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Abstract
Generalised spin structures, oispin structures, on a 2-dimensional orbifad
are r-fold fibrewise connected coverings (also callgl roots) of its unit tangent
bundle STX. We investigate such structures on hyperbolic orbifoldse Tonditions
onr for such structures to exist are given. The action of theedifiorphism group of
¥ on the set of -spin structures is described, and we determine the nunfhanbits
under this action and their size. These results are therneapia describe the moduli

space of taut contact circles on left-quotients of the 3edigional geometrﬁz.

1. Introduction

Spin structures on manifolds have been studied extensively least because of
their relevance to physics. A spin structure on a Riemanfasai’> may be thought
of as a square root of the tangent bundlE, that is, a holomorphic line bundlé with
L® L =Tx. On the level of the unit tangent bund®TX, a spin structure can be
interpreted as a fibrewise connected double covelihg> ST by anotherSt-bundle
M over X.

It is this last definition which most easily generalises tdi@ensional orbifolds
and coverings of higher order. This is not just generalisafor generalisation’s sake.
For instance, such objects appear in the work of Witten [20]neatrix models of
2-dimensional quantum gravity, see also [15]. Here the p@nt is that of Algebraic
Geometry, where am™™ root of the tangent bundle of a Riemann surfateis con-
sidered to be a holomorphic line bundle whage tensor power equal¥ x. In that
framework, questions of moduli have been studied by Ja@jisafid others.

Our personal motivation for investigating such roots comes from the moduli
problem for taut contact circles on 3-manifolds. Thesecstmes were introduced in [6],
where we also classified the 3-manifolds which admit sualcgires. The moduli ques-
tion was largely settled in [8], but certain details as to finecise geometry of the mod-
uli spaces had been left open. These details hinge on thsifidaton of r" roots of
the unit tangent bundle of 2-dimensional hyperbolic oroligo
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Here is an outline of the paper. In Section 2 we present thigda$ 2-dimensional
hyperbolic orbifolds, mostly to set up notation. In Sect®nve recall the definition of
the unit tangent bundle of an orbifold. Roots of such unigert bundles are defined
in Section 4, where we determine the conditionsrafin terms of the genus and multi-
plicities of the cone points of the orbifold) for r roots to exist. We also set up a
one-to-one correspondence betwe&nroots and certain homomorphisms on the funda-
mental group of the unit tangent bundle Bf (Theorem 3). In Section 5 this is used
to investigate the action by the diffeomorphism groupsbbn the set of " roots. The
number of orbits under this action is determined (Propwmsit), as well as the length
of the orbits (Proposition 8). In Section 6 we reformulatés thction by the diffeo-
morphism group in algebraic terms as an action by the outemeaarphism group of
the orbifold fundamental group. Finally, in Section 7 we ubkis algebraic reformu-
lation and the results of the previous sections to deschieTeichmdiller space (The-
orem 10) and moduli space (Theorem 11) of taut contact siroieleft-quotients of the
3-dimensional Thurston geometﬁg. In particular, we are interested in the enumera-
tion of the connected components of the moduli space; thissgihe number of distinct
taut contact circles up to diffeomorphism and deformation.

Sections 2 to 5 are completely self-contained. The final tewctisns depend to
some degree on our earlier work [8], but except for the algiebreformulation of the
moduli problem we do not need to quote any details from thaepa

2. Hyperbolic orbifolds

Throughout this paper, Ief be a fixed (closed, orientable, 2-dimensional) orbifold
of genusg and withn cone points of multiplicityxs, . . ., «h. Moreover, it is assumed
that X is of hyperbolic type, i.e. its orbifold Euler charactedstdefined as

n
1
X™(£)=2-2g-n+) —,
=1 %

is assumed to be negative. This condition on the orbifoldeEgharacteristic deter-
mines those orbifolds which admit a hyperbolic metric; hesre as yet we do not fix
such a hyperbolic structure.

The orbifold fundamental group®® of % is defined as the deck transformation
group of the universal covering — ¥. We briefly recall the geometric realisation
of this group and its standard presentation. To that endpseh@ base pointy € X
distinct from all the cone points, and a lify € = of X in the universal covering space.
Choose a system ofg2loops onX, based atxp, and a curve fronx, to each of the
cone points, such that looks as in Fig. 1 when cut open along thege+2n curves.
We may interpret that figure as a fundamental regiorkinit is determined (amongst
all possible fundamental regions whose boundary polygopsnta the chosen system
of curves) by the indicated placement xf on its boundary. Notice that the sides of



GENERALISED SPIN STRUCTURES ONORBIFOLDS 451

Fig. 1. A fundamental domain foE.

this polygon identified by the deck transformatign meet at a vertex mapping to the
j™ cone point inX; all other vertices are lifts oko.

Let Uy, vy, ..., Ug, Vg, G, - . ., On be the deck transformations af which effect
the gluing maps of the sides of the chosen fundamental polggoindicated in Fig. 1.
From the figure we see that the deck transformafi§fi ,1_)|]HJ- gj (read from the right
as a composition of maps) fixes the poiyt which is not the lift of a cone point, so

we conclude
[T a1 ]]a =1
i i

Similarly, we have

d'=1 j=1,....n

These relations give the standard presentatiom ¥t as

n,orbz {Ull 1_)11-~~.Ug;7_)qu1|~-~,qn: H[q;bl]l_[q] =11 q‘lxj 21}'
i i

Once X has been equipped with a hyperbolic structure and an otientathen
¥ = H? and thed, G, g; are orientation preserving isometries Kf, i.e. elements of
PSL,R. The identification of: with H2 is uniquely determined if we specify, for in-
stance, the liftXo € H?, the initial direction of one of the edges of the fundamental
polygon emanating from that point, and require that thernaigon lifted from X co-
incide with a chosen orientation d@?. In this way an oriented hyperbolic structure
on X defines an element of the Weil spa®ér°P?, PSLLR) of faithful representations
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of 7°® in PSLLR with discrete and cocompact image. Conversely, any reptaten
p € R(m°®, PSL,R) determines a diffeomorphic copy(°®) \ H? of = with a hyper-
bolic structure and an orientation.

