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Abstract

The electrical and magnetic properties of the non-centrosymmetric rare earth com-
pounds of RTX3 (R: rare earth, T: transition metal and X: Si and Ge) and Ce2TGe6 (T:
Pd, Pt) were studied by measuring the electrical resistivity, specific heat, magnetic sus-
ceptibility, magnetization and de Haas-van Alphen effect, together with the resistivity
measurement under pressure. Two significant experimental results are obtained in RTX3:
the antisymmetric spin-orbit interaction and the unique superconducting property, which
are based on the non-uniform lattice potential along the non-centrosymmetric tetragonal
[001] direction.

As for RTX3, we succeeded in growing single crystals of LaTGe3 (T: Fe, Co, Rh, Ir)
and PrCoGe3, and studied the split Fermi surface properties and the magnitude of the
antisymmetric spin-orbit interaction 2|αp⊥|. The 2|αp⊥| value is found to be changed
when LaTGe3 is changed from T = Co, Rh to Ir, but unchanged in LaIrX3 from X =
Si to Ge. It is noticed that this 2|αp⊥| value is large in LaIrSi3 and LaIrGe3: 2|αp⊥| =
460K in LaCoGe3, 510K in LaRhGe3, 1090K in LaIrGe3 and 1100K in LaIrSi3 for the
main outer orbits named α of bands 69 and 70 electron Fermi surfaces, for example. This
is mainly due to the large effective atomic number of Ir and a large distribution of the
radial wave function of Ir-5d electrons close to the nuclear center, compared with those
of Co and Rh. In the case of a paramagnet PrCoGe3 and LaFeGe3 with the relatively
large cyclotron effective mass, the corresponding 2|αp⊥| value is found to become small:
2|αp⊥| = 280K in PrCoGe3 and 460K in LaCoGe3 for main orbits α, and 130K for
main orbits in LaFeGe3. It is experimentally confirmed that the antisymmetric spin-
orbit interaction becomes small in magnitude with increasing the cyclotron mass, being
inversely proportional to the cyclotron mass.

We investigated the magnetic susceptibility for CeTSi3 and CeTGe3 single crystals.
The susceptibility for H // [100], χa, is found to be larger than that for H // [001], χc,
except for CeCoGe3. This characteristic feature was clarified from the analyses of the
crystalline electric field. The Néel temperature and the electronic specific heat coefficient
were plotted as a function of volume in the crystal structure for CeTSi3 and CeTGe3. This
relation roughly corresponds to the Doniach phase diagram indicating the competition
between the RKKY interaction and the Kondo effect. We thus studied the effect of
pressure on the electronic states in antiferromagnets CeTGe3 (T: Co, Rh, Ir) by measuring
the resistivity under pressure. No noticeable change of the Néel temperature was observed
up to 8GPa in CeRhGe3 and CeIrGe3, which are far from the magnetic quantum critical
point. On the other hand, the Néel temperature in CeCoGe3 was strongly decreased as a
function of pressure, and pressure-induced superconductivity was observed in the pressure
region from 5.4GPa to about 7.5GPa in CeCoGe3. The slope of upper critical field Hc2

at 6.5GPa for H // [001] is found to be extremely large: −dHc2/dT = 200 kOe/K at the
superconducting transition temperatureTsc = 0.69K, and the upper critical field indicates
an upturn feature with decreasing temperature. Hc2(0) is roughly estimated to be about
200 kOe. This might be an experimental evidence of the spin-triplet superconductivity
in the non-centrosymmetric crystal structure.
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1 Introduction

The f -electrons of cerium and uranium compounds exhibit a variety of characteristic
features including spin and charge orderings, spin and valence fluctuations, heavy fermions
and anisotropic superconductivity. In these compounds, the Ruderman-Kittel-Kasuya
and Yosida (RKKY) interaction1–3) and the Kondo effect4) compete with each other. The
RKKY interaction enhances the long-range magnetic order, where the f -electrons with
magnetic moments are treated as localized electrons, and the indirect f -f interaction
is mediated by the spin polarization of the conduction electrons. On the other hand,
the Kondo effect quenches the magnetic moments of the localized f -electrons by the
spin polarization of the conduction electrons, producing a spin singlet state, which leads
to a heavy fermion state with an extremely large effective mass at low temperatures.
The competition between the RKKY interaction and the Kondo effect was discussed by
Doniach as a function of |Jcf |D(εF),5,6) where Jcf is the magnetic exchange interaction
and D(εF) is the density of states of conduction electrons at the Fermi energy.

Experimentally |Jcf |D(εF) is replaced by pressure. The electronic states are changed
by pressure from the magnetically ordered state to the paramagnetic state. The magnetic
ordering temperature Tmag becomes zero in some cases at critical pressure Pc: Tmag → 0 at
P → Pc. Characteristic features such as the non-Fermi liquid nature, the heavy fermion
state or anisotropic superconductivity are observed around this critical pressure.7,8)

The most important observation for heavy fermion superconductors such as
CeCu2Si2,

9) UPd2Al3
10) and UPt3

11) is that superconductivity is realized in the mag-
netically ordered state and/or in the magnetic fluctuating state. The corresponding
physical quantities such as the specific heat and the spin-lattice relaxation rate do not
follow the exponential dependence of e−∆/kBT in the superconducting state, which is ex-
pected from the Bardeen-Cooper-Schrieffer (BCS) theory,12) but obey a power law of T n.
Here ∆ is the superconducting energy gap and n is an integer. This means that the
superconducting gap possesses line and/or point nodes. These results are based on the
fact that conduction electrons with 10 - 100m0 (m0: rest mass of an electron) are of an
f -electron character, which originates from the strong Coulomb repulsion between the
f -electrons. These conduction electrons condense into Cooper pairs. The symmetry of
the superconducting condensate is determined from the NMR technique to be of a p-wave
spin triplet state or a d-wave spin singlet state.

Very recently, a new aspect of superconductivity appeared, namely superconductivity
in the non-centrosymmetric crystal structure. It was reported that the spin-triplet su-
perconductivity might be realized in CePt3Si with the non-centrosymmetric tetragonal
structure.13,14) Pressure-induced superconductivity was also observed for a ferromagnet
UIr,15–17) and antiferromagnets CeRhSi3,

18–20) CeIrSi3
8,21,22) and CeCoGe3

23) with the
non-centrosymmetric crystal structure. These compounds are the non-centrosymmetric
heavy fermion compounds. In addition to these heavy fermion f -electron systems, the
spin-triplet nature was also reported in a non-magnetic compound Li2Pt3B,24) whereas
the usual BCS superconductivity is realized in the similar non-magnetic compound
Li2Pd3B.25,26)

1



2 CHAPTER 1. INTRODUCTION

The existence of inversion symmetry in the crystal structure is believed to be a favor-
able factor for the formation of Cooper pairs, especially for the spin-triplet configuration
because one conduction electron with a momentum p and an up-spin state and the other
conduction electron with a momentum −p and an up-spin state belong to two different
Fermi surfaces, separated by 10 - 1000K in energy. This occurs via the antisymmetric
spin-orbit interaction, which is based on the non-uniform lattice potential in the non-
centrosymmetric crystal structure. It is needed to clarify the nature and the magnitude
of the antisymmetric spin-orbit interaction in the non-centrosymmetric crystal structure.

In the present thesis, we studied experimentally the antisymmetric spin-orbit inter-
action via the de Haas-van Alphen experiment for high-quality single crystals of non-
centrosymmetric compounds RTX3(R: rare earth, T: transition metal, and X: Ge and
Si). This is fundamentally important to consider superconductivity without inversion
center in the crystal structure. Electrical and magnetic properties of CeTX3 were also
clarified experimentally, together with pressure-induced superconductivity in an antifer-
romagnet CeCoGe3.

In Chaps. 2 and 3, we will give a review including fundamental background of the
present study and the relevant previous study of RTX3(R: rare earth, T: transition metal,
and X: Ge and Si) and another non-centrosymmetric compounds Ce2TGe6(T: transition
metal). In Chap. 4, we will present the motivation of the present study. Next, we will
introduce the single crystal growth and the experimental methods including de Haas-
van Alphen(dHvA) effect and high pressure measurement in Chap. 5. In Chap. 6, we
show the experimental results, with analyses and discussion. Finally, the present study
is summarized and concluded in Chap. 7.



2 Review of Relevant Physics in f-Electron

Systems

2.1 CEF effect and the RKKY interaction

The 4f electrons in the Ce atom are pushed deeply into the interior of the closed
5s and 5p shells because of the strong centrifugal potential ℓ(ℓ + 1)/r2, where ℓ = 3
holds for the f electrons. This is a reason why the 4f electrons possess an atomic-like
character in the crystal.27) On the other hand, the tail of their wave function spreads
to the outside of the closed 5s and 5p shells, which is highly influenced by the potential
energy, the relativistic effect and the distance between the Ce atoms. This results in
the hybridization of the 4f electrons with the conduction electrons. These cause various
phenomena such as magnetic ordering, quadrupolar ordering, valence fluctuations, Kondo
lattice, heavy fermions, Kondo insulators and unconventional superconductivity.

DOS

Kondo peak

E E E +U
E

fFf

4f 2

4f
0

4f
1

4f
1

cc

CEF
spin-orbital

Fig. 2.1 Density of states (DOS) of the 4f electron in the Ce compound (Ce3+), cited
from ref. 28.

The Coulomb repulsive force of the 4f electron at the same atomic site, U , is so
strong, e.g., U ≃ 5 eV in the Ce compounds (see Fig. 2.1), that occupancy of the same
site by two 4f electrons is usually prohibited. In the Ce compounds, the tail of the 4f
partial density of states extends to the Fermi level even at room temperature, and thus
the 4f level approaches the Fermi level in energy and the 4f electron hybridizes strongly
with the conduction electrons. This 4f -hybridization coupling constant is denoted by
Vcf . When U is strong and Vcf is ignored, the freedom of the charge in the 4f electron is
suppressed, while the freedom of the spin is retained, representing the 4f -localized state.
Naturally, the degree of localization depends on the level of the 4f electron, Ef , where
larger Ef helps to increase the localization.

In the localized 4f -electronic scheme, the 4f ground multiplets, which obey the Fund
rule in the LS-multiplets, split into the J-multiplets (J = 7/2 and J = 5/2 in Ce3+) by

3



4 CHAPTER 2. REVIEW OF RELEVANT PHYSICS IN F -ELECTRON SYSTEMS

Ce3+

~ 3000 K

14 fold

8 fold

6 fold

J = 7
2

J = 5
2

doublet

doublet

doublet

∆1

∆2

spin-orbit

interaction

crystalline electric

 field

Fig. 2.2 Level scheme of the 4f electron in Ce3+.

the spin-orbit interaction. Moreover, the J-multiplets split into the 4f levels based on
the crystalline electric field (CEF), as shown in Fig. 2.2.

The electronic state of the point rare earth electron is influenced from the electric field
of the surrounding negative ions. It is called the crystalline electric field (CEF) effect.
The electrostatic potetial can be expressed as follows:

ϕ(r) =
∑

i

qi

|r −Ri|
, (2.1)

where r is the position vector of the 4f electron in Ce3+, qi is the charge of the six-
coordinated negative ion and Ri is the position vector of the corresponding ion.

For example, we consider the next case: the negative ion with the charge q is located
at (a, 0, 0) , (−a, 0, 0) , (0, a, 0) , (0,−a, 0) , (0, 0, a) and (0, 0,−a), as shown in Fig. 2.3.
We express eq. (2.1) by the Taylor expansion, and get the following equation:

ϕ(x, y, z) ≃ 6q

a
+ D4

{(
x4 + y4 + z4

)
− 3

5
r4

}
+ D6

{(
x6 + y6 + z6

)
+

15

4

(
x2y4 + x2z4 + y2x4 + y2z4 + z2x4

+ z2y4
)
− 15

14
r6

}
, (2.2)

where D4 = 35q/4a5 and D6 = −21q/2a7.
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0

P (x, y, z)

r

ax y

z

Fig. 2.3 Six-coordinated negative ions and the 4f electron at the pointP.

Considering the charge distribution of the f electron, ρ(r), the static potential energy
is expressed as follows: ∫

ρ(r)ϕ(r)d3r, (2.3)

where ϕ(r) can be expanded by the multiplet term of the coordination x, y, z and eq. (2.3)
is expressed by the multiplet term of the coordination which is equivalent to the multiplet
of the angular momentum operator based on the Wigner-Eckart’s theorem in quantum
mechanics. For example,

∫
(3z2 − r2)ρ(r)d3r = αJ

⟨
r2

⟩ {
3J2

z − J (J + 1)
}

= αJ

⟨
r2

⟩
O0

2. (2.4)

We can represent the following CEF Hamiltonian corresponding to eqs. (2.2) and (2.3)
by the Wigner-Eckart’s theorem as follows:

HCEF = B0
4

(
O0

4 + 5O4
4

)
+ B0

6

(
O0

6 − 21O4
6

)
. (2.5)

Here we ignored the first term of eq. (2.2), because it have no coordination. HCEF is called
the crystalline electric field Hamiltonian and the operator Om

n : O0
4, O4

4, O0
6, O4

6 and so
on, called Stevens operators. These operators are expressed by the matrix representation
by Hutchings.29,30)

Next, we consider the case which Ce3+ is influenced by the cubic crystalline electric
field: L = 3, S = 1/2, J = 5/2 and M = 5

2
, 3

2
, 1

2
, −1

2
, −3

2
, −5

2
. Therefore, the multiplet

with the J = 5/2 case (sixfold degenerate of 2J + 1 = 6) splits by the CEF effect. For
J = 5/2, O0

6 = O4
6 = 0, and O0

4 and O4
4 can be expressed as follows:
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O0
4 = 35J4

z − 30J(J + 1)J2
z + 25J2

z − 6J(J + 1) + 3J2(J + 1)2 (2.6)

O4
4 =

1

2
(J4

+ + J4
−) (2.7)

where J± = Jx ± iJy. The operator Om
n can be expressed by (6 × 6)-matrix. Therefore,

the CEF Hamiltonian of the cubic Ce3+ is expressed as follows:

HCEF =



∣∣5
2

⟩ ∣∣3
2

⟩ ∣∣1
2

⟩ ∣∣−1
2

⟩ ∣∣−3
2

⟩ ∣∣−5
2

⟩⟨
5
2

∣∣ 60B0
4 0 0 0 60

√
5B0

4 0⟨
3
2

∣∣ 0 −180B0
4 0 0 0 60

√
5B0

4⟨
1
2

∣∣ 0 0 120B0
4 0 0 0⟨

−1
2

∣∣ 0 0 0 120B0
4 0 0⟨

−3
2

∣∣ 60
√

5B0
4 0 0 0 −180B0

4 0⟨
−5

2

∣∣ 0 60
√

5B0
4 0 0 0 60B0

4


.(2.8)

Next we represent the energy level state |i⟩ and its energy scheme Ei as follows:

HCEF|i⟩ = Ei|i⟩. (2.9)

Following wave functions and energies are obtained:

|Γα
7 ⟩ = 1√

6

∣∣5
2

⟩
−

√
5
6

∣∣−3
2

⟩
|Γβ

7 ⟩ = 1√
6

∣∣−5
2

⟩
−

√
5
6

∣∣3
2

⟩
 EΓ7 = −240B0

4 (2.10)

|Γν
8⟩ =

√
5
6

∣∣5
2

⟩
+ 1√

6

∣∣−3
2

⟩
|Γκ

8⟩ =
√

5
6

∣∣−5
2

⟩
+ 1√

6

∣∣3
2

⟩
|Γλ

8⟩ =
∣∣1
2

⟩
|Γµ

8⟩ =
∣∣−1

2

⟩

 EΓ8 = 120B0
4 (2.11)

The energy state −240B0
4 is named Γ7 and the energy state 120B0

4 is Γ8. We show in
Fig. 2.4 the space charge distribution of Γ7 and Γ8 states. The quartet Γ8 wave function
expands along the x, y, z directions. On the other hand, the doublet Γ7 expands along
the ⟨111⟩ direction so as to avoid these axes. If the negative ions approach to the cerium
ion along the principal axes, the Coulomb energy of the 4f electron is preferable to the Γ7

ground state, compared with the Γ8 ground state, indicating that the Γ8 state becomes
an excited state.

In general, the CEF Hamiltonian can be expressed as follows:

HCEF =
∑
n,m

Bm
n Om

n . (2.12)
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Γ
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, Γ

7

β

Γ
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λ
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µ

Γ

8

ν

, Γ

8

κ

z

Fig. 2.4 Space charge distribution of Γ7 and Γ8 states.

If the number of the f electron is odd, namely, J has the half-integer for Ce3+，Nd3+，
Sm3+，Dy3+，Er3+ and Yb3+, the 4f energy level always possesses the doublet. This
is called Kramers theorem, and this doublet is called the Kramers doublet. Kramers
degeneration is based on the time reversal symmetry and the doublet ground state always
holds even if the crystal structure is changed into the low symmetry. Namely, its magnetic
properties are different whether the number of the f electron is odd or even. When the
magnetic field is applied to the system, all the degenerated 4f states, including the
Kramers doublet, split into singlets.

We can obtain the mangetic moment of the f electron by measuring the magnetic
susceptibility or magnetization under magnetic field H, considering the Zeeman energy
term, as follows:

H = HCEF − gJµBHJz (H//z) , (2.13)

where |i⟩ is the state of the 4f energy level i, Ei is the eigenvalue and µi is the magnetic
moment of the energy level. The energy level is influenced by the other energy levels. We
represent this energy state as

∣∣̃i⟩ and Ei (H). Namely, we calculate the energy state under

magnetic field
∣∣̃i⟩ and Ei(H) by diagonalizing the matrix of the Hamiltonian eq. (2.8).

We calculate the magnetization and the magnetic susceptibility by
∣∣̃i⟩ and Ei(H). Here,
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the Helmholtz free energy F can be expressed by the partial function Z as follows:

F = −kBT ln Z, (2.14)

Z =
∑

i

e
−Ei(H)

kBT . (2.15)

The magnetization M is expressed as the differential of F by magnetic field:

M = − ∂F

∂H

=

∑
i

µzi
e−Ei(H)/kBT

∑
i

e−Ei(H)/kBT

≡ ⟨µzi
⟩ , (2.16)

where µzi
is the magnetic moment of the state

∣∣̃i⟩.
µzi

= −∂Ei (H)

∂H
= gJµB⟨̃i|Jz |̃i⟩. (2.17)

Namely, the magnetization M correspond to the average ⟨µzi
⟩ of the magnetic moment

µzi
.
The magnetic susceptibility χ is the differential of magnetization ∂M/∂H(H → 0):

χ =
1

kBT

(⟨(
∂Ei(H)

∂H

)2
⟩

−
⟨

∂Ei(H)

∂H

⟩2
)

−
⟨

∂2Ei(H)

∂H2

⟩
. (2.18)

In case of the calculation of the magnetic susceptibility, we can treat the Zeeman energy
−gJµBHJz as the perturbation. The energy Ei(H) by the second perturbation can be
expressed as follows:

Ei (H) = Ei − gJµBH⟨i|Jz|i⟩ + (gJµB)2 H2
∑
j(̸=i)

∣∣⟨j|Jz|i⟩
∣∣2

Ej − Ei

. (2.19)

By using eq (2.19), eq. (2.18) is obtained as

χ =

(gJµB)2
∑

i

e−Ei/kBT

∣∣⟨i|Jz|i⟩
∣∣2 + 2kBT

∑
j(̸=i)

|⟨j|Jz|i⟩|2

Ej − Ei


kBT

∑
i

e−Ei/kBT
. (2.20a)
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Eq. (2.20a) is the general expression of the magnetic susceptibility under consideration
of CEF, but another expression is often used:

χ =
(gJµB)2∑

i

e−Ei/kBT


∑

i

∣∣⟨i|Jz|i⟩
∣∣2e−Ei/kBT

kBT
+

∑
i

∑
j(̸=i)

∣∣⟨j|Jz|i⟩
∣∣2 e−Ei/kBT − e−Ej/kBT

Ej − Ei

 .

(2.20b)
The first term is the Curie term which can be determined from the diagonal terms of
the matrix Jz, and the second term is related to the non-diagonal terms. Namely, it is
the Van-Vleck term, which is related to the transition between the states. It is known
from eq. (2.20) that the magnetic susceptibility can be determined from the state of the
f electron without magnetic field.

Next, we calculate Jz for the cubic Ce3+. The Jz matrix can be expressed as follows:

Jz =



|Γα
7 ⟩

∣∣∣Γβ
7

⟩
|Γν

8⟩ |Γκ
8⟩

∣∣Γλ
8

⟩
|Γµ

8⟩

⟨Γα
7 | −5

6
0 2

√
5

3
0 0 0

⟨Γβ
7 | 0 5

6
0 −2

√
5

3
0 0

⟨Γν
8| 2

√
5

3
0 11

6
0 0 0

⟨Γκ
8 | 0 −2

√
5

3
0 −11

6
0 0

⟨Γλ
8 | 0 0 0 0 1

2
0

⟨Γµ
8 | 0 0 0 0 0 −1

2


. (2.21)

We obtain the magnetic moment as −5/7µB for |Γα
7 ⟩ and +5/7µB for |Γβ

7 ⟩ from gJ = 6/7.
The summation over the two degenerated states of the Γ7 state is zero. The magnetic
moments for |Γν

8⟩，|Γκ
8⟩,

∣∣Γλ
8

⟩
and |Γµ

8⟩ are 11/7µB, −11/7µB, 3/7µB and −3/7µB, re-
spectively. Eq. (2.20b) can be expressed as follows (Γ7 is the ground state, Γ8 is the
excited state and EΓ8 − EΓ7 = ∆):

χz =
(gJµB)2

1 + 2e−∆/kBT


25

36
+

65

18
e−∆/kBT

kBT
+

40
(
1 − e−∆/kBT

)
9∆

 . (2.22)

Figure 2.5(a) and (b) show the temperature dependence of the inverse magnetic sus-
ceptibility and magnetization, respectively, on the basis of eqs. (2.16), (2.20) and (2.21),
for three cases: no CEF, Γ7 ground state and Γ8 ground state with the splitting energy
∆=200K between Γ7 and Γ8. If there is no CEF, ∆ → 0 and χz = 35

4
(gJµB)2 /3kBT .

The case of ∆ → 0 is equivalent to the expression kBT ≫ ∆ and to the Curie law which
ignores CEF. When Γ7 is the ground state, the magnetization approaches the magnetic
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moment of 0.7 ∼ 0.8 µB. On the other hand, when Γ8 is the ground state, the magnetiza-
tion becomes 1.7 ∼ 1.8 µB. If the Zeeman energy due to the magnetic field is larger than
the CEF splitting energy, the magnetization becomes the saturated magnetic moment
gJJ .

The 4f -localized situation is applied to most of the lanthanide compounds in
which Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction plays a predominant role in
magnetism.1–3) The mutual magnetic interaction between the 4f electrons occupying dif-
ferent atomic sites cannot be of a direct type such as 3d metal magnetism, but should be
indirect one, which occurs only through the conduction electrons.

In the RKKY interaction, a localized spin Si of the 4f electron interacts with a
conduction electron with spin s, which leads to a spin polarization of the conduction
electron. This polarization interacts with another neighboring spin Sj and therefore
creates an indirect interaction between the spins Si and Sj. This indirect interaction
extends to the far distance and damps with a sinusoidal 2kF oscillation (named the Friedel
oscillation), where kF is half of the caliper dimension of the Fermi surface. When the
number of 4f electrons increases in such a way that the lanthanide element changes from
Ce to Gd or reversely from Yb to Gd in the compound, the magnetic moment becomes
larger and the RKKY interaction stronger, leading to the magnetic order. The ordering
temperature roughly follows the de Gennes relation, (gJ − 1)2J(J + 1). Here gJ is the
Landé g-factor and J is the total angular momentum.

2.2 Kondo effect and heavy fermions

Contrary to what happens at a large U , higher Vcf tends to enhance the hybridization
of the 4f electron with conduction electrons, thus accelerating the delocalization of the
4f electron. The delocalization of the 4f electron tends to make the 4f band wide. When
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Fig. 2.5 (a) Inverse magnetic susceptibility and (b)magnetization for ∆ = 200 K in cubic
Ce3+.
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Ef > Vcf , the 4f electron is still better localized and the Kondo regime is expected in
the Ce compounds.

The study of Kondo effect began when a low-temperature resistivity minimum was
found for non-magnetic metals with ppm-order magnetic impurities. Kondo showed the-
oretically that the logarithmic resistivity increase at low temperatures as a result of the
spin-flip scattering of the conduction electrons by the localized magnetic moments of
impurities.4) In the 3d-based dilute alloys, the magnetic impurity Kondo effects can be
observed only in the case of very low concentration 3d magnetic impurities. This is be-
cause the degeneracy of the localized spins is very important for the Kondo effect. When
the concentration of 3d magnetic impurities is increased, the 3d elements would come
near each other and thus the overlapping or interaction between 3d shells would occur,
which would lift the degeneracy of the impurity spin and suppress the Kondo spin-flip
process.

Since the observation of the ρ(T ) ∼ ln T dependence in CeAl3 by Buschow et al.31),
many rare earth compounds, in particular, Ce compounds were found to show the anoma-
lous behavior similar to the impurity Kondo effect. In these compounds, the 4f ions have
very high concentration and can even form the crystalline lattice with the anions and
thus it cannot be considered as the impurities. From the appearance of a Kondo-like
behavior, this phenomenon is called the dense Kondo effect.

Fig. 2.6 Temperature dependence of the electrical resistivity in CexLa1−xCu6.
32)

The property of the dense Kondo effect at high temperatures is the same as that
of the dilute Kondo system, but at low temperatures it is quite different in behav-
ior. For instance, we show the temperature dependence of the electrical resistivity in
CexLa1−xCu6

32) in Fig. 2.6. This resistivity increases logarithmically with decreasing the
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temperature for all range of concentration. The Kondo effect occurs independently at
each Ce site, because the slope of the logarithmically curve is almost proportional to the
concentration of Ce. In CeCu6 (x = 1), the behavior is, however, very different from the
dilute Kondo impurity system. The resistivity increases with decreasing the temperature,
forms a maximum around 15K and decreases rapidly at lower temperatures, following
the Fermi liquid nature of ρ = ρ0 + AT 2. This behavior is in contrast to the dilute
system (x = 0.094) characterized by a resistivity minimum.

