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Abstract
Generalised spin structures, orr -spin structures, on a 2-dimensional orbifold6

are r -fold fibrewise connected coverings (also calledr th roots) of its unit tangent
bundleST6. We investigate such structures on hyperbolic orbifolds. The conditions
on r for such structures to exist are given. The action of the diffeomorphism group of
6 on the set ofr -spin structures is described, and we determine the number of orbits
under this action and their size. These results are then applied to describe the moduli
space of taut contact circles on left-quotients of the 3-dimensional geometryfSL2.

1. Introduction

Spin structures on manifolds have been studied extensively, not least because of
their relevance to physics. A spin structure on a Riemann surface6 may be thought
of as a square root of the tangent bundleT6, that is, a holomorphic line bundleL with
L 
 L D T6. On the level of the unit tangent bundleST6, a spin structure can be
interpreted as a fibrewise connected double coveringM ! ST6 by anotherS1-bundle
M over 6.

It is this last definition which most easily generalises to 2-dimensional orbifolds
and coverings of higher order. This is not just generalisation for generalisation’s sake.
For instance, such objects appear in the work of Witten [20] on matrix models of
2-dimensional quantum gravity, see also [15]. Here the viewpoint is that of Algebraic
Geometry, where anr th root of the tangent bundle of a Riemann surface6 is con-
sidered to be a holomorphic line bundle whoser th tensor power equalsT6. In that
framework, questions of moduli have been studied by Jarvis [9] and others.

Our personal motivation for investigating suchr th roots comes from the moduli
problem for taut contact circles on 3-manifolds. These structures were introduced in [6],
where we also classified the 3-manifolds which admit such structures. The moduli ques-
tion was largely settled in [8], but certain details as to theprecise geometry of the mod-
uli spaces had been left open. These details hinge on the classification of r th roots of
the unit tangent bundle of 2-dimensional hyperbolic orbifolds.
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Here is an outline of the paper. In Section 2 we present the basics of 2-dimensional
hyperbolic orbifolds, mostly to set up notation. In Section3 we recall the definition of
the unit tangent bundle of an orbifold. Roots of such unit tangent bundles are defined
in Section 4, where we determine the conditions onr (in terms of the genus and multi-
plicities of the cone points of the orbifold6) for r th roots to exist. We also set up a
one-to-one correspondence betweenr th roots and certain homomorphisms on the funda-
mental group of the unit tangent bundle of6 (Theorem 3). In Section 5 this is used
to investigate the action by the diffeomorphism group of6 on the set ofr th roots. The
number of orbits under this action is determined (Proposition 5), as well as the length
of the orbits (Proposition 8). In Section 6 we reformulate this action by the diffeo-
morphism group in algebraic terms as an action by the outer automorphism group of
the orbifold fundamental group. Finally, in Section 7 we usethis algebraic reformu-
lation and the results of the previous sections to describe the Teichmüller space (The-
orem 10) and moduli space (Theorem 11) of taut contact circles on left-quotients of the
3-dimensional Thurston geometryfSL2. In particular, we are interested in the enumera-
tion of the connected components of the moduli space; this gives the number of distinct
taut contact circles up to diffeomorphism and deformation.

Sections 2 to 5 are completely self-contained. The final two sections depend to
some degree on our earlier work [8], but except for the algebraic reformulation of the
moduli problem we do not need to quote any details from that paper.

2. Hyperbolic orbifolds

Throughout this paper, let6 be a fixed (closed, orientable, 2-dimensional) orbifold
of genusg and with n cone points of multiplicity�1, : : : , �n. Moreover, it is assumed
that 6 is of hyperbolic type, i.e. its orbifold Euler characteristic, defined as

�

orb(6) D 2� 2g� nC
n
X

jD1

1

� j
,

is assumed to be negative. This condition on the orbifold Euler characteristic deter-
mines those orbifolds which admit a hyperbolic metric; however, as yet we do not fix
such a hyperbolic structure.

The orbifold fundamental group�orb of 6 is defined as the deck transformation
group of the universal coveringQ6 ! 6. We briefly recall the geometric realisation
of this group and its standard presentation. To that end, choose a base pointx0 2 6

distinct from all the cone points, and a liftQx0 2 Q6 of x0 in the universal covering space.
Choose a system of 2g loops on6, based atx0, and a curve fromx0 to each of the
cone points, such that6 looks as in Fig. 1 when cut open along these 2gC n curves.
We may interpret that figure as a fundamental region inQ6; it is determined (amongst
all possible fundamental regions whose boundary polygon maps to the chosen system
of curves) by the indicated placement ofQx0 on its boundary. Notice that the sides of
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Fig. 1. A fundamental domain for6.

this polygon identified by the deck transformationNqj meet at a vertex mapping to the
j th cone point in6; all other vertices are lifts ofx0.

Let Nu1, Nv1, : : : , Nug, Nvg, Nq1, : : : , Nqn be the deck transformations ofQ6 which effect
the gluing maps of the sides of the chosen fundamental polygon as indicated in Fig. 1.
From the figure we see that the deck transformation

Q

i [ Nui , Nvi ]
Q

j Nqj (read from the right
as a composition of maps) fixes the pointQx0, which is not the lift of a cone point, so
we conclude

Y

i

[ Nui , Nvi ]
Y

j

Nqj D 1.

Similarly, we have

Nq
� j

j D 1, j D 1, : : : , n.

These relations give the standard presentation of�

orb as

�

orb
D

(

Nu1, Nv1, : : : , Nug, Nvg, Nq1, : : : , Nqn W
Y

i

[ Nui , Nvi ]
Y

j

Nqj D 1, Nq
� j

j D 1

)

.

Once6 has been equipped with a hyperbolic structure and an orientation, then
Q

6 D H

2 and the Nui , Nvi , Nqj are orientation preserving isometries ofH2, i.e. elements of

PSL2R. The identification of Q6 with H

2 is uniquely determined if we specify, for in-
stance, the lift Qx0 2 H

2, the initial direction of one of the edges of the fundamental
polygon emanating from that point, and require that the orientation lifted from6 co-
incide with a chosen orientation ofH2. In this way an oriented hyperbolic structure
on 6 defines an element of the Weil spaceR(�orb, PSL2R) of faithful representations
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of �orb in PSL2R with discrete and cocompact image. Conversely, any representation
N� 2 R(�orb, PSL2R) determines a diffeomorphic copyN�(�orb) nH2 of 6 with a hyper-
bolic structure and an orientation.