It is possible to designate one of the orientations on angrgil as positive and
the other amegativein the following way. If there are cone points, it suffices to- o
serve thatp(;) is a rotation by+27/«j, with the same sign for each=1,...,n. (The
sign is well defined even fax; = 2 when we regard the rotation as being through the
interior of the fundamental domain.) Observe in Fig. 1 how tirection of rotation
around the cone points relates to the orientation given byptirs of arrows indicating
the action ofi and u;; thus, any such pair of arrows allows us to determine the ori-
entation of £, also when no cone points are present. We wRte(7°®, PSL,R) for
the corresponding components &i(7°®, PSLLR). Any two representationg., p, €
R(7°P, PSLLR) are related via conjugation with a diffeomorphismI@f. This diffeo-
morphism will be orientation preserving or reversing, defieg on whetherp,, o, lie
in the same component or not, see also [8, pp.59/60]. Thentation issue will only
become relevant in Section 7 of the present paper.

3. The unit tangent bundle of an orbifold

The unit tangent bundle of an oriented hyperbolic orbifdldis defined as fol-
lows, see [17, p. 466]. Writ&L, for the universal cover of PSR. There is a short
exact sequence

0—Z — SL, > PSLR — 1.

Realise the given hyperbolic structure and orientationXdby a choice of representa-
tion 5 € R(7°?, PSLLR). Then set

STE = p Y(p(x°™)) \ SLy;

this is the unit tangent bundle &t. It is in a natural way the total space of a Seifert
bundle overX with normalised Seifert invariants

{g:b=29-2; (01,01 — 1), ..., (n, an — 1)}.

REMARK. There is a tricky orientation issue here. The group HSlbf orien-
tation preserving isometries d@? acts, via the differential, transitively and with triv-
ial point stabilisers on the unit tangent bund3@H? of H? (see Scott's survey [17]),
which allows us to identify PSIR with STH?. A given orientation orH? thus induces
an orientation on thé&!-fibres of PSLR = STH? — H?, and hence on th&-fibres of
§[2 — H?. When we pass to a left-quotient §L2, these oriented®-fibres descend to
oriented Seifert fibres. With this orientation conventitime invariants of the multiple
fibres are ¢;, 1), see [17, p.467]. On the other hand, there is a natight S'-action
on compact left-quotients @BL,. When this right action is turned into a left action by
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the inverse elements (while keeping the orientatiorSbf and its quotient), the Seifert
invariants becomeof, o — 1). This is the convention of Raymond and Vasquez [16,
pp.169/70], which is the more suitable one for our more algiebconsiderations in
our earlier paper [8] and below.

A presentation of the fundamental grompof STX is given by
T = {U]_, Uiy o v ey UQ, Ug, qu LR | qrh h: H[uly vl] l_[qj = hzg_za
i ]
g/ 'h*t=1,h centra}.

Under the projectiorSTE — X, the generators of andz°® correspond to each other
as suggested by our choice of notation. In other words, tisege representatiop €
R(m, éT_z) with p(7) = p~X(p(x°™®)) and p(p(u;)) = p(G)) etc. For further details
see [8, Section 4].

The Seifert fibrationSTX — X, up to equivalence, does not depend on the choice
of hyperbolic structure ort. This allows us to speak of the unit tangent bun8I€x
(as a Seifert manifold) even when we have not fixed a metricon

4. Roots of the unit tangent bundle

Our aim is to classify " roots of STX for ¥ an oriented orbifold of hyperbolic
type, by which we mean the following.

DEFINITION. An r' root of the unit tangent bundI&TS is anr-fold fibrewise
connected and orientation preserving coverMg— STX of STX by a Seifert mani-
fold M. In other words, we require that ea@t-fiore of STY is coveredr times
positively by a singleS-fiore of M.

REMARKS. (1) Forr =2, such coverings are precisely the spin structureXon
Spin structures on orbifolds of arbitrary dimension werdirgl and studied from the
differential geometric point of view (index theory, twisttheory) in [5] and [3]. The
latter paper contains a general existence and classificataitement for spin structures
on orbifolds, albeit only for orbifolds whose singular sstdf codimension at least 4.

(2) In the case of a principast-bundle without multiple fibres, one can pass to
the associated complex line bundle. AR root then corresponds to a complex line
bundle whose" tensor power is the given line bundle.

For the purpose of classifying suaf" roots M — ST we need to specify a
notion of equivalence. BottM and STX come equipped with an effectivB'-action
that induces the Seifert fibre structure. The covering mvbp> ST may be regarded
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as the quotient map under ti#g -action onM induced by thisSt-action onM and the
natural inclusionz, c S'. In particular, the covering map — STX is regular, and
M is a principalZ, -bundle overSTZ.

Two r rootsq: M — STX andq’: M’ — STZ will be regarded as equivalent
if there is anS*-equivariant diffeomorphismy: M — M’ with g’ o ¢ = . Since the
St-actions onM and M’ are lifted from theSt-action on STX, this amounts to the
same as requiring the existence ofZa-equivariant diffeomorphismy: M — M’.

The equivalence classes afbitrary principal Z,-bundles overSTX are in nat-
ural one-to-one correspondence with the set Hon#) of homomorphisms from the
fundamental groupr of STX into Z,, the correspondence being given by associating
with a principal Z, -bundle its monodromy homomorphism [19, §13.9]. Titfe roots
M — STX are precisely those principal, -bundles ovelSTX for which theZ,-action
extends to arS*-action covering theSt-action onSTX. In other words, eacls'-fibre
of STX lifts to a (positive) path of length2/r in the correspondings-fiore of M.
This is the same as saying that the monodromy homomorphikes téoe value 1 on
the fibre classh.