The many-body Kondo bound state is now understood as follows: For the simplest
case of no orbital degeneracy, the localized spin S(↑) is coupled antiferromagnetically with
the conduction electrons s(↓). Consequently the singlet state {S(↑)·s(↓)±S(↓)·s(↑)} is
formed with the binding energy kBTK. Here the Kondo temperature TK is the single
energy scale. In other words, disappearance of the localized moment is thought to be
due to the formation of a spin-compensating cloud of the conduction electrons around
the impurity moment.

The Kondo temperature in the Ce compounds is large compared with the magnetic
ordering temperature based on the RKKY interaction. For example, the Ce ion is trivalent
(J = 5

2
) and the 4f energy level splits into the three doublets by the crystalline electric

field, namely possessing the splitting energy of ∆1 and ∆2, as shown in Fig. 2.2.
The Kondo temperature is given as follows 33):

T h
K = D exp

{
− 1

3|Jcf |D(EF)

}
when T > ∆1, ∆2, (2.23)

and

TK =
D2

∆1∆2

D exp

{
− 1

|Jcf |D(EF)

}
when T < ∆1, ∆2. (2.24)

Here D, |Jcf | and D(EF) are the band width, exchange energy and the density of states at
the Fermi energy EF, respectively. If we assume TK ≃ 5K for D = 104 K, ∆1 = 100K and
∆2 = 200K, the value of T h

K ≃ 50K is obtained, which is compared with the S = 1
2
-Kondo

temperature of 10−3 K defined as T 0
K = D exp{−1/|Jcf |D(EF)}. These large values of the

Kondo temperature shown in eqs. (2.23) and (2.24) are due to the orbital degeneracy of
the 4f levels. Therefore, even at low temperatures the Kondo temperature is not T 0

K but
TK shown in eq. (2.24).

On the other hand, the magnetic ordering temperature is about 5K in the Ce com-
pounds, which can be simply estimated from the de Gennes relation of (gJ − 1)2J(J + 1)
under the consideration of the Curie temperature of about 300K in Gd. Therefore, it
depends on the compound whether magnetic ordering occurs at low temperatures or not.

The ground state properties of the dense Kondo system are interesting in magnetism,
which are highly different from the dilute Kondo system. In the cerium intermetallic
compounds such as CeCu6, cerium ions are periodically aligned whose ground state cannot
be a scattering state but becomes a coherent Kondo-lattice state.
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The effective mass of the conduction electron in the Kondo lattice of CeCu6 is ex-
tremely large, compared with the one of the free electron. It is reflected in the electronic
specific heat coefficient γ and magnetic susceptibility χ(0), which can be expressed as

γ =
2π2kB

2

3
D(EF) (2.25a)

=
kB

2kF

3~2
m∗

c (free electron model), (2.25b)

and

χ(0) = 2µB
2D(EF) (2.26a)

= µB
2 kF

π2~2
m∗

c (free electron model). (2.26b)

where kF is Fermi wave number. These parameters are proportional to the effective mass.
The electrical resistivity ρ decreases steeply with decreasing the temperature, following

a Fermi liquid behavior as ρ ∼ AT 2 with a large value of the coefficient A 33). The
√

A
value is proportional to the effective mass of the carrier m∗

c and thus inversely proportional
to the Kondo temperature. Correspondingly, the electronic specific heat coefficient γ
roughly follows the simple relation γ ∼ 104/TK (mJ/K2·mol) because the Kramers doublet
of the 4f levels is changed into the γ value in the Ce compounds:

R ln 2 =

∫ TK

0

C

T
dT, (2.27)

C = γT, (2.28)

thus

γ =
R ln 2

TK

=
5.8 × 103

TK

(mJ/K2·mol). (2.29)

It reaches 1600mJ/K2·mol for CeCu6
34) because of a small Kondo temperature of 4 -

5K. The conduction electrons possess large effective masses and thus move slowly in the
crystal. Actually in CeRu2Si2, an extremely heavy electron of 120m0 was detected from
the de Haas-van Alphen (dHvA) effect measurements 35,36).

Therefore, the Kondo-lattice system is called a heavy fermion or heavy electron sys-
tem. It is noticed that the Ce Kondo-lattice compound with magnetic ordering also
possesses the large γ value even if the RKKY interaction overcomes the Kondo effect
at low temperatures. For example, the γ value of CeB6 is 260mJ/K2·mol 37), which is
roughly one hundred times as large as that of LaB6, 2.6mJ/K2·mol38). This means that
the Kondo effect at high temperatures influences the electronic state, although the 4f
electron is localized and orders antiferromagnetically.
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A significant correlation factor is thought to be the ratio of the measured magnetic
susceptibility χ(0) to the observed γ value:

RW ≡
(

π2kB
2

γ

){
χ(0)

µB
2gJ

2J(J + 1)

}
. (2.30)

This ratio RW is called Wilson-Sommerfeld ratio. Stewart 39) evaluated RW for the heavy
fermion system, as shown in Fig. 2.7. He suggested that in the f electron system RW

is not 1 but roughly 2. Kadowaki and Woods stressed the importance of a universal
relationship between A and γ, as shown in Fig. 2.8.40,41) They noted that the ration A/γ
has a common value of 1.0 × 10−5 µΩ·cm·K2·mol2/mJ2. In Fig. 2.8, another line shown
by a broken line is presented.40,41)

Fig. 2.7 The specific heat coefficient versus the susceptibility for some heavy fermion
systems. The values are extrapolated to zero by a variety of methods. Any free, non-
interacting fermion gas would lie on the straight line.42)
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Fig. 2.8 A vs γ in the logarithmic scale.40)
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2.3 Competition between the RKKY interaction and

the Kondo effect

The electronic state in the cerium compound can be qualitatively understood by the
competition between the Kondo screening and the tendency towards magnetic ordering
via RKKY-type indirect exchange mechanism. The Kondo temperature TK depends
exponentially on |Jcf | as follows:

TK ∝ e
− 1

D(ϵF)|Jcf | , (2.31)

The magnitude of an indirect RKKY interaction can be characterized by the ordering
temperature TRKKY as follows:

TRKKY ∝ |Jcf |2D(EF), (2.32)

where

Jcf ≃
Vcf

2

EF − Ef

. (2.33)

Actually the magnitude of this interaction is also dominated by the de Gennes fac-
tor, and eq. (2.32) is given by the product with (gJ − 1)2J(J + 1). This leads to the
phase diagram for a Kondo lattice, originally derived by Doniach6) and emphasized by
Brandt and Moshchalkov43). Figure 2.9 is well known as the Doniach phase diagram.
If |Jcf |D(EF) is small, the compound becomes an antiferromagnet with a large mag-
netic moment, while with increasing |Jcf |D(EF), both the magnetic moment and the
ordering temperature tend to zero. The critical point where TN becomes zero is called a
quantum critical point (QCP). Above the quantum critical point, Kondo-lattice para-
magnetism is realized and consequently the f -atom valency becomes unstable, leading to
the heavy fermion system. Here, the heavy fermion system is based on the Landau’s Fermi
liquid, where the interacting electron system or the heavy electron system is related to
the non-interacting one by the scaling law without a phase transition. The characteristic
features are ρ = ρ0 + AT 2, C/T = γ and χ = χ(0) at low temperatures:

√
A∼ γ ∼χ(0).

Nearby the quantum critical point, the cerium compounds with an extraordinary
wide variety of possible ground states are found. These include Kondo-lattice com-
pounds with magnetic ordering (CeIn3, CeAl2, CeB6), small-moment antiferromagnets
(CePd2Si2, CeAl3), an anisotropic superconductor (CeCu2Si2), no-ordered Kondo-lattice
compounds or the heavy fermion compounds (CeCu6, CeRu2Si2) and valence fluctuation
compounds (CeNi, CeRh2, CeRu2, CeSn3). Significant differences are small between the
heavy fermion compounds (CeCu6, CeRu2Si2) and (CeNi, CeRh2, CeRu2, CeSn3), mainly
depending on the magnitude of the Kondo temperature.
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Fig. 2.9 Doniach phase diagram.43)

We note the non-magnetic cerium compounds at low temperatures. In CeCu6 and
CeRu2Si2 with a small Kondo temperature, there exist no magnetic ordering but exist an-
tiferromagnetic correlations between the Ce sites44), showing the metamagnetic transition
in the magnetic field: Hc = 2T in CeCu6

45) and 8T in CeRu2Si2.
46) The results of dHvA

experiments36,47,48) and the band calculations49) in CeRu2Si2 show that 4f electrons are
itinerant. Namely, the 4f electrons in the cerium compounds such as CeSn3 with a large
Kondo temperature, which belong to the valence-fluctuation regime, are also itinerant in
the ground state and contribute directly to the formation of the Fermi surface.50,51)

Furthermore, we pay attention to the non-magnetic Ce compounds to clarify the mag-
nitude of Kondo temperature reflected in the magnetic susceptibility. Figure 2.10 shows
the temperature dependence of the magnetic susceptibility in some cerium compounds
without magnetic ordering: CeCu6 (TK ≃5K), CeRu2Si2 (20K), CeNi (150K) and CeSn3

(200K). The magnetic susceptibility in these compounds follows the Curie-Weiss law at
higher temperatures, possessing the magnetic moment near Ce3+ of 2.54µB, while it be-
comes approximately temperature-independent with decreasing the temperature, namely
showing a broad maximum and then forming enhanced Pauli paramagnetism. The tem-
perature Tχmax indicating the peak of the susceptibility almost corresponds to the char-
acteristic temperature TK. The valence of Ce atoms seems to be changed from Ce3+ into
Ce4+ (non-magnetic state) with decreasing the temperature.

Experimentally, pressure corresponds to |Jcf |D(ϵF). For example, the Néel temper-
ature TN in an antiferromagnet decreases with increasing pressure, and becomes zero:
TN → 0 for P → Pc. The electronic state can be tuned by pressure. Namely, the anti-
ferromagnet is changed into the non-magnetic compound. Around the quantum critical
point, the heavy fermion state is realized as mentioned above, together with the non-Fermi
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Fig. 2.10 Temperature dependence of the magnetic susceptibility for typical Ce com-
pounds.

liquid nature and appearance of superconductivity.
The non-Fermi liquid behavior around the quantum critical point is one of the recent

topics in the f electron system. In the non-Fermi liquid system the following relations
are characterized:

ρ ∼ T n with n < 2, (2.34)

C/T ∼ − log T. (2.35)

The typical non-Fermi liquid nature and appearance of superconductivity were observed
in CeCu2Ge2 under pressure.52) CeCu2Ge2 is an antiferromagnet with TN = 4K, but su-
perconductivity is realized under pressure as in a heavy fermion superconductor CeCu2Si2.
Figure 2.11 shows the low-temperature resistivity of CeCu2Ge2 for 9.7<P<18.6GPa. At
15.6GPa, the electrical resistivity decreases linearly with decreasing temperature: ρ ∼
T n (n = 1), and becomes zero below the superconducting transition temperature Tsc =
1.8K.

Finally we note how the electronic state changes as a function of the distance between
neighboring two f electrons. Figure 2.12 shows the relation of the electronic specific heat
coefficient γ vs the lattice constant in UX3.

53) The uranium compounds UX3 with the
cubic AuCu3-type crystal structure, where X is a group IVB (X: Si, Ge, Sn and Pb)
element of the periodic table, show various magnetic properties: Pauli paramagnetism
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Fig. 2.11 Low-temperature resistivity under various pressure in CeCu2Ge2.
52)

Fig. 2.12 γ vs the lattice constant in UX3.
53)

in USi3 and UGe3, spin fluctuation in USn3, and antiferromagnetism in UPb3. The
variety in the magnetic properties is closely related to the lattice constant or the distance
between the U atoms, dU−U. This is reflected in the electronic specific heat coefficient
γ, which varies from 14mJ/K2·mol in USi3 to 170mJ/K2·mol in USn3, as shown in
Fig. 2.12. When the antiferromagnetic order occurs at TN = 30K in UPb3, the γ value
is reduced to 110mJ/K2·mol. The γ value in the UX3 (IVB) series thus depends on the
lattice constant, dU−U. We can be deduced from Fig. 2.12 that as dU−U becomes shorter,
the wave function of 5f electrons is overlapped, enhancing Pauli itinerancy, while with
increasing dU−U, forming a heavy fermion state, as shown in USn3, and finally the 5f -
electronic state exhibits magnetic ordering. A change of the elements from Pb to Si
corresponds to an application of pressure.



20 CHAPTER 2. REVIEW OF RELEVANT PHYSICS IN F -ELECTRON SYSTEMS

2.4 Fermi surface properties

Fermi surface studies are very important to know the ground-state properties of the
rare earth compounds.27) As mentioned in Sec. 2.2, the ground state of the Ce compounds
is mainly determined by the competition between the RKKY interaction and the Kondo
effect (see Fig. 2.9). When TRKKY overcomes TK, the ground state is the magnetic ordered
one and 4f electron is regarded as localized. On the other hand, when the Kondo effect
is dominant, the ground state is the non-magnetic one and the 4f electrons become
itinerant.

In the 4f -localized system, the Fermi surface is similar to that of corresponding La
compound, but the presence of 4f electrons alters the Fermi surface through the 4f -
electron contribution to the crystal potential and through the introduction of new Bril-
louin zone boundaries and magnetic energy gaps which occur when 4f -electron moments
order. The latter effect may be approximated by a band-folding procedure where the
paramagnetic Fermi surface is folded into a smaller Brillouin zone based on the mag-
netic unit cell, because the magnetic unit cell is larger than the chemical one. If the
magnetic energy gaps associated with the magnetic structure are small enough, conduc-
tion electrons undergoing cyclotron motion in the presence of magnetic field can tunnel
through these gaps and circulate the orbit on the paramagnetic Fermi surface. If this
magnetic breakthrough (breakdown) effect occurs, the paramagnetic Fermi surface might
be observed in the de Haas-van Alphen (dHvA) effect even in the presence of magnetic
order.

For Kondo-lattice compounds with magnetic ordering, the Kondo effect is expected
to have minor influence on the topology of the Fermi surface, representing that the
Fermi surfaces of the Ce compounds are roughly similar to those of the corresponding
La compounds, but are altered by the magnetic Brillouin zone boundaries mentioned
above. Nevertheless, the effective masses of the conduction carriers are extremely large
compared with those of La compounds, as noted in the case of CeB6. In this system a
small amount of 4f electron most likely contributes to make a sharp density of states at
the Fermi energy. Thus, the energy band becomes flat around the Fermi energy, which
brings about the large mass.

In some cerium compounds such as CeCu6, CeRu2Si2, CeNi and CeSn3, the magnetic
susceptibility follows the Curie-Weiss law with a moment of Ce3+, 2.54µB/Ce, has a
maximum at a characteristic temperature Tχmax, and becomes constant at lower temper-
atures (see Fig. 2.10). This characteristic temperature Tχmax corresponds to the Kondo
temperature TK as mentioned in Sec. 2.2. A characteristic peak in the susceptibility is a
crossover from the localized 4f electron to the itinerant one. The Fermi surface is thus
highly different from that of the corresponding La compound. The cyclotron mass is also
extremely large, reflecting a large γ-value of γ ≃ 104/TK (mJ/K2·mol).

The cerium compounds are thus classified as either the localized electron system or
the itinerant electron system.
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2.5 Superconductivity

The microscopic theory of superconductivity, which was provided by Bardeen, Cooper
and Schrieffer in 1957,12) is based on an idea that when an attractive interaction between
fermions is present, the stable ground state is no longer the degenerated Fermi gas but
becomes a coherent state in which the electrons are combined into pairs of spin-singlet
with zero total momentum (Cooper pairs). A conduction electron attracts the positive
ion and distorts the lattice by moving in the lattice, and then the distortion attracts
another conduction electron. Namely, the interaction between two electrons mediated by
the phonon form the Cooper pair of the electrons. Since an excited energy of BCS type
superconductor has an isotropic superconducting gap ∆, namely the superconducting
energy gap is opened over the entire of the Fermi surface, the temperature dependence
of physical quantities obey the exponential law theoretically.

It is difficult to express superconductivity for the compounds which have heavy quasi-
particles located adjacent to the quantum critical point by the attraction mediated the
phonon because of strongly Coulomb repulsion. It have been found the heavy fermion
superconductor located adjacent to the quantum critical point. This superconductor does
not obey the exponential law of the temperature but obey the power law. We explain
the present unconventional (anisotropic) superconductivity in the next section.

1) Anisotropic superconductivity

Heavy fermion superconductors are, however, well known to show the power law in
physical properties such as the electronic specific heat Ce and the nuclear spin-lattice
relaxation rate 1/T1, not indicating an exponential dependence predicted by BCS theory.
This indicates the existence of an anisotropic gap, namely existence of a node in the
energy gap. When we compare the phonon-mediated attractive interaction based on the
BCS theory to the strong repulsive interaction among the f electrons, it is theoretically
difficult for the former interaction to overcome the latter one. To avoid a large overlap of
the wave functions of the paired particles, the heavy electron system would rather choose
an anisotropic channel, like a p-wave spin triplet or a d-wave spin singlet state, to form
Cooper pairs.

Figure 2.13 shows a schematic view of the superconducting parameter with the s-, d-
and p-wave pairing. The order parameter Ψ(r) with the even parity (s- and d-wave) is
symmetric with respect to r, where one electron with the up-spin state of the Cooper
pair is simply considered to be localized at the center of Ψ(r), r = 0, and the other
electron with the down-spin state is localized at r. The width of Ψ(r) with respect to
r is called the coherence length ξ. For example, UPd2Al3 is consider to be a d-wave
superconductor from the NMR Knight shift experiment,10) which corresponds to the case
(b) in Fig. 2.13. On the other hand, Ψ(r) with odd parity (p-wave) is not symmetric
with respect to r, where the parallel spin state is shown in Fig. 2.13(c). From the NMR
Knight shift experiment, UPt3 is considered to possess odd parity in symmetry.11)

For an anisotropic state, there are three kinds of gap structures, as shown in Fig. 2.14.
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ξ

r

Ψ(r)

(a) s-wave (c) p-wave(b) d-wave

Fig. 2.13 Schematic view of the superconducting parameter with the s-, d- and p-wave
pairing.

(a) normal state (b) BCS type

(c) polar type (d) axial type

2∆

Fig. 2.14 Schematic picture of the gap structures: (a) normal state, (b)BCS-type super-
conductor, which has an isotropic gap, (c) polar type and (d) axial type.
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First one indicates the superconducting gap, which is the same as the s-wave and is
isotropic. This is called the Balian-Werthamer (BW) state. Second one shows a line node
in the equator on the Fermi surface. This structure is called the polar type, as shown in
Fig. 2.14(c). Third one has a point node in the pole on the Fermi surface. This condition
has the Anderson-Brinkman-Morel (ABM) state. This is called the axial type, as shown
in Fig. 2.14(d).

2) Pressure-induced superconductivity

The study of unconventional superconductivity is still active in condensed matter
physics, ever since the discovery of the first heavy fermion superconductor, CeCu2Si2.

9)

Recently, some Ce-based heavy fermion compounds were found to exhibit superconduct-
ing under pressure, as shown in Fig. 2.15 for CeIn3.

54) In these compounds, superconduc-
tivity appears around the quantum critical point. The similar pressure-induced super-
conductivity was also reported for the other Ce-based compounds such as CeCu2Ge2

55)

and CeRh2Si2.
56,57) In these compounds, the attractive force between quasiparticles are

possible to be magnetically mediated, not to be phonon-mediated.

CeCu2Si2 is a superconductor with Tsc = 0.7K at ambient pressure. When pressure
is applied, Tsc initially remains close to its ambient pressure value but shows a sudden
increase of Tsc = 2K at about 3GPa.58) This strange superconducting phase was also

0
0

5

10

10 20 300

T
em

pe
ra

tu
re

 (
K

)

Pressure (kbar)

TN

10 T
Superconductivity c

0

0.4

0.8

1.2

0 0.4 0.8 1.2
T (K)

24.0 kbar

Tc

ρ 
(µ

Ω
 c

m
)

0

1

2

0.6 1 1.4
log

10 
(T(K))

27 kbar

d 
(ln

 ∆
ρ)

 / 
d 

(ln
 T

)

Fig. 2.15 Pressure phase diagram in CeIn3. Superconductivity is observed below Tsc in
a narrow window where the Néel temperatureTN tends to zero.54)
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Fig. 2.16 Schematic temperature-pressure phase diagram of CeCu2(Si/Ge)2.
59) Super-

conductivity is observed in a wide window.

observed in a pressure-induced superconductor CeCu2Ge2.
55) According to the report

by Holmes et al.,59) these anomalies can be linked with an abrupt change of the Ce
valence, and suggested a second quantum critical point at a pressure Pv, where critical
valence fluctuations provide the superconducting pairing mechanism, which is compared
with superconducting pair mechanism based on spin fluctuations at ambient pressure
in CeCu2Si2 or at 10GPa in CeCu2Ge2, as shown in Fig. 2.16. Figure 2.16 shows the
temperature-pressure phase diagram for CeCu2(Si/Ge)2 showing the two critical pressures
Pc and Pv.

3) Superconductivity in the non-centrosymmetric crystal structure

Recently, it has been reported that CePt3Si is the first heavy-fermion supercon-
ductor lacking a center of inversion symmetry in the tetragonal structure, where the
upper critical field Hc2 = 4.5T exceeds the Pauli paramagnetic limiting field Hp =
1.4T,13) and the spin relaxation rate of 195Pt-NMR indicated a clear peak structure
just below the superconducting transition temperature Tsc = 0.75K.60) Subsequently,
Akazawa et al. found pressure-induced superconductivity in a ferromagnet UIr with
the monoclinic structure,15,16) which also lacks inversion symmetry in the crystal struc-
ture. In addition, Kimura et al. reported pressure-induced superconductivity in an
antiferromagnet CeRhSi3, which crystallizes in the tetragonal crystal structure without
inversion symmetry.18–20) Moreover, similar superconducting properties are observed in
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CeIrSi3
8,21,22) and CeCoGe3.

23)

The experimental technique of NQR/NMR has proved to be a useful tool to determine
the symmetry of the superconducting condensate. For example, UPt3 was shown to be the
first case of odd-parity (p- or f -wave type) superconductivity,11) while even-parity (d-wave
type) superconductivity is realized in UPd2Al3.

10) For the study of these superconduc-
tors, it was assumed that the crystal structure has an inversion center, which makes it
possible to consider separately the even (spin-singlet) and odd (spin-triplet) components
of the superconducting order parameter. When inversion symmetry is absent in the crys-
tal structure, such classification for superconductivity is no longer possible. The order
parameter contains not only a spin-singlet part, but also an admixture of a spin-triplet
state.61)

In this section, the characteristic features of superconductivity which is realized in a
non-centrosymmetric crystal, are explained on the basis of the recently reported theoreti-
cal studies. When the crystal structure lacks inversion symmetry, the Fermi surface splits
into two Fermi surfaces due to the Rashba-type antisymmetric spin-orbit interaction.62)

Here, the effect of spin-splitting of the Fermi surface via the antisymmetric spin-
orbit interaction is discussed from the viewpoint of the conduction electrons in the non-
centrosymmetric tetragonal crystal structure. The spin-orbit interaction for the con-
duction electrons can be calculated by considering the following effective single-band
Hamiltonian with the Rashba-type spin-orbit interaction:62)

H =
p2

2m∗ + α(p × n) · σ (2.36)

α denotes the strength of the spin-orbit coupling, p is a momentum of conduction elec-
trons, n is a unit vector taken to be parallel to the z-axis or the c-axis (the [001] direc-
tion), σ is the Pauli matrices, and the m∗ is the effective mass. The term α(p × n)· σ
is explained as follows. The non-uniform lattice potential V (r) in the tetragonal crystal
structure induces the electric field (−∇V (r)) along the [001] direction. The effective mag-
netic field, which approximately corresponds to p×∇V , namely α(p× n) in eq. (2.36)
is brought about for moving conduction electrons with the momentum p in this electric
field. The term α (p × n) · σ is regarded as a Zeeman energy arising from the magnetic
interaction between this effective magnetic field and spins of the conduction electrons.

