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Introduction

In this paper we shall study the theory of Fourier integral operators on R"
depending on a parameter 2&(0,1) with non-homogeneous phase functions
and certain symbols in sections 1-4, and apply this theory to the construction
of the fundamental solutions for the Cauchy problem of a pseudo-differential
equation of Schrodinger’s type in sections 5 and 6.

In section 1 we shall study a calculus of a family of pseudo-differential
operators P,=p,(X,D,) with C~-symbols p,(x,£) depending on a parameter
h<(0,1), which is defined by

(1) Pau(w) = [eipx, ei)aE, uey,

where d&=(27z)""dE, #(£) denotes the Fourier transform of u, and ¥ denotes
the Schwartz space of rapidly decreasing functions on R*. Let B(R™) be the
space of C™-functions in R* whose derivatives of any order are all bounded in
R, 'Then, the symbols p,(x,&) are defined as those functions which satisfy

(2) “{pmrH IR DEOP, (v, E)} oy is bounded in B(RY)”

for any a, B8 with some —co<m<<oo and 0=8=<p=1, and we denote this
symbol class by B’ s(%).

In section 2 we shall first define a class P(t,[) of phase functions with
0=<7<1 and an integer /=0 as the class of C”-functions such that J(x,&)=
o(x,E)—x+ £ satisfies

|J1:=_23 sup {|D20;J(x, £)]/<u; ED*~1**F1}

l@+BI<1 %,¢
Bo% <
) +2§lw+zﬁ"l'§z+ls}=l,g {|1 Do J(x, £) [} =

(K3 &> = (14 | x| 2+ |E[?)YD)

* This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of
Education.
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in the analogy to the class &(, ) defined in Kumano-go [9]. The class P, ;
(7, 1; b) (0<h<l) will then be defined as the class of functions ¢,(x, &) such
that ¢,(x,£) defined by

(4) Bu(x, &) = 70, (H’x, h™°E)
belongs to P(r,l) and for J,(x,£) = $,(x,&)—x-&
(5) “{D%g],(x, £)} la2B1= is bounded in B(R*).”

Let ¢,(x,£)eP(7;,0),j=1,2,---, with 7.= i‘,-rjgl/ét. Then, according to
=1

Kumono-go, Taniguchi and Tozaki [10] and Kumano-go and Taniguchi [11]
we define the §—(v+1) product ®,,,=¢#+ - #d,.; of ¢y, -+, sy, for any » and
prove that for a constant ¢,=1

(6) Dy, E)EP(coTyi, 0) with 7oy = T4 4Ty .

This result is the fundamental one of section 2. All the properties for the
#—(v-+1) product ¢‘v+1,h:¢l,h#‘"#¢v+l,h of Drpr > Purr for ij,hEPp,&(TrO;h)’
j=1,2,-, with 7,<1/4, can be derived from those for ®,., ;=& ;- BPvs1 4
with §; ; defined by (4).

In section 3 we shall define Fourier integral operators P,(¢,)=p,(¢s;X,D,)
of class B, 5(¢,) with phase function ¢,(x,£)E P, 5(7,0;%) and symbols p,(x,§)E

.8(h) by
(7) Pygu@) = (e=0p,(x, EYU(E)2E, us

and study an elementary claculus of Fourier integral operators of this class.
Section 4 is devoted to the proof of the representation formulae for the (v—+1)
multi-product Py ,(¢14) * Posr i(Prars) of P;i(bj ) EBok(dbjn), j=1,2,-+, with
7,=<1/4. The multi-product P, ,(¢;4):**Pyis s(Pvi1,4) can be represented as
a Fourier integral operator with phase function ®,,, ,=¢, ;#*-#¢y4, , and some
symbol r\,+1’hEBf’\:s+1(h) with 7, =m+ - +m, ;.

Sections 5 and 6 will be devoted to the construction of the fundamental
solution U,(¢,s) for the Cauchy problem of an equation of Schrodinger’s type.

