M. Weiss. Feature interactions in web services. In Feature Interaction in Telecom-

munications and Software Systems VII, pages 149–158, July 2003.

BIBLIOGRAPHY 81

[49] T. Yokogawa, T. Tsuchiya, M. Nakamura, and T. Kikuno. Feature interaction detec-

tion by bounded model checking. IEICE Transactions on Information and Systems,

Vol. E86-D, No. 12, pages 2579–2587, December 2003.

Feature Interaction Verification of Telecommunication Services and Home Network Services Using Model Checking January 2009 Takafumi Matsuo

	cover
	body
	spine

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