It is possible to designate one of the orientations on any given 6 as positiveand
the other asnegativein the following way. If there are cone points, it suffices to ob-
serve thatN�( Nqj ) is a rotation by�2�=� j , with the same sign for eachj D 1,:::,n. (The
sign is well defined even for� j D 2 when we regard the rotation as being through the
interior of the fundamental domain.) Observe in Fig. 1 how the direction of rotation
around the cone points relates to the orientation given by the pairs of arrows indicating
the action of Nui and Nvi ; thus, any such pair of arrows allows us to determine the ori-
entation of6, also when no cone points are present. We writeR�(�orb, PSL2R) for
the corresponding components ofR(�orb, PSL2R). Any two representationsN�1, N�2 2

R(�orb, PSL2R) are related via conjugation with a diffeomorphism ofH2. This diffeo-
morphism will be orientation preserving or reversing, depending on whetherN�1, N�2 lie
in the same component or not, see also [8, pp. 59/60]. This orientation issue will only
become relevant in Section 7 of the present paper.

3. The unit tangent bundle of an orbifold

The unit tangent bundle of an oriented hyperbolic orbifold6 is defined as fol-
lows, see [17, p. 466]. WritefSL2 for the universal cover of PSL2R. There is a short
exact sequence

0! Z!

fSL2
p
�! PSL2R! 1.

Realise the given hyperbolic structure and orientation on6 by a choice of representa-
tion N� 2 R(�orb, PSL2R). Then set

ST6 D p�1( N�(�orb)) nfSL2I

this is the unit tangent bundle of6. It is in a natural way the total space of a Seifert
bundle over6 with normalised Seifert invariants

{gI bD 2g� 2I (�1, �1 � 1), : : : , (�n, �n � 1)}.

REMARK . There is a tricky orientation issue here. The group PSL2R of orien-
tation preserving isometries ofH2 acts, via the differential, transitively and with triv-
ial point stabilisers on the unit tangent bundleSTH2 of H2 (see Scott’s survey [17]),
which allows us to identify PSL2R with STH2. A given orientation onH2 thus induces
an orientation on theS1-fibres of PSL2R D STH2

! H

2, and hence on theR-fibres of
fSL2! H

2. When we pass to a left-quotient offSL2, these orientedR-fibres descend to
oriented Seifert fibres. With this orientation convention,the invariants of the multiple
fibres are (� j , 1), see [17, p. 467]. On the other hand, there is a naturalright S1-action
on compact left-quotients offSL2. When this right action is turned into a left action by
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the inverse elements (while keeping the orientation offSL2 and its quotient), the Seifert
invariants become (�i , �i � 1). This is the convention of Raymond and Vasquez [16,
pp. 169/70], which is the more suitable one for our more algebraic considerations in
our earlier paper [8] and below.

A presentation of the fundamental group� of ST6 is given by

� D

(

u1, v1, : : : , ug, vg, q1, : : : , qn, h W
Y

i

[ui , vi ]
Y

j

q j D h2g�2,

q
� j

j h� j�1
D 1, h central

)

.

Under the projectionST6! 6, the generators of� and�orb correspond to each other
as suggested by our choice of notation. In other words, thereis a representation� 2
R(� , fSL2) with �(�) D p�1( N�(�orb)) and p(�(ui )) D N�( Nui )) etc. For further details
see [8, Section 4].

The Seifert fibrationST6! 6, up to equivalence, does not depend on the choice
of hyperbolic structure on6. This allows us to speak of the unit tangent bundleST6
(as a Seifert manifold) even when we have not fixed a metric on6.

4. Roots of the unit tangent bundle

Our aim is to classifyr th roots of ST6 for 6 an oriented orbifold of hyperbolic
type, by which we mean the following.

DEFINITION. An r th root of the unit tangent bundleST6 is an r -fold fibrewise
connected and orientation preserving coveringM ! ST6 of ST6 by a Seifert mani-
fold M. In other words, we require that eachS1-fibre of ST6 is coveredr times
positively by a singleS1-fibre of M.

REMARKS. (1) For r D 2, such coverings are precisely the spin structures on6.
Spin structures on orbifolds of arbitrary dimension were defined and studied from the
differential geometric point of view (index theory, twistor theory) in [5] and [3]. The
latter paper contains a general existence and classification statement for spin structures
on orbifolds, albeit only for orbifolds whose singular set is of codimension at least 4.

(2) In the case of a principalS1-bundle without multiple fibres, one can pass to
the associated complex line bundle. Anr th root then corresponds to a complex line
bundle whoser th tensor power is the given line bundle.

For the purpose of classifying suchr th roots M ! ST6 we need to specify a
notion of equivalence. BothM and ST6 come equipped with an effectiveS1-action
that induces the Seifert fibre structure. The covering mapM ! ST6 may be regarded
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as the quotient map under theZr -action onM induced by thisS1-action onM and the
natural inclusionZr � S1. In particular, the covering mapM ! ST6 is regular, and
M is a principalZr -bundle overST6.

Two r th roots q W M ! ST6 and q0 W M 0

! ST6 will be regarded as equivalent
if there is anS1-equivariant diffeomorphism W M ! M 0 with q0 Æ  D q. Since the
S1-actions onM and M 0 are lifted from theS1-action on ST6, this amounts to the
same as requiring the existence of aZr -equivariant diffeomorphism W M ! M 0.

The equivalence classes ofarbitrary principal Zr -bundles overST6 are in nat-
ural one-to-one correspondence with the set Hom(� , Zr ) of homomorphisms from the
fundamental group� of ST6 into Zr , the correspondence being given by associating
with a principalZr -bundle its monodromy homomorphism [19, §13.9]. Ther th roots
M ! ST6 are precisely those principalZr -bundles overST6 for which theZr -action
extends to anS1-action covering theS1-action onST6. In other words, eachS1-fibre
of ST6 lifts to a (positive) path of length 2�=r in the correspondingS1-fibre of M.
This is the same as saying that the monodromy homomorphism takes the value 1 on
the fibre classh.

Thus, ther th roots M ! ST6 are classified by the subset

Hom1(� , Zr ) WD {Æ 2 Hom(� , Zr ) W Æ(h) D 1}.

If we drop the condition on orientations, we also have to allow homomorphismsÆ with
Æ(h) D �1. This will become relevant in Section 6.