Let H(t,x,€) be a real-valued function on [0, 7] X R* with 0<T' =<1 such
that continuous derivative D{3fH(¢,x,£) exists on [0,T]x R* for any «a, 83,
and satisfies

Co gl X714 (Ja+ B £1),
Cap (la+81=2),

and H,(¢,%,&) be a complex valued function of class B°([0,7]; B; 5(k)) such
that

(8)  |DEogH(t, x,8)| = on [0, T]X R,
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x: Ny = ‘: ) .
(9) | DEOFH, (2, %, )| < CJ k=38! on [0, T]x R*"

Set
{Hh(t, x, E) = h*~PH(t, h~%x, I°E) ,
(10)
Ky(t, x, &) = Hy(t, x, E)+-H,(t, %, £) .
(See (5.3) and Remark after (5.3).) Then, setting
(11) Lh :Df+Kh(t: X) Dx))

we shall consider the Cauchy problem of a pseudo-differential equation of
Schrodinger’s type

(12) {LhuE(D,—I-K,,(t, X,D)u=0 on[0,Ty,

Uy =vE? 0=s=T,

for a small 0< T, <T.

In section 5 we shall construct two kinds of the approximate fundamental
solution for the problem (12). Let ¢(¢,s;x,&) be the solution of the Hamilton-
Jacobi quation

(13) {3:¢>(t, s; %, E)+H(t, x, V., $(t, 55 %,8)) = 0 on [0, T,>X R*",
(s, s;x, &) = x+£ on [0, T,] x R*,

and set

(14) bu(t, s5%, &) = B*7°P(t, 55 h™%%, B°E) .

Then it is proved that ¢,(t,s)EP, alelt—sl, L k) for t,s€[0, T,] with con-
stants ¢,=1 and 0< 7,<7, such that ¢,7,<1 for any I. Let I(¢,(z,5)) be the
Fourier integral operator with phase function ¢,(¢,s) and symbol 1. Then, we
shall first prove that I(¢,(z,s)) is the approximate fundamental solution of
order zero in the sense

{U(th(tﬁh(t, ) E P[0, Tol*; B 5(h)) ,
I(pyu(s,8) =1
where o(L,I($,(2,5))) denotes the symbol of L,I(¢p,(t,s)).

Next for the special case 0=<6<<p=1, solving transport equations we
shall find the symbol e,(t,s;x,&)€ BY[0, To*; By 5(h)) such that the Fourier
integral operator E,(¢,(2,5))=-e,(P,(2,5);t,5; X,D,) with symbol e,(z,s;x,8) is
the approximate fundamental solution of order infinity in the sense
o(LiBi(bu(?, ) E B0, Tol; B 5(h)) »

Ey(ils, ) = 1.

(15)

(16)
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In section 6, using the approximate fundamental solutions constructed in
section 5, we shall by Levi method construct the fundamental solution U,(z,s)
of the problem (12), that is,

{L,, Ut s) =0 on[0,T],

(7) UyGs,s)= I 0=<s=<T,),

and investigate the properties of U,(z,s) together with its L?-properties. Finally
for L,=D,+H (¢, X,D,) defined by

(18) Hi(t, %, £) = K~H(t, k%, I°E)

we shall investigate the convergence of the iterated integral of Feynman’s type
as in Fujiwara [2]-[5] and Kitada [6].