Thus, ther™ roots M — STX are classified by the subset

Homy(r, Z;) := {8 € Hom(r, Z,): §(h) = 1}.

If we drop the condition on orientations, we also have tovallmmomorphisms with
8(h) = —1. This will become relevant in Section 6.

On a givenM there are other structures as princifalbundles overSTX with
each Z,-orbit lying in an S'-fibre of M. These correspond to homomorphisths
Hom(r, Z,) with §(h) a generator ofZ,. Such more generd,-bundles play no role
in our discussion.

REMARK. There is a well-known isomorphism between, on the one hémel,
deck transformation group of the universal coveridg— X of a topological spacé
and, on the other hand, the fundamental graypX, Xp). This isomorphism depends,
up to an inner automorphism, on the choice of asifte X of the base poinko, cf. [8,
Remark 4.10]. This dependence becomes irrelevant once n&des homomorphisms
into the abelian grougZ,. Thus, while we usually think ofr as a deck transformation
group, one may still interpret the monodromy homomorphism- Z, as being defined
in terms of loops as in [19, §13].

We now want to give a characterisation of the homomorphigrasHomy(, Z,)
in terms of the allowable values on the generators in thedstahpresentation af. In
order to do so, we need to recall a theorem of Raymond and ¥asfj] about the
Seifert invariants of left-quotients of Lie groups, cf. [AlVe have seen in the preced-
ing section that, once we equip with a hyperbolic structure, its unit tangent bun-
dle STX can be written as a left-quotient &T_z, and so the same is true for its
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r-fold coveringM. Indeed, the fundamental group of the maniféidcorresponding to
8 € Homy(w, Z;) is = = kers. A representatiorp € R(rw, éT_z) as described at the end
of Section 3 induces a representatipre R(7, éT_z) of 7 as the deck transformation
group of M.

By construction,M is a Seifert manifold withn multiple fibres of multiplicities
a1, ..., an (just like the Seifert manifoldSTX), but whereas the fibre index (see [7,
Definition 6] of STX equals 1, the fibre index oM is r. Then, according to [16]
or [7], the normalised Seifert invariants

{gv b! (0(11 :31)7 ce (anv ﬂn)}

of M (whereb is an integer and each; an integer between 1 and — 1) are subject
to the condition that there exist integets . .., k, such that

n
(1) rb=2g-2-) k;,

=1
2) rﬂj:a,-—l—i—kja,-, j=1...,n

(Observe that these conditions are satisfied 3drz with r = 1, b = 2g — 2, and all

k; equal to zero.) For a giveX, these conditions impose severe restrictions on the
possible values of. These restrictions are implicit in [16]; for the reader@neenience
we deduce them directly from the equations (1) and (2).

Lemma 1. If r € N satisfies the Raymond—Vasquez relatifhsand (2), then r
is prime tows - - - oy and divides the integet; - - - oy - x°™.

Converselyif r € N satisfies these latter conditiorfgor given g n and«;j), then
there are integers ok; and g; (with 1 < g; < «j —1) such that equation§l) and (2)
are satisfied.

Proof. From (2) we see thatmust be prime tarj. With (1) and (2) one computes

which proves the claimed divisibility.
For the converse, the condition gcdg;) = 1 allows us to choose integers<l
Bj < aj —1 andk; such that (2) holds. One then computes

n
r.al...anzg:-al...an.xorb_al...an-(29—2—ij),
N j j=1

which shows that divides 23 — 2 — ZT=1 kj, as was to be shown. []
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REMARK. Equation (2) and the fact thatand «; are coprime imply that mul-
tiple fibres with the same; also have the samg; (and hence the sanig). This is
a unique feature of left-quotients &L,.

The converse implication of the preceding lemma has theviatlg consequence.
Given anr € N satisfying the divisibility assumptions, we find—by the l@@r—a set
of normalised Seifert invariants satisfying the Raymorabeiez relations. In particu-
lar, the Euler number

of the Seifert fibration must be non-zero, sime= x°® < 0. This means that the
Seifert manifoldM defined by these invariants is diffeomorphic to a left-geiatiof SL,.
The projectionSL, — PSLR induces the Seifert fibratioM — ¥ over a hyperbolic
orbifold ¥ and givesM the structure of am™ root of STX.

Lemma 2. The homomorphismé € Homy(z, Z;), where r e N is supposed to
satisfy the Raymond—Vasquez relatiqd$ and (2), can take arbitrary values on the
generators y, vy, ..., Un, Un, but the value on the;gis determined by(q;) = k; modr.

Proof. InZ, we compute
0= §(1) = 8(a"h* %) = 8(a))ej + ) — 1.

From equation (2) we see that, first of all; must be prime ta, and secondly, that
8(qj) = kj modr, as claimed. Equation (1) implies that this condition &ris con-
sistent with the other relation in the presentationnof It is then easy to see that we
may define a homomorphisih € Homy(r, Z,) by prescribing arbitrary values on the
u; andv;. O

We summarise our discussion in the following theorem.

Theorem 3. The unit tangent bundle ST of an orbifold X of hyperbolic type
admits an # root if and only if re N is prime to the multiplicitiesyy, . .., an of the
cone points and a divisor of the integei - - -« - x°™(Z). In that casethe distinct
roots are in natural one-to-one correspondence with thenelets ofHomy(, Z;).

REMARK. There is a simple geometric explanation whyieeds to be prime to
the multiplicitiesas, ..., o, for anr root of ST to exist. From the local model for a
fibre of multiplicity «j one sees that when we pass torafold cover with connected
covering of the multiple fibre, then far not prime to«; the covering of the regular
fibres will fail to be connected.
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Lemma 2 implies that any two homomorphisms in H¢m Z,) differ by a homo-
morphismz — Z, that sendsh and theq; to zero. Such a homomorphism may be
interpreted as an element of

Hom(zy(2), Z;) = Hom(Hy(2), Z,) = HY(Z; Z,) = 2.

