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The main purpose of the present paper is to clarify some analytical prop-
erties of the Darboux transformation of the second order ordinary differential
operator

L(P) = D*-P(x) , D = d/dx

of Fuchsian type on the Riemann sphere PΓ Throughout the paper, for brevity,

we assume that P(x) is of the form

(1)

The Darboux transformation of L(P) is defined as follows: Let Y(x)
Λ)> J^ί*)) be the fundamental system of solutions of

(2) L(P)y=y"-P(X)y = Q, '=

such that W(Y(x))=l, where

W(Y(X))=y1(X)y2(X)-y'1(X)y2(X)

is the Wronskian. Put

(3) ?(*;?) = (8/9*) log ξxY(x)

and

A±(ί) = D±q(x; ζ)

respectively, where ί=[?1: ξ2]
 ls the homogeneous coordinate of Pl and

Then L(P) is decomposed into the product of the first order operators

L(p) = Λ+(rμ_(?).
By exchanging the role of A±(ζ), we obtain the another second order operators
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L*(P; ζ,Y} = A.(ζ)A+(ζ)

parametrized by ζ^P^ We call L*(P; f, Y) the Darboux transformation of
L(P) by Y(x). Put

(4) P*(*; ζ) = P(x) - 2dq(x;

then we have

L*(P; £ F) - Z)2-P*(*; ?) .

J.L. Burchnall and T.W. Chaundy [5] treated such an operation in their
research on the commutative ordinary differential operator and called it trans-
ference. Moreover, M.M. Crum [6] studied an analogous method as an al-
gorithm of adding or removing eigenvalues of Sturm-Liouville operators on a
finite interval. Recently, many authors extended these methods in various cases
in connection with the soliton theory. See e.g,. P. Deift [7], P. Deift and E.
Trubowitz [8] and F. Ehlers and H. Knϋrrer [9]. The aim of the present
work is to explore an analogue of these methods for the differential operator of
Fuchsian type on Pλ.

We briefly sketch our results obtained in this paper in the following. Let
F be the set of all L(P) such that P(x) is of the form (1) and the ratio y2(x)lyι(x)
of the fundamental system of solutions of (2) is a rational function. Then we
can show easily that the Darboux transformation L*(P; f, Y) of L(P) is of
Fuchsian type on Pl for any ζ^P1 if and only if L(P)€=.F. Moreover put

(5) X(L(F)) = 0 WW £ y)eF>

for L(P)eF, where # denotes cardinal. Then X(L(P)) turns out to be equal to
0, 1 or oo, where %(L(P)) = oo refer to that L*(P; f, Y)(=F for all
Thus F is decomposed into the disjoint union

(6) F-

where

v}, ,, = 0 , l , o o .

According to the classification (6), the characterizatoin of L*(P; f , Y) in con-
nection with the isomonodromic deformation is obtained. Next we define ZΛ(P)
and Xn(P) = DZn(P) by the recursion formula called the Lenard relation (cf.
[12].)

(7) Xn(P) = 2-ίZn_1(P)P'+Xa_l(P)P-4-WXa_1(P) , n=l,2, -

with Zϋ(P)=P. Then it is known that Zn(P) and Xn(P) are the polynomials
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in P(5) (s—0, 1, •••, 2/x+l) with constant coefficients, where P(s) is the 5-th deriva-
tive of P. Now let ΛΛ be all of rational functions P(x) of the form (1) such
that L(P)eF, JYy(P)Φθ for j<n and Xn(P)=0. Then we can construct easily

the solution u(x\ ξ), which is rational in xy of the n-th KdV equation

(8) 8κ(*; ξ)IQξ = Xu(φ; ξ))

from P*(# f) for P(#)^Λn, where ξ is the complex variable. Put

Λ*= UT-oΛ,

and

F*= {L(P)|PGΞΛ*}

then, combining the characterization of L*(P; ζ, Y) in connection with the
isomonodromic deformation and the fact that P*(ΛJ; ζ) gives rise the rational
function solution of the τz-th KdV equation (8), F* turns out to be the subclass
of .FΌo closed under the Darboux transformation. Moreover we show that for
every PeΛ* there exists the n-ih KdV flow on Λ* passing through P.

The isomonodromic deformation theory, which offers the basic tools for
above considerations, originates in classical works by R. Fuchs [11], L. Schle-
singer [21] and R. Gamier [13]. Recently, these are generalized by many
authors and turn out to be deeply related to many problems in mathematical
physics. See e.g., [10], [14], [15], [16], [17], [18], [19] and [20]. However we
need only elementary part of the theory so far as for the present work.

On the other hand, rational function solutions of the KdV equation have
been obtained by various methods: M.J. Ablowitz and J. Satsuma [1] con-

structed them by taking long wave limit of the soliton solutions obtained by
Hirota's method; M. Adler and J. Moser [2] constructed them by using the
Darboux transformation, which is called the Crum transformation by them.
See also H. Airault, H.P. McKean and J. Moser [3].

While our results are deeply related to that of Adler-Moser, our viewpoint
and method are somewhat different from those of them. More precisely, our
aim is not only to construct rational function solutions of the n-th KdV equa-
tion but also to characterize the space Λ* of rational function solutions gen-
erated by the Darboux transformation in connection with the isomonodromic
deformation. Moreover, while Adler-Moser constructed rational function solu-
tions by using the polynomial τ-function originated by M. Sato and his col-
leagues, our method is essentially based on the Lenard relation (7).

The contents of the present paper are as follows. Section 1 is devoted for
preliminary considerations about the Darboux transformation. In section 2, the
Darboux transformation is investigated in connection with the isomonodromic
deformation. In section 3, the relation between the Darboux transformation
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and the Lenard relation is discussed. In section 4, the space Λ* of rational
function solutions of the higher order KdV equation is constructed.

The author would like to express his sincere thanks to Prof. S. Tanaka
for his encouragement throughout this work. He is also indebted to Dr. H.
Kaneta and Dr. H. Kimura for a number of useful advice.