We note that, recently, Fujiwara in [4] and [5] has proved the pointwise con-
vergence of the iterated integral of Feynman’s type for the operator L, when
H,(t,X,D,) has the form H,(,X,D,)=—hA+h"'V(t,x). But it should be
noted that, in the present paper, the convergence of the iterated integral of
Feynman’s type is proved in the symbol class B; 5(k) in case 0=3=<p=1 and
B, 5(h) in case 0=3<p=1. We also should note the following facts: 1)
When H, and H,, and hence K,, do not depend on 4, L,=L=D,+K(t,X,D,)
is included in the case 8=p=0 and L,=D,+h ‘H(t,X,hD,)+H(t,X,hD,)
(the usual Schrodinger operator) is in the case 6=0, p=1. Furthermore,
in the general case 0<8=<p=1 the symbol u,(¢,s;x,£) of the fundamental
solution U,(t,s) is uniformly bounded in the class Bj s(h) on {(t,s;k;p,0)|
0<s, t=T,, 0<h<l, 0=8=p=1}. ii) Let H{(t,X,D,) be the Weyl operator
for H(t,x,£) defined by

(19) Hi(t, %, 8) = B0, [ [eHg, h-b‘(x+%>, R(E L)) dndy .

Then it is easy to see that H7(t,X,D,) is symmetric on ¥ and Hj(¢,x,€) has
the form (10) with some Hj(t,x,£) satisfying (9). So we can construct the
fundamental solution U} (¢,s) for Ly =D,+H}/(t,X, D,), although the convergence
of the iterated integral of Feynman’s type for Ly is not proved generally.
iif) From the symmetry with respect to x and £ we can construct the fundamental
solution Uj(#,s) for the operator L;=D,+Hj(t,X,D,)-+Hj(t, X,D,), where
Hi(t,x,&)=h""H(t,h’x,h °E) with 0=<8=<p=1 and Hj(t,x,E) is a function
satisfying

(9’ | D30%H (2, x, £)| S C,, gh”*' %1 on [0, T]x R?*" .
During the preparation of our present paper we have received a mimeo-

graphed paper [12] by Chazarain which is closely related to our paper, where
he uses an approximate fundamental solution to the operator of the form L,=
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D,——;—hA—{—h"V(x) without constructing the fundamental solution.

1. A family of pseudo-differential operators

Let x=(x,,**,x,) denote a point of R", and let a=(a;,***, ) be a multi-index
whose components «; are non-negative integers. Then, we use the usual
notation:

la| = oyt +a,al = ol a,!, 2% = x1tx0",
0% = 05107, Dy = DSt---D57,

CE
9,
<) = (L4 [x]%)%, x> = (14 || |2 |22

For an open set Q of R" let B(Q) denote the set of all C~-functions de-
fined in Q whose derivatives of any order are all bounded in Q. We often
write B=B(R") simply. Let & denote the Schwartz space on R" of rapidly
decreasing functions.

For uc¥, the Fourier transform #(£)=%[u]() is defined by

1 0 .
0 :Dx,-=‘._‘ (]=1,"',n),

i Ox;

F[u] (§) = Se“"'su(x)dx, xE = xE 4,8, .
Then the inverse Fourier transform & [v](x) for v(§)E¥¢ is defined by
Flo](x) = Se"x-eru(g)dg, 4 = (27)"dE .

Definition 1.1 i) We say that a function p=p(x,£,',E’,x”)= B(R*)
belongs to the symbol class B if p satisfies

(1.1) lPEgZE:?s”)(x, Ey x/) EI) x”)l éca,m’ BB’ B 5

74

where ng:g;?ﬁ//)zagag’/Dng;Dg//p.
i) We say that a family {p,},<;<, of functions p,(x,&,x’,&’,x”)E B(R™)
belongs to the class {B"; s(h)}o<i<i(ME R, 08=p=<1) if p,(0<h<1) satisfy

o,
[phgﬁ-ﬂ’?ﬂ”) (.’X’, g: x’: E,J x//) |
= ol caliasdi il

(1.2)

for constants CJ s g g~ independent of 0<<h<1and x,&,x’,&",x”, and we write
{Dito<n<i €E{B% s(B)} o<ia
or simply p, € B, s(h).