(In the first term we really do mean the fundamental greypx), not the orbifold
fundamental groupr®®.) This one-to-one correspondence rdf roots of STE with
elements ofH!(XZ: Z,), however, is not natural. All we have is a free and transitiv
action of HY(Z; Z,) on the set of ™ roots.

One way to give an explicit one-to-one correspondence latvéom (, Z,) and
z? is to fix a presentation forr, and then to associate withe Homy(z, Z,) the tuple

(8(uy), 8(v1), - - ., 8(ug), 8(vg)) € Z2.

REMARKS. (1) As observed by Johnson [10], there is a natural geooétri
ing of mod 2 homology classes from a surface to its unit tabhgemdle. Thus, spin
structures on surfaces amaturally classified both by Hoa{r1(X2), Z2) and Hi(XZ; Z5).
There is no such natural lifting of mod classes for greater than 2. However, given
a smooth simple closed curve ab, we can consider its tangential lift t8§TX. This
will be used in the next section to help us understand th@mdf the diffeomorphism
group of ¥ on Homy(w, Z).

(2) For an honesS!-bundle over an arbitrary manifolX, one can classify ™
roots by mimicking the spectral sequence argument of [13ap@h 11.1] with Z,-
coefficients replaced by, -coefficients, cf. [11]. This allows one to show that g
root exists if and only if the mod reduction of the Euler class of th&'-bundle van-
ishes (which can also be seen by more simple means), and theoots are in (non-
natural) one-to-one correspondence with the elements '¢X; Z,).

We close this section by giving an explicit presentation li# fundamental group
7 = kers of the manifoldM corresponding té € Hom(r, Z,;). Choose integers, t
with § = §(u;) andt; = §(vj)) modr, i =1,...,9. Thenx is generated by

G :=uh™, 3 :=vyh™ i=1...,0 §:=qh™, j=1,...,n and h:=h"

With the help of the Raymond—-Vasquez relations one seesthiimtields the presen-
tation

ﬁ = {Gly ﬁly"'aﬁgyﬁquly"'yqnaﬁ: l_[[ljlaﬁl]l_[qj zﬁba
i ]

d'n =1, h centra}.
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5. The action of diffeomorphisms on roots

We are now going to define an action of the diffeomorphism groti> on the
set ofr!" roots of STE. For g > 2, it will be shown that this action is transitive for
r odd, and that it has exactly two orbits foreven; the cas@ = 1 will require an
ad hoctreatment; on a given hyperbolic orbifold of gengs= 0 and for eaclr there
is at most ona ™ root, since in that case Haifwr, Z,) is trivial. Throughout, we fix
an orientation ofX, and the diffeomorphisms we consider are always understood
be orientation preservingA diffeomorphism of an orbifold may at best permute cone
points of the same multiplicity. By Lemma 2 and the remarloiwing the proof of
Lemma 1, any such permutation can be achieved by a diffedmsmpthat induces
the trivial action on Hom(r, Z,). So in order to understand the action of the diffeo-
morphism group ofz on Hom(x, Z,), it suffices to consider diffeomorphisms that fix
a neighbourhood of each cone point.

Let M — STX be anr™ root of STX, corresponding to some homomorphism
8 € Homy(w, Z;), and let f be a diffeomorphism of as described. By slight abuse
of notation, we may regard the differenti@lf as a diffeomorphism o8TZ; the com-
position of the projectionM — STX with Tf is then a newr™ root of STE. We
denote the corresponding element in H¢m Z,) by f.é.

Geometrically this means the following. Givene =z, represent it by a loop in
STX. Then (f.8)(u) € Z, is given by the monodromy of the coverind — STX
along thepreimageof that loop underT f.

We make one further abuse of notation.ulfis an oriented, smooth closed curve
on X (avoiding the cone points), we also writefor its tangential lift to a closed curve
in STX. Up to conjugation, this represents a well-defined element i= 71(STX),
so it makes sense to speak &ffl) € Z,. This abuse of notation is justified by the fact
that for f a diffeomorphism ofx, the tangential lift of f (u) equals the image of the
tangential lift ofu under the differentiall f.

Consider a topological model foE as in Fig. 2. HereX is given the standard
orientation, so that the simple closed curegsy; representing the standard generators
of Hi(X) intersect positively in a single point. The notatian v; has been chosen in
accordance with the presentationsefin Section 3. In the sequel we identify a homo-
morphismé € Homy(r, Z,) (representing am™ root of STX) with the corresponding
2g-tuple of integers mod, that is, we write

8=(Sﬂ.7tlyasgltg)€Zrzga

wheres = §(u;) andti = §(v;).

For our discussion below we note that the elemlerd 7= corresponds to a pos-
itively oriented regular fibre ofSTX, so it can be represented by a small positively
oriented circle onx.

Next we want to show that for any givéne Homy (7, Z, ) there is a diffeomorphism
f of ¥ such thatf.§ is in a very simple standard form. This is done by studying the
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Fig. 2. Loops onXx representing loops i18TX.

—Ui+1
Wi, i41

Usq

Fig. 3. The smooth deformation from — uj;1 t0 wiit1 — h.

transformation behaviour &f under certain Dehn twists oB.
For u a simpleclosed curve ore, write f! for the right-handed Dehn twist along

Lemma 4. Under the basic Dehn twists"f, f¥ and f*ii+1 the tuples = (s, ty,...,
Sy, tg) transforms as follows

f8=(...s,ti—s,...),
fis=(..,s+t,t,...),
" =(..,s,ti—s+smu—Lsintipn+s—sa+l,...)

Proof. The Dehn twistf% sendsu; to itself andv; to u; + v;; the differential
TfY% has the same effect, when those curves are regarded as lo@$x. So the
inverse diffeomorphism sends to itself andv; to v; —u;. This gives the formula for
fs". The argument forf! is analogous.

In order to investigatef."'**, we need to computé(w; . 1).

CLAIM.  S(wiji+1) = 8(ui) — 8(Ui41) + 1.

