<table>
<thead>
<tr>
<th>Title</th>
<th>Unbiasedness in the test of goodness of fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Okamoto, Masashi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Mathematical Journal. 4(2) P.211-P.214</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1952</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/4183</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/4183</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
Unbiasedness in the Test of Goodness of Fit

By Masashi OKAMOTO

1. Introduction. Let \(X_1, \ldots, X_N \) be a random sample from the population with the d.f. \(F(x) \). We are asked to test the hypothesis \(H_0 \) that \(F(x) \) is identical with a specified continuous d.f. \(F_0(x) \) against all alternatives. For this purpose we shall use the multinomial distribution, dividing the real line into \(n \) intervals \((a_{i-1}, a_i], i = 1, \ldots, n\), where \(a_0 = -\infty \) and \(a_n = +\infty \), so that \(F_0(a_i) - F_0(a_{i-1}) = 1/n, i = 1, \ldots, n \). If \(a_i \) are not determined uniquely, we may take any values satisfying the conditions. Put \(p_i = F(a_i) - F(a_{i-1}) \) and denote by \(N_t \) the number of \(X \)'s that fall into the interval \((a_{i-1}, a_i] \). Then, of course, \(\sum_{i=1}^{n} p_i = 1 \) and \(\sum_{i=1}^{n} N_t = N \). Denote, further, by \(W \) the space consisting of \(n \)-dimensional lattice points \((k_1, \ldots, k_n)\), where \(k_i \) is regarded as the observed value of the random variable \(N_t \) (therefore, \(\sum_{i=1}^{n} k_i = N \)).

The test is equivalent with determining the set (acceptance region) in the space \(W \). The set \(S \) in \(W \) will be called symmetric provided that, if \(S \) contains the point \((k_1, \ldots, k_n)\), then \(S \) contains also all its permutations \((k_1', \ldots, k_n')\). We shall say, finally, that \(S \) satisfies condition \(O \) when, if \(S \) contains \((k_1, \ldots, k_n)\) such as \(k_j \geq k_i + 2 \), then \(S \) contains also \((k_1, \ldots, k_i+1, \ldots, k_j-1, \ldots, k_n)\). It is easily verified that if \(S \) is symmetric the convexity implies the condition \(O \). The converse, however, is not necessarily true. For example, we shall consider, in the case \(N = 12, n = 3 \), the set \(S \) consisting of nine points shown in Fig. 1 and their permutations. \(S \) is symmetric and satisfies the condition \(O \), but is not convex, since the middle point \((7, 4, 1)\) of the points \((8, 2, 2), (6, 6, 0)\) does not belong to \(S \).

2. Theorem of unbiasedness.

Theorem. If the acceptance region \(R \) of the test is symmetric and satisfies the condition \(O \), the test of \(H_0 \) is unbiased against any alternative.

Proof. Putting
we have to prove that \(P \) is maximum when \(p_1 = \ldots = p_n \).

Since \(R \) is symmetric, \(P \) is a symmetric function in \(p_1, \ldots, p_n \).
Thus we have only to prove that, if \(p_1 \leq p_2 \),

\[
P(x) = \sum_{(k_1, \ldots, k_n) \in R} \frac{N!}{k_1! \ldots k_n!} (p_1 + x)^{k_1} (p_2 - x)^{k_2} p_3^{k_3} \ldots p_n^{k_n}
\]
is monotonically increasing in \(x \), when \(0 \leq x \leq (p_2 - p_1)/2 \). In the sequel we shall consider \(x \) only in this range.

For any \((n-1)\)-tuple \((k, k_3, \ldots, k_n)\) such that \(k + k_3 + \ldots + k_n = N \), let \(R_{kk_3 \ldots k_n} \) be the subset of \(R \) consisting of \((k_1, \ldots, k_n)\) such that \(k_1 + k_2 = k \). (Some may be null set.) Then \(R_{kk_3 \ldots k_n} \) are disjoint and exhaust \(R \). Therefore

\[
P(x) = \sum_{(k_1, \ldots, k_n) \in R} P_{kk_3 \ldots k_n}(x)
\]

where

\[
P_{kk_3 \ldots k_n}(x) = \sum_{k_1, \ldots, k_n} \frac{N!}{k_1! \ldots k_n!} (p_1 + x)^{k_1} (p_2 - x)^{k_2} p_3^{k_3} \ldots p_n^{k_n},
\]

\(\sum \) extending over all \(n \)-tuples \((k_1, \ldots, k_n)\) belonging to \(R_{kk_3 \ldots k_n} \).