ReMARK 1°. For pEB and p,EB7; s(h), we define semi-norms |p|,; and
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[ 24197, 1=0,1,2, -, respectively by

(1.3) bl =,a+¢/+r£%¥+g~|§}nf {Ca o 6 of (1.1)}
and
(14) [{pi}o<n<a| ™ (or simply |Phl(lm))

—  max  inf {CLa pp e of (1.2)}.

le+a/+B+B +B"/|<I

Then B and {B’, 5(h)}o<i<: are Fréchet spaces provided with these semi-norms,
respectively.

2°. Symbols p(x,£), pu(x,E) (resp. p(&,x"), pu(€,x)) independent of x’,
g’, x”/ (resp. x, &', x”') are often called single symbols.

3°. For a symbol p(x,&,x',&",x”")EB, if we put p,(»,&x",&,x")=p(x,
E,x',E',x")(0<h<1), then p, belongs to Bg (k). In this sense we can write
BCBj o(h). Hence, all the statements concerning the symbol class Bg,o(%) hold
for B as a special case.

4°. For p,E B’ 5(h) define p, by
(L.5) Bix, £, %, &', &) = pu(RPx, K7€, B, h™°E", °x) .
Then, we have that , & Bj (k) and
(1.6) [ 2417 (in B 5(h)) = |5,1¢™ (in Bfo(h)) -
For a(n,y)€C~(R; X R}) satisfying
(1.7) |03D%a(n, y) | = Cq pln; y> 1" *F!

for some TR and 0=<o<1 we define the oscillatory integral O,[e *"a(n,y)]
i e

(1.8) Os—gge“"”a(n, y)dndy = leiirggge“’"’”x(en, &y)a(n, y)dndy ,

where X(n,y)E%(R; X Rj) such that X(0,0)=1. (It is shown in [7] that the
limit in the right hand side of (1.8) exists and is independent of any particular
choice of X(n,y).)

DEerINITION 1.2.  For a p, B’} 5(h) we define a family {P,},<;<; of pseudo-
differential operators P,=p,(X,D,,X’,D,,,X"”) (0<h<1) by

Pju(x) = Os— SSSSe"'(’l'"l““’z'"z)ph(x, 7', 243", 7, x+y' 457

(1.9) Xu(x+yl+y2)d771 an dyldyz ,
us PR,
and write {P;}o<;<1E {B s(h)} o<i<1, Or simply P, & B, 4(h).
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ReEMARK. For symbols p,(x,&,x"), pu(x,&), pu(E,2"), we have from (1.9) the
representation formulae:

(X, D,y X' Ju(x)
(1.9) = Os—jge“"”ph(x, n, x+y)u(x+y)dndy

= OS_SSei(x'-x/)-EPh(x’ E; x')u(x')dfdx', uEQ(R”) ,

(1.10) X, Dyu(s) = (v, (v, EYi(E) 82, ues
— T ,
(1.10)’ 5D X yu®)= (e, E, o' ula')d', uss |

Now we state several fundamental theorems for a family of pseudo-differen-
tial operators.

Theorem 1.3. Let p; ,(x,E,x",&",&")EB,}(h), j=0,1,2, -+, such that my=<
m=<-<m;<--+—>oo. Then, there exists p,(x,&,x',E',x")E B,3(h) such that

(1.11) i~ Epi
in the sense that for any N =1

N-1 m
(1'12) Ph(x, E, xl) EI: x//)— g?;,h(x: g: x’: g’) x,/) EBp,-gr(h) .

Furthermore such a p,=B,%(h) exists uniquely modulo B~(h)= ﬂRB{,”, o(h)
(= ) B2,
Proof. Let X(0) be a C~-function on [0, co] such that

(1.13) 0=<X(0)=1 on [0, o],
X(0) = 1(0=0=1/2), =0(0=1).

Then, for any fixed €>0 we have

(1.14) 1—-X(¢"'h)yeB~(h) .

Now we assume that

(115) 198 e (0, E, 8", E/, &) | SCj a s p 0 pr k"5 1 8B4 467

and set '

(116) Cj = max {Cj’,,,’d,/,p,ﬂ/’gn} .