On a givenM there are other structures as principalZr -bundles overST6 with
eachZr -orbit lying in an S1-fibre of M. These correspond to homomorphismsÆ 2
Hom(� , Zr ) with Æ(h) a generator ofZr . Such more generalZr -bundles play no role
in our discussion.

REMARK . There is a well-known isomorphism between, on the one hand,the
deck transformation group of the universal coveringQX ! X of a topological spaceX
and, on the other hand, the fundamental group�1(X, x0). This isomorphism depends,
up to an inner automorphism, on the choice of a liftQx0 2 QX of the base pointx0, cf. [8,
Remark 4.10]. This dependence becomes irrelevant once we consider homomorphisms
into the abelian groupZr . Thus, while we usually think of� as a deck transformation
group, one may still interpret the monodromy homomorphism� ! Zr as being defined
in terms of loops as in [19, §13].

We now want to give a characterisation of the homomorphismsÆ 2 Hom1(� , Zr )
in terms of the allowable values on the generators in the standard presentation of� . In
order to do so, we need to recall a theorem of Raymond and Vasquez [16] about the
Seifert invariants of left-quotients of Lie groups, cf. [7]. We have seen in the preced-
ing section that, once we equip6 with a hyperbolic structure, its unit tangent bun-
dle ST6 can be written as a left-quotient offSL2, and so the same is true for its
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r -fold covering M. Indeed, the fundamental group of the manifoldM corresponding to
Æ 2 Hom1(� ,Zr ) is Q� D kerÆ. A representation� 2 R(� ,fSL2) as described at the end
of Section 3 induces a representationQ� 2 R( Q� , fSL2) of Q� as the deck transformation
group of M.

By construction,M is a Seifert manifold withn multiple fibres of multiplicities
�1, : : : , �n (just like the Seifert manifoldST6), but whereas the fibre index (see [7,
Definition 6] of ST6 equals 1, the fibre index ofM is r . Then, according to [16]
or [7], the normalised Seifert invariants

{g, b, (�1, �1), : : : , (�n, �n)}

of M (whereb is an integer and each� j an integer between 1 and� j � 1) are subject
to the condition that there exist integersk1, : : : , kn such that

rb D 2g� 2�
n
X

jD1

k j ,(1)

r� j D � j � 1C k j� j , j D 1, : : : , n.(2)

(Observe that these conditions are satisfied forST6 with r D 1, b D 2g � 2, and all
k j equal to zero.) For a given6, these conditions impose severe restrictions on the
possible values ofr . These restrictions are implicit in [16]; for the reader’s convenience
we deduce them directly from the equations (1) and (2).

Lemma 1. If r 2 N satisfies the Raymond–Vasquez relations(1) and (2), then r
is prime to�1 � � � �n and divides the integer�1 � � � �n � �

orb.
Conversely, if r 2 N satisfies these latter conditions( for given g, n and � j ), then

there are integers b, k j and � j (with 1� � j � � j � 1) such that equations(1) and (2)
are satisfied.

Proof. From (2) we see thatr must be prime to� j . With (1) and (2) one computes

r � �1 � � � �n �

 

bC
n
X

jD1

� j

� j

!

D ��1 � � � �n � �
orb,

which proves the claimed divisibility.
For the converse, the condition gcd(r, � j ) D 1 allows us to choose integers 1�

� j � � j � 1 andk j such that (2) holds. One then computes

r � �1 � � � �n

n
X

jD1

� j

� j
D ��1 � � � �n � �

orb
� �1 � � � �n �

 

2g� 2�
n
X

jD1

k j

!

,

which shows thatr divides 2g� 2�
Pn

jD1 k j , as was to be shown.
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REMARK . Equation (2) and the fact thatr and � j are coprime imply that mul-
tiple fibres with the same� j also have the same� j (and hence the samek j ). This is
a unique feature of left-quotients offSL2.

The converse implication of the preceding lemma has the following consequence.
Given anr 2 N satisfying the divisibility assumptions, we find—by the lemma—a set
of normalised Seifert invariants satisfying the Raymond–Vasquez relations. In particu-
lar, the Euler number

eD �

 

bC
n
X

jD1

� j

� j

!

of the Seifert fibration must be non-zero, sincere D �

orb
< 0. This means that the

Seifert manifoldM defined by these invariants is diffeomorphic to a left-quotient offSL2.
The projectionfSL2 ! PSL2R induces the Seifert fibrationM ! 6 over a hyperbolic
orbifold 6 and givesM the structure of anr th root of ST6.

Lemma 2. The homomorphismsÆ 2 Hom1(� , Zr ), where r 2 N is supposed to
satisfy the Raymond–Vasquez relations(1) and (2), can take arbitrary values on the
generators u1,v1, : : : ,un,vn, but the value on the qj is determined byÆ(q j )D k j modr .

Proof. InZr we compute

0D Æ(1)D Æ(q
� j

j h� j�1) D Æ(q j )� j C � j � 1.

From equation (2) we see that, first of all,� j must be prime tor , and secondly, that
Æ(q j ) D k j modr , as claimed. Equation (1) implies that this condition onÆ is con-
sistent with the other relation in the presentation of� . It is then easy to see that we
may define a homomorphismÆ 2 Hom1(� , Zr ) by prescribing arbitrary values on the
ui and vi .

We summarise our discussion in the following theorem.

Theorem 3. The unit tangent bundle ST6 of an orbifold6 of hyperbolic type
admits an rth root if and only if r 2 N is prime to the multiplicities�1, : : : , �n of the
cone points and a divisor of the integer�1 � � ��n ��

orb(6). In that case, the distinct rth

roots are in natural one-to-one correspondence with the elements ofHom1(� , Zr ).

REMARK . There is a simple geometric explanation whyr needs to be prime to
the multiplicities�1, : : : ,�n for an r th root of ST6 to exist. From the local model for a
fibre of multiplicity � j one sees that when we pass to anr -fold cover with connected
covering of the multiple fibre, then forr not prime to� j the covering of the regular
fibres will fail to be connected.
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Lemma 2 implies that any two homomorphisms in Hom1(� ,Zr ) differ by a homo-
morphism� ! Zr that sendsh and theq j to zero. Such a homomorphism may be
interpreted as an element of

Hom(�1(6), Zr ) � Hom(H1(6), Zr ) � H1(6I Zr ) � Z
2g
r .

(In the first term we really do mean the fundamental group�1(6), not the orbifold
fundamental group�orb.) This one-to-one correspondence ofr th roots of ST6 with
elements ofH1(6I Zr ), however, is not natural. All we have is a free and transitive
action of H1(6I Zr ) on the set ofr th roots.