1. Preliminary

In this section we first give a necessary and sufficient condition on L(P)
for L*(P; £, Y) to be of Fuchsian type on Pl for all ζ^P^ One readily verifies

(1.1) P*(x;ζ) = -P(x)+2q(X;ζγ.

Hence, one can see that L*(P; £, Y) is of Fuchsian type on Pλ if and only if
q(x\ ζ) is rational in x. Moreover we have

Lemma 1.1 (cf. Baldassarri and Dwork [4]). L*(P; ζ, Y) is of Fuchsian
type on Pl for all ζ^Plif and only if

Proof. Put/(#)— y2(x)ly\(x) then we have

(1.2) Λ(*)=/'(*Γl/*, Λ(«) =

Hence

(1.3) q(x; ζ) = (8/8*)

follows. Therefore, if L(P)^F, i.e.,/(#) is a rational function then q(x\ ζ) is
also rational in x for any ζ^Pλ. Thus L*(P; ζ, Y) is of Fuchsian type for all
ζ^P L. Conversely, suppose that q(x] ζ) is rational in x for all ζ^P^ Let

ξi=[ξn fίJejpι (ί=1> 2, 3; fy=f=£ A if JΦ*) Hence, if l<j<A<3 then we can
choose ξis (/=!, 2, 3; s=l, 2) such that

(1-4) &£«-**?«= 1.

Then

q(x; ζλ-qίx;
^ '' ^

follows from (1.3). Hence

follows. Since the left hand side of (1.5) is rational in x and, by (1.4), the right
hand side of (1.5) is the nondegenerate fractional transformation of /(#), f(x) is
a rational function, i.e.,
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Let φ(x) be meromorphic at x=a. Suppose that

Φ(x) = Σv cv(x— ά)v

is the Laurent expansion of φ(x) at x=a. Put

Cv(x-a)v+1+c^ log (x-a) .

Note

DD~lφ(x) = φ(x) , D71Dφ(x) = φ(x)~c0 .

The fundamental system Y(x\ά) of solutions of (2) normlized at x=a is
defined by using D~l as follows. In what follows, we assume L(P)^F. Since
P(x) is of the form (1), P(x) is expanded at x=a as

Let λ±(α) be solutions of

(1.6)

Namely, λ±(«y) are the exponents of (2) at the sigular points x=aj and, more-
over, if P(x) is holomorphic at x= a then we can set

\+(a) = 1 , λ_(α) — 0 .

Since L(P)^F, i.e., the ratio y2(x)lyι(x) of the fundamental system of solutions
of (2) is the rational function, we can assume that the exponent difference

n(aj) =

is a nonnegative integer. We have

(1.7) λ±(α) = 2-\l±n(a)) .

If n(aj)=Q then x=a is the logarithmic singular point. Therefore we can

assume

By Frobenius method, we obtain the unique solution

(1.8+) y2(x; a) = (x-a)^ ΣΓ-o k^(a)(x-aγ , kί(a) =

of the equation (2). Put

yλ(x\ a) - -y2(x\ ά)D71(y2(x^ α)"2)

and

Y(x\ a) = *(jφ?; a) , y2(x\ a)) .
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Then Y(x\ a) is the fundamental system of solutions of (2) such that W(Y(x \ά))
= 1. We call Y(x]ά) the normalized fundamental system of solutions of (2).
Since L(P)eF, we have

(1.8-) Λ(«; a) = (*-α) λ-<«> Σv~β0 k-(ά)(x-aγ

with &if(tf)=|=0. For brevity, we often adopt the following conventions; Y0 stands
for Y(x\ϋ) and Y} for Y(x\ a^} (/=!, 2, •••, w) respectively. In what follows,
we investigate mainly the Darboux transformation L*(P; f, F0) by y(#; 0).

Therefore, the notation P*(*; ?) refers to P(*)-2(3/9*)2logfx y(^J °) in what

follows;

P*(x\ ζ) = P(x)-2(dldx)2 log ζ x Y(*; 0) .

The Darboux transformation L*(P; f, Z) by another solution Z(x) is obtained
by

, Y0) ,

where C=(c,j)(ΞSL(2,C) such that Z(Λ;) = CY(Λ;; 0) and ?xC=[f1cu+|2ca:

2\ ̂ -Pi-

Suppose ζ" e P! ?= [1 : ί0] for ξ" Φ oo and ζ"= [ί» : 1] for f Φ 0. Now put

jfo(λ ; 0 = (3Ί(^; 0)+ίo ;̂ 0)Γ for r=[l : ί jφoo

yUx; ξ) =(ί.Λ(«; 0)+y2(^; O))"1 for ? = [ί.: 1]ΦO

and

(1.10) >&(*; ?) = jf^; O DiΓ'̂ ί*; O'2) , M = 0, oo ,

then one can see readily that

Y$(χ; ζ) = '(y&(χ; ζ) , yt(χ;ζ)), ^ = 0,00

are the fundamental systems of solutions of

(1.11) L*(P; ?, yo)j - /'-P*^; ξ)y = 0 , f e t7M, /*=0, oo

respectively, where C/0= PΛί00} a^d U00=Pl\{0}.

The following lemma is an elementary fact about the residue of meromor-

phic function.

Lemma 1.2. If f(x) is a single valued meromorphic function in a vicinity of
x—a such that

Ref /(*

holds for k=G or 2 then
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Proof. The singularities of /(#)//'(#) consist of the zeros of /'(#) and the
poles of /(#). First suppose that /'(#)=() and

Res

Then we have

and

where r is a positive integer, gj(x) (7=!, 2) are holomorphic at #=<z and £y(#
(y=l, 2). Hence we have

Res/(*)//'(*) I ... = c Res !//'(*) | ,_ = 0 .

Moreover if x=a is a pole of /(#) then x=a is a removable sigularity of

f(x)lf'(x) The proof in the case of

is parallel to the above.