@+’ +B+B/ +BI<j

Choose 0=Fk,<<k;<C+:-<<k,<C-++— o0 such that

(1.17) Mgy <ty oo <y < vve 0,
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and choose 1=&>& >+« >&;>+++—0 such that

Cje?kz—mﬁx-lg% for By<j<hys -

Then, setting

(1.18) Pulx, &, %", &, &) = %X(fflh)pj,h(x, %, 8, x"),
we see in a usual way that p, is the desired one (cf. [7]). Q.E.D.

Theorem 1.4. For p,(x,E,x",E",x")EBs(h), define p; 1(x,E,x") and p,r
(x,E,x"), respectively, by

Ph,L(x) EI: x”)

(119) = OS—SSe“”"’ph(x, §'+n, x4y, &', x")dndy
and
Pu (%, &, %)
(1.20) = os—ﬁe"‘” Pu(%, &, 2"+, E—n, &) dndy .
Then we have
(1.21) Pui(%, &, x"), pir(%, §, ") EBT5(h)
and for P,=p,(X,D,,X',D,, X"
(1.22) Py =py (X, D,, X') = p) x(X, D,, X') .

Furthermore, the mappings: B s(h)D p,= by 1, PrzE Bis(h) are continuous, and
for a fixed even integer ny>n) and any l there exists a constant C, such that

(1.23) 123,19, | s gl TV =Col pa] o, -

If, in particular, 0=8<<p=1, we have the asymptotic expansion formulae

) 2u £, )~ 3 plE (v £ £, ),
(1.24) 1y
i)  pue(® & %)~ ; Tmé&i’,o) (x,&,x",8,x).

ReMARK.  Since (5200 (x,8,5",&,47), pil8.5000 (%,E,5,&",a")E B ¢~V1*(h),
and m+(p—38)|a|—=>o0 as |a|—=co when 0=<8<p=1, the formulae (1.24) have
the definite meaning.

Proof. By the usual method we have (1.22). Consider
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Ph,o(x) EI: x"

1.25 .
(1.25) = OS—SSB_""’p,,(x, E'4-0n, x+y, &, x")dndy (0=<0=1).

For a fixed even 7,(>n) we have by integration by parts

Drale, B

= 0,—[[errr(1-41 19 )21 (— 2,7

XA+ y | ") H(14-h™"(— A,y

X pu(%, E'+0n, x4y, E', &’")} dndy .
Then, noting 6 < p, we have for a constant C >0 (independent of 0=<60=1)
(1.26) |Puol, £, ) | SClpu | 50" (0<0<1).
Differentiating the both sides of (1.25), we have also

|Ph,0£g).ﬂ’) (x, &', 2")|

1.27 ,
( ) §C¢,p,s' IPh l(z,:z'z+|w+8+p’lhm+pml_8|ﬁ+ﬁ | (Oéeé 1) .

Then, setting =1, we get (1.21) for p, ,(x,&,").
In the case 0=<6<p=1 we write

Pulx, E'+m, x4y, E', &)

== _nj (w,o) ’ , 1
(1.28) ,,,;Na!?h (x, &', x+y, E', x)

+N 2 i'gz(l—‘9)”‘11>h<”"°> (%, &'+ 07, x4y, &', 2)d0 .

wi=x oyl

Then, in the definition (1.19) we have from (1.28)

Os-—gge"’ PO (x, £, x4y, E', ) dndy

(1.29)
= Ph%g:g),o) (x’ E,) X, E,: x”) ]
and
Os——”e'i.v-ﬂ,?vph(v,o) (, E'4-0n, x+y, E', x”)dndy
(1.30)

= 0.~ [[e ™ pu8 s v, £+ 0m, w9, &, )y

Hence, replacing p, of (1.25) by p,{:3%) and using (1.26), (1.27), we have from
(1.28)~(1.30) the formula (1.24)-i). Similarly we get (2.21) and (1.24)-ii) for
Ph,R(x’E’x’)' Q.E.D.