One way to give an explicit one-to-one correspondence between Hom1(� , Zr ) and

Z

2g
r is to fix a presentation for� , and then to associate withÆ 2 Hom1(� ,Zr ) the tuple

(Æ(u1), Æ(v1), : : : , Æ(ug), Æ(vg)) 2 Z2g
r .

REMARKS. (1) As observed by Johnson [10], there is a natural geometric lift-
ing of mod 2 homology classes from a surface to its unit tangent bundle. Thus, spin
structures on surfaces arenaturally classified both by Hom1(�1(6),Z2) and H1(6IZ2).
There is no such natural lifting of modr classes forr greater than 2. However, given
a smooth simple closed curve on6, we can consider its tangential lift toST6. This
will be used in the next section to help us understand the action of the diffeomorphism
group of6 on Hom1(� , Zr ).

(2) For an honestS1-bundle over an arbitrary manifoldX, one can classifyr th

roots by mimicking the spectral sequence argument of [13, Chapter II.1] with Z2-
coefficients replaced byZr -coefficients, cf. [11]. This allows one to show that anr th

root exists if and only if the modr reduction of the Euler class of theS1-bundle van-
ishes (which can also be seen by more simple means), and thenr th roots are in (non-
natural) one-to-one correspondence with the elements ofH1(XI Zr ).

We close this section by giving an explicit presentation of the fundamental group
Q� D kerÆ of the manifoldM corresponding toÆ 2 Hom1(� ,Zr ). Choose integerssi , ti
with si � Æ(ui ) and ti � Æ(vi ) modr , i D 1, : : : , g. Then Q� is generated by

Qui WD ui h
�si , Qvi WD vi h

�ti , i D 1, : : : , g, Qqj WD q j h
�k j , j D 1, : : : , n, and Qh WD hr .

With the help of the Raymond–Vasquez relations one sees thatthis yields the presen-
tation

Q� D

(

Qu1, Qv1, : : : , Qug, Qvg, Qq1, : : : , Qqn, Qh W
Y

i

[ Qui , Qvi ]
Y

j

Qqj D Qh
b,

Qq
� j

j
Qh� j
D 1, Qh central

)

.
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5. The action of diffeomorphisms on roots

We are now going to define an action of the diffeomorphism group of 6 on the
set of r th roots of ST6. For g � 2, it will be shown that this action is transitive for
r odd, and that it has exactly two orbits forr even; the caseg D 1 will require an
ad hoc treatment; on a given hyperbolic orbifold of genusg D 0 and for eachr there
is at most oner th root, since in that case Hom1(� , Zr ) is trivial. Throughout, we fix
an orientation of6, and the diffeomorphisms we consider are always understoodto
be orientation preserving. A diffeomorphism of an orbifold may at best permute cone
points of the same multiplicity. By Lemma 2 and the remark following the proof of
Lemma 1, any such permutation can be achieved by a diffeomorphism that induces
the trivial action on Hom1(� , Zr ). So in order to understand the action of the diffeo-
morphism group of6 on Hom1(� ,Zr ), it suffices to consider diffeomorphisms that fix
a neighbourhood of each cone point.

Let M ! ST6 be an r th root of ST6, corresponding to some homomorphism
Æ 2 Hom1(� , Zr ), and let f be a diffeomorphism of6 as described. By slight abuse
of notation, we may regard the differentialT f as a diffeomorphism ofST6; the com-
position of the projectionM ! ST6 with T f is then a newr th root of ST6. We
denote the corresponding element in Hom1(� , Zr ) by f

�

Æ.
Geometrically this means the following. Givenu 2 � , represent it by a loop in

ST6. Then (f
�

Æ)(u) 2 Zr is given by the monodromy of the coveringM ! ST6
along thepreimageof that loop underT f .

We make one further abuse of notation. Ifu is an oriented, smooth closed curve
on 6 (avoiding the cone points), we also writeu for its tangential lift to a closed curve
in ST6. Up to conjugation, this represents a well-defined element in � D �1(ST6),
so it makes sense to speak ofÆ(u) 2 Zr . This abuse of notation is justified by the fact
that for f a diffeomorphism of6, the tangential lift of f (u) equals the image of the
tangential lift of u under the differentialT f .

Consider a topological model for6 as in Fig. 2. Here6 is given the standard
orientation, so that the simple closed curvesui , vi representing the standard generators
of H1(6) intersect positively in a single point. The notationui , vi has been chosen in
accordance with the presentation of� in Section 3. In the sequel we identify a homo-
morphismÆ 2 Hom1(� , Zr ) (representing anr th root of ST6) with the corresponding
2g-tuple of integers modr , that is, we write

Æ D (s1, t1, : : : , sg, tg) 2 Z2g
r ,

wheresi D Æ(ui ) and ti D Æ(vi ).
For our discussion below we note that the elementh 2 � corresponds to a pos-

itively oriented regular fibre ofST6, so it can be represented by a small positively
oriented circle on6.

Next we want to show that for any givenÆ 2 Hom1(� ,Zr ) there is a diffeomorphism
f of 6 such that f

�

Æ is in a very simple standard form. This is done by studying the
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Fig. 2. Loops on6 representing loops inST6.

Fig. 3. The smooth deformation fromui � uiC1 to wi ,iC1 � h.

transformation behaviour ofÆ under certain Dehn twists on6.
For u a simpleclosed curve on6, write f u for the right-handed Dehn twist alongu.

Lemma 4. Under the basic Dehn twists fui , f vi and fwi ,iC1, the tupleÆ D (s1,t1,:::,
sg, tg) transforms as follows:

f ui
�

Æ D (: : : , si , ti � si , : : : ),

f vi
�

Æ D (: : : , si C ti , ti , : : : ),

f wi ,iC1
�

Æ D (: : : , si , ti � si C siC1 � 1, siC1, tiC1C si � siC1C 1, : : : ).

Proof. The Dehn twistf ui sendsui to itself andvi to ui C vi ; the differential
T f ui has the same effect, when those curves are regarded as loops in ST6. So the
inverse diffeomorphism sendsui to itself andvi to vi � ui . This gives the formula for
f ui
�

. The argument forf vi
�

is analogous.
In order to investigatef wi ,iC1

�

, we need to computeÆ(wi ,iC1).

CLAIM . Æ(wi ,iC1) D Æ(ui ) � Æ(uiC1)C 1.