Next we have

Lemma 1.3. // L(P)(=F and

then Z*(P; f , yo)eF/or my

Proof. First suppose L*(P; ζjy Y0)<=F (j=l, 2), where f y= [1 : fy] Φ oo and

r1=ι=r2. Put
Z(») = ί( 1̂(^), *&)) = CY(x; 0) ,

where

then we have

L*(p; d, yβ) =
and

Putf(x)=z2(x)lzι(χ) then, by direct calculation, we have

(1.12) yfo(*; £)/?&(*; 0 = DίXίΛί*; 0)+ί0̂ ; O))2)
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where ζ=[l : tQ]^ oo and (alt a2)=(l, t0)C~\ In particular, since

(i, oc-1 = (fe-ί,)^ o)
and

we have

and

By the assumption, D^1(f(x)vlf(x)) (v=Q, 2) are rational functions. Therefore,

by lemma 1.2, AT1 (/(#)//'(#)) is also a rational function. Thus, by (1.12),

3>*o(#; ζ)lyfo(x'> ?) is rational in # for any ?Φ oo. Similarly to the above, we can

show that y£o(x', oo)lyΐ^(x'9 °°) is rational in x. Thus L*(P; ?, yo)^/^ holds for
any ζ^Pl The proof in case of L*(P; ?y, yo)eF(j=l, 2; ξΊφoo and ?2=oo)

is also parallel to the above.

Put

for L(P)eF, where %(L(P))=oo refers to that L*(P; ?, Y0)eFfor any
By lemma 1.3, it suffices to consider in cases of %(L(P))=0, 1 and oo. Put

Fv = {L(P)e=F|X(L(P)) = *}, v = 0, 1, oo .

Thus P is decomposed into the disjoint union as (6);

Next we investigate the singular points of L*(P; ?, F0). Put

/(#; Λ)= J2(Λ:; Λ)/^(Λ?; α) ,

which is a rational function, then we have

Λ(*; a) =/'(*; «)-1/2;^2(^; β) =/'(*; «Γ/2/(*; α) .

We define the connection matrices Cy (j— 1, 2, •••, w)

(1.13) Cj = Vf(Y(x; 0))W(Y(x; α,-))'1 ,
/\

where ίΓ(y(Λ?))=(y(Λ?), (d/dx)Y(x)) is the Wronskian matrix.
First suppose that b(ζ) is one of the nonsingular zeros of ζx Y(x\ 0), i.e.,

P(x) is holomorphic at x=b(ξ) and ζ X y(δ(f) 0) = 0. Since ζxY(x\ϋ) is a

nontrivial solution of the second order differential equation (2), x~ b(ζ) is a
simple zero. Therefore one verifies that
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(dldx)q(x; ξ)+(x-b(ζ)Γ2 = (QIQxYlogζx Y(χ

is holomorphic at x=b(ζ), i.e., by (4),

P*(x; ξ}-2(x-b(ζ))-* = P(X)-2((d/dx)q(X;

is holomorphic at x= b(ζ). Hence, it follows that x=b(ζ) is a regular sin-
gular point of equation (1.11) such that its characteristic exponents are equal to
2 and —1. Moreover the integrand of the right hand side of (1.10) turns out
to be rational in x and holomorphic at x=b(ζ), i.e., x=b(ζ) is a non-logarithmic
singular point of (1.11). Thus, it follows that x=b(ζ) is an apparent singular

point of equation (1.11).
Next we investigate L*(P; ξ, Y0) at the singular points x= dj (j=l, 2, •••, n)

of L(P) itself. Suppose fxCyφoo, i.e., ̂ πOH^iOlΦO, where £ = [&: £J
and C~(cik(j}} is defined by (1.13). Then we have

= (Q/dx) log (y,(x] aj)+κj(ξ)y2(xι αy)) ,

where «j(Z)=fac^+Sfa(fi^^ By (1.8±), we have

yι(*\ fly)+^(θΛ(*; */) = (^-βy)λ-c^ Σ37-0 ^v(«y) (*-̂  ,

where c0(αy)Φθ. Hence

(1.14) 8?(*; f )/8Λ+λ.(αy) (Λ~αy)"2 = (9/9*)2 log ΣΓ-o ̂ y) (*-«y)

follows and the right hand side of (1.14) is holomorphic at x~aj. This implies
that if f x Cy Φ oo then P*(x\ ζ) — (as + 2\_(aj))(x — afr~2 is holomorphic at
x=dj. Similarly, if fχC, =oo then P^(x\ζ)—(aj+2\+(aj)}(x—aJY

2 is holo-
morphic at x=dj. By (1.7), we have

α, +2λ±(αy) = 4-χW(αy

Thus we have shown

Lemma 1.4. // L(P}^F then P*(ΛJ; ζ) is expressed by the partial fraction

P*(χ\ ξ) = Σ35-1 α?(^-αy)-2+2Σl?=ι (Λ-ft^))"2 >

where b;(ζ) (/=!, 2, •••, m) βrβ ίAβ nonsingular zeros of ζx Y(x\ 0)

= ί4"
U-Ί

Moreover bj(ξ) (/=!, 2, •••, m) are ίAe apparent singular points of L*(P; ζ, Y0).

Next we classify the singular point x=a} of L(P)^.F according to whether
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x=dj is the logarithmic singular point of L*(P; ζ, Y0) or not. Put ζj=ζxCj1,

where Cy is denned by (1.13), then we have

Lemma 1.5. (1) x=Uj is the nonlogarithmίc singular point of L*(P; ζj9 Y0).