As the special cases of Theorem 1.4 we get the following Theorems 1.5-1.7.
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Theorem 1.5. For p,(x,&,x")= By's(h) set

(1.31) Pas(, &) = Os—-SSe"'"”ph(x, £+, x-+y)dndy
and

(1.32) Pux(E x") = Os—SSe"’"”ph(x'er, E—n, x")dndy .
Then we have

(1.33) 2%, &), P4 &€, %) EB ()

and for P,=p,(X,D,,X’)

(1.34) Py = pu, (X, D,) = pi »(D;, X) .

Furthermore, the mappings: Bg's(h)D p,— P, PrrEBys(h) are continuous, and
for a fixed even ny>n) and any [ there exists a constant C,; such that

(1.35) [2i 18, 14 2| = Col p1] $%2n, -

If, in particular, 0=8<p=1, we have the asymptotic formulae

) 2au(e, )~ 31 2R (0 6,9),
(1.36) '

1)@
ii)  pu r(€, x)~ g ( 1|) lphE:?O) (%, &,x).

a

Corollary. For P,=p,(X,D,,X',D,/, X" )= B}'s(h) we define single symbols
Py, 11(%,8)=(1,1)(%,£); b1 z&(E, %)= (1, 2)&(E, &) E BZs(h), respectively, by (1.19)
and (1.20). Then we get

(1.37) P, = p; 11(X, D,) = pj ze(Ds, X') .
Theorem 1.6. For P; ,=p; ,(X,D,)E B, (k) (j=1,2) define p,(x,£) by
(138)  pulw®) = O {(e7p,u(x, Etn)pr -ty E)dndy

Then, we have ph(x,E)EB:,‘;mz(h) and py(X,D,)=P, ,P, .
Furthermore, the mapping: Bys(h)X By2s(h)S (s, b2 n)— psEBoy (k) is
continuous, and for a fixed even ny>n) and any | there exists a constant C, such that

(1.39) | ol i S C | Py g | 780, | P2,n ) §5%n, -

If, in parricular, 0=6<p=1 we have the expansion formula

(1.40) 24, )~ 3~ (e, ENP s, )
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Theorem 1.7. For Q; ,=q; \(D.,X')EB; (k) (j=1,2) define q,(£,x") by
(1.41) g€, ') = OS-SSe“"’"’ql,h(E, %' +9)gs i(E—n, x")dndy .

Then, we have g,(E,x")E B3 ™ (h) and q,(D., X")=0,,0; ;-
Furthermore, the mapping: B.j(h) X Bo3(h) 2 (q1,4,95,4) > ¢, E B ™(h) is con-
tinuous, and for a fixed even ny>n) and any | there exists a constatn C, such that

(1.42) g5 fmrm) < C, | 9k [ y:i)no I 92.n Yfzz)no .

If, in particular, 0 =8<p=1, we have the expansion formula

(1.43) 0 )~ D g0 6 )0 ).

The next theorem concerns the multiproduct of pseudodifferential oper-
ators and will play an important role also in considering the multi-product of
Fourier integral operators (see Theorem 4.3).

Theorem 1.8. For P;,=p; (X,D,, X"\€B;jh) (h=1,2,---,v+1,v=1)
deﬁﬂe qy+1,h(x; E:x’) by

q\4+1,h(x; E,x)
:-4211-\ v
(1.44) = OS—S---S exp (—i 2357+ 7)

>< Jli Pj,h(x‘}‘j’j—l’ §+77j’ x+yi)PV+1,h(x+5}V) E: xl)d,,‘vdy’v )

where 3°=0, ji=y'+--+y (j=1,+--,2), dn’=dn'---dn’, dy’=dy'---dy".
Then, we have

(1-4‘5) qm,h(x, £, xl)EBf,‘gﬂ(h) (Mg = My +myyy) ,
andfor Qy+1’h=qv+1 h(X:Dx:XI)
(1.46) Ovirn = Py Poyy -