This can be seen as follows (cf. [10] for an analogous idea). The disjoint union
of the smooth curvesui and�uiC1 (that is,uiC1 with reversed orientation) can be de-
formed smoothly into the union ofwi ,iC1 and a small circle oriented negatively (see
Fig. 3 for a schematic illustration). The tangential lift ofthe latter equals�h. This
implies the claim.
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Now, the inverse off wi ,iC1 sendsvi to vi � wi ,iC1, and viC1 to viC1 C wi ,iC1; the
other basic loops remain unchanged. In conjunction with theclaim, this gives the for-
mula for f wi ,iC1

�

.

REMARK . The formulae of Lemma 4—for the caser D 2, where signs do not
matter—were derived earlier by Da̧browski and Percacci [4]by quite involved calcu-
lations in local coordinates. Related considerations can also be found in the work of
Sipe [18]. She studiedr th roots of the unit tangent bundle of hyperbolicsurfaceswith
the aim of describing certain finite quotients of their mapping class group.

The signs in the formulae of Lemma 4 change when we perform left-handed Dehn
twists. Therefore, Dehn twists alongui andvi enable us to perform Euclid’s algorithm
on any pair of integers representing the pair (si , ti ) of mod r classes. This implies that
we can reduce one component to zero and the other to the uniqueelementdi 2 Zr

determined by the conditions that the principal ideal inZr generated bydi equal the
ideal generated bysi and ti , and that the integer representative ofdi lying between 1
and r be a divisor ofr . By slight abuse of notation we write this last condition as
di jr . The pair (di , 0) can be changed to the pair (0,di ) by further such Dehn twists.
In total, we can find a composition of Dehn twists of6 that transformsÆ to

(0, d1, : : : , 0, dg).

In order to simplify this further, we have to bring the curveswi ,iC1 into play. By
the claim, the transformedÆ takes the value 1 onwi ,iC1. Thus, when we performd1

right-handed Dehn twist alongw12, the tuple (0,d1, 0,d2, : : : ) changes to (0, 0, 0,d1C

d2, : : : ). Continuing with the appropriate Dehn twists alongw23 up to wg�1,g, we find
a diffeomorphism transformingÆ to

(0, : : : , 0, d1C � � � C dg).

We shall presently describe further Dehn twists that bringÆ into one of the forms listed
in the next proposition.

Proposition 5. By a sequence of Dehn twists, we can bringÆ into one of the
following standard forms:
• (0, : : : , 0, 0) if g � 2 and r odd,
• (0, : : : , 0, 0) or (0, : : : , 0, 1) if g � 2 and r even,
• (0, d) with djr if g D 1 (beware that this includes dD r � 0).

Of course, forg D 1 the surface6 will be of hyperbolic type only if there is at
least one cone point. ForgD 0 (and at least three cone points), Hom1(� ,Zr ) is trivial.
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Proof of Proposition 5. The caseg D 1 has been settled by the discussion pre-
ceding the proposition. In the caseg � 2, we may assume thatÆ has already been
transformed into the form (0,: : : , 0, d), as yet without any information ond.

We only write the last four components of the 2g-tuple in Z2g
r . We claim that

there are Dehn twists giving the following sequence of transformations:

(0, 0, 0,d)! (0,�1, 0,d� 1)! (0,�1, 0,d� 1)! (0, 0, 0,d� 2).

Indeed, the first and third step are given by a Dehn twist (of the appropriate sign) along
wg�1,g, the second by a sequence of Dehn twists alongug�1 and vg�1.

So we can always reduce the last component to 0 or 1. Ifr is odd, then Dehn
twists alongug and vg allow us to transform from (0, 1) (in the last two components)
to (0, 2)—since either of 1 or 2 generates the same principal ideal inZr , namely the
full ring.

The standard forms listed in the preceding proposition turnout to be pairwise in-
equivalent under the action of the diffeomorphism group. Wefirst show this for the
caseg D 1.

Lemma 6. For g D 1, two standard forms(0, d) and (0, d0), where we think of
d,d0 as integers between1 and r (which divide r), are equivalent if and only if dD d0.

Proof. Assume without loss of generality thatd0 � d. The action of the diffeo-
morphism group of a hyperbolic orbifold6 of genus 1 translates into the standard
SL(2,Z)-action onZ2

r D Hom1(� , Zr ). The orbit of (0,d) under this action consists
of elements of the form (md, nd) (with m and n coprime). Sinced is a divisor of r ,
the numbernd (thought of as an integer) can be congruent tod0 mod r only if d is a
divisor of d0, which forcesd D d0.

The Z2-invariant that distinguishes the standard forms in the case g � 2 (and r
even) goes back to Atiyah [2]. A spin structure on an honest surface6 has an asso-
ciated complex line bundleL. Once a complex structure has been chosen on6, one
can speak of holomorphic sections ofL. The dimension mod 2 of the vector space
of holomorphic sections turns out to be independent of the chosen complex structure;
this is Atiyah’s invariant of spin structures. As remarked earlier, Johnson [10] defined
a natural lifting of mod 2 homology classes from a surface6 to its unit tangent bun-
dle. A spin structure on6 then gives rise to a quadratic form onH1(6I Z2). Johnson
goes on to show that the Arf invariant of that quadratic form (whose definition can be
found on any Turkish 10 Lira note) equals Atiyah’s invariant.
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REMARK . The 2-dimensional spin cobordism group�spin
2 is isomorphic toZ2;

the Atiyah invariant distinguishes the two cobordism classes.

Now we allow once again arbitrary orbifolds6 of hyperbolic type. Motivated by
Johnson’s work, we define aZ2-valued invariant of anr th root Æ of ST6 (with r even),
which we write asÆ D (s1, t1, : : : , sg, tg) 2 Z2g

r , by

A(Æ) D
g
X

iD1

(si C 1)(ti C 1) mod 2.

Note that, forr even, this mod 2 reduction is well defined. The definition of this in-
variant can also be phrased as follows. Given a principalZr -bundle M ! ST6 with
r even, there is an intermediate double covering ofST6. Thus, anr th root (with r
even) induces in a natural way a spin structure. TheA-invariant is simply the Atiyah
invariant of that spin structure.

Lemma 7. The number A(Æ) 2 Z2 is a diffeomorphism invariant, i.e. for any(ori-
entation preserving) diffeomorphism f of6 one has A( f

�

Æ) D A(Æ).