This can be seen as follows (cf. [10] for an analogous ided)e disjoint union
of the smooth curves; and —u;,1 (that is, u;; with reversed orientation) can be de-
formed smoothly into the union ofvi ;11 and a small circle oriented negatively (see
Fig. 3 for a schematic illustration). The tangential lift tfe latter equals—h. This
implies the claim.
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Now, the inverse off “i+1 sendsy; t0 v; — wjit+1, and vy t0 vi41 + wij+1; the
other basic loops remain unchanged. In conjunction withdlaém, this gives the for-
mula for f,"**. O

REMARK. The formulae of Lemma 4—for the case= 2, where signs do not
matter—were derived earlier by Dabrowski and Percaccib]quite involved calcu-
lations in local coordinates. Related considerations dao ke found in the work of
Sipe [18]. She studied™ roots of the unit tangent bundle of hyperbotiarfaceswith
the aim of describing certain finite quotients of their maygptlass group.

The signs in the formulae of Lemma 4 change when we perfortrhgided Dehn
twists. Therefore, Dehn twists along and v; enable us to perform Euclid’s algorithm
on any pair of integers representing the pairt{) of modr classes. This implies that
we can reduce one component to zero and the other to the uelqueentd; € Z,
determined by the conditions that the principal idealZin generated byd, equal the
ideal generated bg andtj, and that the integer representative hflying between 1
andr be a divisor ofr. By slight abuse of notation we write this last condition as
di|r. The pair ¢;, 0) can be changed to the pair (@) by further such Dehn twists.
In total, we can find a composition of Dehn twists Bf that transformss to

(0,dy, ..., 0,dy).

In order to simplify this further, we have to bring the curves . into play. By
the claim, the transformed takes the value 1 om;;.;. Thus, when we perforna;
right-handed Dehn twist alongs,, the tuple (0dy, 0,dy, ...) changes to (0, 0, @; +
dy, ...). Continuing with the appropriate Dehn twists alomgs up to wg_14, we find
a diffeomorphism transforming to

©,...,0,d +---+dy).

We shall presently describe further Dehn twists that bargto one of the forms listed
in the next proposition.

Proposition 5. By a sequence of Dehn twistwe can brings into one of the
following standard forms
e (0,...,0,0)ifg>=2andr odd
e (0,...,0,0)0r (0,...,0,1)ifg=2andr even
e (0,d) with d|r if g =1 (beware that this includes & r = 0).

Of course, forg = 1 the surfacex will be of hyperbolic type only if there is at
least one cone point. Fay = 0 (and at least three cone points), Hdm, Z,) is trivial.
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Proof of Proposition 5. The casg = 1 has been settled by the discussion pre-
ceding the proposition. In the cage> 2, we may assume that has already been
transformed into the form (0,.., 0,d), as yet without any information od.

We only write the last four components of theg-fiple in Z3. We claim that
there are Dehn twists giving the following sequence of tiemsations:

(0, 0,0,d) — (0, F1, 0,d + 1) — (0, £1, 0,d + 1) — (0, 0, 0,d + 2).

Indeed, the first and third step are given by a Dehn twist (efappropriate sign) along
wg-1g, the second by a sequence of Dehn twists alogpg and vg_;.

So we can always reduce the last component to 0 or I. iff odd, then Dehn
twists alongug and vy allow us to transform from (0, 1) (in the last two components)
to (0, 2)—since either of 1 or 2 generates the same princgedliin Z;, namely the
full ring. O

The standard forms listed in the preceding proposition tuhto be pairwise in-
equivalent under the action of the diffeomorphism group. fik&t show this for the
caseg = 1.

Lemma 6. For g = 1, two standard formdq0, d) and (0, d’), where we think of
d,d’ as integers betweeh and r (which divide 1), are equivalent if and only if & d'.

Proof. Assume without loss of generality thdit< d. The action of the diffeo-
morphism group of a hyperbolic orbifol@ of genus 1 translates into the standard
SL(2, Z)-action onZ? = Homy(x, Z,). The orbit of (0,d) under this action consists
of elements of the formn(d, nd) (with m and n coprime). Sinced is a divisor ofr,
the numbemd (thought of as an integer) can be congruentdtanodr only if d is a
divisor of d’, which forcesd = d'. O

The Z,-invariant that distinguishes the standard forms in thee@s 2 (andr
even) goes back to Atiyah [2]. A spin structure on an honedlase = has an asso-
ciated complex line bundlé. Once a complex structure has been chosersorone
can speak of holomorphic sections bf The dimension mod 2 of the vector space
of holomorphic sections turns out to be independent of theseh complex structure;
this is Atiyah’s invariant of spin structures. As remarkedtlier, Johnson [10] defined
a natural lifting of mod 2 homology classes from a surfacdo its unit tangent bun-
dle. A spin structure ork then gives rise to a quadratic form diy(3; Z,). Johnson
goes on to show that the Arf invariant of that quadratic fommhdgse definition can be
found on any Turkish 10 Lira note) equals Atiyah’s invariant
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REMARK. The 2-dimensional spin cobordism gro@™" is isomorphic toZ,;
the Atiyah invariant distinguishes the two cobordism aass

Now we allow once again arbitrary orbifolds of hyperbolic type. Motivated by
Johnson’s work, we define A,-valued invariant of am™ root § of STX (with r even),
which we write ass = (s, ta, . . ., Sy, tg) € Z79, by

9
AB) =D (s + Dt +1) mod 2.
i=1

Note that, forr even, this mod 2 reduction is well defined. The definition a$ tim-

variant can also be phrased as follows. Given a princigabundle M — STXZ with

r even, there is an intermediate double coveringSafrE. Thus, anr™ root (with r

even) induces in a natural way a spin structure. Pamvariant is simply the Atiyah
invariant of that spin structure.

Lemma 7. The number ) € Z, is a diffeomorphism invariani.e. for any(ori-
entation preservingdiffeomorphism f ofZ one has Af.§) = A(S).