By diagonalizing this Hamiltonian, the following two energies, which correspond to
two separated energy bands, are obtained:

ϵp± =
p2

2m∗ ∓ αp⊥, (2.37)

where p⊥ =
√

p2
x + p2

y is the component of the moment p normal to n . A simple example
of the Fermi surface splitting due to the Rashba-type spin-orbit interaction with ∇V
parallel to the z-axis is shown in Fig. 2.17. Note that in Fig. 2.17 the spin quantization
axis is chosen along p × ∇V . The degenerate spherical Fermi surface splits into two
sheets, namely up-spin and down-spin bands, except for high-symmetry line p // z, as
shown in Fig. 2.17(a). One of the two separated Fermi surfaces has a smaller volume and
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the other has a larger volume than the spherical Fermi surface, as shown in Fig. 2.17(b).
Arrows indicate spins on the Fermi surfaces for the up-spin and down-spin bands. An
important point is that a conduction electron with a momentum p and an up-spin state
and another conduction electron with a momentum −p and an up-spin state belong to
two different Fermi surfaces, which are separated by 2|αp⊥|. A simple p-wave pairing is
thus prohibited because |αp⊥| is about 10 - 1000K, shown later experimentally, which is
much larger than the superconducting energy gap of a few Kelvin. On one of the spin-
orbit split Fermi surfaces, namely the (+)-band in Fig. 2.17, the Cooper pair between
electrons with momentum p, spin ↑ and momentum −p, spin ↓ is formed. This state,
denoted as |p, ↑⟩| − p, ↓⟩, is not a spin singlet state, because the counterpart of this state
|p′, ↓⟩| − p′, ↑⟩ is formed on another Fermi surface and thus the superposition between
these two states is not possible.63) Actually, the pairing state |p, ↑⟩|−p, ↓⟩ and |p, ↓⟩|−p, ↑⟩
are the admixture of spin singlet and triplet states as easily verified by

|p, ↑⟩| − p, ↓⟩ =
1

2
(|p, ↑⟩| − p, ↓⟩ − |p, ↓⟩| − p, ↑⟩) (singlet)

+
1

2
(|p, ↑⟩| − p, ↓⟩ + |p, ↓⟩| − p, ↑⟩) (triplet)

|p′, ↓⟩| − p′, ↑⟩ =
1

2
(|p, ↑⟩| − p, ↓⟩ − |p, ↓⟩| − p, ↑⟩). (singlet)

+
1

2
(|p, ↑⟩| − p, ↓⟩ + |p, ↓⟩| − p, ↑⟩) (triplet)

n

s

s

s

ss

s

s

ssp
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(a) (b)
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p, >| p, >

p’ , >| p’ , >

Fig. 2.17 Two separated (a) energy bands and (b) Fermi surfaces in the non-
centrosymmetric crystal structure.
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The first and second terms of the right-hand side express a spin singlet state and a spin
triplet state, respectively, with the in-plane spin projection Sinplane equal to 0. Since we
take the spin quantization axis parallel to the xy-plane, this triplet state corresponds to
the Sz = ±1 state for the spin quantization axis along the z-direction. This means that
the d-vector of the triplet component is parallel to the plane. The above explanation
is also applicable to general cases with more complicated form of ∇V . This unique su-
perconducting state exhibits various interesting electromagnetic properties as extensively
argued by many authors.61,63–74) Frigeri et al. also proposed the possible existence of
spin-triplet pairing state in the non-centrosymmetric crystal, where the inversion sym-
metry breaking in the presence of a spin-orbit interaction was introduced on the basis
of the Rashba model.74) It was clarified that, in contrast to a common belief, the spin-
triplet pairing state is not entirely excluded in such systems. The favorable pairing state
for the triplet state is of the p-wave type. The d vector, which is characteristic of the
spin-triplet superconductivity, is parallel to p⊥: d(k)=∆(x̂ky − ŷkx), and the order
parameter becomes a mixture of spin-singlet and spin-triplet components.

Next we show a theoretically suggested superconducting gap for the non-
centrosymmetric superconductor with the Rashba-type spin-orbit coupling. Here we con-
sider a two-component order parameter with spin-singlet and spin-triplet components as
follows:

∆(k) = {Ψ(k)σ0 + d(k) · σ} · iσy, (2.38)

where Ψ(k) is the spin-singlet component, d(k) = ∆(−kx,ky,0) is the d-vector which
characterizes a spin-triplet component, σ is the Pauli matrices and σ0 is the unit ma-
trix. The theoretical calculation by Hayashi et al.71) has shown that the superconducting
energy gap is different on the separated two Fermi surfaces and is expresses by

∆(θ) = |Ψ ± ∆sinθ|. (2.39)

Figure 2.18 shows schematic structures of the superconducting energy gap on the sepa-
rated Fermi surfaces. Here, the superconducting energy gap on the S+-Fermi surface has
the shape of s-wave (the equivalent gap) + p-wave (the axial type) and is nodeless. On
the other hand, line nodes appear in the superconducting energy gap on the S−-Fermi
surface, leading to the low-temperature power law behavior of 1/T1

60) and the specific
heat divided by temperature C/T in CePt3Si.75)

Next we discuss the effect of the magnetic field on the superconducting state. Princi-
pally, there are two mechanism, by which a magnetic field interacts with the electrons in
the superconducting state. Both mechanisms are pair breaking and lead to the destruc-
tion of the superconducting state at a critical field. These mechanisms are as follows.

1) Orbital pair breaking
This is due to an interaction of the field with the orbital motion of the electrons

and described by the term (e/m)(p ·A), where A is the vector potential. This term
corresponds to the Lorentz force.
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Fig. 2.18 Gap structures on the Fermi surface, cited from refs. 71.

2) Pauli limiting
This comes from an interaction with the spins of electrons and is described by gJµBS ·

H .
Orbital pair breaking takes place in all superconducting states, both conventional and

non-conventional ones. For small magnetic fields, this is the only important pair breaking
mechanism due to the external field. Therefore, it determines the initial slope of Hc2 at
Tsc. The critical field determined only by orbital pair breaking is defined as orbital critical
field H∗

c2, in the absence of any other pair breaking effect. The upper critical field at T
= 0K varies between H∗

c2 = −0.693 (dH∗
c2/dT ) ·Tsc for a conventional superconductor in

the dirty limit and H∗
c2 = −0.850 (dH∗

c2/dT ) ·Tsc for a polar triplet state. Because of
the similarity of the upper critical fields, one can hardly make any statements about the
order parameter for a superconductor just based on an analysis of H∗

c2. The discussion of
the critical field is, therefore, concentrated on the second pair breaking mechanism, Pauli
limiting.

The influence of the magnetic field on the spins of the electrons in the superconduct-
ing states has first been reported by Clogston76) and by Chandrasekhar.77) The physical
reason for this mechanism is that, in a coventional superconductor, the Cooper pairs
have a total spin S = 0. Therefore, the spin susceptibility χs = 0 (s-wave state). For this
reason, the normal state becomes energetically more favourable for the system when the

magnetic energy 1
2
χnH

2 of the normal state reaches the condensation energy H2
c

8π
of the

superconductor. In a BCS superconductor, this gives rise to an upper limit of Hc2(0).
This field is called Pauli limiting field and expressed as Hp = 1.857 × 104 Tsc (Oe). Pauli
limiting occurs also in all other superconducting states, in which χs is reduced compared
with the susceptibility of the normal state χn. When the spin susceptibility of the su-
perconducting state χs has a substantial value compared with χn, the superconducting
condensation energy can be expressed by

1

2
(χn − χs)H

2
p =

1

8π
H2

c . (2.40)



2.5. SUPERCONDUCTIVITY 29

By using the equations χn = 2µ2
BD(ϵF) and the relation of BCS theory: H2

c

8π
= 1

2
D(ϵF)∆2

0,
the Pauli limiting field will be expresses as:

Hp =
∆0√

2
√

1 − χs
s(T )/χs

nµB

. (2.41)

In conventional superconductors (s = 0 and ℓ = 0), as in all the non-conventional
singlet superconductors (s = 0, ℓ = 0, 2, 4, · · · ), the spin susceptibility in the supercon-
ducting state χs = 0. Therefore, the Pauli limiting is maximum. On the other hand, in
some simple triplet state (s = 1, ℓ = 1, 3, · · · ), the z-component of the Cooper pair spins
can only be sz = ±1. As long as the spin part of the order parameter can rotate freely
with respect to orbital part, χs = χn for these equal spin pairing state. In this case,
the Pauli limiting does not occur. The order parameter of the equal spin pairing states
has an intrinsic anisotropy. An intermediate case between the singlet and the equal spin
pairing states has been taken by the Balian-Werthamer (BW) state.78) It exhibits χs =
2
3
χn and therefore, shows reduced Pauli limiting.

Next we discuss the spin susceptibility in the noncentrosymmetric superconductor
with antisymmetric spin-orbit interaction. Frigeri et al. proposed that the Van Vleck
term of spin susceptibility χs

s in the system without inversion symmetry has a finite value
by the strong spin-orbit interaction.79) Namely, the paramagnetic effect decreases in the
spin singlet state.

The spin susceptibility for the singlet s-wave gap function is shown in Fig. 2.19.79)

The left panel shows the temperature dependence of the spin susceptibility for the field
along the c-axis (χ// = χc). The middle panel shows the spin susceptibility for the field
in the ab-plane (χ⊥ = χa = χc) as a function of the temperature for three different values
of the spin-orbit coupling α. The susceptibility increases with the spin-orbit coupling
strength. When α becomes very large, the resulting susceptibility looks very similar to
that obtained for the triplet p-wave gap function, as shown in the right panel of Fig. 2.19.
For the spin-triplet phase, we chose the pairing state d(k)=∆(x̂ky − ŷkx). Therefore,
for the superconducting state in the non-centrosymmetric crystal structure, the similar
properties of the spin susceptibilities make it difficult to distinguish between a spin-triplet
and spin-singlet order parameter through NMR measurements in the strong spin-orbit
coupling limit.
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Fig. 2.19 (a), (b) Spin susceptibility in the case of singlet s-wave gap function for
gk ∝ (−ky, kx, 0) (CePt3Si). The spin susceptibility in the ab-planeχ⊥ and along the
c-axisχ// as a function of T for three different values of the antisymmetric spin-orbit
couplingα. The susceptibility in the superconducting state (T/Tc < 1) increases with the
spin-orbit coupling strength. The susceptibility is more strongly suppressed in the ab-
plane than along the c-axis. At T =0 we have χs

⊥ =χs
∥/2 and (c) Spin susceptibility for a

spin-triplet p-wave gap function d(k) //gk ∝ (−ky, kx, 0) (CePt3Si). The susceptibility is
in this case independent of the spin-orbit coupling α. In the superconducting state, the
susceptibility in the ab-plane coincides with that of the normal state.79)



3 Relevant Previous Study

3.1 RTX3(R: rare earth, T: transition metal, X: Si,

Ge)

3.1.1 Crystal structure of RTX3

In the present study, the electrical and magnetic properties were investigated experi-
mentally by using single crystals of RTX3 intermetallic compounds, where R is the rare
earth, T is the transition metal and X is Si and Ge. RTX3 compounds often crystallize in
the tetragonal BaNiSn3-type crystal structure, which is related with ThCr2Si2-type well-
known typical heavy-fermion system.80,81) Figure 3.1 shows (a)BaNiSn3-, (b)ThCr2Si2-
and (c)CaBe2Ge2-type crystal structures. The latter two crystal structure possess inver-
sion center, while in the BaNiSn3-type RTX3 compound, the R atoms occupy corners
and the body center of the tetragonal structure, but the T and X atoms lack inversion
symmetry in the crystal. The lack of inversion center in the crystal bring about the
non-uniform lattice potential V (r) along c-axis whereas the non-uniform lattice poten-
tial perpendicular to c-axis (a − b plane) is canceled out due to the four-hold symmetry
along c-axis C4ν in the tetragonal structure. This is characteristic in the RTX3 compound
with the BaNiSn3-type crystal structure.

CeTX3 with the BaNiSn3-type crystal structure is known to possess 11 compounds,
namely CeCoSi3, CeRuSi3, CeRhSi3, CePdSi3, CeOsSi3, CeIrSi3, CePtSi3, CeFeGe3,
CeCoGe3, CeRhGe3 and CeIrGe,82–91) while CeNiGe3 and CeRuGe3 crystallize in
SmNiGe3-, ScNiGe3-type crystal structures,92,93) respectively. The physical properties
of LaTX3 and CeTX3(T: transition metal, X: Si and Ge) have been studied on the poly-
crystalline sample.88,94–96) Among these studies, Muro et al. studied systematically the
polycrystalline CeTX3 (T: Rh and Ir, X: Si and Ge) compounds from the viewpoint of
the Kondo effect.97–99) We show in Table 3.I the physical properties of CeTX3.
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Ge

(a)  BaNiSn
3

(b)  ThCr
2
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2
(c)  CaBe

2
Ge

2

Fig. 3.1 (a)BaNiSn3-, (b)ThCr2Si2- and (c)CaBe2Ge2-type crystal structure.

31
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Table 3.I Volume of the unit cell, magnetic ground state, electronic specific heat coef-
ficient γ, Néel temperatureTN, Weiss temperatureΘp and effective magnetic momentµeff

of CeTX3 and corresponding references are shown. The abbreviations P and AF denote
paramagnetic and antiferromagnetic ground states, respectively. The abbreviations IV
and HF denote intermediate-valence and heavy-fermion states, respectively, where we
consider the compounds with γ > 100mJ/K2·mol to be the heavy-fermion ones.

Compounds
V

(Å3) Magnetism
γ

(mJ/mol·K2)
TN

(K)
Θp

(K)
µeff

(µB) reference

CeCoSi3 163.6 P(IV) 37 — -840 2.80 96
CeRuSi3 175.7 P(IV) — 89,94

CeRhSi3

{
a
c

174.8 AF(HF) 110 1.8
{

-112
-160

{
2.65
2.65 100,101

CePdSi3 180.6 AF 57 3/5.2 -26 2.56 88,99
CeOsSi3 P(IV) 94

CeIrSi3

{
a
c

177.1 AF(HF) 105 5.0
{

-186
-109

{
2.57
2.64 21,22

CePtSi3 175.5 AF 11 90,102
CeFeGe3 186.8 P(HF) 150 — -92 2.55 95

CeCoGe3

{
a
c

183.4 AF 32 21/12/8
{

-71
-29

{
2.23
2.16 103

CeRhGe3 193.6 AF 40 14.6/10/0.55 -28 2.53 97
CeIrGe3 193.5 AF 80 8.7/4.7/0.7 -21 2.39 97
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3.1.2 CeRhSi3

Single crystals of an antiferromagnet CeRhSi3 were grown for the first time in RTX3

by the Czochralski method, with the residual resistivity ρ0 = 0.7 and 0.8µΩ·cm, and
the residual resistivity ratio RRR (= ρRT/ρ0; ρRT denotes resistivity at room tempera-
ture) RRR = 64 and 150 for the current along [100] and [001], respectively, indicating
a high-quality sample.100) The magnetic susceptibility follows the Curie-Weiss law with
Ce3+ (µeff = 2.65µB/Ce for H // [100] and [001]),100,101) as shown in Fig. 3.2. The mag-
netic susceptibility is characteristic. The susceptibility for H // [100] is larger than that
for H // [001] in magnitude. As shown in Table 3.I, CeRhSi3 orders antiferromagneti-
cally below TN = 1.8K. CeRhSi3 is a heavy fermion antiferromagnet because the electronic
specific heat coefficient γ is large, 110mJ/K2·mol.101)

Fig. 3.2 Temperature dependence of (a) the magnetic susceptibility and (b) the inverse
magnetic susceptibility in CeRhSi3.

100,101)
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The dHvA experiment was done for CeRhSi3, together with a non-4f reference com-
pound LaRhSi3, as shown in Fig. 3.3.100) Branches α and βi correspond to the main Fermi
surfaces with the cyclotron effective mass of 15m0 for branch β2 for H // [100].
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Fig. 3.3 Angular dependence of the dHvA frequency (a) in CeRhSi3 and (b) its reference
compound LaRhSi3.
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Superconductivity was discovered under pressure.18) The corresponding pressure phase
diagram is shown in Fig. 3.4.20) With increasing pressure, the Néel temperature TN =
1.6K in the present sample increases, has a maximum around 8K, and then decreases
monotonically. Superconductivity is observed in a wide pressure range from a low pres-
sure of 2 kbar(0.2GPa) to about 30 kbar(3GPa), or over 3GPa. A maximum of the
superconducting transition temperature is Tsc = 1.1K at 2.6GPa. Characteristic is the
upper critical field Hc2, as shown in Figs. 3.5(a) and 3.5(b). When the magnetic field is
directed along the a-axis ([100] direction) at 2.6GPa, the upper critical field is slightly
suppressed with decreasing temperature. On the other hand, the upper critical field for
H // c-axis ([001] direction) possesses an upturn feature with decreasing temperature.19)

The upturn feature is often observed in strong-coupling superconductors such as UBe13

in f -electron systems.104) The upper critical field at 0K, Hc2, is roughly estimated to
300 kOe, indicating an extremely large value of Hc2(0). This might be an experimental
evidence for spin-triplet superconductivity which is realized only for H // [001] (c-axis).
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Fig. 3.4 Temperature-pressure (T -P ) phase diagram of CeRhSi3 based on the resistivity
measurements.20)
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3.1.3 CeCoGe3

Single crystals of CeCoGe3 were grown by the Bi-flux method. The residual resis-
tivity and residual resistivity ratio are ρ0 = 0.97µΩ·cm and RRR = 124 for current
J // [100] and 2.90µΩ·cm and 94 for current J // [001], indicating a high-quality sample.
The low-temperature magnetic susceptibility from 5 to 30K and the inverse magnetic
susceptibility for the magnetic field along [100] and [001] are shown in Figs. 3.6(a) and
3.6(b), respectively. It is noted that the susceptibility for H // [001] is larger than that
for H // [100]. Below the Néel temperature TN1 = 21K, CeCoGe3 becomes an antifer-
romagnet, and the [001] direction is an easy-axis in magnetization. The susceptibility is
highly anisotropic in this temperature range. In fact, the magnetization for H // [001] at

Temperature  ( K )

0 10 20 30
0

0.2

0.4

0.6

χ
  

( 
e
m

u
/m

o
l 

)

CeCoGe
3

H // [001]

[100]

T
N1T

N2

T
N3

Temperature  ( K )

0 100 200 300
0

200

400

600

CeCoGe
3

H // [100]

[001]

1
/χ

  
( 

m
o

l/
em

u
 )

(a) (b)

Fig. 3.6 (a) Low-temperature susceptibility and (b) the inverse magnetic susceptibility
of CeCoGe3 for H // [001] and [100]. The arrows indicate the magnetic transitions. Solid
lines are the results of the CEF calculation.103)
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Table 3.II CEF parameters, energy level schemes and the corresponding wave functions
for CeCoGe3.

103)

CEF parameters
B0

2 (K) B0
4 (K) B4

4 (K) λ1 (emu/mol)−1 λ2 (emu/mol)−1 χ0 (emu/mol)
3 −1 0 λx,y

1 =0 λx,y
2 =−125 χx,y

0 =−3.5 × 10−4

λz
1 =450 λz

2 =−60 χz
0 =−4.3 × 10−4

energy levels and wave functions
E(K) | −5/2⟩ | −3/2⟩ | −1/2⟩ | +1/2⟩ | +3/2⟩ | +5/2⟩
318 0 0 0 0 1 0
318 0 1 0 0 0 0
114 1 0 0 0 0 0
114 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0

2 K shows metamagnetic transitions at H = 1.9 and 8.4 kOe, as shown by open squares in
Fig. 3.7. At 24K, the magnetization increases linearly as a function of magnetic field. The
magnetic susceptibility follows the Curie-Weiss law at temperatures larger than 150K, as
shown in Fig. 3.6(b). The solid lines in Fig. 3.6(b) are the results of the CEF calculations,
where the constant magnetic susceptibilityχ0 is subtracted from the experimental data.
The CEF parameters are represented in Table 3.II.

The typical isothermal magnetization curves for H // [100] and [001] at 2K are shown
in Fig. 3.8(a). A three-step metamagnetic transition is observed for H // [001]: Hc1 =
1.9 kOe, Hc2 = 8.4 kOe and Hc3 = 30 kOe. It was also confirmed from the pulsed high-
field magnetization measurement that there is no metamagnetic transition above Hc3 =
30 kOe, as shown in Fig. 3.8(b). For H // [100], the magnetization increases linearly up
to 70 kOe and the magnetization at 70 kOe is found to be 0.15 µB/Ce, indicating highly
anisotropic magnetizations.

As shown in Fig. 3.8(a), at 2K, the metamagnetic transition with three steps is
found at Hc1 = 1.9 kOe, Hc2 = 8.4 kOe and Hc3 = 30 kOe. The third metamagnetic
transition Hc3 increases from a field Hc3 = 30 kOe at 2K to Hc3 = 41 kOe at 16K and
then decreases to lower fields for temperatures above 16K and finally disappears at 22K,
as shown in Fig. 3.8(c), where the magnetization at higher temperatures increases linearly
as a function of magnetic field, indicating the paramagnetic state. A magnetic phase
diagram was thus constructed, as shown in Fig. 3.9. The characteristic feature of the
phase diagram is that the metamagnetic transition with three steps is observed below
8K and then reduced into two steps above 8K. The two-step metamagnetic transition is
observed in a very narrow temperature range from TN3 = 8K to TN2 = 12K. The one-
step metamagnetic transition is thus observed in the temperature range from TN2 = 12K
to TN1 = 21K, although in this temperature range, CeCoGe3 possesses a ferromagnetic
spontaneous magnetic moment at low fields, as shown in Fig. 3.7.
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Fig. 3.8 (a)Magnetization at 2K, measured by the SQUID magnetometer, (b) pulsed-
field magnetization at 1.3K and (c) isothermal magnetization H // [001] at various tem-
perature in CeCoGe3. Dashed lines in (b) are the results of CEF calculations.103)
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The dHvA experiment was carried out for CeCoGe3 and its non-4f reference com-
pound LaCoGe3.

106) The angular dependence of the dHvA frequency in CeCoGe3 and
LaCoGe3 is shown in Figs. 3.10(a) and 3.10(b), respectively. Figure 3.10(c) corresponds
to the theoretical one based on the full potential APW(FLAPW) energy band structure
calculation. The corresponding energy band structure, density of states and Fermi sur-
faces are shown in Figs. 3.11(a), 3.11(b) and 3.11(c), respectively. Here, the 4f level
of La is shifted upward by 0.2Ry in the band calculation. From these results of band
calculations, the dHvA branches of LaCoGe3 are identified as follows:
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1) Branch α and η are the outer and inner orbits of bands 69- and 70-electron Fermi
surfaces, respectively.

2) Branch β is due to the bands 67- and 68-hole Fermi surfaces.

3) Branches ε and θ are due to the outer and inner orbits of band 65- and 66-hole
Fermi surfaces, respectively.

There exist three different Fermi surfaces. Each Fermi surface is found to consist of
two different Fermi surfaces in volume but similar in topology. This is due to the small
magnitude of antisymmetric spin-orbit interaction in LaCoGe3, for example, 2|αp⊥| =
460K for branch α.

The dHvA branches in CeCoGe3, which were observed in the field-induced ferromag-
netic state (or the paramagnetic state), are similar to those in LaCoGe3, but the splitting
of two similar dHvA branches is large compared with that in LaCoGe3. This is due to
an enhancement of the ferromagnetic exchange interaction in CeCoGe3. The main dHvA
branch of CeCoGe3 is found to possess the relatively large cyclotron mass m∗

c ≃ 10m0,
which is compared with 1m0 in LaCoGe3.
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The pressure experiment was done for a polycrystal sample of CeCoGe3 by using the
Bridgeman anvil cell up to 5.6GPa.23) Figure 3.12 shows the temperature dependence of
the electrical resistivity under several pressures. The resistivity drop due to supercon-
ductivity appears below about 4.5GPa, and the resistivity zero is obtained above 5GPa.
The pressure phase diagram is shown in Fig. 3.13. The Néel temperature most likely
becomes zero above Pc ≃ 5.5GPa. Here, the onset of the resistivity drop is defined as
the superconducting transition temperature Tsc in this experiment, whereas the temper-
ature showing zero resistivity is defined as Tsc in the present thesis study, presented in
Chap. 6.2.

At 5.6GPa, the resistivity measurement was done under several magnetic fields, as
shown in Fig. 3.14. The resistivity zero is broken by applying magnetic fields of 0.1T or
1 kOe, although the onset of superconductivity is stable up to 4.5T.

The polycrystal sample was used instead of the high-quality single crystal because
the dHvA signal was observed in the single crystal sample. This was mainly due to the
sample grown by the Bi-flux method. Bi was included in subgrain boundaries of the
single crystal CeCoGe3, which produces superconductivity of Bi at 4 - 9K at pressure
higher than 2GPa. In the present experiment, we used almost the same single crystal
sample grown by the Bi-flux method, but inclusions of Bi were subtracted completely by
adjusting the thickness of the single crystal sample.
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Fig. 3.12 Temperature dependence of the electrical resistivity under several pressures in
a polycrystalline CeCoGe3.
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3.1.4 CeIrSi3

Single crystals of CeIrSi3 and its non-4f reference compound LaIrSi3 were grown by
the Czochralski method.21,22) The residual resistivity ρ0 and the residual resistivity ratio
RRR are ρ0 = 0.40µΩ·cm and RRR = 100 for current J // [110], and ρ0 = 0.48µΩ·cm and
RRR = 110 for J // [001], respectively, indicating a high-quality sample. The magnetic
susceptibility is very similar to that of CeRhSi3, as shown in Fig. 3.15. Solid lines in
Fig. 3.15 are the result of the CEF calculations. The CEF parameters are summarized
in Table 3.III
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Fig. 3.15 Temperature dependence of the magnetic susceptibilityχ for H // [100], [110],
and [001] in CeIrSi3. The solid lines are the CEF curves.22)

Table 3.III CEF parameters Bl
m, the molecular exchange constant λ, energy levels E

and the corresponding wave functions in CeIrSi3.
22)

CEF parameters
B0

2( K ) B0
4(K ) B4

4(K ) λx (mol/emu ) λz (mol/emu )
8.35 0.1 8.3 -135 -91

χ0x (mol/emu ) χ0z (mol/emu )
-4.0 × 10−5 -1.3 × 10−4

Energy levels and wave functions
E (K ) |+5/2⟩ |+3/2⟩ |+1/2⟩ |−1/2⟩ |−3/2⟩ |−5/2⟩

462 0.796 0 0 0 0.605 0
462 0 0.605 0 0 0 0.796
149 0 0 1 0 0 0
149 0 0 0 1 0 0
0 -0.605 0 0 0 0.796 0
0 0 0.796 0 0 0 -0.605
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The angular dependence of the dHvA frequency in LaIrSi3 and the theoretical one is
shown in Figs. 3.16(a) and 3.16(b), respectively. The detected branches are approximately
the same as those in LaCoGe3. The corresponding Fermi surfaces in LaIrSi3 are shown
in Fig. 3.17.
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The effect of pressure on the electronic state was investigated for an antiferromagnet
CeIrSi3. As shown in Fig. 3.18, Néel temperature TN = 5K at ambient pressure decreases
monotonically, and superconductivity appears above 1.9GPa, possessing the maximum
of the superconducting transition temperature Tsc = 1.6K at 2.6GPa. Characteristic is
also the upper critical field, as shown in Fig. 3.19. The upper critical field indicates the
upturn feature with decreasing temperature. The Hc2(0) value is estimated to be 350 -
450 kOe. This is due to the strong-coupling superconducting nature of CeIrSi3, as noted
in CeRhSi3. This was experimentally confirmed from the ac-specific heat measurement
for CeIrSi3.