Proof. We need only consider diffeomorphisms that fix the cone points. The group
of such diffeomorphisms is generated by the Dehn twists along ui , vi andwi ,iC1. The
invariance ofA(Æ) under these Dehn twists can be checked easily with the formulae in
Lemma 4.

Obviously, the two standard forms (0,: : : , 0, 0) and (0,: : : , 0, 1) (for g � 2 andr
even) are distinguished by theA-invariant.

DEFINITION. For g � 2 and r even, we say anr th root Æ is of even(resp.odd)
type if A(Æ) equals 0 (resp. 1).

So the standard form (0,: : : , 0, 0) is of even type forg even, and of odd type for
g odd; the standard form (0,: : : , 0, 1) has the complementary type.

Proposition 8. For g � 2 and r even, the number of rth roots of even(resp. odd)
type equals r2g(2g

� 1)=2gC1.

Proof. Write r D 2s. An r th root Æ D (s1, t1, : : : , sg, tg) will be even if and only
if an even number of summands (si C 1)(ti C 1) in A(Æ) are odd. Such a summand is
odd if and only if bothsi and ti are even, which gives uss2 possibilities for choosing
si and ti . On the other hand, there are 3s2 possibilities for choosingsi and ti such
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that (si C 1)(ti C 1) becomes even. It follows that the number of roots of even type is
given by

X

k even

�

g

k

�

(s2)k(3s2)g�k
D

1

2
((s2
C 3s2)g

C (�s2
C 3s2)g)

D

1

2
((4s2)g

C (2s2)g)

D

r 2g(2g
C 1)

2gC1
.

For roots of odd type, the calculation is analogous.

REMARK . In the caser D 2, i.e. for spin structures, Propositions 5 and 8 are
well known—especially, it seems, among mathematical physicists. Our arguments for
deriving them generalise those of Da̧browski and Percacci [4]. An alternative approach
can be found in the work of Alvarez-Gaumé, Moore and Vafa [1]. They appeal to the
relation between spin structures and theta functions in order to describe the action of
the diffeomorphism group.

6. An algebraic reformulation

The Baer–Nielsen theorem for the orbifold6 says, in essence, that the group of
all (not just orientation preserving) diffeomorphisms of6 modulo those isotopic to the
identity can be identified with the group Out(�orb) of outer automorphisms of�orb;
see [21]. We now want to use this to reformulate the action of the diffeomorphism
group on the space ofr th roots of ST6 in an algebraic way. This serves as a prepara-
tion for the next section, where we tie up our discussion ofr th roots with the moduli
problem for so-called taut contact circles, which was addressed in our earlier paper [8].
As announced there, the results of the present note allow us to count the connected
components of the moduli spaces in question.

There is an obvious action of Aut(�) on

Hom
�1(� , Zr ) WD {Æ 2 Hom(� , Zr ) W Æ(h) D �1}.

(The fact that we now allowÆ(h)D�1 corresponds to having orientation reversing diffeo-
morphisms included in the discussion.) This descends to an action of Out(�), sinceZr

is abelian. Thus, in order to define an action of Out(�

orb) on Hom
�1(� , Zr ), we should

first define a suitable lift from Aut(�orb) to Aut(�). Recall from [8, Lemma 4.13] that
there is a short exact sequence

0! Z

2g
! Aut(�)! Aut(�orb)! 1.

(This holds true for the fundamental group� of any Seifert manifold which is a left quo-
tient of fSL2 and has base orbifold6.) Thus, algebraically, it is not clear how to define
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a lifting. Instead, we find a suitable lift by a direct appeal to the Baer–Nielsen theorem.
Put briefly, we represent a given element of Out(�

orb) by an orbifold diffeomorphismf
of 6, and then find the lift as the automorphism corresponding to the differentialT f .
From that construction it is clear that our algebraic definition of the action by the diffeo-
morphism group on the set ofr th roots corresponds to the geometric definition in the
preceding sections (except that we have replaced a left action by a right action, which
is owed to the conventions in the algebraic setting of the next section).

Lemma 9. There is a natural right action ofOut(�orb) on Hom
�1(� , Zr ), de-

fined as follows. Given a class[ N# ] 2 Out(�orb), represented by an automorphismN# 2
Aut(�orb), there is a geometrically defined lifting of this representative to an auto-
morphism# 2 Aut(�). Then the action of[ N# ] on Æ 2 Hom

�1(� , Zr ) is defined by
Æ 7! Æ Æ # .

Proof. By the Nielsen theorem [21, Theorem 8.1] there is a diffeomorphism f of
6 (fixing a base pointx0) covered by a diffeomorphismQf of Q6 (fixing a chosen lift
Qx0 of x0) such that

Qf Æ Nu Æ Qf�1
D

N

#( Nu) for all Nu 2 �orb.

Regard the differentialT f as a diffeomorphism ofST6, and let fT f be a lift to a
diffeomorphism offSL2. Define# 2 Aut(�) by

#(u) D fT f Æ u Æ fT f
�1

for all u 2 � .

Since the fibre classh generates the centre of� , we have#(h) D h�1. So the
homomorphismÆ Æ # is still an element of Hom

�1(� , Zr ). Moreover, the definitions
imply that N#1 Æ N#2 lifts to #1 Æ #2, so the prescriptionÆ 7! Æ Æ # does indeed define a
right action, provided we can establish independence of choices.

Two different lifts of T f differ by a deck transformation ofST6, i.e. an element
of � . So the corresponding lifts# differ by an inner automorphism of� . Thus, the
homomorphismÆ Æ # into the abelian groupZr is independent of this choice of lift.

Next, we show thatÆ Æ # depends only on the class [N# ], not on the choice of
representativeN# , or in other words, that for anyinner automorphism N# we haveÆ Æ
# D Æ. By the Baer theorem [21, Theorem 3.1], the Nielsen realisation f of any inner
automorphism N# of �orb is isotopic to the identity (by an isotopynot fixing the base
point, in general). ThenT f is likewise isotopic to the identity. This isotopy lifts to
a fibre isotopy betweenfT f and a deck transformation offSL2 ! ST6. This implies
that the resulting# will be an inner automorphism of� , and henceÆ Æ # D Æ, as we
wanted to show.