Proof. We need only consider diffeomorphisms that fix theecpaints. The group
of such diffeomorphisms is generated by the Dehn twistscalonv; and wj;.1. The
invariance ofA(8) under these Dehn twists can be checked easily with the faemia
Lemma 4. ]

Obviously, the two standard forms (Q,., 0, 0) and (0, .., 0, 1) (forg > 2 andr
even) are distinguished by th&-invariant.

DEFINITION. For g > 2 andr even, we say an root § is of even(resp.odd)
typeif A(8) equals O (resp. 1).

So the standard form (0, ., 0, 0) is of even type fog even, and of odd type for
g odd; the standard form (0, ., 0, 1) has the complementary type.

Proposition 8. For g > 2 and r eventhe number of ¥ roots of ever(resp. odd
type equals $9(29 + 1)/29+1,

Proof. Writer = 2s. An r'" root § = (sy, ty, . . ., Sy, tg) Will be even if and only
if an even number of summands ¢ 1)t + 1) in A(S) are odd. Such a summand is
odd if and only if boths andt; are even, which gives us’ possibilities for choosing
s andt. On the other hand, there are?3possibilities for choosings andt; such
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that & + 1)(t + 1) becomes even. It follows that the number of roots of everme tig
given by

> (3) (s7)4(3s9) ¥ = %((s2 +35%)9 + (=% + 35%)9)

k even
= (@) + (25)

r29(29 + 1)
29+1

For roots of odd type, the calculation is analogous. [

REMARK. In the caser = 2, i.e. for spin structures, Propositions 5 and 8 are
well known—especially, it seems, among mathematical mligts. Our arguments for
deriving them generalise those of Dabrowski and PercafciAn alternative approach
can be found in the work of Alvarez-Gaumé, Moore and Vafa [Hjeyl appeal to the
relation between spin structures and theta functions irrotd describe the action of
the diffeomorphism group.

6. An algebraic reformulation

The Baer—Nielsen theorem for the orbifoki says, in essence, that the group of
all (not just orientation preserving) diffeomorphisms ®fmodulo those isotopic to the
identity can be identified with the group Oumff) of outer automorphisms of°"®;
see [21]. We now want to use this to reformulate the actionhef diffeomorphism
group on the space of" roots of STE in an algebraic way. This serves as a prepara-
tion for the next section, where we tie up our discussion Bfroots with the moduli
problem for so-called taut contact circles, which was askked in our earlier paper [8].
As announced there, the results of the present note allowo uunt the connected
components of the moduli spaces in question.

There is an obvious action of Aut] on

Homy1 (7, Z;) := {§ € Hom(r, Z,): §(h) = £1}.

(The fact that we now allow(h) = —1 corresponds to having orientation reversing diffeo-
morphisms included in the discussion.) This descends toctanaof Out(r), sinceZ,

is abelian. Thus, in order to define an action of @atf) on Hom.1(z, Z,), we should
first define a suitable lift from Aut°™®) to Aut(r). Recall from [8, Lemma 4.13] that
there is a short exact sequence

0 — Z% — Aut(r) — Aut(7°?) — 1.

(This holds true for the fundamental grompof any Seifert manifold which is a left quo-
tient of SL, and has base orbifol®.) Thus, algebraically, it is not clear how to define
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a lifting. Instead, we find a suitable lift by a direct appealkiie Baer—Nielsen theorem.
Put briefly, we represent a given element of @dtf) by an orbifold diffeomorphismf

of X, and then find the lift as the automorphism correspondindhéodifferential T f.
From that construction it is clear that our algebraic debnitof the action by the diffeo-
morphism group on the set of" roots corresponds to the geometric definition in the
preceding sections (except that we have replaced a lefirably a right action, which

is owed to the conventions in the algebraic setting of the segtion).

Lemma 9. There is a natural right action oDut(z°®) on Homy.(7, Z,), de-
fined as follows. Given a clag$] € Out(z°®), represented by an automorphisine
Aut(7°®), there is a geometrically defined lifting of this represeivi@atto an auto-
morphism® € Aut(r). Then the action of#] on § € Hom.y(r, Z,) is defined by
S~ 4801,

Proof. By the Nielsen theorem [21, Theorem 8.1] there is &eadlihiorphismf of
¥ (fixing a base poinixy) covered by a diffeomorphisnf of £ (fixing a chosen lift
Xo Of Xg) such that

folofl=29(@@) forall 0ex°P

Regard the differentiall f as a diffeomorphism ofSTX, and letTT be a lift to a
diffeomorphism ofSL,. Define ¢ € Aut(r) by

z?(u):ﬁouO"l'\ffl forall ueamx.

Since the fibre clasé generates the centre af, we haved(h) = h*l. So the
homomorphisms o ¢ is still an element of Hom,(rr, Z,). Moreover, the definitions
imply that 91 o 9, lifts to 91 o 995, S0 the prescriptio — § o ¥ does indeed define a
right action, provided we can establish independence of choices.

Two different lifts of T f differ by a deck transformation a8 TZ, i.e. an element
of 7. So the corresponding lift§ differ by an inner automorphism of. Thus, the
homomorphisms o ¥ into the abelian groufZ, is independent of this choice of lift.

Next, we show thatt o ¥ depends only on the clas®][ not on the choice of
representative?, or in other words, that for anjnner automorphisms we haves o
¥ = §. By the Baer theorem [21, Theorem 3.1], the Nielsen redbisat of any inner
automorphismy of 7°® is isotopic to the identity (by an isotopyot fixing the base
point, in general). TherT f is likewise isotopic to the |dent|ty This isotopy lifts to
a fibre isotopy betweeT f and a deck transformation &L, — STE. This implies
that the resulting? will be an inner automorphism of, and henceS o ¢ = §, as we
wanted to show.

