

Title	Unbiasedness in the test of goodness of fit
Author(s)	Okamoto, Masashi
Citation	Osaka Mathematical Journal. 1952, 4(2), p. 211-214
Version Type	VoR
URL	https://doi.org/10.18910/4183
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Unbiasedness in the Test of Goodness of Fit

By Masashi Окамото

1. Introduction. Let X_1, \ldots, X_N be a random sample from the population with the d.f. F(x). We are asked to test the hypothesis H_0 that F(x) is identical with a specified continuous d.f. $F_0(x)$ against all alternatives. For this purpose we shall use the multinomial distribution, dividing the real line into n intervals $(a_{i-1}, a_i]$, i = 1, ..., n, where $a_0=-\infty$ and $a_n=+\infty$, so that $F_0(a_i)-F_0(a_{i-1})=1/n$, $i=1,\ldots,n$. If a_i are not determined uniquely, we may take any values satisfying the conditions. Put $p_i = F(a_i) - F(a_{i-1})$ and denote by N_i the number of X's that fall into the interval $(a_{i-1}, a_i]$. Then, of course, $\sum_{i=1}^n p_i = 1$ and $\sum_{i=1}^{n} N_{i} = N$. Denote, further, by W the space consisting of *n*-dimensional lattice points (k_1, \ldots, k_n) , where k_i is regarded as the observed value of the random variable N_i (therefore, $\sum_{i=1}^n k_i = N$).

The test is equivalent with determining the set (acceptance region) in the space W. The set S in W will be called symmetric provided that, if S contains the point (k_1, \ldots, k_n) , then S contains also all its permutations (k_1', \ldots, k_n') . We shall say, finally, that S satisfies condition O when, if S contains (k_1, \ldots, k_n) such as $k_i \ge k_i + 2$, then S contains also $(k_1, \ldots, k_i+1, \ldots, k_j-1, \ldots, k_n)$. It is easily verified that if S is symmetric the convexity implies the condition O. The converse, however, is not necessarily true. For example, we shall consider, in the case N=12, n=3, the set S consisting of nine points shown in Fig. 1 and their permutations. S is symmetric and satisfies the condition O, but is not convex, since the middle point (7, 4, 1) of the points (8, 2, 2), (6, 6, 0)does not belong to S.

2. Theorem of unbiasedness.

Theorem. If the acceptance region R of the test is symmetric and satisfies the condition O, the test of H_0 is unbiased against any alternative.

Proof. Putting

$$P = \sum\limits_{(k_1,\;\ldots,\;k_n)\;\in\;R} rac{N\;!}{k_1\;!\;\ldots\;k_n\;!} \, p_1^{k_1}\;\ldots\; p_n^{k_n}$$
 ,

we have to prove that P is maximum when $p_1 = \cdots = p_n$.

Since R is symmetric, P is a symmetric function in p_1, \ldots, p_n . Thus we have only to prove that, if $p_1 < p_2$,

$$P(x) = \sum_{(k_1, \dots, k_n) \in R} \frac{N!}{k_1! \dots k_n!} (p_1 + x)^{k_1} (p_2 - x)^{k_2} p_3^{k_3} \dots p_n^{k_n}$$

is monotonically increasinfi in x, when $0 \angle x \angle (p_2-p_1)/2$. In the sequel we shall consider x only in this range.

For any (n-1)-tuple (k, k_3, \ldots, k_n) such that $k+k_3+\cdots+k_n=N$, let $R_{kk_3\ldots k_n}$ be the subset of R consisting of (k_1,\ldots,k_n) such that $k_1+k_2=k$. (Some may be null set.) Then $R_{kk_3\ldots k_n}$ are disjoint and exhaust R. Therefore

$$P(x) = \sum_{(k_1, k_1, \dots, k_n)} P_{kk_3 \dots k_n}(x) \tag{1}$$

where

$$P_{kk_3 \, \ldots \, k_n}(x) = \sum rac{N \; !}{k_1 \; ! \; \ldots \; k_n} ! (p_1 + x)^{k_1} (p_2 - x)^{k_2} p_3^{k_3} \; \ldots \; p_n^{k_n}$$
 ,

 \sum extending over all *n*-tuples (k_1, \ldots, k_n) belonging to $R_{kk_3 \ldots k_n}$.