107)

Figure 3.20 shows the temperature dependence of the ac-specific heat at several pres-
sures. At 1.31GPa, the antiferromagnetic ordering is observed at TN = 4.5K, but at
2.19GPa, the antiferromagnetism with TN = 1.7K coexists with superconductivity with
Tsc = 1.4K. Only superconductivity is observed above the critical pressure Pc = 2.25GPa.
It is noted that the specific heat indicates a huge jump at the superconducting transition
above Pc. The jump of the ac-specific heat ∆Cac/Cac(Tsc) at 2.58GPa is 5.75 at Tsc =
1.6K, which is extremely large compared with the BCS value of ∆C/γTsc = 1.43. This
value is the largest in all the superconductors. An antiferromagnet CeIrSi3 is thus changed
into a strong-coupling superconductor. The γ value at 2.58GPa is roughly estimated as
γ = 100 ± 20mJ/K2·mol, which is approximately the same as γ = 120mJ/K2·mol at
ambient pressure.

Fig. 3.18 Pressure phase diagram in CeIrSi3.
22)
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3.2 Ce2TGe6(T: Pd, Cu)

3.2.1 Crystal structure and the magnetic properties
of Ce2TGe6(T: transition metal)

Ternary compounds Ce2TGe6, where T is a transition metal belonging to group 10
and 11 in the periodic table, namely Ni, Pd, Pt, Cu, Ag and Au, were reported to be
crystallized in the Ce2CuGe6-type non-centrosymmetric orthorhombic crystal structure
with space group Amm2 (#38),108–114) as shown in Fig. 3.21. The characteristic crystallo-
graphic feature of Ce2TGe6 (T: transition metal) is that the lattice constant is elongated
along the c-axis, almost 5 times longer than those of the a- and b-axes, and the Ce-atoms
in the crystal structure possess two crystallographically inequivalent sites, named Ce1 and
Ce2. The physical properties of Ce2TGe6(T: transition metal) were studied on the poly-
crystalline samples.92,112,113,115–119) The magnetic properties in Ce2TGe6 are summarized
in Table 3.IV

Ce1

Ce1

Ce1

Ce2

Ce2

T

Ge

a
b

c

Fig. 3.21 Crystal structure of Ce2TGe6 (T: transition metal) with 3 unit cells along
b-axis.
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Table 3.IV Volume of the unit cell, magnetic ground state, electronic specific heat co-
efficient γ, Néel temperature TN, Weiss temperature Θp and effective magnetic moment
µeff of CeTX3 and corresponding references are shown. The abbreviations P and AF de-
note paramagnetic and antiferromagnetic ground states, respectively. The abbreviations
IV and HF denote intermediate-valence and heavy-fermion states, respectively, where we
consider the compounds with γ > 100mJ/K2·mol to be the heavy-fermion ones.

Compounds
V

(Å3) Magnetism
γ

(mJ/mol·K2·Ce)
TN

(K)
Θp

(K)
µeff

(µB) reference

Ce2NiGe6 368.0 AF — 10.4/6.8 — 2.45 113,114
Ce2CuGe6 370.1 AF 12.2 15 -6.7 2.48 109,112,118
Ce2PdGe6 374.9 AF 14 11.5 -16.1 2.52 116,117
Ce2AgGe6 387.0 — — — — — 109
Ce2PtGe6 374.0 AF — 9.0 -7.0 2.43 116
Ce2AuGe6 384.0 — — — — — 109

3.2.2 Ce2PdGe6

The magnetic properties of polycrystalline Ce2PdGe6 were studied by Fan et al.117)

and Strydom et al.116). Strydom et al. reported that the temperature dependence of
the magnetic susceptibility indicates an antiferromagnetic ordering around 11.4K. The
magnetization at T = 1.9K was very small up to a field of 10 kOe. With increasing
the magnetic field, they observed a metamagnetic transition just above 10 kOe, with
a saturation moment of 0.9µB/Ce, as shown in Figs. 3.22(a) and 3.22(b), respectively.
Fan et al. also mentioned that the T 3-dependence of the magnetic contribution to the
heat capacity below the Néel temperature TN is ascribed to the spin-wave, as shown in
Fig. 3.23. They also determined the electronic specific heat coefficient γ of 28mJ/mol·K2

and ΘD of 270K, and the magnetic entropy is 90% of 2Rln2 at the Néel temperature,
suggesting a doublet ground state.
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(a) (b)

Magnetic Field ( T )

0 2 4 6

Fig. 3.22 (a)Temperature dependence of the magnetic susceptibility and (b) the mag-
netization curve at 4.2K in polycrystalline Ce2PdGe6.

116)

Fig. 3.23 (a)Temperature dependence of the specific heat in polycrystalline
Ce2PdGe6.

117)
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3.2.3 Ce2CuGe6

The magnetic properties of polycrystalline Ce2CuGe6 were studied by Yamamoto et
al.112), Konyk et al.115) and Tseng et al.118). They reported that the temperature de-
pendence of the magnetic susceptibility indicates a ferrimagnetic ordering around 14.7K
and the residual magnetization in magnetization curve at 4.2K is 7.8 × 10−4µB/f.u., as
shown in Figs. 3.24(a) and 3.24(c), respectively. A linear Curie-Weiss law with an effec-
tive magnetic moment of 2.66µB/Ce and the paramagnetic Curie temperature of −2K
is found in the temperature range between 70 - 300K, as shown in Fig. 3.24(b).

Tseng et al. mentioned that in Ce2CuGe6 the 4f electrons are localized and the T 3-
dependence of the magnetic contribution to the heat capacity below the Néel temperature
TN = 14.7K is ascribed to the spin-wave for an antiferromagnetic material, as shown in
Fig. 3.25(b). They also determined the electronic specific heat coefficient γ and ΘD to
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Fig. 3.24 (a)Temperature dependence of the magnetic susceptibility and (b) the inverse
magnetic susceptibility118), and (c) the magnetization curve at 4.2K112) in polycrystalline
Ce2CuGe6.
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be 12.2mJ/mol·K2 and 280K, respectively, and the magnetic entropy is almost 2Rln2 at
Néel temperature, indicating a doublet ground state.

(a) (b)

Fig. 3.25 (a)Temperature dependence and (b)T 3-dependence of the heat capacity in
polycrystalline Ce2CuGe6.

118)



4 Motivation of the Present Study

Heavy-fermion superconductivity is found to coexist with antiferromagnetism as well
as ferromagnetism. Furthermore, it is widely recognized that pressure P is a useful tun-
ing parameter to find superconductivity in magnetically ordered f -electron compounds
8,120). With increasing pressure, the magnetic ordering temperature Tmag becomes zero
at the critical pressure Pc in some compounds: Tmag → 0 for P → Pc. Namely, the
antiferromagnetic state in the cerium compound, for example, is changed into the para-
magnetic state at pressures higher than Pc. The heavy fermion state is formed around
Pc as a result of the competition between the RKKY interaction and the Kondo effect.
Heavy-fermion superconductivity is often observed in this pressure region.

Recently superconductivity in the non-centrosymmetric crystal structure has been
reported in CePt3Si13,14) with the tetragonal structure (P4mm), UIr15–17) with the mon-
oclinic structure (P21), CeRhSi3

18–20), CeIrSi3
8,21,22) and CeCoGe3

23) with the tetragonal
BaNiSn3-type structure (I4mm). The existence of inversion symmetry in the crystal
structure is believed to be a favorable factor for the formation of Cooper pairs, especially
for the spin-triplet configuration because in the non-centrosymmetric crystal structure,
one conduction electron with a momentum p and an up-spin state and the other con-
duction electron with a momentum −p and an up-spin state belong to two different
Fermi surfaces, separated by 10 - 1000K in energy. Here, two Fermi surfaces are very
similar to each other in topology but are different in the volume of the Fermi surface.
This splitting of the Fermi surface occurs via the antisymmetric spin-orbit interaction
α(p×n)·σ, where α denotes the strength of the spin-orbit coupling, n is a unit vector
taken to be the [001] direction (c-axis) in CePt3Si, CeRhSi3, CeIrSi3 and CeCoGe3, for
example, and σ is the Pauli matrix62,74). Namely, the non-uniform lattice potential V (r)
in the tetragonal structure, such as in CePt3Si, CeRhSi3, CeIrSi3 and CeCoGe3, induces
an electric field (−∇V (r)) along the [001] direction (c-axis). The effective magnetic field,
which approximately corresponds to p×∇V (r), namely α(p×n), is brought about for
the conduction electron with the momentum p in this electric field. The antisymmet-
ric spin-orbit interaction α(p×n)·σ is regarded as the Zeeman energy arising from the
magnetic interaction between this effective magnetic field and the spin of the conduc-
tion electron under zero magnetic field. The energy band is thus split into two different
bands.62,69,121)

If inversion symmetry exists or the antisymmetric spin-orbit interaction is neglected, a
pair of bands is degenerated, and then the pair of Fermi surfaces becomes the same. Under
magnetic fields, these degenerated Fermi surfaces in the crystal with inversion symmetry
split into two bands, depending on the up- and down-spin states, which means breaking
of the time reversal symmetry. This is well known as Zeeman splitting. The split Fermi
surfaces, however, correspond to the same dHvA frequency in the dHvA experiment,
because the observed dHvA frequency corresponds to the extremal cross-sectional area
SF of the Fermi surface extrapolated to zero field, as shown in Fig. 4.1(a). If the inversion
symmetry is absent, the pair of Fermi surfaces possesses two different Fermi surfaces and
corresponds to two different dHvA signals, as shown in Fig. 4.1(b), which is similar to
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Fig. 4.1 Fermi surface and the corresponding field dependence of the dHvA frequency
in (a) the usual degenerated non-magnetic metal, (b) the non-magnetic metal without
inversion symmetry in the crystal structure, and (c) the 4f -localized ferromagnet.

that in the 4f -localized ferromagnet, as shown in Fig. 4.1(c).

There exist so many compounds without inversion symmetry in the crystal struc-
ture. It is, however, difficult to grow high-quality single crystals for detecting the de
Haas-van Alphen (dHvA) signal. A few dHvA experiments were previously done for the
non-centrosymmetric compounds. We briefly introduce the split Fermi surfaces based
on the antisymmetric spin-orbit interaction. The first dHvA experiment was done for
a valence fluctuation compound Yb4Sb3 with the anti-Th3P4 type crystal structure, as
shown in Fig. 4.2(a).122) Five nearly spherical Fermi surfaces were detected in the dHvA
experiment, as shown in Fig. 4.2(b), with relatively large cyclotron masses ranging from
1.8 to 10.5m0.

122) The next dHvA experiment was also carried out for the similar com-
pounds of ferromagnets U3As4 and U3P4, with m∗

c = 7 - 70m0,
123) and a ferromagnet UIr

mentioned above.124) It is, however, not easy to estimate the antisymmetric spin-orbit
interaction for these compounds.

A relation of crystal structures between LaPtAs and CePtAs is interesting. LaP-
tAs crystallizes in the LiGaGe-type hexagonal structure (P63mc) without inversion sym-
metry along the c-axis, while CePtAs crystallizes in the YPtAs-type hexagonal struc-
ture (P63/mmc) with inversion symmetry, as shown in Fig. 4.3. Namely, the crystal
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structure of CePtAs is the double hexagonal structure, where the LiGaGe-type hexagonal
structure is symmetrically inverted along the c-axis. Unfortunately the dHvA experiment
was not carried out for LaPtAs, although several cylindrical Fermi surfaces were obtained
in the dHvA experiment for antiferromagnets CePtAs and CePtP.125)

Furthermore, the dHvA experiments were also carried out for LaRhSi3 and CeRhSi3,
20)

as mentioned in Chap. 3. The antisymmetric spin-orbit interaction was not deter-
mined experimentally. Recently, the Fermi surface properties of LaPt3Si, CePt3Si,
LaCoGe3, CeCoGe3 and LaIrSi3 were clarified from the dHvA experiments and energy
band calculations.22,75,106,126) The antisymmetric spin-orbit interaction was obtained to
be 2|αp⊥| = 2400K in LaPt3Si126) and 460K in LaCoGe3

106) and 1100K in LaIrSi3 for
the main Fermi surface.22)

In the present study, we have grown the single crystals LaFeGe3, LaRhGe3, LaIrGe3

and PrCoGe3 by the Bi-flux method, which have no inversion center in the crystal struc-
ture, and compared their characteristic features of split Fermi surfaces with the previous
results of LaCoGe3 and LaIrSi3. It is our purpose to clarify a change of the Fermi surfaces
and the magnitude of the antisymmetric spin-orbit interaction 2|αp⊥| for a systematic
change of the potentials when the transition metal T in LaTGe3 is changed from T =
Co, Rh to Ir and T = Fe to Co, and LaIrX3 is changed from X = Si to Ge. It expected
that the nuclear potential is highly different in T = Co, Rh and Ir and X = Si and Ge.
Especially, the atomic number of Ir is large compared with those Co and Rh because the
rare earth elements are inserted in the periodic table. A paramagnet PrCoGe3 is also
investigated to clarify the 2|αp⊥| value when the cyclotron mass in PrCoGe3 is nearly
twice as large as that of LaCoGe3. We considered that the present systematic study is
important to consider superconductivity in the non-centrosymmetric crystal structure in
the f -electron systems as well as the other compounds such as non-magnetic compounds
Li2Pt3B and Li2Pd3B.

The purpose in the present study is also to clarify the superconducting property in
the non-centrosymmetric crystal structure. Frigeri et al. studied the possible existence
of the spin-triplet pairing in the non-centrosymmetric compounds such as CePt3Si with
the tetragonal structure.74,79) The favorable pairing state for the spin-triplet state is of
the p-wave type: d(k) = ∆(kyx − kxy), and the order parameter becomes a mixture of
spin-singlet and spin-triplet components. The corresponding spin susceptibility becomes
a non-zero residual susceptibility at 0K: the spin susceptibility for the magnetic field
along the [001] direction, χ(H // [001]) is unchanged below the superconducting transition
temperature Tsc, revealing the spin-triplet superconductivity with H ⊥d, and χ(H ⊥
[001]) becomes χ(H // [001])/2 at 0K, revealing an effect of the mixture of spin-singlet and
spin-triplet components. The gap structure was given by considering a two-component
order parameter with spin-singlet and spin-triplet components. Line nodes can appear
on one of the two Fermi surfaces, while the other Fermi surface possesses a full gap.
Many characteristic properties are experimentally observed in CePt3Si,13,14) UIr,15,17)

CeRhSi3,
18–20) CeIrSi3

21,22) and CeCoGe3
23) in the f -electron systems.

Among them, an antiferromagnet CeIrSi3 with the non-centrosymmetric tetrago-
nal structure indicates the characteristic pressure-induced superconductivity,21,22) as de-
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scribed in Chap. 3. Superconductivity is observed in the wide pressure region from about
2GPa to 4GPa, and the critical pressure Pc, where the Néel temperature TN = 5K at
ambient pressure becomes zero, is Pc ≃ 2.25GPa. The maximum of the superconducting
transition temperature Tsc is Tsc ≃ 1.6K around 2.5GPa. The upper critical field Hc2

for the magnetic field H // [110] is slightly suppressed by the paramagnetic effect with
decreasing temperature and reaches Hc2(0) = 95 kOe at P = 2.6GPa, indicating the
spin-singlet character. On the other hand, no such paramagnetic suppression is realized
for H // [001] and indicates an upturn increase of Hc2 with decreasing temperature. The
upper critical field at 0K is most likely Hc2(0) = 350 - 450 kOe in the recent experiment
under high magnetic fields up to 280 kOe at P = 2.6GPa. The present result Hc2 for
H // [001] might become an experimental evidence for the spin-triplet superconductivity
in the non-centrosymmetric crystal structure. The similar superconductivity is observed
in CeRhSi3.

18–20)

The present experimental efforts were mainly contributed to an observation of su-
perconductivity in another CeTX3. Ternary rare earth compounds CeTX3(T: transition
metal, X: Si, Ge) including CeRhSi3, CeIrSi3 and CeCoGe3 mentioned above crystallize
in the unique tetragonal BaNiSn3-type crystal structure.82–91) The electrical and mag-
netic properties of CeTX3 were mainly studied by using polycrystal samples,88,94–99) ex-
cept CeRhSi3,

18–20,100) CeIrSi3
21,22) and CeCoGe3.

103,106) We grew the other CeTX3 single
crystals to investigate the electrical and magnetic properties. In the present study, we
clarified the electrical and magnetic properties of CeTX3 single crystals and carried out
the pressure experiments to find superconductivity by measuring the electrical resistivity
under pressure.

We also investigated another non-centrosymmetric compounds of Ce2PdGe6 and
Ce2CuGe6 without inversion symmetry in the crystal structure.



5 Experimental

5.1 Single crystal growth

Single crystals of LaFeGe3, LaRhGe3, LaIrGe3, CePtSi3, CeFeGe3, CeCoGe3,
CeRhGe3, CeIrGe3, PrCoGe3, Ce2PdGe6 and Ce2CuGe6 were grown by the flux method.
Moreover, the single crystals of LaRuSi3 and CeRuSi3 were grown by the Czochralski
method. The single crystal growth will be introduced in this chapter.

5.1.1 Flux method

The flux method is a kind of the single crystal growth method, which corresponds to a
slow cooling process of the premelted components, taken in non-stoichiometric amounts.
The advantages of this technique are shown below: 127,128)

(1) Single crystals can be grown often well below their melting points, and this often
produces single crystals with fewer defects and much less thermal strain.

(2) Flux metals offer a clean environment for growth, since the flux getters impurities
which do not subsequently appear in the crystal.

(3) There are no stoichiometric problems caused, for instance, by oxidation or evapo-
ration of one of the components. Single crystal stoichiometry “control” itself.

(4) This technique can be applied to the compounds with high evaporation pressure,
since the crucible is sealed in the ampule and the flux prevents evaporation.

(5) No special technique is required during the crystal growth and it can be done with
the simple and inexpensive equipment. This is a reason why the flux method is
sometimes called “poor man’s” technique. 127)

There are, to be sure, a number of disadvantages to the technique. The first and
foremost is that it is no always an applicable method: an appropriate metal flux from
which the desired compound will crystallize may not be found. In addition, difficulties are
encountered with some flux choices, when the flux enters the crystal as an impurity. The
excessive nucleation causes small crystals, which takes place either due to a too fast cool-
ing rate, or supercooling of the melt by subsequent multiple nucleation and fast growth
of large but imperfect crystals usually containing inclusions. The contamination from the
crucible cannot be ignored, when reactions with materials occur at high temperatures.
Finally, the ability to separate crystals from the flux at the end of growth needs special
considerations.

59
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quartz tube

furnace vacuum pump

Fig. 5.1 Baking of an alumina crucible.

RTX3(R: rare earth, T: transition metal, X: Si, Ge)

Single crystals of RTX3 (R: rare earth, T: transition metal, X: Si or Ge) were grown
by the flux method using Sn or Bi as a flux for RTSi3 and RTGe3, respectively. Here, we
describe the growing process in CePtSi3.

The high-quality alumina crucible (Al2O3: 99.9%) was used as a container with outer
diameter of 15.5mm3, inner diameter of 11.5mm3 and length of 60mm3. Since the
crucible usually contains impurities, the crucible was cleaned in alcohol and baked it up
to 1050 C̊ under high-vacuum (less than 1 × 10−6 torr), as shown in Fig. 5.1.

Polycrystalline ingots of CePtSi3 was prepared by arc-melting stoichiometric quanti-
ties of high-pure metals of 4N(99.99% pure)-Ce, 4N-Rh and 5N-Ge and smashed it into
tiny pieces with a hammer. These polycrystalline samples, together with Sn-metal in the
atomic ratio CePtSi3 : Bi = 1 : 20, were put into the alumina crucible and sealed in a
quartz ampule with 160 mmHg pressure of Ar-gas, which is adjusted to reach at 1 atm at
the highest temperature.

Next the sealed ampule was set in the electric furnace, as shown in Fig. 5.2. The fur-
nace possesses the temperature gradient naturally. As we know from our own experience,
the better results are obtained when we put the ampule where the temperature is more
homogeneous. Therefore, we placed the ampule at the highest- and the flat-temperature
gradient position. Nevertheless, the temperature gradient is useful for growing some com-
pounds. There are some reports of growing crystals by temperature gradient method (ex.
GdB6).

127)

The furnace is controlled by the PID temperature controller with Pt-PtRh13% (type-
R) thermocouple. Figure 5.3 shows the block diagram of the furnace control system. In
this system, we obtained the temperature stability less than 0.1 ◦C.

The growth process of CePtSi3 is shown in Fig. 5.4. The crucible are heated up to
1050 ◦C which is the maximum temperature of the electric furnace. Then the temperature
keeps for 24 hours. The temperature was decreased slowly. The cooling rate was gradually
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Fig. 5.3 Block diagram of the furnace control
system.

increased with decreasing the temperature and the furnace was turned switch off at
650 ◦C.

After taking out the ampule from the furnace, the ampule was opened and sealed
it again in a pyrex ampule under high vacuum, as shown in Fig. 5.5. The ampule was
heated up to 320 C̊, which is sufficiently higher than the melting point of Sn-metal, in
the muffle furnace. Next the ampule was taken out quickly from the furnace and was
set into the centrifuge. Finally the flux was removed from the crystals by spinning the
ampule in the centrifuge.

The photographs of these RTX3(R: rare earth, T: transition metal, X: Si, Ge) single
crystals are shown in Fig. 5.6(a) - 5.6(j). The orientation of the single crystal is denoted
in Fig. 5.6(a), for example.

Here, we note that the single crystal for the dHvA experiment. As for the size of the
single crystal sample, it is possible to detect the dHvA signal for LaRhGe3 and PrCoGe3,
as shown in Figs. 5.6(g) and 5.6(j), respectively, but the filling factor of the dHvA pick-
up coil system in the standard dHvA experiment becomes weak for small samples of
LaFeGe3 and LaIrGe3, as shown in Figs. 5.6(f) and 5.6(i), respectively. We therefore
carried out both the pick-up coil dHvA system and the cantilever type dHvA system for
LaIrGe3. For the cantilever type dHvA experiment, it is needed to prepare a very tiny
sample with about 0.1 × 0.1 × 0.05mm3, as shown in Fig. 5.6(i). In the case of LaFeGe3,
only the cantilever type dHvA experiment was carried out because an as-grown sample
is extremely tiny.

Here, it was also noted how to avoid the Bi inclusion in the single crystal of CeCoGe3.
This is quite important to investigate the superconductivity in CeCoGe3 because the
superconductivity of Bi is also observed above 2GPa. In fact, the superconductivity
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Fig. 5.5 Separation of flux and crystals by spinning the ampule in the centrifuge.

of Bi have been observed experimentally above 2GPa in most of the samples grown
by the Bi-flux method, including CeCoGe3. In the present case, we polished first the
single crystal sample of CeCeGe3 carefully, with optical microscope. The color of Bi is
different from that of the single crystal of CeCoGe3. Then, we searched the Bi inclusion
in a polished CeCoGe3 sample by using a scanning electron microscope, as shown in
Fig. 5.7. The electron beam was passed through the sample with thickness of 40 µm of
CeCoGe3, where the Bi inclusion in CeCoGe3 was checked correctly within the resolution
of the electron beam. The white color in Fig. 5.7 indicates the Bi inclusion in CeCoGe3.
Finally, a part of the CeCoGe3 sample without Bi inclusion was used for the electrical
resistivity measurement.
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Fig. 5.6 Photographs of the single crystal of RTX3.
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Fig. 5.7 Photograph of the single crystal sample of CeCoGe3, obtained by using the scan-
ning microscope.

Ce2TGe6(T: Pd, Cu)

Owing to the incongruent melting nature of Ce2TGe6(T: Pd, Cu), the growth from
the direct melt was not possible. Therefore, we grew the single crystals of Ce2PdGe6 and
Ce2CuGe6 by means of the flux method using Bi as flux. Here, we describe the growing
process in Ce2PdGe6 At first an alloy button of Ce2PdGe6 was made by melting 3N-Ce,
4N-Pd and 5N-Ge metals in a tetra-arc furnace. The alloy button was remelted several
times. The alloy button was then crushed into small pieces, and then these small pieces,
together with 5N-Bi metal, were inserted in a high-quality alumina crucible, with the
ratio 1:30 mol%. The alumina crucible was then sealed in a quartz ampule with a partial
pressure of Ar gas. The temperature of the furnace was increased up to 1050 C̊ and
kept at this temperature for 24 hours in order to achieve proper homogenization. Then
the furnace was cooled down to 650 C̊ over a period of 4 weeks. The excess flux was
separated by means of centrifuging. Relatively large single crystals with a typical size of
1.1 × 0.9 × 0.7 mm3 for Ce2PdGe6 and 0.9 × 0.7 × 0.2mm3 for Ce2CuGe6 were obtained,
as shown in Fig. 5.6(k) and Fig. 5.6(l), respectively. The arrows in Fig. 5.6(k) indicate
the sample orientation.
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5.1.2 Czochralski method

The schematic view of the arc furnace is shown in Fig. 5.8. It has four tungsten torches
to improve a stability of the temperature of the melted material and a Cu hearth, which
corresponds to the crucible, is water-cooled one. Arc melting has been done under high-
quality (6N) argon gas atmosphere. The melting procedure was repeated several times
to ensure the sample homogeneity. This method is only applicable to the compounds
with low-vapor pressure. When we pull up the crystal from a melt by using a seed, it
is important to control the diameter of the crystal, a pulling speed and the power of
torches. A typical necking diameter is about 1mm, while a typical diameter of the ingot
is 3-4mm. The growth rate is 10-15mm/h to avoid stacking faults in the sample. We
usually keep this speed all over the time and do not rotate both the seed and hearth to
avoid stacking faults in the sample.

seed crystal

rotation

Cu hearth

torch

observation
window

water
cooling

water cooling

observation
window

SUS chamber

vertical motion

gas inlet
pump out

Ar gas

water
cooling
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Fig. 5.8 Illustration of the tetra-arc furnace.
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RRuSi3(R: La, Ce)

Starting materials of RRuSi3(R: La, Ce) were 3N-Ce, 4N-Ru and 5N-Si. Fortunately
the isothermal cross-section of the ternary Ce-Ru-Si phase diagram at 600 C̊ was already
studied by Yu.D. Seropegin et al.,89) as shown in Fig. 5.9. According to this phase
diagram, the atomic ratio between Ce(or La), Ru and Si was determined to be 1 : 1 :
3 - 3.5. First we used a polycrystal sample as a seed crystal in the Czochralski pulling
method. Next we used the previous single crystal sample as the seed crystal. A pulling
speed was 10-15mm/hour and the diameter is 2 - 3mm. The photograph of a CeRuSi3
ingot, together with a LaRuSi3 ingot, is shown Fig. 5.10.