Finally, it remains to verify that the construction does depend on the choice of
Nielsen realisationf. Two such realisations differ by a diffeomorphism whosé tdf
¥ induces the identity onr®®. Then the argument concludes as before by an appeal
to Baer’s theorem. O
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7. The moduli space of taut contact circles

Let M be a given closed, orientable 3-manifold diffeomorphic tlefa quotient of
SL, with fundamental groupzr. This is in a unique way a Seifert manifold over an
orbifold ¥ of hyperbolic type, with a well-defined fibre index Recall from the end
of Section 4 the presentation af involving the normalised Seifert invariants ™.

As shown in our paper [8], the Teichmiller spag€M) of taut contact circles,
i.e. the space of taut contact circles Bhmodulo diffeomorphisms isotopic to the iden-
tity, can be identified with Inr§L,) \ R(#, SL,), where R stands for the Weil space
of representations as in Section 2. The moduli spA¢éM) of taut contact circles,
i.e. the space of taut contact circles &h modulo all diffeomorphisms oM, is in
turn given by7(M)/Out(®). With this algebraic translation taken for granted, naghi
further needs to be known about taut contact circles (not ¢heir definition), i.e. the
following can be read as a discussion of these algebraicfined spaces, where we
want to understand the action of Q&}(on 7(M) = Inn(SLy)\ R(#, SL) with the help
of the geometry of " roots of STE. See also [12] for the relevance of such questions
to the deformation theory of Seifert manifolds.

REMARK. To a large extent we follow the notational conventions gf [Bhe one
difference that needs to be pointed out is that in our previpaper,7 denoted the
fundamental group oM, asSTX did not play much of a role in our discussion there.
In the present paper; denotes the fundamental group 8T, andz that of M.

Write 7(X) for the Teichmdller space of hyperbolic metrics on the bada-
fold X, together with a choice of orientation. This means tfig®) has two con-
nected component§ *(2) and 7-(X). Algebraically, 7(X) may be thought of as
INN(PSLLR) \ R(7°"®, PSLLR). In Section 4 of [8] it was shown that (M) is a trivial
principal Z?-bundle over7(X). For Aut(z) there is a short exact sequence as for
Aut(r) in the previous section. The normal subgrdZf? C Aut(7) acts as (Z)% on
the mentioned principal bundle. This implies tHA(M)/Z—where the quotient is
taken under the action dZ?9 C Aut(7)—is a trivial r29-fold covering of 7(X), and
the moduli space of taut contact circles dh can be described as

M(M) = (T(M)/Z%9)/0ut(z°™).

So the following theorem essentially settles the modulbfm for taut contact circles
on left quotients ofSL,. Herer denotes, as before, the fundamental groupsSatx.
For the proof below, notice that there are quotient maps 7°® andz — 7°®, given
by quotienting out the normal subgroup generated by theraeetementh and h,
respectively.
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Theorem 10. The quotient7 (M)/Z?9 of the Teichmiiller space of taut contact
circles on M under the action dZ?9 C Aut(z) has a natural description as follows

T(M)/Z?8 = Homy(, Z;) x TH(Z) uHom (7, Z;) x T~ (Z)

On the second factor§ *(M), the right action ofOut(z°®) is the obvious orneon
the first factorsHom..1(r, Z;), the groupOut(z°®) acts from the right as described in
Section 6

REMARK. If the Nielsen realisationf of an automorphismy of 7°® is orien-
tation reversing (so thaf will exchange the components* (X)), then the differen-
tial Tf, regarded as a diffeomorphism &T%, will reverse the fibre direction, sé
will also exchange Homy (7, Z;). In fact, no left-quotient ofSL, admits any orienta-
tion reversing diffeomorphism [14].

Proof of Theorem 10. First we are going to define a map from eftehlind side
T(M)/Z? to the right factors7 *(X) U 7 () = 7(X) on the right-hand side. Re-
call from [8, Section 4] that the projectioﬁz — PSLR induces a covering map
R(7, §f_2) — R(7°®, PSL,R), which in turn induces a well-defined map(M) —
T(X), since any inner automorphism 8L, induces an inner automorphism of P®.
The action 0fZ%9 C Aut(7) on 7 is given by multiplying the generatofs, 7; with the
corresponding power of the central elemé@ntSince this central element generates the
kernel of the quotient mag — 7°®, we get an induced map(M)/Z% — T(X).

Next we want to define a map(M)/Z% — Homy1(r, Z,) to the left factors on
the right-hand side. This means that, givéne R(7, éT_z) representing an element
[0] € T(M)/Z?9, and givenu € 7, we want to defineéS(u) € Z, in such a way thas
becomes a homomorphism — Z, sendingh to +1, and such tha$ is independent
of the chosen representatiye

Thus, start withg andu as described. The elemente 7 projects to an element
0 € 7°®, which in turn lifts to an elemend € 7, unique up to powers df. Likewise,
the representatiop € R(7, éT_z) projects to a representation

p € R(x°, PSLLR) = R* (7P, PSLR) U R (7°P, PSLR),

as observed in the first part of the proof, and then can belliftea preferred way to
a representatiop € R(r, éT_z); cf. Section 2 for the notatioR*.
In [8, Section 4] we gave a definition of such a preferred lifattalso allowed us
to lift from a representation ofr°® to one of 7. Here, where we only want to lift
to a representation of, we shall make a choice that leads to a natural description
of the Out@°™®)-action. In order to allow unique lifting of maps to univarsovers,
we choose base points iB, STX and their universal covers in such a way that all
relevant projections are base point preserving. Likewige,choose a base point in
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SL, = STH over a base point ifl; this determines a base point in any discrete quo-
tient of these spaces.

Now to the definition ofp. In the sequel it is understood that all diffeomorphisms
are base point preserving. Choose a diffeomorplgsim — 5(°"®)\ H? whose (unique)
lift § to the universal cover satisfies

gologt=p@@) forall @enmO

This is possible by the Nielsen theorem again; observe thadosimilarity with the
argument in the proof of Lemma 9. Now, with denoting left multiplication inSL,,
define the preferred lifp of o by

L,w=TgouoTg ' foral uen.