Since \(R \) is symmetric and satisfies the condition \(O \), all \(R_{kk_3 \ldots k_n} \) are symmetric and satisfy the condition \(O \) with respect to \(k_1, k_2 \). Thus, if not null set,

\[
R_{kk_3 \ldots k_n} = \left\{ (i, k-i, k_3, \ldots, k_n) : j \leq i \leq k-j \right\},
\]

where \(j \) is a non-negative integer \(\leq k/2 \), depending on \(k, k_3, \ldots, k_n \), and so

\[
P_{kk_3 \ldots k_n}(x) = \sum_{i=j}^{k-j} \frac{N!}{i! (k-i)! k_3! \ldots k_n!} (p_1 + x)^{i} (p_2 - x)^{k-i} p_3^{k_3} \ldots p_n^{k_n}
\]

\[
= \frac{N!}{k! k_3! \ldots k_n!} p_3^{k_3} \ldots p_n^{k_n} \sum_{i=j}^{k-j} \binom{k}{i} (p_1 + x)^{i} (p_2 - x)^{k-i}.
\]

Put

\[
B_i(x) = \sum_{i=j}^{k-j} \binom{k}{i} (p_1 + x)^{i} (p_2 - x)^{k-i}.
\]

If \(j = 0 \),

\[
B_0(x) = \sum_{i=0}^{k-j} \binom{k}{i} (p_1 + x)^{i} (p_2 - x)^{k-i} = (p_1 + p_2)^k.
\]

If \(1 \leq j \leq k/2 \), denoting by the prime the derivative with respect to \(x \).

\[
B_j(x) = \frac{k!}{(j-1)! (k-j)!} \left((p_1 + x)^{j-1} (p_2 - x)^{k-j} - (p_1 + x)^{k-j} (p_2 - x)^{j-1} \right).
\]
Unbiasedness in the Test of Goodness of Fit

Since \(j - 1 \leq k - j \), \(p_1 + x \leq p_2 - x \), we have

\[
B_j(x) \geq 0, \quad \text{for} \quad 1 \leq j \leq k/2.
\]

With (2), (3), (4) and (5), we have

\[
P_{k_k \ldots k_n}(x) \geq 0.
\]

This and (1) imply

\[
P'(x) \geq 0,
\]

and this completes the proof.

3. Applications.

(1) The \(\chi^2 \)-test. The acceptance region \(R \) of the \(\chi^2 \)-test consists of the points \((k_1, \ldots, k_n) \) such that

\[
\sum_{i=1}^{n} (k_i - N/n)^2 \leq c^2,
\]

where \(c \) is a constant depending on the level of significance of the test. \(R \) is readily seen to be symmetric. In order to verify the condition \(O \), we have only to show that

\[
(k_1 + 1 - N/n)^2 + (k_2 - 1 - N/n)^2 \leq (k_1 - N/n)^2 + (k_2 - N/n)^2,
\]

when \(k_2 \geq k_1 + 2 \). This inequality follows from the relations

\[
(k_1 + 1 - a)^2 - (k_1 - a)^2 = 2k_1 + 1 - 2a
\]

\[
\leq 2k_2 - 1 - 2a = (k_2 - a)^2 - (k_2 - 1 - a)^2.
\]

Thus, by the theorem of the preceding section, the \(\chi^2 \)-test of \(H_0 \) is unbiased. This fact was mentioned by H. B. Mann and A. Wald [1], but as they used the Taylor expansion of the power, it is only the local unbiasedness that they proved.

(2) David’s test. The acceptance region \(R \) of David’s test [2] consists of \((k_1, \ldots, k_n) \) such that at most \(c \) \(k \)'s are zero, where \(c \) is again a constant depending on the level of significance.

\(R \) is symmetric. As for the condition \(O \), let \(A = (k_1, \ldots, k_n) \in R \) and \(k_j \geq k_i + 2 \). If \(k_i = 0 \), the number of zeroes in \(B = (k_1, \ldots, k_i + 1, \ldots, k_j - 1, \ldots, k_n) \) is smaller by one than that in \(A \). If \(k_i > 0 \), both are equal. Therefore \(B \in R \), and the condition \(O \) is satisfied.

Thus, David’s test is also unbiased. The author proved it in his recent paper [3], but the proof was lacking in generality and simpleness.

(Received July 10, 1952)
References