(2) There are only three possibilities :

( i ) P*(x\ ζ) is holomorphίc at x=a^ for any fφζ'y.
(ϋ) x= #y is a non-logarithmic singular point of L*(P\ ζ, Y0)for any ζφζj.
(iii) x=aj is a logarithmic singular point of L*(P; ζy Y0) for any

Proof. Suppose ζ= [1 : tQ] Φ oo . We have

(1.15)

where ρko=ρkQ(ζ'J)=clk(j)+tQc2k(j) (k=\, 2). Since Z,(P)eF, the both sides of
(1.15) are rational in #. Note that

Λ(ί0) - Λ-1 (p10Λ(^; ^)+p2o^2(^; Λy))2-^1^^; 0)+ί0j2(^; O))2

is independent of Λ?. Therefore, by (1.10), we have

,, 1 Av #, n(1.16) ^20(^; D _

By (1-8 it), one verifies that

(pιoΛ(*; aj)

is holomorphic at x=a^ where

which is holomorphic at #=#y (cf. (1.8 — ).). Hence we have

(1.17) 7(ζ J) = Res(yι(^; 0)+^*; 0))»U..y

Now we prove (1) in the case ξ\φoo. By lemma 1.4, x=aj is the regular sin-

gular point of (1.11) for ζ=ζj. Note that^fo^; ζ) has no logarithmic singular
point. Moreover, since po^y; j)= 0, 7(?y;j)=0 follows, i.e., Λ:=<2y is the non-
logarithmic singular point of y*0(x; ζj) by (1.16). The proof in case of ζj = oo

is parallel to the above. Thus (1) has been proved. Next we consider

L*(P\ ζ0, YQ) for ζΦζj. First we assume ζj=°°. Then ρlQ(ζ\ J)ΦO holds for
any ?φ°o. By lemma 1.4, P*(ΛJ; ζ) is holomorphic at #— <Zy for any ξ'φoo if

and only if n(aj)=3. Now let w(βy)Φ3 then, by lemma 1.4, x= αy is the regular
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singular point of (1.11) for any £φoo. Moreover, by (1.17), x=aj is non-

logarithmic if and only if

(1.18) Σtf-2 ^(«y)^,)-v-2(αy) = 0 .

Note that (1.18) is independent of ζ. Hence (2) has been proved in case of
ζj= oo. The proof in case of fyΦ oo can been obtained in the similar way.

We say that the singular point x=dj of L(P)^F is of L-type if and only
if x=dj is the logarithmic singular point of (1.11) for any f Φ ε / Next we
have

Lemma 1.6. (1) L(P)^FOQ if and only if L(P)^F has no singular points

of L-type.

(2) Let ajl9 α/a, •••, Λjk(l^j1<j2 <.jk^n) be all of the singular points of L-type
of L(P) e F. Then L(P) e Fl if and only if

(1-19) #{ooχC7>= 1,2, •..,*} = !.

Proof. (1) holds true obviously. Now suppose that (1.19) is valid. Put
ζQ=oo x Cj,1 (ί=l, 2, •••, k). Then L*(P; £0, F0)eFfollows from lemma 1.5 (1).
Moreover, if ?ΦδΌ then, by lemma 1.5 (2), x=ajs (s=l, 2, •-•, k) are logarithmic
singular points of j#μ/jtfμ(μ=0, oo), i.e., L*(P; f, Y0)ΦF. Thus L(P)^F1

follows. Next suppose

#{00x07; I* =1,2, -,*»2.

Then we can assume without loss of generality that x=aj (j=l, 2) are of L-type
and SΊΦ^ί where ζj=oo x C71 (j=l, 2). By lemma 1.5 (2), z=al is the logari-
thmic singular point of (1.11) for ζ=ζ2, i.e., L*(P; £2> ^oίΦ^ Moreover, since
x=a2 is of L-type, if ζ3=ζ2 ^en Λ?=α2 is the logarithmic singular point of (1.11)
for any ?Φ?2> i e > L*(P; ?, FJφFfor any ?Φf2. Thus we have shown that

Now suppose L(P)^F1 then, by the above, we have

#{ooχC7.1 | ί=l, 2, -.., k} <2.

Hence, from (1) of this lemma, (1.19) follows.

2. The monodromy matrices of F*(jc;C)

In this section we investigate how the monodromy matrices of Y*(x\ ζ)
(μ:=0, oo ) depend on the deformation parameters tμ.(μ=Qy oo) respectively by
calculating them exactly.

Suppose that L(P) &F and S={aly #2, •••, anj 00} is the set of all regular
singular points of (2). Let x0^X=P1\S and Γy(j=l,2, « ,n) be the anti-
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clockwise closed circuit around x=dj respectively such that #0^Γ/ and Γy does
not contain other singular points inside. Note that since &,-(?) (/=!, 2, β ,w),
the non-singular zeros of £xY(#;0), are apparent singularities of (1.11), it
suffices to investigate the monodromy matrices only for Γy O'=l, 2, •••, n). Let
Mμ(Γj\ ζ) (μ=Q, oo fe C/μ, ./=!, 2, •••, n) be the monodromy matrix of Y/E(#; f)
along Γy respectively;

(2.1) F*(*oΓy; f) = Mμ(Γy; f)*Ίf(*0; 0 ,

where U0=P1\i^o}y U00=P1\{0}- and f(xTj) is the analytic prolongation of f(x)

along Γy.

Suppose ?=[l:f0]^^o\{?y}> where ζj=°°xCjl, i.e., f=t=cx> and p10 =

C1-9) and i1-15)^ we have

, ov ̂

where P20=ρ2o(ζ''>j)=c12(j)+t0c22(j)y

and

Hence, from (1.7),

(2.2) yfo(*er/, f) = (-i)^-^ ;̂ f)

follows. Moreover, by (1.16) and (1.17), we have

(2.3) jy2*o(*0Γy; 0 - (-^^^-^ (̂r jT^foK; f)

where rfy= Σjyϊ^"2 *ϊ"fa)*ίβy)-v-2(0y). Next suppose fy=[l: foy]φoo. Then,

since Pιo(ζjlj):=09 we have

and, by (1.16),

where ρko=PkQ(ζj>J) Hence, by (1.8±) and lemma 1.5, we have

(2.4) tfofaΓy; Γy) = (-l)"(^)+1yfo(Λb; ?y) , * = 1, 2 .

Combining (2.2), (2.3) and (2.4), one verifies
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for any £ΈE t/0. Similarly we can show that

r,; f) = (-i)"*'/'-1 Ό*.(*«; f) ,

holds for any ?=[*«,: l]et/o=, where p1»(£;/)=i<»CiiO')+c21(j). Thus we have
shown

;r) = (-l) ™- lΓ * Jl,
L27eιp1μ(ζ 9jYdj 1J

(2.5) M,(Γ,;r) = (-l) ™-l , eel/,, /* = (), oo .