Fig. 5.9 Isothermal cross-section of the ternary Ce-Ru-Si phase diagram at 600 C̊.

(b) CeRuSi
3

10 mm

(a) LaRuSi
3

Fig. 5.10 Photographs of single crystal ingots in (a) LaRuSi3 and (b)CeRuSi3.
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5.1.3 Crystal structural analyses

The single-crystal X-ray diffraction measurement was carried out by using a
RIGAKU diffractometer with graphite monochromated Mo-Kα radiation(wave length,
λ = 0.71075 Å) for LaRuSi3, LaFeGe3, LaRhGe3, LaIrGe3, CeRuSi3, CePtSi3, CeFeGe3,
CeRhGe3, CeIrGe3 and PrCoGe3 because the single crystals of these compounds were
grown for the first time. The lattice parameter, positional parameters and thermal pa-
rameters for these compounds were determined at room temperature, as shown in Ta-
ble 5.I(a) - (j). The lattice parameters for RTX3(R: rare earth, T: transition metal, X:
Si, Ge) are approximately the same as the previous value,82–91) although there is no in-
formation on the positional parameters of RTX3(R: rare earth, T: transition metal, X:
Si, Ge) except LaIrSi3.

83).

Table 5.I Lattice parameters, atomic coordinates and thermal parameters of (a)LaRuSi3,
(b)LaFeGe3, (c)LaRhGe3, (d)LaIrGe3, (e)CeRuSi3, (f)CePtSi3, (g)CeFeGe3, (h)CeRhGe3

(i)CeIrGe3, (j)PrCoGe3 where R and wR are the reliability factors, and Beq is an isotropic
atomic displacement parameter.

(a)LaRuSi3
Space group Lattice parameter Atom(site) Position Beq

T (K) (Å) x y z
I4mm(#107) a = 4.2641(5) La(2a) 0.00000 0.00000 0.58120 0.590(14)

300 K c = 9.9526(10) Ru(2a) 0.00000 0.00000 0.23736 0.50(2)
Si(2a) 0.00000 0.00000 0.00000 0.73(3)
Si(4b) 0.00000 0.50000 0.34152 0.81(2)

R = 0.67% wR = 1.61%

(b)LaFeGe3

I4mm(#107) a = 4.3684(4) La(2a) 0.00000 0.00000 0.56683 0.95(2)
300 K c = 9.9795(8) Fe(2a) 0.00000 0.00000 0.23040 0.87(5)

Ge(2a) 0.00000 0.00000 0.00000 1.02(3)
Ge(4b) 0.00000 0.50000 0.32327 1.05(2)

R = 3.46% wR = 3.80%

(c)LaRhGe3

I4mm(#107) a = 4.42315(17) La(2a) 0.00000 0.00000 0.58057 0.51(5)
300 K c = 10.0541(4) Rh(2a) 0.00000 0.00000 0.23897 0.45(5)

Ge(2a) 0.00000 0.00000 0.00000 0.60(7)
Ge(4b) 0.00000 0.50000 0.34123 0.65(5)

R = 4.31% wR = 9.50%

(d)LaIrGe3

I4mm(#107) a = 4.4343(3) La(2a) 0.00000 0.00000 0.58004 0.31(3)
300 K c = 10.0638(8) Ir(2a) 0.00000 0.00000 0.23840 0.14(2)

Ge(2a) 0.00000 0.00000 0.00000 0.35(4)
Ge(4b) 0.00000 0.50000 0.34230 0.33(3)

R = 2.29% wR = 5.45%
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(e)CeRuSi3
Space group Lattice parameter Atom(site) Position Beq

T (K) (Å) x y z
I4mm(#107) a = 4.21577(16) Ce(2a) 0.00000 0.00000 0.57740 0.53(2)

300 K c = 9.9271(4) Ru(2a) 0.00000 0.00000 0.23526 0.46(3)
Si(2a) 0.00000 0.00000 0.00000 0.63(6)
Si(4b) 0.00000 0.50000 0.34120 0.73(4)

R = 2.55% wR = 5.85%

(f)CePtSi3
I4mm(#107) a = 4.3215(3) Ce(2a) 0.00000 0.00000 0.60213 0.12

300 K c = 9.6075(8) Pt(2a) 0.00000 0.00000 0.25122 0.10(5)
Si(2a) 0.00000 0.00000 0.00000 0.25(18)
Si(4b) 0.00000 0.50000 0.36341 0.16(13)

R = 4.47% wR = 8.48%

(g)CeFeGe3

I4mm(#107) a = 4.3371(3) Ce(2a) 0.00000 0.00000 0.56517 0.66(2)
300 K c = 9.9542(5) Fe(2a) 0.00000 0.00000 0.22940 0.11(3)

Ge(2a) 0.00000 0.00000 0.00000 0.79(3)
Ge(4b) 0.00000 0.50000 0.32302 0.83(2)

R = 2.18% wR = 5.01%

(h)CeRhGe3

I4mm(#107) a = 4.3976(3) Ce(2a) 0.00000 0.00000 0.57960 0.75(6)
300 K c = 10.0322(7) Rh(2a) 0.00000 0.00000 0.23840 0.54(7)

Ge(2a) 0.00000 0.00000 0.00000 0.80(8)
Ge(4b) 0.00000 0.50000 0.34160 0.78(7)

R = 4.80% wR = 11.54%

(i)CeIrGe3

I4mm(#107) a = 4.401(9) Ce(2a) 0.00000 0.00000 0.58008 0.44(5)
300 K c = 10.024(17) Ir(2a) 0.00000 0.00000 0.23919 0.32(3)

Ge(2a) 0.00000 0.00000 0.00000 0.55(8)
Ge(4b) 0.00000 0.50000 0.34320 0.51(6)

R = 2.99% wR = 6.36%

(j)PrCoGe3

I4mm(#107) a = 4.3085(2) Pr(2a) 0.00000 0.00000 0.56826 0.614(19)
300 K c = 9.8290(6) Co(2a) 0.00000 0.00000 0.23252 0.45(3)

Ge(2a) 0.00000 0.00000 0.00000 0.58(2)
Ge(4b) 0.00000 0.50000 0.32729 0.64(2)

R = 2.02% wR = 2.81%
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5.2 Experimental methods

5.2.1 Electrical resistivity

Introduction to the electrical resistivity

An electrical resistivity consists of four contributions: the electron scattering due to
impurities or defects ρ0, the electron-phonon scattering ρph, the electron-electron scatter-

ing ρe-e and the electron-magnon scattering ρmag:

ρ = ρ0 + ρph + ρe-e + ρmag. (5.1)

This relation is called a Matthiessen’s rule.
The ρ0-value, which originates from the electron scattering due to impurities and

defects, is constant for a variation of the temperature. This value is important to know
the quality of an obtained sample. If ρ0 is large, the sample contains many impurities
or defects. A quality of a sample can be estimated by determining a so-called residual
resistivity ratio (RRR = ρRT/ρ0), where ρRT is the resistivity at room temperature. Of
course, a large value of RRR indicates that the quality of the sample is good.

Let us introduce a scattering lifetime τ0 and a mean free path l0 from the resistivity.
The residual resistivity ρ0 can be written as

ρ0 =
m∗

ne
· 1

τ0

, (5.2)

where n is a density of carrier and e is an electric charge. Then τ0 and l0 values are

τ0 =
m∗

neρ0

, (5.3)

l0 = vFτ0 =
~kF

neρ0

. (5.4)

The temperature dependence of ρph, which originates from the electron scattering by
phonon, changes monotonously. ρph is proportional to T above the Debye temperature,
while it is proportional to T 5 far below the Debye temperature, and ρph will be zero at
T = 0.

In the strongly correlated electron system, the contribution of ρe-e, which can be
expressed in terms of the reduction factor of the quasiparticle and the Umklapp process,
is dominant at low temperatures. Therefore, we can regard the total resistivity in non-
magnetic compounds at low temperatures as follows:

ρ(T ) = ρ0 + ρe-e(T ), (5.5)

= ρ0 + AT 2, (5.6)

where the coefficient
√

A is proportional to the effective mass. Yamada and Yosida
obtained the rigorous expression of ρe-e in the strongly correlated electron system on the
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basis of the Fermi liquid theory. 33) According to their theory, ρe-e is proportional to the
imaginary part of the f electron self-energy ∆k, and ∆k is written as

ρe−e ∝ ∆k ≃ 4

3
(πT )2

∑
k′,q

πDf
k−q(0) Df

k′(0) Df
k′+q

(0)

×
{

Γ↑↓
2(k,k′; k′ + q, k − q) +

1

2
Γ↑↑

A2

(k,k′; k′ + q,k − q)

}
, (5.7)

where Γσσ is the four-point vertex, which means the renormalized scattering interac-
tion process of k(σ)k′(σ) → k′ + q(σ)k − q(σ), ΓA

↑↑ is denoted as Γ↑↑(k1,k2; k3,k4) −
Γ↑↑(k1, k2; k4, k3), and Df

k(0) is the true (perturbed) density of states of f electrons with
mutual interaction in the Fermi level. This ∆k is proportional to the square of the
enhancement factor and gives a large T 2-resistivity to the heavy Fermion system.

In a magnetic compound, an additional contribution to the resistivity must be taken
into consideration, namely ρmag. This contribution describes scattering processes of con-
duction electrons due to disorder in the arrangement of the magnetic moments. In general,
above the ordering temperature Tord, ρmag is given by

ρmag =
3πNm∗

2~e2εF

|Jex|2(gJ − 1)2J(J + 1), (5.8)

where Jex is the exchange integral for the direct interaction between the local moments and
conduction electrons. When T = Tord, ρmag shows a pronounced kink, and when T < Tord,
ρmag strongly decreases with decreasing temperature. The magnetic resistivities in the
actinides, however, are ascribed to strong scattering of the conduction electrons by the
spin fluctuations of 5f electrons. This contribution to the resistivity at low temperatures
is given by the square of the temperature, namely ρmag = A′T 2. In the heavy Fermion
system, the coefficient A′ is extremely large. Therefore, ρmag and ρe-e are inseparable and
ρmag can be considered to change to ρe-e. An analogous situation occurs to the specific
heat. Namely, in the heavy Fermion system, the magnetic specific heat Cmag is changed
into a large electronic specific heat Ce.

Experimental method of the resistivity measurement

We have done the resistivity measurement using a standard four-probe DC current
method. The sample was fixed on a plastic plate by an instant glue. The gold wire
with 0.025 mm in diameter and silver paste were used to form contacts on the sample.
The sample was mounted on a sample-holder and installed in a 4He or 3He cryostat. We
measured the resistivity from 1.3 or 0.5 K to the room temperature. The thermometers
are a Cernox resistor for all temperature region or a combination between a RuO2 resistor
at lower temperatures (below 20 K) and a Diode resistor at higher temperatures.
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5.2.2 Specific heat

Introduction to the specific heat

At low temperatures, the specific heat is written as the sum of electronic, lattice,
magnetic and nuclear contributions:

C = Ce + Cph + Cmag + Cnuc (5.9)

= γT + βT 3 + Cmag +
A

T 2
, (5.10)

where A, γ and β are constants with the characteristic of the material.
The electronic term is linear in T and is dominant at sufficiently low temperatures.

If we can neglect the magnetic and nuclear contributions, it is convenient to exhibit the
experimental values of C as a plot of C/T versus T 2:

C

T
= γ + βT 2. (5.11)

Then we can estimate the electronic specific heat coefficient γ. Using the density of states
D(εF), the coefficient γ can be expressed as

γ =
π2

3
kB

2D(εF), (5.12)

where kB is the Boltzmann constant. Since the density of states based on the free electron
model is proportional to the electron mass, the coefficient γ possesses an extremely large
value in the heavy Fermion system.

According to the Debye T 3 law, for T ≪ ΘD:

Cph ≃ 12π4NkB

5

(
T

ΘD

)3

≡ βT 3, (5.13)

where ΘD is the Debye temperature and N is the number of atoms. For the actual lattices
the temperatures at which the T 3 approximation holds are quite low. It may be necessary
to be below T = ΘD/50 to get a reasonably pure T 3 law.

If the f energy level splits due to the crystalline electric field (CEF) in the paramag-
netic state, the inner energy per one magnetic ion is given by

ECEF = ⟨Ei⟩ =

∑
i

niEi exp(−Ei/kBT )∑
i

exp(−Ei/kBT )
. (5.14)

where Ei and ni are the energy and the degenerate degree on the level i. Thus the
magnetic contribution to the specific heat is given by

CSch =
∂ECEF

∂T
. (5.15)
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This contribution CSch is called a Schottky term. Here, the entropy of the f electron S
is defined as

S =

∫ T

0

CSch

T
dT. (5.16)

The entropy is also described as
S = R ln W, (5.17)

where W is a state number at temperature T . Therefore we acquire information about
the CEF level.

In the magnetic ordering state Cmag is:

Cmag ∝ T 3/2 (ferromagnetic ordering) (5.18)

∝ T 3 (antiferromagnetic ordering). (5.19)

When the antiferromagnetic magnon is accompanied with the energy gap ∆m, eq. (5.19)
is modified to Cmag ∝ T 3 exp(−∆m/kBT ).

Experimental method of the specific heat

The specific heat was measured by the quasi-adiabatic heat pulse method using di-
lution refrigerator, 3He and 4He cryostat at temperatures down to 0.1, 0.6 and 1.7K,
respectively. The sample was put on the Cu-addenda. And the RuO2 resister thermome-
ter and two strain gage heaters were also put on the addenda. On of the strain gage heater
generated constant heater to compensate heat leak via to the heat radiation and/or the
thermal conduction by the wire which suspended the addenda.

We gave heat pulse to the sample and addenda due to the another heater. Then we
measured the change of the temperature at addenda. The specific heat is deduced as
follows:

C =
∆Q

∆T
=

I · V · ∆t

∆T
. (5.20)

Here, ∆Q is the amount of heat, I and V are the current and the voltage flowing to the
heater, respectively, ∆t is the duration of heating and ∆T is the change of temperature
due to heating. Here, this C includes both of the specific heat of the sample and that of
the addenda. The specific heat of the sample is thus derived by subtracting the specific
heat of the addenda.

The heat capacity was also measured by the relaxation method on a commercial Phys-
ical Property Measurement System (PPMS), produced by Quantum Design. This was
applicable to measure the specific heat in the temperature of 2-300K and the magnetic
field of 0-90 kOe.
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5.2.3 Magnetic susceptibility

Introduction to the magnetic susceptibility

At high temperatures, the 4f electron in most of the Ce compounds is localized. The
crystalline electric field (CEF) theory is thus well applicable to the magnetic property of
the Ce compounds. By using the CEF theory, the 4f energy level in the Ce compounds
with the non-cubic crystal structure splits into three doublets. Hamiltonian of this system
is given by

H = HCEF + HZeeman. (5.21)

Here, HCEF is expressed as

HCEF = B0
2O

0
2 + B0

4O
0
4 + B4

4O
4
4, (5.22)

in the tetragonal symmetry and

HCEF = B0
2O

0
2 + B2

2O
2
2 + B0

4O
0
4 + B2

4O
2
4 + B4

4O
4
4, (5.23)

in the orthorhombic symmetry, where Bm
l and Om

l are the CEF parameters and the
Stevens operators, respectively.29,30) Due to the CEF effect, the sixfold degenerate 4f -
levels of the Ce ion are split into three doublets.

The CEF susceptibility is given by

χi
CEF = N(gJµB)2 1

Z

∑
m̸=n

|⟨m|Ji|n⟩|2
1 − e

−∆m,n
kBT

∆m,n

e
− En

kBT +
1

kBT

∑
n

|⟨n|Ji|n⟩|2e
− En

kBT


(5.24)

and

Z =
∑

n

e
− En

kBT , (5.25)

where gJ is the Landé g-factor (6/7 for Ce3+), J i is the component of the angular mo-
mentum and ∆m,n =En -Em . The magnetization can be also calculated by

Mi = gJµB

∑
n

|⟨n|Ji|n⟩|
e
− En

kBT

Z
. (5.26)

Thus, the CEF susceptibility is also given by

χCEF = lim
H→0

dM

dH
. (5.27)

The magnetic susceptibility including the molecular field contribution λi is given as fol-
lows:

χ−1
i = (χi

CEF)−1 − λi. (5.28)
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The eigenvalue En and eigenfunction |n⟩ are determined by diagonalizing the total Hamil-
tonian

H = HCEF − gJµBJi(Hi + λiMi), (5.29)

where the second term is the Zeeman term and the third one is a contribution from
the molecular field. The magnetic susceptibility was measured by a commercial SQUID
magnet meter, produced by Quantum Design.
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5.2.4 de Haas-van Alphen effect

Introduction to the de Haas-van Alphen effect

Under a high magnetic field, the orbital motion of the conduction electron is quantized
and forms Landau levels7). Therefore various physical qualities shows a periodic variation
with H−1 since increasing the field strength H causes a sharp change in the free energy of
the electron system when Landaus level crosses the Fermi energy. In a three-dimensional
system this sharp structure is observed at extremal areas in k-space, perpendicular to the
field direction and enclosed by the Fermi energy because the density of state also becomes
extremal. From the field and temperature dependence of various physical quantities, we
can obtain the extremal area S, the cyclotron mass m∗

c and the scattering lifetime τ
for this cyclotron orbit. The magnetization or the magnetic susceptibility is the most
common one of these physical quantities, and its periodic character is called the de Haas-
van Alphen (dHvA) effect. It provides one of the best tools for the investigation of Fermi
surfaces of metals.

The theoretical expression for the oscillatory component of magnetization Mosc due
to the conduction electrons was given by Lifshitz and Kosevich as follows:129)

Mosc =
∑

r

∑
i

(−1)r

r3/2
Ai sin

(
2πrFi

H
+ βi

)
, (5.30a)

Ai ∝ FH1/2

∣∣∣∣ ∂2Si

∂kH
2

∣∣∣∣−1/2

RTRDRS, (5.30b)

RT =
αrm∗

ciT/H

sinh(αrm∗
ciT/H)

, (5.30c)

RD = exp(−αrm∗
ciTD/H), (5.30d)

RS = cos(πgirm
∗
ci/2m0), (5.30e)

α =
2π2kB

e~
. (5.30f)

Here the magnetization is periodic on 1/H and has a dHvA frequency Fi

Fi =
~

2πe
Si

= 1.05 × 10−12 [T · cm2] · Si,
(5.31)

which is directly proportional to the i-th extremal (maximum or minimum) cross-sectional
area Si (i = 1, . . . , n). The extremal area means a gray plane in Figure 5.11, where there
is one extremal area in a spherical Fermi surface. The factor RT in the amplitude Ai is
related to the thermal damping at a finite temperature T . The factor RD is also related
to the Landau level broadening kBTD. Here TD is due to both the lifetime broadening
and inhomogeneous broadening caused by impurities, crystalline imperfections or strains.
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Fermi surface

dHvA frequency

H

1/H 1/H

H

(a) (b)

Fig. 5.11 Simulations of the cross-sectional area and its dHvA signal for a simple Fermi
surface. There is one dHvA frequency in (a), while there are three different
frequencies in (b).

The factor TD is called the Dingle temperature and is given by

TD =
~

2πkB

τ−1

= 1.22 × 10−12 [K · sec] · τ−1.

(5.32)

The factor RS is called the spin factor and related to the difference of phase between the
Landau levels due to the Zeeman split. When gi = 2 (a free electron value) and m∗

c =
0.5m0, this term becomes zero for r = 1. The fundamental oscillation vanishes for all
values of the field. This is called the zero spin splitting situation in which the up and down
spin contributions to the oscillation cancelled out, and this can be useful for determining
the value of gi. Note that in this second harmonics for r = 2 the dHvA oscillation should
show full amplitude. The quantity |∂2S/∂kH

2|−1/2 is called the curvature factor. The
rapid change of cross-sectional area around the extremal area along the field direction
diminishes the dHvA amplitude for this extremal area.

The detectable conditions of dHvA effect are as follows:

1) The distance between the Landau levels ~ωc must be larger than the thermal broad-
ening width kBT : ~ωc ≪ kBT (high fields, low temperatures).

2) At least one cyclotron motion must be performed during the scattering, namely
ωcτ/2π > 1 (high quality samples). In reality, however, it can be observed even if
a cyclotron motion is about ten percent of one cycle.

3) The fluctuation of the static magnetic field must be smaller than the field interval
of one cycle of the dHvA oscillation (homogeneity of the magnetic field).
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Shape of the Fermi surface

The angular dependence of dHvA frequencies gives very important information about
a shape of the Fermi surface. As a value of Fermi surface corresponds to a carrier number,
we can obtain the carrier number of a metal directly.
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Fig. 5.12 Angular dependence of the dHvA frequency in three typical Fermi surfaces
(a) sphere, (b) cylinder and (c) ellipsoid.

We show the typical Fermi surfaces and their angular dependences of dHvA frequencies
in Figure 5.12. In a spherical Fermi surface, the dHvA frequency is constant for any field
direction. On the other hand, in an ellipsoidal Fermi surface such as in Figure 5.12(b),
it takes a minimum value for the field along the z-axis. These relatively simple shape
Fermi surfaces can be determined only by the experiment. However, information from
an energy band calculation is needed to determine a complicated one.

Cyclotron effective mass

We can determine the cyclotron effective mass m∗
c i from the measuring a temperature

dependence of a dHvA amplitude. Equation (5.30c) is transformed into

log

{
Ai

[
1 − exp

(
−2αm∗

ciT

H

)]
/T

}
=

−αm∗
c i

H
T + const. (5.33)
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Therefore, from the slope of a plot of log{Ai[1 − exp(−2λm∗
c iT/H)]/T} versus T at

constant field H, the effective mass can be obtained.
Let us consider the relation between the cyclotron mass and the electrical specific

heat γ. Using a density of states D(EF), γ is written as

γ =
π2

3
kB

2D(EF). (5.34)

In the spherical Fermi surface, using EF = ~2kF
2/2m∗

c takes

γ =
π2

3
kB

2 V

2π2

(
2m∗

c

~2

)3/2

EF
1/2

=
kB

2V

3~2
m∗

ckF,

(5.35)

where V is molar volume and kF = (SF/π)1/2. We obtain from eq. (5.31)

γ =
kB

2m0

3~2

(
2e

~

)1/2

V
m∗

c

m0

F 1/2

= 2.87 × 10−4 [(mJ/K2 · mol)(mol/cm3)T−1/2] · V m∗
c

m0

F 1/2.

(5.36)

In the case of the cylindrical Fermi surface,

γ =
π2

3
kB

2 V

2π2~2
m∗

ckz

=
kB

2V

6~2
m∗

ckz,

(5.37)

where the Fermi wave number kz is parallel to an axial direction of the cylinder. If we
regard simply the Fermi surfaces as sphere, ellipse or cylinder approximately and then
we can calculate them.

Dingle temperature

We can determine the Dingle temperature TD from measuring a field dependence of
a dHvA amplitude. Equations (5.30b)-(5.30d) yield

log

{
AiH

1/2

[
1 − exp

(
−2λm∗

c iT

H

)]}
= −λm∗

c i(T + TD)
1

H
+ const. (5.38)

From the slope of a plot of log{AiH
1/2[1 − exp(−2λm∗

c iT/H)]} versus 1/H at constant
T , the Dingle temperature can be obtained. Here, the cyclotron effective mass must have
been already obtained.
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We can estimate the mean free path l or the scattering life time τ from the Dingle
temperature. The relation between an effective mass and lifetime takes the form

~kF = m∗vF, (5.39)

l = vFτ. (5.40)

Then eq. (5.32) is transformed into

l =
~2kF

2πkBm∗
cTD

. (5.41)

When the extremal area can be regarded as a circle approximately, using the eq. (5.31),
the mean free path is expressed as

l =
~2

2πkBm0

(
2e

~c

)1/2

F 1/2

(
m∗

c

m0

)−1

TD
−1

= 77.6 [Å · T−1/2 · K] · F 1/2

(
m∗

c

m0

)−1

TD
−1.

(5.42)

Field modulation method with the pick-up coil dHvA system

Experiments of the dHvA effect were constructed by using the usual ac-susceptibility
field modulation method. Now we give an outline of the field modulation method with
pick-up coil dHvA system.

A small ac-field h0 cos ωt is varied on an external field H0 (H0 ≫ h0) in order to
obtain the periodic variation of the magnetic moment Mosc. The sample is set up into a
pair of balanced coils (pick up and compensation coils), as shown in Figure 5.13. An

5φ

5

2φ Pick-up coil

Compensation coil

Sample

Cotton

Fig. 5.13 Detecting coil and the sample location.
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induced emf (electromotive force) Vosc will be proportional to dMosc/dt:

Vosc = c
dMosc

dt

= c
dMosc

dH

dH

dt

= −ch0ω sin ωt
∞∑

k=1

hk
0

2k−1(k − 1)!