Since R is symmetric and satisfies the condition O, all $R_{kk_3...k_n}$ are symmetric and satisfy the condition O with respect to k_1, k_2 . Thus, if not null set,

$$R_{kk_3\ldots\,k_n}=\left\{(i,k\!-\!i,k_3\,,\,\ldots\,,k_n):\,jell ipprox k\!-\!j
ight\}$$
 ,

where j is a non-negative integer $\angle k/2$, depending on k, k_3, \ldots, k_n , and so

$$P_{kk_3...k_n}(x) = \sum_{i=j}^{k-j} \frac{N!}{i!(k-i)!k_3!...k_n!} (p_1+x)^i (p_2-x)^{k-i} p_3^{k_3} ... p_n^{k_n}$$

$$= \frac{N!}{k!k_3!...k_n!} p_3^{k_3} ... p_n^{k_n} \sum_{i=j}^{k-j} {k \choose i} (p_1+x)^i (p_2-x)^{k-i}. \qquad (2)$$

Put

$$B_{i}(x) = \sum_{i=1}^{k-i} {k \choose i} (p_{1} + x)^{i} (p_{2} - x)^{k-i}.$$
 (3)

If j=0,

$$B_0(x) = \sum_{i=0}^k \binom{k}{i} (p_1 + x)^i (p_2 - x)^{k-i} = (p_1 + p_2)^k. \tag{4}$$

If $1 \le j \le k/2$, denoting by the prime the derivative with respect to x.

$$B_j'(x) = \frac{k!}{(j-1)! (k-j)!} \left\{ (p_1 + x)^{j-1} (p_2 - x)^{k-j} - (p_1 + x)^{k-j} (p_2 - x)^{j-1} \right\}.$$

Since j-1 < k-j, $p_1 + x \leq p_2 - x$, we have

$$B_j(x) \ge 0$$
, for $1 \le j \le k/2$. (5)

With (2), (3), (4) and (5), we have

$$P'_{kk_2...k_n}(x) \geq 0$$
.

This and (1) imply

$$P'(x) > 0$$
,

and this completes the proof.

3. Applications.

(1) The χ^2 -test. The acceptance region R of the χ^2 -test consists of the points (k_1, \ldots, k_n) such that

$$\sum_{i=1}^{n}{(k_{i}\!-\!N/n)^{2}}\!\le\!c^{2}$$
 ,

where c is a constant depending on the level of significance of the test. R is readily seen to be symmetric. In order to verify the condition O, we have only to show that

$$(k_1+1-N/n)^2+(k_2-1-N/n)^2 < (k_1-N/n)^2+(k_2-N/n)^2$$
 ,

when $k_2 \ge k_1 + 2$. This inequality follows from the relations

$$\begin{split} &(k_1+1-a)^2-(k_1-a)^2=2k_1+1-2a\\ &<2k_2-1-2a=(k_2-a)^2-(k_2-1-a)^2 \,. \end{split}$$

Thus, by the theorem of the preceeding section, the χ^2 -test of H_0 is unbiased. This fact was mentioned by H. B. Mann and A. Wald [1], but as they used the Taylor expansion of the power, it is only the local unbiasedness that they proved.

(2) David's test. The acceptance region R of David's test [2] consists of (k_1, \ldots, k_n) such that at most c k's are zero, where c is again a constant depending on the level of significance.

R is symmetric. As for the condition O, let $A=(k_1,\ldots,k_n)\in R$ and $k_j\geq k_i+2$. If $k_i=0$, the number of zeroes in $B=(k_1,\ldots,k_i+1,\ldots,k_j-1,\ldots,k_n)$ is smaller by one than that in A. If $k_i>0$, both are equal. Therefore $B\in R$, and the condition O is satisfied.

Thus, David's test is also unbiased. The author proved it in his recent paper [3], but the proof was lacking in generality and simpleness.

(Received July 10, 1952)

References

- [1] H. B. Mann and A. Wald, On the choice of the number of class intervals in the application of the chi-square test, Ann. of Math. Stat., 13 (1942) 306-317.
- [2] F. N. David, Two combinatorial tests of whether a sample has come from a given population, Biometrika, 37 (1950), 97–110.
- [3] M. Okamoto, On a non-parametric test, Osaka Math. J. 4 (1952) pp. 77-85.