Finally, it remains to verify that the construction does notdepend on the choice of
Nielsen realisationf . Two such realisations differ by a diffeomorphism whose lift to
Q

6 induces the identity on�orb. Then the argument concludes as before by an appeal
to Baer’s theorem.
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7. The moduli space of taut contact circles

Let M be a given closed, orientable 3-manifold diffeomorphic to aleft quotient of
fSL2 with fundamental groupQ� . This is in a unique way a Seifert manifold over an
orbifold 6 of hyperbolic type, with a well-defined fibre indexr . Recall from the end
of Section 4 the presentation ofQ� involving the normalised Seifert invariants ofM.

As shown in our paper [8], the Teichmüller spaceT (M) of taut contact circles,
i.e. the space of taut contact circles onM modulo diffeomorphisms isotopic to the iden-
tity, can be identified with Inn(fSL2) n R( Q� , fSL2), whereR stands for the Weil space
of representations as in Section 2. The moduli spaceM(M) of taut contact circles,
i.e. the space of taut contact circles onM modulo all diffeomorphisms ofM, is in
turn given byT (M)=Out(Q� ). With this algebraic translation taken for granted, nothing
further needs to be known about taut contact circles (not even their definition), i.e. the
following can be read as a discussion of these algebraicallydefined spaces, where we
want to understand the action of Out(Q� ) on T (M)D Inn(fSL2)nR( Q� ,fSL2) with the help
of the geometry ofr th roots of ST6. See also [12] for the relevance of such questions
to the deformation theory of Seifert manifolds.

REMARK . To a large extent we follow the notational conventions of [8]. The one
difference that needs to be pointed out is that in our previous paper,� denoted the
fundamental group ofM, as ST6 did not play much of a role in our discussion there.
In the present paper,� denotes the fundamental group ofST6, and Q� that of M.

Write T (6) for the Teichmüller space of hyperbolic metrics on the baseorbi-
fold 6, together with a choice of orientation. This means thatT (6) has two con-
nected componentsT C(6) and T �(6). Algebraically, T (6) may be thought of as
Inn(PSL2R) nR(�orb, PSL2R). In Section 4 of [8] it was shown thatT (M) is a trivial
principal Z2g-bundle overT (6). For Aut(Q� ) there is a short exact sequence as for
Aut(�) in the previous section. The normal subgroupZ2g

� Aut( Q�) acts as (rZ)2g on
the mentioned principal bundle. This implies thatT (M)=Z2g—where the quotient is
taken under the action ofZ2g

� Aut( Q� )—is a trivial r 2g-fold covering of T (6), and
the moduli space of taut contact circles onM can be described as

M(M) D (T (M)=Z2g)=Out(�orb).

So the following theorem essentially settles the moduli problem for taut contact circles
on left quotients offSL2. Here� denotes, as before, the fundamental group ofST6.
For the proof below, notice that there are quotient mapsQ� ! �

orb and� ! �

orb, given
by quotienting out the normal subgroup generated by the central element Qh and h,
respectively.
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Theorem 10. The quotientT (M)=Z2g of the Teichmüller space of taut contact
circles on M under the action ofZ2g

� Aut( Q�) has a natural description as follows:

T (M)=Z2g
D Hom1(� , Zr ) � T C(6) t Hom

�1(� , Zr ) � T �(6)

On the second factorsT �(M), the right action ofOut(�orb) is the obvious one; on
the first factorsHom

�1(� ,Zr ), the groupOut(�orb) acts from the right as described in
Section 6.

REMARK . If the Nielsen realisationf of an automorphismN# of �orb is orien-
tation reversing (so thatN# will exchange the componentsT �(6)), then the differen-
tial T f , regarded as a diffeomorphism ofST6, will reverse the fibre direction, soN#
will also exchange Hom

�1(� , Zr ). In fact, no left-quotient offSL2 admits any orienta-
tion reversing diffeomorphism [14].

Proof of Theorem 10. First we are going to define a map from the left-hand side
T (M)=Z2g to the right factorsT C(6) t T �(6) D T (6) on the right-hand side. Re-
call from [8, Section 4] that the projectionfSL2 ! PSL2R induces a covering map
R( Q� , fSL2) ! R(�orb, PSL2R), which in turn induces a well-defined mapT (M) !
T (6), since any inner automorphism offSL2 induces an inner automorphism of PSL2R.
The action ofZ2g

� Aut( Q�) on Q� is given by multiplying the generatorsQui , Qvi with the
corresponding power of the central elementQh. Since this central element generates the
kernel of the quotient mapQ� ! �

orb, we get an induced mapT (M)=Z2g
! T (6).

Next we want to define a mapT (M)=Z2g
! Hom

�1(� , Zr ) to the left factors on
the right-hand side. This means that, givenQ� 2 R( Q� , fSL2) representing an element
[ Q�] 2 T (M)=Z2g, and givenu 2 � , we want to defineÆ(u) 2 Zr in such a way thatÆ
becomes a homomorphism� ! Zr sendingh to �1, and such thatÆ is independent
of the chosen representativeQ�.

Thus, start with Q� and u as described. The elementu 2 � projects to an element
Nu 2 �orb, which in turn lifts to an elementQu 2 Q� , unique up to powers ofQh. Likewise,
the representationQ� 2 R( Q� , fSL2) projects to a representation

N� 2 R(�orb, PSL2R) D RC(�orb, PSL2R) tR�(�orb, PSL2R),

as observed in the first part of the proof, and then can be lifted in a preferred way to
a representation� 2 R(� , fSL2); cf. Section 2 for the notationR�.

In [8, Section 4] we gave a definition of such a preferred lift that also allowed us
to lift from a representation of�orb to one of Q� . Here, where we only want to lift
to a representation of� , we shall make a choice that leads to a natural description
of the Out(�orb)-action. In order to allow unique lifting of maps to universal covers,
we choose base points in6, ST6 and their universal covers in such a way that all
relevant projections are base point preserving. Likewise,we choose a base point in
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fSL2 DASTH over a base point inH; this determines a base point in any discrete quo-
tient of these spaces.

Now to the definition of�. In the sequel it is understood that all diffeomorphisms
are base point preserving. Choose a diffeomorphismgW 6! N�(�orb)nH2 whose (unique)
lift Qg to the universal cover satisfies

Qg Æ Nu Æ Qg�1
D N�( Nu) for all Nu 2 �orb.

This is possible by the Nielsen theorem again; observe the formal similarity with the
argument in the proof of Lemma 9. Now, withL denoting left multiplication infSL2,
define the preferred lift� of N� by

L
�(u) D fT gÆ u ÆfT g

�1
for all u 2 � .

REMARK . The preferred lift as defined in [8] depended on a choice of presenta-
tion of � . If we take theui andvi as the tangential lifts ofNui and Nvi , then the preferred
lift defined here is the same as that in [8].