(
dkMosc

dHk

)
H0

sin kωt,

(5.43)

where c is constant which is fixed by the number of turns in the coil and so on, and
the higher differential terms of the coefficient of sin kωt are neglected. Calculating the
dkM/dHk it becomes

Vosc = −cωA
∞∑

k=1

1

2k−1(k − 1)!

(
2πh0

∆H

)k

sin

(
2πF

H
+ β − kπ

2

)
sin kωt. (5.44)

Here, ∆H = H2/F . Considering h0
2 ≪ H0

2 the time dependence of magnetization M(t)
is given by

Mosc(t) = A

[
J0(λ) sin

(
2πF

H0

+ β

)
+ 2

∞∑
k=1

kJk(λ) cos kωt sin

(
2πF

H0

+ β − kπ

2

)]
,

(5.45)
where

λ =
2πFh0

H0
2 . (5.46)

Here, Jk is k-th Bessel function. Figure 5.14 shows the Bessel function of the first kind
for the various order k. Finally we can obtain the output emf as follows:

Vosc = c

(
dM

dt

)
= −2cωA

∞∑
k=1

kJk(λ) sin

(
2πF

H0

+ β − kπ

2

)
sin kωt. (5.47)
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Fig. 5.14 Bessel function Jk(λ) of the first kind.
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The signal was detected at the second harmonic of the modulation frequency 2ω using
a Lock-in Amplifier, since this condition may cut off the offset magnetization and then
detect the component of the quantum oscillation only. Thus, the eq. (5.47) becomes

Vosc = −4cωAJ2(λ) sin

(
2πF

H0

+ β

)
sin 2ωt. (5.48)

Here, we summarize eq. (5.48) as follow:

Vosc = A

∣∣∣∣∂2SF(kz)

∂k2
z

∣∣∣∣−1/2

RTRDRS sin

(
2πF

H
+ β

)
, (5.49)

A ∝ ωJ2(x)H1/2, , (5.50)

RT =
2αm∗

cT/H

sinh(2αm∗
cT/H)

,

RD = exp(−αm∗
cTD/H),

RS = cos(πm∗
cg/2m0),

α = 2π2ckB/e~.

x =
2πFh

H2
.

A in eq. (5.50) is the factor depending on the detecting method. We usually choose
the modulation field h0 to make the value of J2(λ) maximum, namely λ = 3.14. A
modulation frequency of 11Hz is also used in the dHvA experiment. Figure 5.15 shows
a block diagram for the dHvA measurement in the present study.
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Fig. 5.15 Block diagram for the dHvA measurement.
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Cantilever type dHvA experiment

The cantilever type dHvA experiment is a kind of the torque magnetization
measurement.129–132) We used the commercial micro-cantilever (MouldLessCantilever,
SSI-SS-ML-PRC120, Seiko Instruments Inc.).130) Schematic view and the photograph
of cantilever are shown in Figs. 5.16(a) and 5.16(b), respectively.

The piezoresistive path detects the force as a voltage due to the torque T = M ×
H between the magnetic moment of the sample M and the magnetic field H = H 0 +
h0 cos ωt, whereas the compensated pick-up coil detects the time derivative of a magnetic
flux from the sample as a voltage. Therefore, the factor A in eq.(5.48) for the torque
method using the cantilever without and with the modulation field h(and ω-detecting
technique) is modified to be129)

A ∝ IAC
dF

dθ
H

3
2 . (5.51)

and

A ∝ IDCωJ1(x)
dF

dθ
H

3
2 , (5.52)

respectively. Here, IAC and IDC are the AC and DC excitation current for the cantilever.
J1(x) is the first Bessel function due to the modulation field.

Here we note the magnetic field term H1/2 in eq. (5.50) and the term H3/2 in eqs. (5.51)
and (5.52). The torque T is given by M⊥HV , where M⊥ is the component of M perpen-
dicular to H and V is the volume of the sample.129) The component of this torque about
any particular axis perpendicular to H is given by using M//:

T = − 1

F

dF

dθ
M//HV. (5.53)

If we assume the Free energy

Ω ∼ H5/2 cos (2πF/H + ϕ), (5.54)

M// = −∂Ω/∂H ∼ H1/2 sin (2πF/H + ϕ) (5.55)

and

T ∼ H3/2 sin (2πF/H + ϕ), (5.56)

are obtained. The terms of H1/2 and H3/2 are expressed in eq. (5.50) and eqs. 5.51 and
5.52, respectively. The Bessel functions J2(x) and J1(x) in eq. (5.50) and eq. (5.51),
respectively, are derived from the modulation field detecting system. In the cantilever
type dHvA system, we adopt the same modulation field as in the pick-up coil system
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of h ≃ 100Oe (a modulation frequency of ω/2π = 11Hz) with the DC-current IDC ∼
0.05 mA so as to reduce the temperature of cantilever lower than 100mK.

In both the pick-up coil type and cantilever type dHvA experiments, we can determine
the dHvA frequency and the cyclotron mass. By using the relations of εF = ~2kF

2/2m∗
c,

SF = πkF
2 and SF = (2πe/c~)F , the following formula is obtained from eq. (2.37),

|F+ − F−| =
2c

~e
|αp⊥|m∗

c , (5.57)

where F+ and F− correspond to two split dHvA frequencies.

0.1 mm

piezoresistive path

reference lever

sample

(Boron doped Silicon)

(a)

(b)

Fig. 5.16 (a) Schematic view and (b) the photograph of the cantilever
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5.2.5 High-pressure techniques

Pressure is a useful tool to control the electronic states in the f -electron systems. We
introduce two kinds of pressure cells.

Cubic anvil cell

To obtain higher pressures than those in a piston cylinder-type cell, we used a cubic-
anvil device from 1.5 GPa to 8 GPa which has been developed by Môri et al.133) for
precise electrical measurements at low temperatures in Institute for Solid State Physics,
University of Tokyo (ISSP). The cubic anvils made of sintered tungsten carbides having
4 mm on edge of square face press the sample from 6 directions as shown in Fig. 5.17. In
Fig. 5.18 is shown the internal configuration of a gasket with a teflon cell in which the
sample is immersed in fluid. The electrical resistivity of sample was measured by means
of a four-terminal method. As electrical leads, gold wires of 20 micron in diameter. were
used with silver paint contact on the surface of the specimen and connected to thin gold
ribbons attached to back up blocks, as shown in Fig. 5.18. As a pressure transmitting
fluid, we used a Daphne 7373 oil.

The cubic anvil dies were placed between the end of a pair of pressure transmitting
columns consisting of fiber-reinforced plastic (FRP) disks as shown in Fig. 5.19. The
whole specimen was cooled by liquid N2 and liquid He down to 4.2 K. Furthermore, it
was cooled down to 2.2 K by pumping out liquid He with the booster pump. During
the cooling of the cell, the pressure changes due to the thermal contractions and stiffen-
ing of the various parts of the cell, compressing medium and sample. The pressure was
kept constant for a temperature change. The pressure was determined from the mea-
surements of the resistivity change of bismuth associated with the phase transitions, Bi
I-II (2.55 GPa), II-III(2.7 GPa) and IIÍ-V(7.7 GPa) at room temperature. Pressure was
also determined at low temperatures from the superconducting transition temperature
Tc of lead with the pressure coefficient of dTc/dP = −3.81× 10−1 K/GPa up to 2.5 GPa.
Above 2.5 GPa the pressure was estimated from a pressure-load calibration curve at room
temperature.
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Fig. 5.17 Cubic anvil device: top(a) and side(b) views.

Fig. 5.18 Cross-sectional view of internal configuration of gasket with teflon capsule.
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Fig. 5.19 Cross-sectional view of high pressure cryostat.
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Diamond anvil cell

The electrical resistivity measurements under pressure were performed with a diamond
anvil cell (DAC). Figure 5.20(a) shows the photograph of the DAC and its corresponding
schematic view and the cross-sectional view of inside DAC are shown in Figs. 5.20(b)
and 5.20(c), respectively. Most part of the pressure cell are made of Be-Cu alloy and two
opposed anvils are made of diamond. We used the SUS material as a gasket and liquid
Ar, which was obtained by liquefaction of 4N-pure Ar-gas, for a pressure transmitting
medium, and the pressure was determined by the shift of the fluorescent line of ruby.
Four Au-wires (10µmϕ) were used to measure the voltage of the sample, which was spot-
welded directly on the sample to ensure a good electrical contact. These four Au-wires
were leaded out from the sample space through between the alumina insulator phase
and the diamond, as shown in Fig. 5.20(c). The typical size of the samples for this
diamond anvil cell is about 200× 100× 50µm3. For more precise measurement, we used
the single crystal of CeCoGe3 with size of 250 × 110 × 30µm3 for the electrical resistivity
measurement.

φ20 mm

4
0
 m

m

Diamond anvil Be-Cu
Au wire

Gasket alignment pin
Sample

Gasket

(a)

(c)

Body

Support Piston

Driving plate Gasket

Belleville springs

(b)

Al
2
O

3

insulating layer

Fig. 5.20 (a) Photograph of the components of DAC, (b) schematic view of a diamond
anvils cell and (b) the cross-sectional view of internal configuration of DAC.
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Here, we mention about the hydrostatic homogeneity of argon. The melting curves of
argon, helium 4 (4He), ice (H2O) and hydrogen (H2) were studied by F. Datchi et al. from
room temperature up to a maximum temperature of 750K, as shown in Fig. 5.21.134)

Argon is chemically inert so that the reaction of argon with the sample and the materials
around the sample space, gasket and Al2O3, for example, is unlikely. The melting point of
argon is 83.78K at ambient pressure. With increasing pressure, it increases continuously
and reaches 300K at pressure of 1.34GPa, following a Simon-Glatzel equation: P [GPa] =
2.172× 10−4T 1.556[K] - 0.21. As for the hydrostatic homogeneity of argon, it is studied by
Bell et al. that argon can be hydrostatic up to 9GPa from the viewpoint of broadening of
ruby fluorescent lines, and a pressure difference in the DAC becomes 1.7GPa at pressure
P ≃ 75GPa.135,136) In fact, ruby pieces, which were put on three places around the sample
in the diamond anvil cell, indicate the same pressure of 7.0GPa at room temperature in
the present electrical resistivity measurement for the single crystal of CeCoGe3 at 6.5GPa,
indicating the excellent hydrostatic homogeneity in present experiment.

(a)

(d)

(c)

(b)

Fig. 5.21 Melting curves of (a) argon, (b) 4He, (c)H2O, (d)H2.
134)



6 Experimental Results, Analyses and Discussion

6.1 Split Fermi Surface Properties

6.1.1 LaCoGe3, LaRhGe3 and LaIrGe3

Figure 6.1 shows the temperature dependence of the electrical resistivity of LaCoGe3,
LaRhGe3 and LaIrGe3 for the current J along the [100] direction. The electrical re-
sistivity decreases linearly with decreasing temperature. The residual resistivity ρ0 and
residual resistivity ratioRRR (= ρRT/ρ0, ρRT: resistivity at room temperature) are ρ0 =
0.27µΩ·cm and RRR = 150 in LaCoGe3, ρ0 = 0.14µΩ·cm and RRR = 330 in LaRhGe3

and ρ0 = 0.87µΩ·cm and RRR = 35 in LaIrGe3. The present samples of LaCoGe3 and
LaRhGe3 are in high-quality but LaIrGe3 is not good in sample quality.

LaRhGe
3

LaCoGe
3

J // [100]

LaIrGe
3

Fig. 6.1 Temperature dependence of the electrical resistivity for J // [100] in LaTGe3(T:
Co, Rh, Ir).

The Fermi surface properties of LaCoGe3 were previously clarified from the dHvA
experiment and energy band calculation,106) which are shown later. First we show in
Fig. 6.2(a) the typical dHvA oscillation of LaRhGe3 for the magnetic fieldH along the
[001] direction (c-axis) and its fast Fourier transformation (FFT) spectrum. The detected
dHvA branches are named α, β, ε, θ and η, as shown in Fig. 6.2(b). The branch α
with the largest dHvA frequency is clearly split into two branches, and each branch is
furthermore split into two branches. The former splitting is due to the antisymmetric
spin-orbit interaction, as mentioned above. The latter splitting is mainly due to the fact
that each Fermi surface is slightly corrugated, possessing two extremal (maximum and
minimum) cross-sections.

89
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LaRhGe3

H // [001]
45 mK

100 kOe30 kOe H

dHvA Frequency ( x107 Oe )

α
β

ε
2

θ

η
3

(a)

(b)

ε2
θ

θ

0 5 10

4θ

Fig. 6.2 (a)Typical dHvA oscillation for H // [001] and (b) its FFT spectrum in
LaRhGe3.
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Figures 6.3(a) and 6.3(b) show the angular dependence of the dHvA frequency in
LaRhGe3, together with the result of theoretical calculation based on the full potential
APW(FLAPW) method as in LaCoGe3

106) and LaIrSi3.
22) The detected dHvA branches

are well explained by the result of the present energy band calculation. The corresponding
theoretical Fermi surfaces are shown in Fig. 6.4. The dHvA branches are identified as
follows:
(1) branches α and η correspond to outer and inner orbits of the doughnut-like band 69
and 70-electron Fermi surfaces, respectively. Namely, the Fermi surfaces possess vacant
space around the center of the Brillouin zone, Γ.
(2) branch β is due to the band 67 and 68-hole Fermi surfaces.
(3) branchs ε and θ also correspond to outer and inner orbits of the band 65 and 66-hole
Fermi surfaces, respectively.

We determined the cyclotron effective mass m∗
c from the temperature dependence

of the dHvA amplitude. The cyclotron mass is 1.04m0(m0: rest mass of an electron)
for branch α in the magnetic field along the [001] direction, for example. The dHvA
frequencyF , cyclotron massm∗

c, the corresponding theoretical frequencyFb and band
massmb are summarized in Table 6.I. From the field dependence of the dHvA oscillation
in Fig. 6.2(a), we can also determine the Dingle temperatureTD = 1.88K or the scattering
lifetime τ = 6.53 ×10−13 sec for branch α. The mean free path is thus determined to be
8060 Å for the orbit of branch α by using the relations in Chap. 5, namely eq. 5.40.
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Fig. 6.3 (a)Angular dependence of dHvA frequency and (b) the theoretical one of
LaRhGe3.
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Fig. 6.4 Theoretical Fermi surfaces of LaRhGe3.
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Table 6.I Detected dHvA FrequencyF , cyclotron effective massm∗
c and the theoretical

frequencyFb and band massmb in LaRhGe3.

Experiment Theory
Branch F (×107Oe) m∗

c(m0) Branch Fb(×107Oe) mb(m0)

H // [001]

α

{
10.4
10.0

1.04
1.04

α

{
band 69
band 70

10.5
10.1

1.11
1.12

β


6.98
6.77
6.67

0.83
1.89
0.85

β


band 68
band 68
band 67
band 67

7.82
7.24
7.11
6.89

1.24
0.91
2.01
0.88

ε

{
3.06
3.04

0.74
0.73

ε

{
band 66
band 65

3.13
3.01

0.68
0.69

θ

{
0.44
0.38

0.44
0.51

θ

{
band 65
band 66

0.33
0.28

0.31
0.24

η

{
0.08
0.06

0.22
0.23

η

{
band 70
band 69

0.03
0.03

0.27
0.26

H // [100]

α’

{
5.43
5.10

—
1.09

α’

{
band 69
band 70

5.60
5.09

1.47
1.40

α”

{
2.36
2.19

0.60
0.69

α”

{
band 69
band 70

2.51
2.28

0.61
0.60

ε’

{
1.22
1.18

0.46
0.54

ε’

{
band 66
band 65

1.27
1.21

0.40
0.42

ε” 0.35 0.32 ε”

{
band 66
band 65

0.39
0.36

0.21
0.20
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LaIrGe
3

H // 5° tilted

       from [001] to [100]

60 mK

dHvA Frequency (   107Oe  )

α

ε

β

θ

η

θ

169 kOe100 kOe H

(c) (d)

ε2

2

169 kOe100 kOe H dHvA Frequency (   107Oe  )

ε

β

α

(a) (b)LaIrGe
3

H // [001]

36 mK

Fig. 6.5 (a)Typical dHvA oscillation and (b) its FFT spectrum in the pick-up coil type
dHvA system, and (c) typical dHvA oscillation and (d) its FFT spectrum in the cantilever
type dHvA system for H // [001] and close to [001], respectively, in LaIrGe3.

The usual pick-up coil dHvA system was not powerful for LaIrGe3, as shown in
Figs. 6.5(a) and 6.5(b). Branches α, β and ε were detected, but branches θ and η
were not detected. The reason is as follows. The present sample was not good in quality,
with RRR = 35 and was small in size. An ample amplitude of the dHvA oscillation was,
however, obtained in the cantilever type dHvA system, especially for branches ε, θ and
η with small dHvA frequencies, as shown in Figs. 6.5(c) and 6.5(d). The cantilever type
dHvA system is very effective for the small sample, although the dHvA signal becomes
very weak in amplitude for the magnetic field along the symmetric directions of H // [001]
and [100], as shown in Fig. 6.6, reflecting the factor of dF/dθ in eq. (5.56). This is the
reason why the dHvA oscillation in Fig. 6.5(c) is not for H/ [001] but for the field tilted
by θ = 5˚from [001] to [100].
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0° (H // [001])
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14°
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32°
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= 90° (H // [100])

100 120 140 160

Magnetic Field ( kOe )

LaIrGe
3 θ

Fig. 6.6 Cantilever type dHvA oscillations in LaIrGe3 as a function of the tilted angle θ.
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The angular dependence of the dHvA frequency and the corresponding theoretical
one are shown in Fig. 6.7. The dHvA data obtained from both the pick-up coil and the
cantilever systems are combined in Fig. 6.7. The dHvA frequency and cyclotron mass,
together with the theoretical ones, are summarized in Table 6.II.
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Fig. 6.7 (a)Angular dependence of dHvA frequency in LaIrGe3, and (b) the theoretical
one.
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Table 6.II Detected dHvA FrequencyF , cyclotron effective mass m∗
c and the theoretical

frequencyFb and band massmb in LaIrGe3.

Experiment Theory
Branch F (×107Oe) m∗

c(m0) Branch Fb(×107Oe) mb(m0)

H // [001]

α

{
10.4
9.29

1.13
1.51

α

{
band 69
band 70

10.7
9.46

1.08
1.09

β



{
7.53
7.25
6.99
6.75
6.48{
6.36
6.22

1.37
1.32
1.58
1.84
1.27
1.55
1.29

β



band 68

band 67

{
8.04
7.70

{
6.59
6.32

1.20
1.12

1.18
0.88

ε 2.75 0.98 ε band 66 2.56 0.65
θ 1.03 — θ band 66 0.66 0.41

η

{
band70
band69

0.15
0.14

0.24
0.23

H // [100]

α’


5.11
4.70
4.09

1.57
1.87
1.69

α’


band 69

band 70

5.57

4.15

1.46

1.21

α”

{
2.27
1.82

1.08
0.97

α”

{
band 69
band 70

2.66
2.02

0.64
0.61

β


7.05
6.39
5.89

—
—

2.07
β


band 68

band 67

7.22

5.88

1.04

0.93
ε’ 0.69 0.32 ε’ band 66 0.72 0.46
ε” 0.18 — ε” band 66 0.18 0.18
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Fig. 6.8 Theoretical Fermi surfaces of LaIrGe3.

The Fermi surfaces of LaIrGe3 are very similar to those of LaRhGe3, as shown in
Fig. 6.8, although the band 65-hole Fermi surface does not exist theoretically. It is noticed
that split branches are not observed experimentally for branch ε, as shown in Figs. 6.5(b)
and 6.5(d), which is different from branch ε in LaRhGe3.

6.1.2 LaFeGe3, LaCoGe3 and PrCoGe3

We also investigated a change of the Fermi surface properties by changing the tran-
sition metal. Namely, LaFeGe3 was studied from the dHvA experiment. The topology
of the Fermi surface is expected to be drastically changed because the number of valence
electrons in LaFeGe3 is smaller than that in LaCoGe3. We also succeeded in growing a
single crystal of a paramagnet PrCoGe3. It is expected that the topology of the Fermi
surface is the same between LaCoGe3 and PrCoGe3, although the cyclotron effective
mass in PrCoGe3 is nearly twice as large as that of LaCoGe3, as in the case of LaIn3 and
PrIn3.

137) It is our experiment purpose to clarify the magnitude of 2|αp⊥| as a function
of the cyclotron mass.

Figure 6.9 shows the temperature dependence of the electrical resistivity in LaFeGe3,
LaCoGe3 and PrCoGe3 for the current J // [100]. The resistivity decreases linearly with
decreasing temperature in LaFeGe3 and LaCoGe3. The resistivity in PrCoGe3 indicates
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LaFeGe
3

LaCoGe
3

PrCoGe
3

Fig. 6.9 Temperature dependence of the electrical resistivity in LaFeGe3, LaCoGe3 and
PrCoGe3.

a shoulder-like feature around 60K, which is due to the crystalline electric field (CEF)
effect. No magnetic ordering is observed at low temperatures down to 30mK, indicating
the singlet CEF-scheme. The ρ0 and RRR values are ρ0 = 1.39µΩ·cm and RRR = 67 in
LaFeGe3, and ρ0 = 0.37µΩ·cm and RRR = 120 in PrCoGe3, indicating the samples with
relatively high-quality.

We show in Fig. 6.10 the typical dHvA oscillation in the usual pick-up coil system
and the corresponding FFT spectrum in PrCoGe3. The detected dHvA branches are the
same as those of LaCoGe3. The angular dependence of the dHvA frequency of PrCoGe3

are shown in Fig. 6.11(a), together with that of LaCoGe3 in Fig. 6.11(b) for comparison.
The cyclotron mass of PrCoGe3 is approximately twice as large as that of LaCoGe3.

For example, the cyclotron masses of branches α and β are about 2m0, which are larger
than 1.2m0 in LaCoGe3. We summarize in Table 6.III the dHvA frequency and cyclotron
mass in PrCoGe3 and LaCoGe3, together with those in LaCoGe3.
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Fig. 6.10 (a)Typical dHvA oscillation for H // [001] and (b) its FFT spectrum in
PrCoGe3.
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Table 6.III Detected dHvA frequencyF , cyclotron effective massm∗
c in PrCoGe3 and

LaCoGe3.

PrCoGe3 LaCoGe3

Branch F (×107Oe) m∗
c(m0) Branch F (×107Oe) m∗

c(m0)

H // [001]

α

{
9.04
8.64

1.80
1.97

α

{
9.15
8.74

1.19
1.20

β


7.45
7.13
6.90
6.83
6.70

2.23
2.04
1.67
1.63
1.70

β


7.42
7.27
7.12
7.06
6.72

1.36
1.26
1.41
1.15
1.11

ε

{
2.71
2.57

1.16
1.18

ε

{
2.62
2.55

0.89
0.80

θ 0.54 0.95 θ

{
0.35
0.28

0.58
—

η 0.43 0.76 η

{
0.21
0.10

—
—

H // [100]

α”

{
3.48
3.12

2.03
—

α”

{
3.10
2.87

2.04
1.25

β


6.25
6.11
5.93

2.22
2.42
2.29

β 6.47 2.71

ε’

{
0.87
0.74

0.86
0.86

ε’

{
0.96
0.86

1.00
1.04

ε” 0.20 0.87 ε” 0.23 0.59
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Figure 6.12(a) shows the typical cantilever type dHvA oscillation for the magnetic field
tilted by θ = 2˚ from [001] to [100] in LaFeGe3. Several dHvA branches are observed
in the FFT spectrum, as shown in Fig. 6.12(b). Branches α and β are clearly split
due to the antisymmetric spin-orbit interaction. We also show in Fig. 6.13 the dHvA
oscillations as a function of the tilted angle θ from [001] to [100]. The dHvA oscillation is
very small in amplitude for H // [001] and [100], as in LaIrGe3. We show in Figs. 6.14(a)
and 6.14(b) the angular dependence of the dHvA frequency, together with the theoretical
one, respectively. Almost all the detected branches are identified by the theoretical ones.
The corresponding orbits and Fermi surfaces are shown in Fig. 6.15.

We will compare the Fermi surface of LaFeGe3 with that of LaTGe3 (T: Co, Rh, Ir).
When one conduction electron is added to the Fermi surface of LaFeGe3, bands 65 and 66-
hole Fermi surfaces in LaFeGe3 slightly shrink in volume, with vacant space in center, and
are changed into doughnut-like bands 65 and 66-hole Fermi surfaces in LaTGe3 (T: Co,
Rh, Ir). Connected parts of bands 67 and 68-hole Fermi surfaces in LaFeGe3 disappear

LaFeGe
3

H // 2° tilted from

       [001] to [100]

53 mK

169 kOe100 kOe H

α

β

dHvA Frequency ( ×107 Oe )

ε

γ

ε2

0 15105

(b)

(a)

Fig. 6.12 (a)Typical dHvA oscillation for the magnetic field close to the [001] direction
and (b) its FFT spectrum of LaFeGe3 in the cantilever type dHvA system.
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and are changed into pyramid-like bands 67 and 68-hole Fermi surfaces in LaTGe3 (T:
Co, Rh, Ir). Furthermore, four small nearly spherical bands 69 and 70-electron Fermi
surfaces in LaFeGe3 expand in volume and are connected, forming square doughnut-like
bands 69 and 70-electron Fermi surfaces in LaTGe3 (T: Co, Rh, Ir).

We determined the cyclotron mass from the temperature dependence of the dHvA
amplitude in LaFeGe3. The cyclotron mass of branches α and β is about 4− 5 m0,
revealing the relatively large masses. This is mainly due to the contribution of 3d electrons
in the Fe atom, which will be discussed later. We summarize in Table 6.IV the dHvA
frequency and the cyclotron mass, together with the theoretical ones.