On the other hand, we say that Z,*(P; f, Y0) is isomonodromic with respect
to ίμ^ΩcC (μ=0 or oo), where ίi is a connected open set, if and only if there
exists the fundamental system Zμ(#; ΐμ) of solutions of (1.11) such that the
monodromy matrices of Zμ(jc; tμ) along Γy (j=l, 2, •••, w) are independent of
ΐμ&Ω,. Then, one can see easily that L*(P; f, Y0) is isomonodromic with
respect to £μefl if and only if there exist Kμ,(tμ)^GL(2,C)y tμ.^Ω such that
Kμ,(tμ.)Mμ(Tj , ζ)Kμ,(tμ)~l (j— 1,2, " ,w) are independent of ίμeίl respectively.
First we have

Lemma 2.1. Lei L(P)^F. If L*(P; ζ, YQ) is isomonodromic with respect
to tμ^Cfor μ=0 or μ=oo then L(P)$F0.

Proof. Assume that L*(P; f , Y0) is isomonodromic with respect to
and L(P)^F0. Then, by lemma 1.6, there are at least two singular points x=ajs

(s=ly 2) of L-type such that

i.e., [— CaO'i) : ̂ iiOΊ)] * [— ̂ aίΛ) : ̂ iiCfe)]- This implies

(2.6) ι̂

Moreover, there exists KQ(t?) ^ GL(2, C) such that K0(tQ)M0(Tj'yζ)KQ(tQ)^ are

independent of t^C. By direct calculation, we have

(2.7)

where ^(r)=JSΓ0(ί0)[5 JJ ί̂β)'1. Therefore, Bi=psJ(ξ',]γA(ζ) are independent

of ί0. Suppose pioCξ' /OΦO then we have
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Since L*(P; f, Y0) is isomonodromic with respect to

is independent of ί0. This implies

By (2.6), this is contradiction. The proof in the case that L*(P; f , Y0) is iso-
monodromic with respect to t^ is parallel to the above.

Next we have

Lemma 2.2. Let L(P)^F1. Then there exists one and only one
such that L*(P; f, yo) is isomonodromic with respect to tμ^Ωμ,, zΰhere

and

/fo monodromy group of ( ί . II) for ζ=ζ* is not isomorphic to that of (1.11)

/or

Proof. Let a^ aj2, , ΛyA be all of the singular points of L-type of L(P) e Fλ.
Then, by lemma 1.6, ooxCj^1 (ί=l, 2, •••, ft) coincide with each other and we
denote it by ?#

(2.8) f^ooxCj,1, ί= 1,2, .-,*.

Suppose i0

e^o> i e > Pioίf λί^O (ί=l> 2, •••, ft) for f=[l: ί0]. Moreover, from
(2.8), it follows that

^ = PIO(?; Λ)/PM(?; jΊ) > ί = i, 2, — , ft
are nonzero constants. Put

Γl 0 Ί
*o(<o) = L /0 w ,. . λ _ 2 hLo (2πι) Wf Λ) J

then, by (2.5), we have

. ,
«/, 1J

which are independent of tQ^Ω0. Moreover, if /=MS (ί= 1, 2, " ,ft) then we

have

^o(Γ,; 0 = (-l)»^-l£ , re t/Λtf*} ,

where E is the unit matrix of size 2. Hence the monodromy matrix of KQ Y $(x ζ)
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along Γy O'ΦJ,: s=l, 2, •••, k) coincides with (—V)n(a^~lE. Therefore the mono-
dromy group of KQY$(x; ζ) is independent of £0eΩ0. On the other hand, if

f.j.φ oo then, by (2.5), we have

Since £^/,Φθ (s=l, 2, •••, k), the monodromy group of Y*(x\ ζ%) is not iso-

morphic to that of Y$(x; ?), £e U0\{ζ*}. The proof in case of ?# = oo is
parallel to the above. Moreover the proof for Y*(ΛJ; ζ) can be obtained in the

similar way.

Finally we obtain the characterization of F* in connection with the iso-
monodromic deformation.

Theorem 2.3. L(P)^FM if and only if L*(P; f, YΌ) is isomonodromic with
respect to tμ.^C for both μ— 0 and μ=oo.

Proof. First suppose L(P)e /**«,. Then, by lemma 1.6, L(P) has no singular
points of L-type. Hence, by (2.5), we have

This implies that L*(P; ?, Y0) is isomonodromic with respect to tμ^C for both
^ = 0 and μ = oo. Conversely, suppose that L*(P; ?, F0) is isomonodromic
with respect to tμ^C for both ^=0 and μ=<χ>. Then, by lemma 2.1, L(P)φf0

follows. Next if we assume L(P)^F1 then, by lemma 2.2, there exists one and

only one ζ^^P1 such that the monodromy group of (1.11) for ζ=ζ# is not iso-

morphic to that of (1.11) for ?=t=?#- This is contradiction. Thus, L(P)^Fl

follows. This completes the proof.

3. Recursion formula

In this section, apart from the preceding sections, we do not necessarily

assume that L(u)=D2—u(x) is of Fuchsian type, but assume only that u(x) is
the single valued meromorphic function of x.

Define Qj(x) 0"=0, 1, 2, •••) by the recursion formulae

(3.1) 2Q'n(x) = ρ.-1(Φ
/(Λ?)+2ρί.1(φ(*)-2-1ρίi/

1(Λ) , * = i, 2, ...

with Q0(x)=l. The formula (3.1) appears in the theory of commutative dif-
ferential operators due to Burchnall-Chaundy [5]. Then we have

Lemma 3.1 (cf. Tanaka [22]). Qn(x) are the polynomials of uyu* ', •• ,w(2Λ~2)

with constant coefficients, zϋhere u(m) is the m-th derivative of u.