REMARK. The preferred lift as defined in [8] depended on a choice efgnta-
tion of . If we take theu; andv; as the tangential lifts ofy and;, then the preferred
lift defined here is the same as that in [8].

When we identifyH with the upper half-plane i€, andSL, with H2xR with co-
ordinates %, 0), cf. [8, p.58], we can describe the left action @fu) on SL, explicitly
(at least for some elementse 7). For h there is no choice in the lifting; one has

p(h)(z, 0) = (z,0 + 2n),
where the sign is determined bye R*(7°?, PSLL,R). Similarly, one has
o(h)(z, 0) = (z, 0 + 2nr).

The lift p(q;) is completely determined by the relation whighsatisfies in the groug.
For u; resp.v;, any lift other than the preferred ongu;) resp.p(vi) would differ from
it by an arbitrary translation in thé-component by integer multiples oft2 Moreover,
the action ofw € Z?9 C Aut() on 5 is given by 5 > gy, With

orw(li)(z, 0) = p(Ui)(z 0) + (0, 2rrwzi),
prw(Vi)(z, 0) = p(0)(z, 0) + (0, 2T wai).
Now back to the construction of the homomorphigntorresponding che class
[p] € T(M)/Z?. Since bothp(u) and 5(0) are lifts of p(0) € PSR to SL,, their

actions on thed-component differ by a shift by some integer multiple of,2so we
can defines(u) € Z by

®) p(u)(z, 0) = p(0)(z, 0) + (0, 275(u)).
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Sincep is fixed to be the preferred lift of, the only ambiguity in this equation is the
lift G of G, which may be changed by powers fof From the described action @f(h)
we conclude that(u) is well defined mod, so we may regard it as a map in%.
By construction it is clear that has the homomorphism property. For=h we may
chooseli = 1; this givess(h) = +1, where the sign again correspondsge& R*, as
it should. Hence$ € Homy4(r, Z;).

Inner automorphisms oBL, act trivially on thed-component, s& only depends
on the class ofs in 7(M). Moreover, §(u) does not change mod when g is re-
placed by somep,, in the same orbit under th&?9-action on7(M). This finishes
the construction of the map

T(M)/Z? — Homy(rr, Z;) x TH(Z) U Hom (7, Z;) x T~ ().

We show this map to be a bijection by exhibiting an expliciteirse. The defining
equation (3) foré can be read backwards, as it were, in order to define the desire
inverse map. Thus, givep € R*(7°™®, PSLL,R) and § € Homy(r, Z;) (with matching
signs), we would like to use (3) to defing This is indeed possible, if we take a
little care. First of all, we know that there is no choice infidimg 5(h) and A(@5),
so we only need to consider elemeritss 7 which are not stabilised under tH&?9-
action g(0) — prw(0). Let G € 7°® be the projection ofi, andu € = a lift of @. In
the equation

A(0)(z, 0) = p(u)(z, 0) — (0, 2r5(u)),

with p taken as the preferred lift of, the right-hand side can be made sense of if
the #-component is read as lying iR/2rxrZ, and it does not depend on the choice
of lift u. So for G of the described kind, we can use this equation (gigerd and ()
to get a well-defined elemeng] € 7(M)/Z?9. This prescription obviously defines an
inverse of the previously constructed map.

It remains to show that the right action of Ouwf(’) is as claimed in the the-
orem. Given ] € Out(x°®), let ¥ € Aut(7) be any lift of ¥, and ¥ € Aut(r) the
lift constructed in the proof of Lemma 9. The action of][on 7(M)/Z% is given by
p+— po®. This is indeed well defined: the choice of representaiivef the class §]
is irrelevant, because iff(M) we have taken the quotient under IBhg); the spe-
cific liting to 9 is of no importance in the quotierif(M)/Z%. That the action of
Out(7°™®) on the right-hand side of the identity in the theorem is alsoclaimed now
follows from equation (3) and the observation that our cwsion of the preferred lift
of /5 entails thatp o 9 is the preferred lift ofp o 1.

This concludes the proof of Theorem 10. L]

REMARK. With p being the preferred lift ofp, equation (3) is precisely the al-
gebraic reformulation of the geometric definition ®fs a monodromy homomorphism
given in Section 4.
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When we take the quotient under the action of @@f), the trivial covering
T(M)/Z? — T+(Z) U T-(X) given by Theorem 10 becomes a possibly branched
covering M(M) — M(X), where M(X) = T(2)/Out(x°) denotes the moduli space
of hyperbolic metrics onx.

We are now interested in the number of connected componéntg (1), and the
number of sheets in each connected component of the covari(ig) — M(X). The
spaceM(X) is connected, so the number of connected componeni§{@fl) equals
the number of orbits of the Outf™)-action on Hom(r,Z,). Geometrically, this cor-
responds to the number of orbits of the action on HEMZ,) given by the orientation
preserving diffeomorphisms af.. Moreover, the number of sheets in each connected
component of the coveringt(M) — M(X) is given by the length of the correspond-
ing orbit.

So the following theorem, the larger part of which was anmegnin [8], is a dir-
ect consequence of Propositions 5 and 8, and Lemma 6. (Asehefe writer for the
fibre index of the unique Seifert fibratioml — X; the genus ofZ is denoted byg.)

Theorem 11. The moduli spaceV(M) of taut contact circles on M is a branched
covering over the moduli spack!(X) of hyperbolic metrics ork.

For g = 0, the covering mapM (M) — M(X) is a homeomorphism.

For g = 1, the number of connected componentsMd{M) equals the number of
divisors of r. The number of sheets in the component{iM) corresponding to d r
equals the number of ordered paifst) of integers mod r that generate the same ideal
in Z, as d.

For g > 2 and r odd M(M) is connectedand the branched covering4/(M) —
M(Z) has r?9 sheets.

For g > 2 and r even M(M) has two connected componenasid the number of
sheets in the two components equai®(29 4 1)/29+1,
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