100

0°(H // [001])

160
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θ.
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Table 6.IV Detected dHvA frequencyF , cyclotron effective massm∗
c and the theoretical

frequencyFb and band massmb in LaFeGe3.

Experiment Theory
Branch F (×107Oe) m∗

c(m0) Branch Fb(×107Oe) mb(m0)

H // [001]

α


14.2
14.1
13.9
13.8
13.7

4.32
3.41
3.83
3.87
4.93

α


band 68

band 67

13.8

13.4

2.31

2.20

β

{
7.01
6.13

4.93
3.91

β

{
band 67
band 68

6.73
6.15

2.44
2.17

ε

{
4.99
4.93

1.50
1.38

ε

{
band 66
band 65

5.37
5.21

0.98
0.95

γ

{
band 68
band 67

0.45
0.42

0.22
0.23

δ 0.28 0.64 δ

{
band 69
band 70

0.28
0.15

0.44
0.44

H // [100]

µ

{
4.78
3.99

—
2.03

µ

{
band 68
band 67

4.43
3.82

2.52
3.33

ν

{
2.91
2.39

2.52
2.06

ν

{
band 67
band 68

2.85
2.48

0.95
0.93

ε


2.01
1.99
1.92

0.76
0.77
0.89

ε

{
band 66
band 65

2.31
2.25

0.58
0.57

δ δ

{
band 69
band 70

0.26
0.13

0.42
0.40

H // [110]

κ

{
11.2
10.0

3.69
4.83

κ

{
band 68
band 67

10.9
9.97

2.54
2.45

λ

{
5.17
4.42

3.55
3.03

λ

{
band 67
band 68

5.15
4.68

1.77
1.71

ε 2.22 1.34 ε

{
band 66
band 65

2.63
2.57

0.64
0.65

δ

{
band 69
band 70

0.25
0.13

0.40
0.39
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6.1.3 Discussion

We will discuss the Fermi surface properties and the magnitude of the antisymmetric
spin-orbit interaction in LaTX3. First we will compare the present dHvA data of LaRhGe3

and LaIrGe3 with those of LaCoGe3, as shown in Fig. 6.16. The topology of the Fermi
surface is approximately the same in LaTGe3 (T = Co, Rh, Ir). This is simply understood
from the fact that the valence electrons are approximately the same in LaTGe3: 3d 74s2

in Co, 4d 85s1 in Rh and 5d 9 in Ir. It is, however, noticed that the dHvA frequency
of branch α in LaCoGe3 is smaller than those in LaRhGe3 and LaIrGe3, and the width
of the split dHvA frequencies, |F+ − F−|, for branch α in LaIrGe3 is larger than those
in LaCoGe3 and LaRhGe3. The former indicates that the Fermi surface in LaCoGe3

is slightly smaller in volume than those in LaRhGe3 and LaIrGe3. The latter indicates
that the antisymmetric spin-orbit interaction of 2|αp⊥| in LaIrGe3 is larger than those
in LaCoGe3 and LaRhGe3: 2|αp⊥| = 460K in LaCoGe3, 510K in LaRhGe3 and 1090K
in LaIrGe3 for branch α. Precise values for the other branches are also summarized in
Table 6.V.

The present dHvA result of LaIrGe3 is also compared with that of LaIrSi3, as shown
in Fig. 6.17. Here, the valence electrons are 3s23p2 in Si and 4s24p2 in Ge. The dHvA
frequency of LaIrGe3 is slightly smaller than that of LaIrSi3 because the lattice constants
of a = 4.4343 Å and c = 10.0638 Å in LaIrGe3 are larger than a = 4.2820 Å and c =
9.8391 Å in LaIrSi3 and the corresponding Brillouin zone in LaIrGe3 is smaller than that
in LaIrSi3 in volume. The 2|αp⊥| value is almost the same between two compounds. The
2|αp⊥| values are summarized in Table 6.V.
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Table 6.V Magnitude of the antisymmetric spin-orbit interaction for H // [001] in
LaTX3 (T = Co, Rh, Ir and X = Si, Ge) and PrCoGe3.

branch α branch β
F (×107Oe) m∗

c(m0) 2|αp⊥|(K) F (×107Oe) m∗
c(m0) 2|αp⊥|(K)

LaCoGe3

{
9.15
8.74

1.19
1.20

461
7.09
6.72

1.28
1.11

416

LaRhGe3

{
10.4
10.0

1.04
1.04

511
6.98
6.67

0.83
0.85

505

LaIrGe3

{
10.4
9.29

1.13
1.51

1090
7.25
6.22

1.32
1.29

1066

LaIrSi3

{
10.9
10.0

0.97
1.03

1100
7.64
6.76

0.97
0.92

1250

PrCoGe3

{
9.04
8.64

1.80
1.97
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6.71
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In the present dHvA experiment, we changed the potentials by changing the transition
metal T = Co, Rh and Ir in LaTGe3. We will explain the reason why the antisymmetric
spin-orbit interaction in LaIrGe3 is relatively large compared with those in LaCoGe3 and
LaRhGe3. This is related to both the characteristic radial wave functionϕ(r) of Ir-5d
electrons and the relatively large effective atomic number Zeff in Ir close to the nuclear
center. Here we simply calculate the spin-orbit interaction for the d electrons, not in
the lattice but in the isolated atom, following the method presented by Koelling and
Harmon.138)

Figure 6.18 shows the radial wave function rϕ(r) as a function of the distance r for
Ir-5d, Rh-4d and Co-3d electrons. Here, we assumed the valence electrons to be 3d74s2

in Co, 4d75s2 in Rh and 5d76s2 in Ir. The rϕ(r) function of Ir-5d electrons possesses
a maximum at r = 0.11 a. u., very close to the atomic center, while the corresponding
distance r is 0.23 a. u. in Rh-4d and 0.66 a. u. in Co-3d, far from the atomic center.

Next we will consider the potentialV (r), which corresponds to the sum of the nu-
clear potential, and the classical Coulomb and exchange-correlation potential derived
from electrons. Figure 6.19(a) shows the coupling constant of the spin-orbit interaction,
r2dV(r)/dr. Simply thinking, this value corresponds to the effective atomic numberZeff

in the potentialV (r) = −Zeff/r. Zeff at r =0 is very close to the atomic numberZ in the
nuclear potentialV (r) = −Z/r, where Z is 77, 45 and 27 for Ir, Rh and Co, respectively.
As shown in Fig. 6.19(a), the coupling constant of the spin-orbit interaction is reduced
steeply as a function of the distance r because of a screening of the nuclear charge by the
electron charge, reaching Zeff → 1 for r → ∞.

Finally we calculate the spin-orbit interaction, Iso:

Iso =
~2

2m2c2

∫ r

0

1

r

dV(r)

dr
|rϕ(r)|2 dr, (6.1)

which is shown in Fig. 6.19(b) as a function of the distance r. The spin-orbit interaction
becomes constant at about 1.0 a. u., but approximately reaches this constant value at r =
0.11 a. u. for Ir-5d, 0.23 a. u. for Rh-4d and 0.66 a. u. for Co-3d, where the corresponding
radial wave functions possess the extremal values, respectively, as mentioned above. The
spin-orbit interaction is thus obtained to be 38.0mRy (6000K) in Ir-5d, 12.8mRy (2020K)
in Rh-4d and 5.72mRy (900K) in Co-3d. The present calculations indicate that the radial
wave function of Ir-5d electrons possesses a large distribution at the distance close to the
center, compared with those of Rh-4d and Co-3d electrons, which produces the relatively
large value of the spin-orbit interaction in Ir, closely connected to the relatively large
effective atomic numberZeff in Ir at the distance r close to the atomic center.

The present result of the spin-orbit interaction for the isolated atom is applied to
the lattice or the non-centrosymmetric crystal. In the case of the non-centrosymmetric
crystal, the degenerate Fermi surface is split into two Fermi surfaces of which the mag-
nitude of the antisymmetric spin-orbit interaction is approximately proportional to the
spin-orbit interaction based on eq. (6.1) because the same potential is in principle used in
the band structure calculation. The d electrons in the T atom as well as the 5d electrons
in the La atom and the other electrons contribute to the conduction electrons in LaTGe3.
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This is the main reason why the antisymmetric spin-orbit interaction 2|αp⊥| in LaIrGe3

and LaIrSi3 is larger than those of LaCoGe3 and LaRhGe3. The present result is also
applied to the antisymmetric spin-orbit interaction of non-centrosymmetric paramagnetic
compounds Li2Pt3B and Li2Pd3B,139) where the antisymmetric spin-orbit interaction in
Li2Pt3B, which is mainly due to the contribution of Pt-5d electrons, is expected to be
larger than that in Li2Pd3B.

Next we will discuss the antisymmetric spin-orbit interaction in PrCoGe3. As shown
in Table 6.V, the 2|αp⊥| value in PrCoGe3 is nearly half or smaller than the corresponding
one in LaCoGe3 because the cyclotron mass of PrCoGe3 is nearly twice as large as that
of LaCoGe3. It is also noticed that the width of the split dHvA frequencies, |F+ − F−|,
is unchanged between PrCoGe3 and LaCoGe3. This can be simply understood when we
compare the angular dependence of the dHvA frequency of PrCoGe3 in Fig. 6.11(a) with
that of LaCoGe3 shown in Fig. 6.11(b). The contribution of localized 4f electrons to
the topology of Fermi surface is thus very small in PrCoGe3, but enhances the cyclotron
mass.

Finally we will discuss the reason why the cyclotron mass of LaFeGe3 is relatively large.
The electronic specific heat coefficient γ is γ = 9.4mJ/K2·mol in LaFeGe3, 4.4mJ/K2·mol
in LaCoGe3, 5.0mJ/K2·mol in LaRhGe3 and 4.5mJ/K2·mol in LaIrGe3.

95,99,103) The
corresponding theoretical one γb is calculated to be 5.74mJ/K2·mol in LaFeGe3,
4.48mJ/K2·mol in LaCoGe3, 4.28mJ/K2·mol in LaRhGe3 and 3.58mJ/K2·mol in
LaIrGe3. The relatively large γ value of LaFeGe3 is due to the contribution of 3d electrons
in the Fe atom. Figure 6.20 shows the density of states in LaFeGe3, together with the
partial density of states such as the Fe-3d electrons. The large γ value corresponds to
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Fig. 6.20 Electronic density of states in LaFeGe3, where the 4f level of La was shifted
upward by 0.2Ry.
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the large cyclotron mass in LaFeGe3, ranging from m∗
c = 0.76m0 to 4.9m0. It is noticed

that the mass enhancement produces a small magnitude of the antisymmetric spin-orbit
interaction: 2|αp⊥| = 134K in branch α and 267K in branch β, as shown in Table 6.VI.

Recently, the γ value of CeIrSi3 is found to be unchanged as a function of pressure
even at the critical pressure Pc = 2.25GPa,107) where the Néel temperatureTN = 5.0K at
ambient pressure becomes zero. The magnitude of the antisymmetric spin-orbit interac-
tion of CeIrSi3 can be simply estimated from the γ value: 2|αp⊥| ≃ 40K is obtained in
CeIrSi3 from 2|αp⊥| ≃ 1000K and γ = 4.5mJ/K2·mol in LaIrSi3, and γ = 110mJ/K2·mol
in CeIrSi3.

22) This value is extremely larger than the superconducting transition tempera-
tureTsc = 1.6K at 2.65GPa in CeIrSi3. The dHvA experiment for CeIrSi3 under pressure
is now in progress to clarify the 2|αp⊥| value in CeIrSi3.

Table 6.VI Magnitude of the antisymmetric spin-orbit interaction for H // [001] in
LaFeGe3.

LaFeGe3

Experiment
Branch F (×107Oe) m∗

c(m0) 2|αp⊥|(K)

α

{
14.2
13.7

3.86
4.40

134

β

{
7.01
6.13

4.93
3.91

267

ε

{
4.99
4.93

1.50
1.38

57
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6.2 Magnetic and superconducting properties of

CeTX3

6.2.1 Overview of magnetic properties of CeTX3

We measured the magnetic susceptibility χ in CeTSi3 and CeTGe3 single crystals,
as shown in Fig. 6.21. The susceptibility data of CeRhSi3, CeIrSi3 were cited from
refs. 22, 100, respectively. The anisotropy of the magnetic susceptibility is almost the
same in CeTSi3 and CeTGe3, meaning that the susceptibility in the paramagnetic state
for H // [100], χa, is larger than that for H // [001], χc, except for CeCoGe3. The Néel
temperature is in the range from TN = 1.8K in CeRhSi3 to TN = 21K in CeCoGe3.

The magnetic susceptibility was analyzed on the basis of the CEF model for CePtSi3,
CeIrSi3,

22) and CeCoGe3
103), as mentioned Chap. 6.2.2. The CEF Hamiltonian for tetrag-

onal point symmetry is given as follows:

HCEF = B0
2O

0
2 + B0

4O
0
4 + B4

4O
4
4, (6.2)

where Bm
l are the CEF parameters and Om

l are the Stevens operators. 29,30) It is clear
from the previous CEF analyses that the present anisotropy of the magnetic susceptibil-
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Fig. 6.21 Temperature dependence of the magnetic susceptibility in CeTSi3 and CeTGe3.
The data of CeRhSi3 and CeIrSi3 are cited from refs. 100 and 22, respectively.
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ity mentioned above is mainly due to the positive and large value of B0
2 : B0

2 = 14K in
CePtSi3, 9K in CeIrSi3 and 3K in CeCoGe3. Namely, the magnetic easy-axis in magne-
tization is determined from the contribution of the value of B0

2 in the present tetragonal
structure.

Here we briefly describe the magnetic properties of CeTSi3. Among CeTSi3, CeRuSi3,
CeOsSi3 and CeCoSi3 are paramagnets. We could not, however, succeed in growing single
crystals of CeOsSi3, where some magnetic impurities are included even in the polycrystal
samples. As shown in Fig. 6.21, the magnetic susceptibility possesses a maximum around
150K in CeRuSi3 and 200K in CeCoSi3. Next, antiferromagnets CeRhSi3 and CeIrSi3
are very similar each other in the electrical and magnetic properties, which order anti-
ferromagnetically at TN = 1.8K and 5.0K, respectively. CePdSi3 and CePtSi3 also order
antiferromagnetically at TN = 5.2K and 4.8K, respectively, although single crystals were
not obtained in CePdSi3. In order to reduce space, the susceptibility data in CePtSi3 are
shown in the left hand side of Fig. 6.21, namely below the CeRuSi3 data. In the next
section, we precisely studied the electrical and magnetic properties of a single crystal
CePtSi3. The CEF analyses are also carried out.

6.2.2 CePtSi3

First we show in Fig. 6.22(a) the temperature dependence of the electrical resistivity
ρ for a single crystal sample in the current J along the [100] direction. The resistivity
decreases monotonically with decreasing the temperature and decreases steeply below
the Néel temperature TN1 = 4.8K, as shown in Fig. 6.22(b). The present ordering tem-
perature of TN1 = 4.8K is smaller than the ordering temperature of 11K with a spin
glass character in the previous report. 102) The spin glass property is not observed in the
present single crystal sample, as shown later. The electrical resistivity is found to show
a step-like decrease at TN2 = 2.4K, suggesting a first-order like change of the magnetic
structure. Below 1K, the resistivity follows the Fermi liquid relation of ρ = ρ0 + AT 2

(ρ0 = 16.4µΩ·cm and A = 0.78µΩ·cm/K2).
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Fig. 6.22 Temperature dependence of the electrical resistivity (a) below room tempera-
ture and (b) at low temperatures in CePtSi3.
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Next we measured the temperature dependence of the specific heat C in the form of
C/T in the temperature range from 0.5 to 8K. The specific heat indicates clear peaks
at TN1 = 4.8K and at TN2 = 2.4K, as shown by arrows in Fig. 6.23(a). We note that
the specific heat anomaly at TN1 is of the usual λ-shape, while the anomaly at TN2 is
sharp, suggesting the first-order like phase transition. In Fig. 6.23(b) we show the T 2-
dependence of C/T . The low-temperature specific heat consists of the electronic specific
heat γT and the specific heat βT 3 of phonon and antiferromagnetic contributions. The γ
value is obtained as γ = 29mJ/K2·mol from the data in Fig. 6.23(b). We also estimated
the magnetic entropy Smag by simply integrating C/T over temperature up to TN1: Smag

= 0.8R ln 2, indicating a doublet ground state of the 4f -crystalline electric field (CEF)
scheme.
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Fig. 6.23 (a)Temperature dependence of the specific heat C in the form of C/T and
(b) the T 2-dependence of C/T in CePtSi3.
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Next we measured the temperature dependence of the magnetic susceptibility. Fig-
ure 6.24 shows the logarithmic scale of temperature dependence of the magnetic sus-
ceptibilityχ. The susceptibility is highly anisotropic between H // [100] and H // [001],
which is mainly due to the CEF effect, as discussed below. The low-temperature suscep-
tibility indicates characteristic features at TN1 and TN2, shown by arrows. Note that the
susceptibility shows a step-like decrease at TN2 for H // [100].
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Fig. 6.24 Logarithmic scale of temperature dependence of the magnetic susceptibility in
CePtSi3.

The susceptibility follows the Curie-Weiss law above about 200K, as shown in
Fig. 6.27(a), and the effective magnetic moment µeff is obtained as 2.27µB/Ce and
2.42µB/Ce for H // [100] and [001], respectively. These values are slightly smaller than
the free ion value of 2.54µB/Ce for Ce3+ ion, suggesting that the total energy of CEF
splitting is large in CePtSi3, which will be discussed later. The Weiss constant was de-
termined as θp = 12.2K and −211K for H // [100] and [001], respectively. The present
anisotropy of the susceptibility is similar to that in CeRhSi3 and CeIrSi3.

21,100)

We measured the magnetization at 2K, as shown in Fig. 6.25. The magnetization for
H // [100] indicates metamagnetic transitions at Hc1 = 1.8 kOe and Hc2 = 15 kOe and
saturates above Hs = 45 kOe, with an ordered moment of 1.15µB/Ce. The magnetization
for H // [001] also indicates a small metamagnetic transition at Hc = 52 kOe. From these
magnetization curves, the magnetic structure is complicated, but the [100] direction is
the easy-axis in magnetization, while the [001] direction corresponds to the hard-axis.

We also measured the temperature dependence of magnetization under several mag-
netic fields. Figure 6.26(a) and 6.26(b) show the magnetic phase diagrams for H // [100]
and [001], respectively. The metamagnetic transition fields Hc1 and Hc2 for H // [100]
are found to be connected to TN2 = 2.4K at zero field, while the saturation field Hs is
connected to the Néel temperatureTN1 = 4.8K at zero field. The magnetic phase diagram
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is approximately similar between H // [100] and [001], although the saturation field for
H // [001] is expected to be extremely large.

The present anisotropy of the magnetic susceptibility and magnetization between
H // [100] and [001] is very similar to that of pressure-induced superconductors of CeRhSi3
and CeIrSi3.

21,100) This is commonly ascribed to the CEF effect in these compounds. The
magnetic structure and magnetic moment in CePtSi3 are highly different from those of
CeRhSi3 and CeIrSi3, although these compounds are antiferromagnets with an easy-axis
along [100]. For example, our pulse-field magnetization experiment for CeIrSi3 indicated
that the magnetization for H // [100] at 1.3K increases linearly as a function of magnetic
field, 0.5µB/Ce at 500 kOe. A phase boundary between an antiferromagnetic state and
the paramagnetic state is not attained in fields up to 500 kOe.

On the other hand, the magnetization for H // [100] in CePtSi3 with TN1 = 4.8K sat-
urates at a small field of 45 kOe at 2K. The ordered moment is determined as 1.15 µB/Ce
in CePtSi3. CePtSi3 is thus classified as a usual f -localized compound, whereas CeRhSi3
and CeIrSi3 are Kondo compounds with antiferromagnetic ordering.97) In fact, the γ value
of 29mJ/K2· mol is small in CePtSi3, which is compared with 110 and 120mJ/K2· mol
in CeRhSi3 and CeIrSi3, respectively.

Here we discuss the CEF effect in CePtSi3. The J =5/2 multiplet of the Ce3+ ion
splits into three doublets in the 4f -CEF scheme with tetragonal symmetry. In order to
understand the present anisotropy in the susceptibility and the magnetization, we have
performed the CEF analysis on these data. The CEF Hamiltonian for the tetragonal site
symmetry is given by eq. 6.2 The magnetic susceptibility based on the CEF model, χi

CEF

(i= x, y, z ), is given by

χi
CEF = N(gJµB)2 1

Z
(
∑
m̸=n

| ⟨m | Ji | n⟩ |2 1 − e
−∆m,n

kBT

∆m,n

e
− En

kBT

+
1

kBT

∑
n

| ⟨n | Ji | n⟩ |2 e
− En

kBT ), (6.3)

and

Z =
∑

n

e
− En

kBT , (6.4)

where gJ is the Landé g - factor (= 6/7 for Ce3+), Ji is the component of the angular
momentum and ∆m,n = En − Em. The magnetic susceptibility χi including a small
temperature-independent susceptibility χ0 and the molecular field contribution λi is given
as follows:

χ−1
i = (χi

CEF + χ0)
−1 − λi. (6.5)

We have also calculated the magnetization by using the following formula:

Mi = gJµB

∑
n

| ⟨n | Ji | n⟩ | e−βEn

Z
, (6.6)
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where the eigenvalue En and the eigenfunction |n⟩ are determined by diagonalizing the
total Hamiltonian:

H = HCEF − gJµBJi(H + λiMi), (6.7)

where HCEF is given by eq. (6.2), the second term is the Zeeman term and the third one
is the molecular field. Solid lines in Fig. 6.27 are the results of CEF calculations.

The CEF parameters of Bm
l , energy level scheme and the corresponding wave functions

are summarized in Table 6.VII. It is noted that the obtained splitting energy∆2 between
the ground state and the second excited state is large: ∆2 =1002K. This is quite con-
trastive to the case of CeIrSi3, ∆1 =160K and ∆2 =501K. 21) Furthermore, the ground
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state |±1/2⟩ in CePtSi3 is also different from that in CeIrSi3, 0.607|±5/2⟩−0.795 |∓3/2⟩.
It is also noted that the B0

2 value is positive, and is relatively large, which determines the
easy-axis in magnetization or magnetic susceptibility in the paramagnetic state.

Table 6.VII CEF parameters, energy level schemes and the corresponding wave functions
for CePtSi3.

CEF parameters
B0

2 (K) B0
4 (K) B4

4 (K) λ (emu/mol)−1 χ0 (emu/mol)
14 −2 16.7 λx,y =1 χx,y

0 =−3.7 × 10−4

λz =1 χz
0 =−1.2 × 10−4

energy levels and wave functions
E (K) | −5/2⟩ | −3/2⟩ | −1/2⟩ | +1/2⟩ | +3/2⟩ | +5/2⟩
1002 −0.579 0 0 0 −0.815 0
1002 0 −0.815 0 0 0 −0.579
53.5 0.815 0 0 0 −0.579 0
53.5 0 −0.579 0 0 0 0.815
0 0 0 1 0 0 0
0 0 0 0 1 0 0

6.2.3 CeTGe3

Next, we describe the magnetic properties of CeTGe3. CeCoGe3, CeRhGe3 and
CeIrGe3 order antiferromagnetically. The Néel temperature and the successive magnetic
transitions are reported to be TN1 = 21K, TN2 = 12K and TN3 = 8K in CeCoGe3,

103) TN1

= 14.6K, TN2 = 10K and TN3 = 0.55K in CeRhGe3, and TN1 = 8.7K, TN2 = 4.7K and TN3

= 0.7K in CeIrGe3.
97) There exists another compound of CeFeGe3 in CeTGe3. CeFeGe3

is a paramagnet with a broad maximum around 50K in the magnetic susceptibility.95)

We succeeded in growing single crystals of CeFeGe3 by the Bi-flux method, but reliable
susceptibility data were not obtained because single crystals are extremely small in size.

The magnetic structures in CeTX3 are not simple, most likely reflecting the incom-
mensurate magnetic structure. For example, the incommensurate magnetic reflections
with the wave vector q = (±0.215, 0, 0.5) were observed in CeRhSi3.

140) We previously
investigated the magnetic properties of CeCoGe3, CeIrSi3 and CePtSi3 by measuring the
magnetic susceptibility, magnetization and specific heat, and clarified the CEF schemes
for these compounds, although the magnetic structure was not simply speculated from
the magnetization curves.22,103) Here we present the characteristic magnetization curves
for CeRhGe3 and CeIrGe3.

Figure 6.28 shows the magnetization curves in CeRhGe3. From the magnetization
curves and the magnetic susceptibility in Fig. 6.21, the magnetic easy-axis in the an-
tiferromagnetic state is close to the [001] direction. Note that the magnetic easy-axis
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in the paramagnetic state is directed along the [100] direction. Both magnetizations
for H // [100] and [001] show the metamagnetic transition at low temperatures. As for
H // [001] and below TN1 = 14.9K, the magnetization increases linearly with increasing
the magnetic field, as shown in the magnetization curve at 10K, but indicates a metam-
agnetic transition below TN2 = 8.2K, which is smaller than TN2 = 10K in the previous
report.97) The critical field Hc decreases from 42 kOe at 9K to 36 kOe at 2K. The mag-
netization above Hc is about 0.10µB/Ce in magnitude at 2K, indicating a very small
value. The similar magnetization curves are obtained for H // [100]. The corresponding
magnetic phase diagram for H // [100] and [001] is shown in Fig. 6.29. The magnetic
phase diagram is, however, incomplete, and it is needed to measure the magnetization at
much higher fields.
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Figures 6.30 and 6.31 show the magnetization curves and the corresponding magnetic
phase diagram for H // [001] in CeIrGe3, respectively. Below the Néel temperature TN1 =
8.7K, the easy-axis magnetization for H // [001] indicates a metamagnetic transition, for
example, at Hc = 12.7 kOe under 7K, as shown in Fig. 6.30(a). This is a characteristic
feature in an antiferromagnet. The critical field Hc is, however, shifted to lower fields with
decreasing temperatures, and becomes zero below TN2 = 4.8K. Namely, the magnetization
below TN2 indicates a so-called ferromagnetic curve with a small magnetic moment of
0.14µB/Ce at 2K. It is not clear at present whether this magnetic moment corresponds
to an ordered moment or not because the magnetic moment of 0.14µB/Ce is very small
in magnitude. It is, however, noted that the electronic specific heat γ is relatively large,
80mJ/K2·mol, which is twice as large as γ = 40mJ/K2·mol in CeRhGe3.