Proof. We prove this by induction. Assume that Qj(x) O' = 0, 1, •••,#)
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are polynomials of u, u'y •••, u(2J~2) with constant coefficients respectively. By

(3.1) we have

2ρ<+1ρB_, = «'ρyρ.-y+2«ρy ρ.-y-2-'ρy"β.-y , / = o, -, « .
Hence

2 Σ5-o ρj+ιρ.-y = «' Σ5-o ρyρ.-y+2* Σ?-.ρίρ.-y-2-1 ΣJ-o ρy"ρ.-y

follows. Since <2o=l> tiύs implies

2ρ;+1 = -2 Σ53 ρί+ιρ.-y+«' ΣJ-o £,<?,-,

.-y)'+(« ΣJ-o ρyρ.-y)'

Therefore Qn+ι is also a polynomial of w, w ',•••, w(2n) with constant coefficients.

If we regard Qή(x) as the polynomial of u, u', •••, w(2n~1} with constant coef-
ficients then the constant term of Qή(x) is equal to zero. On the other hand,
while an arbitrary additive constant appears when we integrate Q'n(x) to obtain

£?«(#)> we set & zero ^n what follows. Therefore £?«(#) (w=l, 2, •••) are deter-
mined uniquely. Put

(3.2) Z.(«(*)) = 2ριri.1(*) , » = 0, 1, 2, -

and

(3.3) *.(«(*)) = 2ρί+I(«) = DZ.(«(*)) , » = 0, 1, 2, - .

For example, we obtain by direct calculation

i(«) = 4 -\6uu'—u"') .

Rewriting (3.1) in terms of Za and Xn, we obtain the Lenard relation (7);

(3.4) X.(u) = 2-1Zn_1(«)M'

Next we investigate the relation between the Darboux transformation and
Xn> which plays the crucial role in the following. Let Y=Y(x)=t(y1(x)yy2(x))
be a fundamental system of solutions of

L(u)y = 0

such that W(Y)=l. Here we consider the Darboux transformation

L*(«; ζ, Γ) = D»-tt*(*; f)
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of L(u) by Y(x)y where

u*(x\ ζ) = u(x)-2(dldx)2 log ζ x Y(x)

Note that

u(x) = dv(
( ' j κ*(*; 0 =

are valid, where

v = v(x;ζ)

We have.

Theorem 3.2. 7%£ equality

(3.6) jy(,(

Proof. By direct calculation,

X0(u*)+2vZ,)(u*) = -β«

and

follow from (3.5). Next assume

(3.7) Xn-^)+2vZn^(u^ = -Xn^

then, by operating with the linear differential operator

on both sides of (3.7), we have

(3.8) Σ).0 K.

where

and

^(^=±1.

From the Lenard relation (3.4) and (3.5),

(3.9)



624 M. OHMIYA

follows. Differentiating both sides of (3.9), we have

(3.10) WZ^u) = 4(vx+v2)D2Zn.l(u)+6(vxx+2vvx)DZn^(u)

+2(vxxx+2vvxx+2v2

x)Zn^(u)-4DXn(u) .

Eliminate DJZM_l(u)(j = 3,4) by (3.9) and (3.10) from the right hand side of
(3.8) then one verifies that the right hand side of (3.8) coincides with

-4DXn(u)+4(2v+vx/v)Xn(u) .

By similar calculation, the left hand side of (3.8) turns out to coincide with

4DXn(u*)+4(2v-vx/v)Xn(u*) .

Hence we have

(3.11) DX.(«*)+(2υ-Vglv)Xu(u*) = -DXJM+(2v+V,lv&u(u^

By (3.11) we have

(3.12) 2(Xn(u*)-Xa(u)) = v,(Xa(u*)+Xn(u)}lv*-(DXn(u*)+DXΛ(u))lv .

Integrating both side of (3.12), we obtain

2(Za(u*)-Zn(u)) = -(Xn(u*)+Xa(u))lv .

This completes the proof.

4. Rational solution of the n-th KdV equation

In this section we construct a class of solutions, which are rational in x,
of the n-th KdV equation

where ξ is a complex variable. We emphasize here that the operator L(P) in-
vestigated in this section is of Fuchsian type on Pλ.

Now suppose L(P)eF. Then XΛ(P) and ZU(P) vanish at x=oo. There-
fore, since we assume that the additive constant which appears on the occasion

of integrating Xn(P) to obtain Zn(P) is zero, XH(P)= 0 if and only if ZΛ(P)=0.

Hence, by the Lenard relation (7), if XH(P)=Q then XΛ+j(P)=Q holds forj>0.
Let Λn be the set ofall rat ional functions P=P(x) such that L(P)eF, Xy(P)Φθ

for j=0, 1, -, n- 1 and XΛ(P)=0.
Naturally, if Λn is void, all arguments in what follows are vacuous. How-

ever it will be shown at the end of this section that Λn actually not void.
First we have

Lemma 4.1. Suppose P(x) e Λft and put
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then

is valid.

Proof. Put

«K«; ζ)

By the Lenard relation (7), we have

= J?β(P) = 0 .

Similarly we have

-4-X.+2-V, = -3fs(P*) .

Assume # Σ(P) > 2 and let £, e Σ(P) (;= 1 , 2 f, Φ Q then

(4.1) «X*;ry)sO, ; = 1,2

follows. On the other hand, since L(P)SjP, i.e., /(»; 0)=j2(a;; O)/^*; 0) is a
rational function, by (1.3), ?(#; ζ) is of the form

Moreover Jf.-^P) and Z.̂ ^P) are the polynomials of P«(ί=l,2, — ,2n— 3)
whose constant terms are zero. Hence

follows. Therefore, by (4.1), we have

*(*;£,) = <), j = l , 2 .

This implies

q(X; ζ,) = 2-1JΓ..1(P(*))/Z._1(P(*)) , j = 1, 2 ,

because Zu^(P(x)) * 0. Since W( Y(x 0)) = 1 and

q(x; ξ) = (f^ί(*; OJ+fo'ίί*; O))/(&Λ(*; 0)+f2j2(^; 0)) ,

it turns out that if ξΊΦ^ then q(x; ζ1)^q(χ ζ2). This is contradiction.

The following is the one of the main results of the present paper.
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Theorem 4.2. If P(x)^λn then there exist the rational functions Cμ,(tμ.)
(μ=Q, oo ) such that

(4.3) c^tJdP*^; r)/8f, = Xa(P*(x; ζ)) , μ = 0, oo ,

where £=[1 : /„] for ?Φ oo ς=[t_: 1] /or ?ΦO.