When we identifyH with the upper half-plane inC, andfSL2 with H2
�R with co-

ordinates (z, �), cf. [8, p. 58], we can describe the left action of�(u) on fSL2 explicitly
(at least for some elementsu 2 �). For h there is no choice in the lifting; one has

�(h)(z, �) D (z, � � 2�),

where the sign is determined byN� 2 R�(�orb, PSL2R). Similarly, one has

Q�( Qh)(z, �) D (z, � � 2�r ).

The lift �(q j ) is completely determined by the relation whichq j satisfies in the group� .
For ui resp.vi , any lift other than the preferred one�(ui ) resp.�(vi ) would differ from
it by an arbitrary translation in the�-component by integer multiples of 2� . Moreover,
the action ofw 2 Z2g

� Aut( Q� ) on Q� is given by Q� 7! Q�r w, with

Q�r w( Qui )(z, �) D Q�( Qui )(z, �)C (0, 2�rw2i�1),

Q�r w( Qvi )(z, �) D Q�( Qvi )(z, �)C (0, 2�rw2i ).

Now back to the construction of the homomorphismÆ corresponding to the class
[ Q�] 2 T (M)=Z2g. Since both�(u) and Q�( Qu) are lifts of N�( Nu) 2 PSL2R to fSL2, their
actions on the�-component differ by a shift by some integer multiple of 2� , so we
can defineÆ(u) 2 Z by

(3) �(u)(z, �) D Q�( Qu)(z, �)C (0, 2�Æ(u)).
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Since� is fixed to be the preferred lift ofN�, the only ambiguity in this equation is the
lift Qu of Nu, which may be changed by powers ofQh. From the described action ofQ�( Qh)
we conclude thatÆ(u) is well defined modr , so we may regard it as a map intoZr .
By construction it is clear thatÆ has the homomorphism property. Foru D h we may
choose Qu D 1; this givesÆ(h) D �1, where the sign again corresponds toN� 2 R�, as
it should. HenceÆ 2 Hom

�1(� , Zr ).
Inner automorphisms offSL2 act trivially on the�-component, soÆ only depends

on the class ofQ� in T (M). Moreover, Æ(u) does not change modr when Q� is re-
placed by someQ�r w in the same orbit under theZ2g-action onT (M). This finishes
the construction of the map

T (M)=Z2g
! Hom1(� , Zr ) � T C(6) t Hom

�1(� , Zr ) � T �(6).

We show this map to be a bijection by exhibiting an explicit inverse. The defining
equation (3) forÆ can be read backwards, as it were, in order to define the desired
inverse map. Thus, givenN� 2 R�(�orb, PSL2R) and Æ 2 Hom

�1(� , Zr ) (with matching
signs), we would like to use (3) to defineQ�. This is indeed possible, if we take a
little care. First of all, we know that there is no choice in defining Q�( Qh) and Q�( Qqj ),
so we only need to consider elementsQu 2 Q� which are not stabilised under theZ2g-
action Q�( Qu) 7! Q�r w( Qu). Let Nu 2 �orb be the projection ofQu, and u 2 � a lift of Nu. In
the equation

Q�( Qu)(z, �) D �(u)(z, �) � (0, 2�Æ(u)),

with � taken as the preferred lift ofN�, the right-hand side can be made sense of if
the �-component is read as lying inR=2�rZ, and it does not depend on the choice
of lift u. So for Qu of the described kind, we can use this equation (givenN�, Æ and Qu)
to get a well-defined element [Q�] 2 T (M)=Z2g. This prescription obviously defines an
inverse of the previously constructed map.

It remains to show that the right action of Out(�

orb) is as claimed in the the-
orem. Given [N# ] 2 Out(�orb), let Q# 2 Aut( Q�) be any lift of N# , and # 2 Aut(�) the
lift constructed in the proof of Lemma 9. The action of [N# ] on T (M)=Z2g is given by
Q� 7! Q� Æ

Q

# . This is indeed well defined: the choice of representativeN# of the class [N# ]
is irrelevant, because inT (M) we have taken the quotient under Inn(fSL2); the spe-
cific lifting to Q# is of no importance in the quotientT (M)=Z2g. That the action of
Out(�orb) on the right-hand side of the identity in the theorem is alsoas claimed now
follows from equation (3) and the observation that our construction of the preferred lift
of N� entails that� Æ # is the preferred lift of N� Æ N# .

This concludes the proof of Theorem 10.

REMARK . With � being the preferred lift ofN�, equation (3) is precisely the al-
gebraic reformulation of the geometric definition ofÆ as a monodromy homomorphism
given in Section 4.
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When we take the quotient under the action of Out(�

orb), the trivial covering
T (M)=Z2g

! T C(6) t T �(6) given by Theorem 10 becomes a possibly branched
coveringM(M)!M(6), whereM(6) D T (6)=Out(�orb) denotes the moduli space
of hyperbolic metrics on6.

We are now interested in the number of connected components of M(M), and the
number of sheets in each connected component of the coveringM(M)!M(6). The
spaceM(6) is connected, so the number of connected components ofM(M) equals
the number of orbits of the Out(�orb)-action on Hom

�1(� ,Zr ). Geometrically, this cor-
responds to the number of orbits of the action on Hom1(� ,Zr ) given by the orientation
preserving diffeomorphisms of6. Moreover, the number of sheets in each connected
component of the coveringM(M)!M(6) is given by the length of the correspond-
ing orbit.

So the following theorem, the larger part of which was announced in [8], is a dir-
ect consequence of Propositions 5 and 8, and Lemma 6. (As before, we writer for the
fibre index of the unique Seifert fibrationM ! 6; the genus of6 is denoted byg.)

Theorem 11. The moduli spaceM(M) of taut contact circles on M is a branched
covering over the moduli spaceM(6) of hyperbolic metrics on6.

For g D 0, the covering mapM(M)!M(6) is a homeomorphism.
For g D 1, the number of connected components ofM(M) equals the number of

divisors of r . The number of sheets in the component ofM(M) corresponding to dj r
equals the number of ordered pairs(s,t) of integers mod r that generate the same ideal
in Zr as d.

For g � 2 and r odd, M(M) is connected, and the branched coveringM(M)!
M(6) has r2g sheets.

For g � 2 and r even, M(M) has two connected components, and the number of
sheets in the two components equals r2g(2g

� 1)=2gC1.
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