97)

The present characteristic magnetization curves are closely related to the first-
order magnetic transition at TN2 = 4.8K in CeIrGe3, obtained in the specific heat
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measurement97) and also seen in the electrical resistivity discussed below. Similar mag-
netization curves are observed in UCu2Si2 with the incommensurate longitudinal and
nearly sinusoidal spin density modulation. In this compound, the antiferromagnetic state
is changed into the ferromagnetic state, and the corresponding magnetic moment corre-
sponds to an order moment of 1.6 µB/U.141,142) Another example is the case in CeRu2Ge2,
which orders antiferromagnetically below TN = 8.5K and ferromagnetically below TC =
7.5K. An ordered moment is, however, large, 1.98µB/Ce.143)

On the other hand, the hard-axis magnetization curve for H // [100] increases approx-
imately linearly as a function of magnetic field, reaching 0.16µB/Ce at 50 kOe, as shown
in Fig. 6.31(b). The magnitude of magnetization for H // [100] is the same as the satura-
tion value of 0.14µB/Ce for H // [001]. The simple ferromagnetic state is most likely not
realized below TN2 in this compounds. It is thus needed to measure the magnetization at
much higher fields, especially for H // [001].
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6.2.4 Pressure effect and superconductivity in CePtSi3 and
CeTGe3(T: Co, Rh, Ir)

The localization of 4f electrons is enhanced in CeTGe3(T: Co, Rh, Ir) compared
with that in CeTSi3. The corresponding Néel temperature in CeTGe3 is larger than
that in CeTSi3. This is because the lattice constants of CeTGe3 are larger than those of
CeTSi3: a = 4.398 Å and c = 10.032 Å in CeRhGe3 and a = 4.237 Å and c = 9.785 Å in
CeRhSi3, for example. Namely, Ge in CeTGe3 increases the molar volume and enhances
the antiferromagnetic ordering, as discussed in CeT2X2 (T: transition metal, X: Ge, Si).55)

We plotted the Néel temperature and the electronic specific heat coefficient γ as a
function of the molar volumeV (= a2c), as shown in Figs. 6.32(a) and 6.32(b), respec-
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tively. It is noted that the volume in the left side is larger than that in the right side.
These data are cited from refs. 22, 96, 97 and 103. The present relation of TN vs V in
Fig. 6.32 roughly corresponds to the Doniach phase diagram, which indicates competi-
tion between the RKKY interaction and the Kondo effect. Namely, the magnetic ordering
temperature is shown as a function of |Jcf |D(εF) in the Doniach phase diagram,5) where
Jcf is the magnetic exchange interaction and D(εF) is the electronic density of states at
Fermi energy εF. Experimentally, |Jcf |D(εF) corresponds to pressure. In fact, the Néel
temperature in CeRhSi3 and CeIrSi3 becomes zero at a relatively small value of pressure,
Pc ≃ 2GPa, which corresponds to the magnetic quantum critical point.

We investigated the effect of pressure on the electronic states in CePtSi3 and
CeTGe3(T: Co, Rh, Ir) by measuring the electrical resistivity under pressure.23,144,145)

CePtSi3 was studied by measuring the electrical resistivity under pressure for a poly-
crystal sample,145) as shown in Fig. 6.33. The Néel temperature is TN = 6.4K, which
is higher than TN1 = 4.8K in the single crystal sample. The Néel temperature TN is
appreciably unchanged as a function of pressure. The critical pressure is much larger
than 8GPa.
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Next, we will switch from the pressure effect in CePtSi3 to the electrical resistivity in
CeTGe3 at ambient pressure. The temperature dependence of the electrical resistivity at
ambient pressure is approximately the same in CeTGe3, as shown in Fig. 6.34. A shoulder-
like peak around 100K is a characteristic feature, which is a combined phenomenon of the
Kondo and CEF effects. The antiferromagnetic ordering and the change of the magnetic
structure occur at lower temperatures, as mentioned above, as shown in Fig. 6.34(b). As
for CeCoGe3, the resistivity change is seen only at TN1 = 21K for the current J along
the [100] direction, although the successive transitions at TN2 = 12K and TN3 = 8K are
observed for J // [001].103) It is noticed that a step-like decrease of the resistivity occurs at
TN2 = 4.8K in CeIrGe3, consistent with the first-order magnetic transition, as mentioned
above. It is noted that the magnetic transitions TN3 = 0.55K in CeRhGe3 and TN3 =
0.7K in CeIrGe3 were not observed in the present measurement, as shown in Fig. 6.34(b).

From the low-temperature resistivity, we obtained the A value in the Fermi-liquid rela-
tion of ρ = ρ0+AT 2: A = 0.011µΩ·cm/K2 in CeCoGe3, A = 0.022µΩ·cm/K2 in CeRhGe3

and A = 0.149µΩ·cm/K2 in CeIrGe3. Following the Kadowaki-Woods relation,41) these
values correspond to the electronic specific coefficient γ = 34mJ/K2·mol in CeCoGe3,
47mJ/K2·mol in CeRhGe3 and 122mJ/K2·mol in CeIrGe3, which are close to γ =
32mJ/K2·mol in CeCoGe3, 40mJ/K2·mol in CeRhGe3 and 80mJ/K2·mol in CeIrGe3

obtained from the specific heat measurement.
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The effect of pressure on the electronic states in CeTGe3 compounds are highly differ-
ent from that in CeRhSi3 and CeIrSi3. The Néel temperature does not change appreciably
against pressure in CeRhGe3 and CeIrGe3. Figures 6.35 and 6.36 show the temperature
dependence of the electrical resistivity under several pressures and corresponding pres-
sure phase diagram in CeRhGe3 and CeIrGe3, respectively. The Néel temperature for
the polycrystal sample increases with increasing pressure from TN1 = 14.6K at ambi-
ent pressure to TN1 = 21.3K at 8.0GPa in CeRhGe3. The similar result is obtained in
CeIrGe3, where the antiferromagnetic ordering temperature TN1 and the magnetic tran-
sition temperature TN2 merge at 4GPa, but the antiferromagnetic ordering temperature
is appreciably unchanged as a function of pressure up to 8GPa. High pressures of 10 -
15GPa are needed for TN1 → 0 in CeRhGe3 and CeIrGe3, revealing that both compounds
are sited far from the magnetic quantum critical point, which can be understood from
the molar volume dependence of the Néel temperature and γ value in Fig. 6.32.
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On the other hand, the critical pressure, where the Néel temperature becomes zero,
was roughly estimated at Pc ≃ 5.5GPa in the previous resistivity measurement under
pressure in CeCoGe3, and superconductivity was observed at 5.6GPa, with the supercon-
ducting transition temperatureTsc = 0.42K.23) The previous experiment was carried out
by using a polycrystal sample. We measured the electrical resistivity under pressure up
to 7GPa by using a high-quality single crystal sample with the residual resistivity ratio
RRR = 130, as shown in Fig. 6.34.

Figure 6.37(a) shows a typical temperature dependence of the electrical resistivity at
6.5GPa, together with the resistivity at ambient pressure. The overall feature of the
resistivity is approximately the same between at 6.5GPa and ambient pressure, although
the Néel temperature TN1 = 21K at ambient pressure becomes zero and superconductivity
appears below Tsc = 0.69K at 6.5GPa.

Figure 6.37(b) shows the low-temperature resistivity at 5.4, 6.5 and 6.9GPa. At
5.4GPa, the electrical resistivity decreases steeply below the Néel temperature TN1 =
2.9K, and drops below 0.43K, indicating onset of superconductivity and reaches zero at
Tsc = 0.13K. We define the superconducting transition temperatureTsc as the tempera-
ture showing the zero-resistivity. At 6.5 and 6.9GPa, the clear antiferromagnetic ordering
is not seen, and the electrical resistivity, which shows a T 2-dependence of the resistivity,
ρ = ρ0 + AT 2, below about 2.5K at 5.4GPa, is changed into a T -linear temperature
dependence below about 4K at 6.9GPa, indicating the non-Fermi liquid character. Here,
the A value of A = 0.357µΩ·cm/K2 at 5.4GPa corresponds to the electronic specific
heat coefficient γ = 190 mJ/K2·mol, following the Kadowaki-Woods relation,41) which is
compared with A = 0.011µΩ·cm/K2 and γ = 34 mJ/K2·mol at ambient pressure. Su-
perconductivity in CeCoGe3 is realized in a moderate heavy fermion state. It is noted
that the γ value of about 120 mJ/K2·mol at ambient pressure in CeIrSi3 is unchanged as
a function of pressure, even at about 2.6GPa where the characteristic superconducting
state is realized.107)

Superconductivity in CeCoGe3 is observed at Tsc = 0.69K at 6.5GPa and Tsc = 0.65K
at 6.9GPa. The maximum superconducting transition temperature might be realized at
6.5GPa. We show in Fig. 6.38 the pressure phase diagram. The Néel temperature TN1

= 21K at ambient pressure decreases with increasing pressure and superconductivity
appears in the pressure region from 5.4GPa to about 7.5GPa. The critical pressure is
estimated to be Pc ≃ 6.5GPa

We precisely investigated superconductivity in magnetic fields. Figure 6.39 shows the
magnetic phase diagram at 5.4GPa for the magnetic field along the [001] direction. The
antiferromagnetic ordering is quite stable against magnetic fields. Superconductivity is
realized below Tsc = 0.13K at zero field. The upper critical field at Hc2 at 0K is roughly
estimated to be Hc2(0) = 1.5 kOe for the magnetic field along the [001] direction. It is
noted that onset of superconductivity is not destroyed by magnetic field, which is 0.43K
at zero field and 0.2K at 50 kOe.

Next we shown in Fig. 6.40 the temperature dependence of the electrical resistivity
under the magnetic field of 0, 30 and 80 kOe at 6.5GPa, where the magnetic field is
directed along the [001] direction. The electrical resistivity drops very steeply due to
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onset of superconductivity. The present superconductivity is not destroyed by magnetic
fields: Tsc = 0.47K at 80 kOe. The corresponding slope of Hc2 as a function of temperature
is extremely large: -dHc2/dT = 200 kOe/K at Tsc = 0.69K, which is larger than -dHc2/dT
= 154 kOe/K at Tsc = 1.56K at 2.65GPa in CeIrSi3. The upper critical field indicates an
upturn curvature with decreasing temperature, as shown in Fig. 6.41, and unconventional
superconductivity is achieved with a huge slope of the upper critical field. In Fig. 6.41,
the upper critical field at 6.9GPa is also shown: -dHc2/dT = 190 kOe/K at Tsc = 0.65K,
together with the upper critical field in CeIrSi3.

8,21,22)

CeCoGe3 is thus another candidate which might be a spin-triplet superconductor in
the non-centrosymmetric crystal structure as in CeRhSi3 and CeIrSi3. It is, however,
needed to determine experimentally the upper critical field Hc2(0) for H // [001] and the
temperature dependence of Hc2 for H // [100], which are left to the future study.
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are cited from ref. 22.
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6.3 Magnetic properties and the pressure effect in

Ce2TGe6

6.3.1 Ce2PdGe6

Figure 6.42 shows the temperature dependence of magnetic susceptibility in the tem-
perature range 2 - 20K measured in a field of 5 kOe. The susceptibility for all the three
principal directions clearly indicated the antiferromagnetic ordering of the Ce moments
at TN = 11.3K, thereby corroborating the previous results on the polycrystalline samples.
The magnetic susceptibility is very large for the field parallel to the [010] direction, while
the anisotropy along the [100] and [001] directions is very small. The huge drop in the
susceptibility for H // [010] just below the Néel temperature TN = 11.3K indicates an
easy-axis of magnetization.
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Fig. 6.42 Temperature dependence of (a) the magnetic susceptibility and (b) the inverse
magnetic susceptibility along the three principal directions in Ce2PdGe6.

Figure 6.43 shows the isothermal magnetization of Ce2PdGe6 along the three principal
directions at T = 2K. As can be seen from the figure, the magnetic anisotropy is very
large for the field directions parallel to [010]. The magnetization along the [100] and
[001] directions is very small and remains linear up to a field of about 7T, indicating
the hard-axes of magnetization. The magnetization along [010] is very small for fields up
to 10.5 kOe at which point a metamagnetic transition is observed. At 12.7 kOe, a sharp
metamagnetic transition, which is like a spin flop type, is observed, thereby entering into
a field-induced ferromagnetic state. The magnetization saturates at this field to a value
of 1.94µB/Ce. This large value of saturation moment at substantially low fields indicates
that Ce atoms are trivalent and possess magnetic moments.

The small metamagnetic transition at 10 kOe vanishes for temperatures above 9K.
Furthermore the sharp metamagnetic transition also vanishes for temperatures above the
ordering temperature and it becomes linear at 20K. Based on the isothermal magne-
tization measurement, we have constructed the magnetic phase diagram, as shown in
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Fig. 6.44. The transition points can be traced by smooth lines to the magnetic ordering
temperature TN = 11.3K at zero field.

The temperature dependence of the specific heat C in the temperature region from 2
to 20K is shown in Fig. 6.45. A jump in the heat capacity data clearly shows the bulk
antiferromagnetic ordering of Ce3+ moments at TN = 11.3K. Just below the magnetic
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Fig. 6.45 Temperature dependence of specific heat in the form of C/T versus T and the
total entropy Stot of Ce2PdGe6.

ordering, the specific heat data can be fitted to the antiferromagnetic magnon spectrum
with an energy gap as given by the relation C(T ) = γT + βT 3 exp(–∆/kBT ). The γ value
thus obtained is 9mJ/K2·Ce mol. The spin wave gap is found to be ∆ = 2.3K, which
is much less than that observed from the low-temperature resistivity data, shown later.
We have estimated the total entropy STot and is shown in Fig. 6.45. The total entropy is
almost equal to Rln 2 at the magnetic ordering temperature, indicating a doublet ground
state. From the specific heat data down to 2K and the magnetization data, it can be
understood that the two Ce atoms occupying two different sites order magnetically at
the same temperature. It is to be mentioned here that some of the Ce compounds with
multi-cerium sites indicate a complex magnetism due to the different electronic nature of
the various kinds of cerium atoms 146).

The temperature dependence of electrical resistivity in the temperature range from
1.3 to 300K is shown in Fig. 6.46. The resistivity shows a broad hump around 150K
and decreases with decreasing temperature. A rapid drop in the electrical resistivity is
observed below TN = 11.3K, indicating the the antiferromagnetic ordering. This type of
huge drop in the electrical resistivity below the Néel temperature suggests the appearance
of a spin density wave. The resistivity data of Ce2PdGe6 can be fitted to the following
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spin density wave relation:

ρ(T ) = ρ0 + AT 2 + BT (1 + 2T/∆)exp(−∆/T ), (6.8)

where ρ0 is the residual resistivity, AT 2 is the Fermi liquid contribution and ∆ is the
gap in the spin density wave spectrum. The solid line in Fig. 6.46 indicates the least
square fitting to the above equation. As can be seen from the figure, the fitting is good
for temperatures up to the Néel temperature. The parameters obtained from the fitting
are ρ0 = 20.3µΩ·cm, A = 0.0147µΩ·cm/K2, B = 1.48 µΩ·cm/K and ∆ = 14.0K. The
residual resistivity ρ0 is almost three times smaller than those reported by Fan et al117)

but is comparable to that reported by Strydom et al 116).
We measured the electrical resistivity under pressures up to 8GPa by using the a cubic

anvil pressure cell in the temperature range from 2K to 300K, as shown in Fig. 6.47(a).
The Néel temperature TN = 11.3K at ambient pressure is shifted to slightly higher tem-
peratures at low pressures, TN = 12.2K at 2GPa, for example, but is shifted to lower
temperatures with further increasing pressure: TN = 7K at 5.5GPa, which was deter-
mined as the temperature showing a maximum of −d2ρ/dT 2, as shown by arrows in
Fig. 6.47(b). The Néel temperature is not defined at 7.0 and 8.0GPa, most likely TN =
0 at these pressures. Figures. 6.48(a) and 6.48(b) show the pressure phase diagram, and
the corresponding A and ρ0 values of the Fermi liquid relation ρ = ρ0+AT 2. These A and
ρ0 values increase with increasing pressure. Unfortunately, we could not determine the A
and ρ0 values at 7.0 and 8.0GPa because the resistivity data at much lower temperature
are needed to determine these values.
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6.3.2 Ce2CuGe6

Figures 6.49(a) and 6.49(b) show the temperature dependence of the magnetic suscep-
tibility and the inverse magnetic susceptibility in the magnetic field along three principal
directions, respectively. The magnetic susceptibility in the magnetic field along [010]
is very large compared with those of H // [100] and [010] and, a steep decrease of the
susceptibility is found for H // [010] below TN = 15.0K, which indicates an easy-axis of
magnetization for H // [010]. This is almost the same as that in Ce2PdGe6.
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Fig. 6.49 Temperature dependence of (a) the magnetic susceptibility and (b) the inverse
magnetic susceptibility along the three directions in Ce2CuGe6.
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The temperature dependence of specific heat is shown in Fig. 6.50. A clear peak at
14.8K is due to the bulk antiferromagnetic ordering. We have estimated the total entropy
Stot, as shown in Fig. 6.50, which is almost equal to Rln2 at TN, indicating a doublet
ground state of 4f electrons in the CEF scheme.
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Fig. 6.50 Temperature dependence of the specific heat in the form of C/T and the total
entropy Stot in Ce2CuGe6.

The temperature dependence of the electrical resistivity is shown in Fig. 6.51. The
electrical resistivity decreases steeply below TN = 15K. Pressure experiments were carried
out mainly by using a cubic anvil cell133) at high pressures up to 8GPa in the temperature
range from 2 to 300K. Figure 6.52 shows the temperature dependence of the electrical
resistivity under pressures up to 8GPa. The resistivity at 0GPa shows the broad hump
around 100K and a steep decrease below TN = 15.4K. TN increases gradually up to
4GPa, and then decreases rather steeply above 5GPa. Since there is no signature of TN

at 8GPa, TN is found to become zero around Pc = 7.2GPa, as shown in Fig. 6.53(a).
We obtained the A and ρ0 values from the T 2-dependence of the electrical resistivity
at low temperatures, following a Fermi liquid relation ρ(T ) = ρ0 + AT 2. The A value
shows a maximum around Pc, as shown in Fig. 6.53(b). The enhanced A-value around Pc

indicates that the heavy fermion state is formed around Pc.
147,148) The residual resistivity

ρ0 also becomes maximum around Pc, as shown in Fig. 6.53(c). Much lower temperature
experiments are required to clarify the heavy-fermion state around Pc and also to find
superconductivity in Ce2CuGe6 as well as Ce2PdGe6.
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7 Conclusion

The electrical and magnetic properties of the non-centrosymmetric rare earth com-
pounds of RTX3 (R: rare earth, T: transition metal and X: Si and Ge) and Ce2TGe6

were studied by measuring the electrical resistivity, specific heat, magnetic susceptibility,
magnetization and de Haas-van Alphen (dHvA) effect, together with the resistivity mea-
surement under pressure. Two significant experimental results were obtained in RTX3:
the antisymmetric spin-orbit interaction and the unique superconducting property, which
are based on the non-uniform lattice potential along the non-centrosymmetric tetragonal
[001] direction.

I) We grew single crystals of LaTGe3(T: Fe, Co, Rh, Ir) and a paramagnet PrCoGe3 by the
Bi-flux method, and measured the dHvA effect to clarify the split Fermi surface properties
and the antisymmetric spin-orbit interaction based on the non-centrosymmetric crystal
structure. The dHvA data are compared with the result of energy band calculations. The
experimental results are summarized as follows:
(1) The detected dHvA branches are clearly identified by the theoretical Fermi surfaces.
The Fermi surfaces are found to be split into two different Fermi surfaces due to the
antisymmetric spin-orbit interaction in LaTGe3 (T: Fe, Co, Rh, Ir) and PrCoGe3.
(2) The magnitude of the antisymmetric spin-orbit interaction 2|αp⊥| is found to be
changed when the transition metal T is changed from T = Co, Rh to Ir in LaTGe3, but
unchanged in X is changed from X = Si to Ge in LaIrX3. It is noticed that the value of
2|αp⊥| ≃ 1100K for the outer orbits named α of the main bands 69 and 70 electron Fermi
surface in LaIrSi3 and LaIrGe3 is larger than 2|αp⊥| = 460K in LaCoGe3 and 510K in
LaRhGe3. This is due to the large effective atomic number of Ir and a large distribution
of the radial wave function of Ir-5d electrons close to the nuclear center, compared with
those of Co and Rh.
(3) The topology of the Fermi surface in a paramagnet PrCoGe3 is the same as that
of LaCoGe3, although the cyclotron mass of PrCoGe3 is approximately twice as large
as that of LaCoGe3, which produces a smaller value of 2|αp⊥| = 284K for branch α
compared with 461K in LaCoGe3. It is experimentally confirmed that the antisymmetric
spin-orbit interaction becomes small in magnitude with increasing the cyclotron mass,
being inversely proportional to the cyclotron mass.
(4) On the other hand, the topology of the Fermi surface in LaFeGe3 is different from
that of LaTGe3(T: Co, Rh, Ir), and furthermore the cyclotron mass of LaFeGe3 is three
to four times larger than that of LaTGe3, which produces a much smaller value of 2|αp⊥|
= 134K for a main bands 67 and 68-Fermi surface, named α.
(5) We carried out the cantilever type dHvA experiment. An ample dHvA amplitude was
obtained in the whole field direction except a few degree of the symmetrical direction.
This method is found to be extremely useful for a very tiny single crystal with 0.1 × 0.1
× 0.05mm3.

II) We grew single crystals of antiferromagnetic CeTX3 compounds and clarified the elec-
trical and magnetic properties. We succeeded in growing a single crystal of CeRuSi3
from the Czochralski method, and single crystals of CePtSi3 by the Sn-flux method and

147
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CeRhGe3 and CeIrGe3 by the Bi-flux method. The unique superconducting property on
the upper critical field was obtained in CeCoGe3. Experimental results are summarized
as follows:
(1) The magnetic susceptibility for H // [100] (a-axis), χa, is larger than that for
H // [001], χc, in the paramagnetic state of CeTSi3 and CeTGe3, except for CeCoGe3.
This is due to the contribution of the positive and large value of B0

2 in the CEF scheme
for the present tetragonal structure.
(2) The characteristic magnetization curves are obtained in antiferromagnets CeRhGe3

and CeIrGe3, including the metamagnetic transition. In CeIrGe3, the critical field at the
metamagnetic transition, Hc = 12.6 kOe at 7K, decreases with decreasing temperature
from the Néel temperature TN1 = 8.7K, and becomes zero at the first-order magnetic
transition temperature TN2 = 4.8K, indicating a ferromagnetic curve with a small mag-
netic moment of 0.14µB/Ce at 2K.
(3) The Néel temperature and the electronic specific heat coefficient are plotted as a
function of molar volume in the crystal structure for CeTSi3 and CeTGe3 (T: Co, Rh, Ir).
This relation roughly corresponds to the Doniach phase diagram indicating the compe-
tition between the RKKY interaction and the Kondo effect. Following this relation, we
investigated the effect of pressure on the electronic states in antiferromagnets CeCoGe3,
CeRhGe3 and CeIrGe3. CeRhGe3 and CeIrGe3 are sited far from the magnetic quantum
critical point. On the other hand, we observed clear pressure-induced superconductivity
in the pressure region from 5.4GPa to about 7.5GPa in CeCoGe3. The slope of the upper
critical field at 6.5GPa is found to be extremely large, with an upturn curvature with
decreasing temperature: −dHc2/dT = 200 kOe/K at Tsc = 0.69K for the magnetic field
along the [001] direction. The upper critical field at 0K, Hc2(0), is roughly estimated to be
about 200 kOe. This is a common feature of superconductivity in CeCoGe3, CeIrSi3 and
CeRhSi3, and might be an experimental evidence of the spin-triplet superconductivity in
the non-centrosymmetric crystal structure.

In addition to these experimental results on the electrical and magnetic properties of
RTX3, we grew another non-centrosymmetric compounds of antiferromagnets Ce2PdGe6

and Ce2CuGe6 by the Bi-flux method and studied the electrical and magnetic properties.
Both compounds are found to indicate the similar electronic states. Pressure experiments
were also performed in the temperature range from 2K to room temperature. The anti-
ferromagnetic state was found to be changed into the paramagnetic state above 7GPa.
The measurements at much lower temperatures are needed to find superconductivity,
which are left to the future study.
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R. Settai, and Y. Ōnuki, J. Phys. Condens. Matter 16, L29 (2004).

16) T. Akazawa, H. Hidaka, H. Kotegawa, T. C. Kobayashi, T. Fujiwara, E. Yamamoto,
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Y. Ōnuki, J. Phys. Soc. Jpn. 76, 014702 (2007).

76) A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).

77) B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).



154 REFERENCES

78) K. Scharnberg, and R. A. Klemm, Phys. Rev. B 22, 5233 (1980).

79) P.A. Frigeri, D. F. Agterberg, and M. Sigrist, New J. Phys. 6, 115 (2004).
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R. Settai, and Y. Ōnuki, J. Phys. Soc. Jpn. 75, 044711 (2006).

107) N. Tateiwa, Y. Haga, T.D. Matsuda, S. Ikeda, E. Yamamoto, Y. Okuda,
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