Proof. By lemma 4.1, if ?$Σ(P) then we have

2q(X ζ) = -Xn(P*(X; ξ))IZ.(P*(x', ζ))

= -(8/8*)lQgZ.(P*(*;£)).

Suppose ξ=[l: ί0]e U0\Σ(P) then we have

(6/8*) log£0(*; tQγZn(P*(X; ζ)) = 0 ,

where

&(*; *o) =Λ(^; θ)+ί0Λ(^; 0) .

This implies that there exists cΰ(t0) depending on only tQ such that

(4.4) gfa toγZn(P*(x; ζ)) = -2c0(t0) .

The left hand side of (4.4) has meaning even at feΣ(P)Π Uΰt that is, cΌ(t0)=0
if [1 : t0] e Σ(P) Π Z70 Moreover, ί:0(ί0) does not vanish for ζ= [1 : ί0] e J70\2(P),
since

£„(*; ί0) φ 0

and

One can see immediately that since L(P)^F, the left hand side of (4.4) is ra-
tional in x and tQ. Hence c0(t0) is also rational in ί0. From (4.4),

follows. On the other hand, by direct calculation, we have

Thus we have

Similarly we obtain

for some rational function Coo(ίoo).

Note that the equations (4.4) themselves are not the original n-th KdV
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equation (8). By the way, since ί0— !/£«, for ZooΦO, we can show readily

Hence, if we put

φμ(t) = cμ(t)'ldt , μ = 0,

then

Φθ(*θ) =

holds for ίμφO(μ=0, oo). Therefore, if P(x)(ΞΛn and ?ΦO, oo then P*(x\ ζ)
satisfies the original n-th KdV equation

where ξ=φμ(tμ,) (μ=0y oo).

Next we reconsider the meaning of Theorem 4.2 in view of the isomono-
dromic deformation. Suppose ?=[!: ί0]e C7Q\Σ(P). Then, since

(4.5) ^ g = Z-̂ oΓZ,..̂ * ;̂ f))

is rational in *. By Theorem 4.2, we have

(4.6)

where

Let ?# = [!: fJeΣ(P)n ε/o Then, by taking limit of the both sides of (4.6)
for ίo"*^*> ^o(^> *o) turns out to be meaningful even for ?# and rational in #.
Similarly we can show that

is rational in x and satisfies

(4.7)

for any £=[£„,: l]e ?7oo. Next define bμ,(x\ ΐμ) (μ=Q, oo) by

(4.8) 2Qbμ,(x\ tμ,)/dx+d2aμ.(x', t^/dx2 = 0 , μ = 0, oo

Then, bμ.(x; tμ.) (μ=Q, oo) are rational in x. By (4.6) and (4.7), we have

(4.9) d2blt/dx?+2P*daμ,/dx+apdP*/dx-2dP*ldtμ. = 0 .

One verifies that (4.8) and (4.9) are nothing but the integrability conditions for
the system
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L*(P; ξ, Y0)z = d2slQx?-P*(X; ζ)a = 0 , ζe tfμ
(4.10)

dz/Qtμ = αμdz/dx+bμz .

Let Zμ(χ tμ)=*(%1(xm,tμ)yz2(x\tμ)) be the fundamental system of solutions of

system (4.10). Let ΛΓμ(Γy; tμ) be the monodromy matrix of Zμ(#; tμ) along Γy

O'=l,2, — ,n;μ=0, oo);

Zμ(*Γy; fμ) - ΛΓμ(Γy; fμ)Zμ(*; fμ) .
Then we have

8Zμ(*Γy; ίμ)/8/μ = JVμ(Γy J fμ)8Zμ(*5 ίμ)/8ίμ + 8ΛΓμ(Γy J ίμ)/8ίμZμ(Λ; ίμ)

and

8Zμ(ΛΓy; ίμ)/8Λ - ΛΓμ(Γy;

Therefore, from (4.10),

follows, since αμ(x\ tμ) and 6μ(Λ?; tμ) are rational in jc for any tμ^C. Hence we

have

8-/Vμ(Γy; ίμ)/8ίμZμ(Λ; ίμ) = 0 .

Differentiating this with respect to Λ?, we obtain

8ΛΓμ(Γy; ίμ)/8ίμ(Zμ, 8Zμ/8Λ:) - 0 .

Since the Wronskian matrix (Zμ, dZμ/dx) is nondegenerate,

8JVμ(Γy;ίμ)/8ίμ = 0

follows, i.e., L*(P;f, Y0) is isomonodromic with respect to both tμ (μ=Q, oo).
Hence, by Theorem 2.3, we have

Theorem 4.3. //PeΛw ίA«ι L(P}^.F00 follows, that is, L*(P; f,

/or

Next we have

Theorem 4.4. Let PeΛ«. 7/"?eΣ(P) ίfew P*(Λ:; ?)eΛJ

(P)

Proof. From Theorem 4.3, L(P*)-L*(P; ?, Y0)eF follows for any

Suppose ?eΣ(P) then we have

Hence, if ?eΣ(P) then P*(Λ:; ?)^ΛW is valid for some m^n. Next let ξ=[l : t0]

e U0. Then, by (4.4), we have
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(4.11) Z.(P*(x; f)) = -

Differentiating the both sides of (4.11) with respect to x, we have the following:

Xn(P*) = 4c0§0tlgl ,

(4.12) DXn(P*} =

VXJP ) =

On the other hand,

(4.13) P*(x; ζ) = (-ί

is valid, since l/go(x;t0) solves the equation (1.11) for μ=0. From (4.13)

(4.14) 3P*(*; ?)/8* = (-g,xxxgl+^xxg^^glx}lgl

follows. Moreover, by the Lenard relation (7),

(4.15) *Λ+1(P*) - 2-1Zn(P*)P*+Xn(P*)P*-4~WXn(P*)

is valid. Put (4.11), (4.12), (4.13) and (4.14) into the right hand side of (4.15),
then, by direct calculation, one verifies that the right hand side of (4.15) vanishes
identically. Thus we have

Xn+1(P*(χ; ζ)) = 0

for any fe UQ. Similarly we can show

Xβ+1(P*(x; oo)) = 0 .

On the other hand, by lemma 4.1,

holds for ζ$Σ(P). Hence, by Theorem 4.3, we have shown that P*(x; f)eΛ»+1

for any

Put

Λ*=

and

F*=

Then we have

Theorem 4.5.
(1) F*cF..
(2) ΛBΦ0, B=0,l,2, .

Proof. From Theorem 4.3, (1) follows immediately. On the other hand,
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one can see easily

Λ0 = {0} .

Now assume that An_!=t=0 and let P^An-1 then, by Theorem 4.4, P*(#;

holds for any £$2(P). Therefore

follows.

Thus we have proved that if L(P)eF*then L*(P; f , Y0)<=F* for any
In other words, F* is closed under the Darboux transformation. Moreover we

have

Theorem 4.6. For every L(P0)<ΞF*, there exist L(P)eF* and ξ0^Pl

such that

L(p0) = L*(p; r0, yβ)
Proof. Put

P(x) = PQ(x)-2(d/dx)2 log [1 : 0] X Z(x\ 0) ,

where Z(x\ 0) — \%<&x\ 0), #2(#; 0)) is the normalized fundamental system of
solutions of

L(P0)* = 0

defined in section 1 . Then

Y(x) = '(^(Λ; O)-1 , Xl(xι O)-1^1^*; O)2))

is the fundamental system of solutions of

(4.16) L(P)y = 0 .

We have

L*(P; 0, Y) = L(P0) .

There exists Ce5L(2, C) such that

F(«) = CY(x; 0) ,

where F(^; 0) is the normalized fundamental system of solutions of (4.16).

Hence, put

(Γ,= [l:0]xC

then we have

L(P0) = L*(P fβ, yβ) .

Thus we have shown that there exists the orbit of the «-th KdV flow on

Λ* passing through for every PeΛ*.



DARBOUX TRANSFORMATION 631

References

[1] M.J. Ablowitz and J. Satsuma: Solitons and rational solutions of nonlinear evolu-
tion equations, J. Math. Phys. 10 (1978), 2180-2186.

[2] M. Adler and J. Moser: On a class of polynomials connected with the Korteweg-
de Vries equation, Comm. Math. Phys. 61 (1978), 1-30.

[3] H. Airault, H.P. McKean and J. Moser: Rational and elliptic solutions of the
Korteweg-de Vries equation and related many body problem, Comm. Pure Appl.
Math. 30 (1977), 95-148.

[4] F. Bardassarri and B. Dwork: On second order linear differential equations with
algebraic solutions, Amer. J. Math. 101 (1979), 42-76.

[5] J.L. Burchanll and T.W. Chaundy: Commutative ordinary differential operators,
Proc. London Math. Soc. Ser. (2) 21 (1923), 420-440.

[6] M.M. Crum: Associated Sturm-Liouville systems, Quart. J. Math. Ser. (2) 6
(1955), 121-127.

[7] P. Deift: Applications of a commutation formula, Duke Math. J. 45 (1978), 267-
310.

[8] P. Deift and E. Trubowitz: Inverse scattering on the line, Comm. Pure Appl.
Math. 32 (1979), 121-251.

[9] F. Ehlers and H. Knδrrer: An algebro-geometric interpretation of the Backlund
transformation for the Korteweg-de Vries equation, Comment. Math. Helv. 57
(1982), 1-10.

[10] H. Flaschka and A.C. Newell: Monodromy and spectrum preserving deformation
I, Comm. Math. Phys. 76 (1980), 65-116.

[13] R. Fuchs: Uber lineare homogene differentialgleichunger zweiter ordnung mit drei
in endlichen glegene wesentlich singular en Stelleny Math. Ann. 63 (1907), 301-321.

[12] C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura: Korteweg-de Vries
equation and generalizations VI, Comm. Pure Appl. Math. 27 (1976), 97-133.

[13] R. Gamier: Sur les equations differentiales du troisieme ordre dont Γintegrale est
uniforme et sur une d'equations nouvelles d'ordre superieur dont Γintegrale generate a
ses points critiques fixes, Ann. Sci. Ecole Norm. Sup. 29 (1912), 1-126.

[14] A.R. Its and V.Y. Novokshenov: The isomonodromic deformation method in the
theory of Painleve equations, Lecture Notes in Math. 1191, Springer-Verlag,
Berlin Heidelberg, 1986.

[15] M. Jimbo and T. Miwa: Deformation of linear ordinary differential equations I,
II, and III, Proc. Japan Acad. 56A (1980), 143-148, 149-153 and 269-274.

[16] M. Jimbo, T. Miwa, M. Sato and Y. Mori: Holonomic quantum fields-the unanti-
cipated link between deformation theory of linear differential equations and quantum
fields-, Springer Lecture Notes in Phys. 116 (1980), 119-142.

[17] T. Kimura: On the isomonodromic deformation for linear ordinary differential
equations of second order I and II, Proc. Japan Acad. 57A (1981), 285-290; ibid,
58A (1982), 294-297.

[18] H. Kimura and K. Okamoto: On the isomonodromic deformation of linear differ-
ential equations of higher order, Funkcial. Ekvac. 26 (1983), 37-50.

[19] B.M. McCoy, C.A. Tracy and T.T. Wu: Painleve functions of the third kind, J.
Math. Phys. 18 (1977), 1058-1092.

[20] K. Okamoto: Polynomial Hamiltonians associated with Painleve equations I and



632 M. OHMIYA

II, Proc. Japan Acad. 56A (1980), 264-268; ibid, 57A (1980), 367-371.
[21] L. Schlesinger: Uber eίne Klasse von Differential systemen beliebiger Ordnung mit

festen kritishen Punkten, J. Reine Angew. Math. 141 (1912), 96-145.

[22] S. Tanaka: Topics from soliton theory, RIMS Kokyuroku 324 (1978), 1-16 (in

Japanese).

Department of Mathematics

College of General Education
Tokushima University

Tokushima 770

Japan