Furthermore, there exists a constant Cy>0 such that for a fixed even ny,(>n)

—_— v+1 .
(1.47) [quersl™+0=C¥ 33 T1 | pjal$adrs;
L+ ¥ <l =1

Proof. By the usual method we have (1.46) (cf. [7]). By integration by
parts we write



302 H. Kitapa anp H. KumaNo-Go

q\l+1,h(x: E: x,)
AZVM

— OS_X...§ exp (—igyj‘ﬂj)

(1.48) v
X TL (LR |37 70) (L0 (— A,)?)
X TL 9364377, B0, 53 poss s+ 3 £, ') d'dy”

Now we make a change of variables:
z] =y1+-.o+yj (@yl — zj_zj"l, zo e 0)
for j=1,--,». Then, noting
v . v
fomd — oy (ko k+l vl __
2y gz (*—2*1), 7 0

we make again the integration by parts. Then, we have from (1.48)

q\/+1,h(x’ E} xl)
~2v .
= SS exp (_ihzzz e (nf— 7))
(1.49) X f_[ (1A | f— "2 | %) Y (1 AP (— A x)"o%)

x>

=1

X AT (14h7o |7 —a = ) (Lo (— A )o)

=1

5 1Ly p(x27", Etoph, 342 P s(m-2%, &, 6)} ddz” .

Jj=1
Hence, noting 8 =< p we have for a constant C;,>0
Iqh+l,h(x) E} xl) I
v+1 _
= CYPUIL | pjul$a B
j=1 ’

(1.50) 20 )
X SS El(1+hnoalnk_nk+1lno)—1

x TT (14+h" | 7 — 27~ %) dn,dz" .
=1
So for another constant C',>0 we have
v+1 _
(1.51) (G n(x, &, 2") [ =C3H Hl [ ] Skt

In order to get the estimate for g,.,,{5sn (¥, &, x") we difierentiate the
both sides of (1.44) and apply (1.51). 'Then, we get (1.47) and (1.45). Q.E.D.
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The following theorem is also a key theorem in considering the multi-product
of Fourier integral operators (see Theorems 3.8 and 4.2).

Theorem 1.9. Let n,(>n) be a fixed even integer. Then there exists a
constant ¢,>0 such that for any P,= p,(X,D,,X")E B} s(h) with | p, |50 =c, the
operator I—P,, has the inverse (I—P,)™" in By s(h).

Proof. For »=1 we define p,,, ,(x,E,x")EB; s(h) by (1.44) for p; ,=px
(j=1,:--,»+1). Then, by Theorem 1.8 we have

(1.52) Pyt = pyyy (X, D,y X)

and the estimate

(1.53) [Praal¥=C57 30 ﬁllphla‘;’w;-

ety Sii=t

Hence, when v-+1=1, we have

| sl P SCEA R D) 2 (ol )’
1 +

V+1=

(154) v+1-1 0) 1
=(Coco) (Col palsms1)' Cu

where C,,,,:é (V_]H> We note that C, ;< Cp'(v=1,2,-+) for a constant C,>0.

i=0

Then, we see that, if we choose ¢,>0 such that C,¢,<1, the series for o(P;*)=
PV+l,h(xy E,x")

14-o(Py)+o(Pi)4-+++a(PitT) 4
converges in Bj 5(k) which means that
(I—=P)) = I+ Py+-Pi4- Py oo
exists in B} 3(k). Q.E.D.

Proposition 1.10. For any fixed 0<<h<<1 the operator P, B;'s(h) defines
continuous mappings P,: B— B and P,: $¥—F.

Proof. By the corollary of Theorem 1.5 we may only consider the case
P,=p,(X,D,)=Bs(h). Then we have

Pou(x) = Os—sge’iy"’ph(x, ) u(x+y)dndy
for u B, and
Pau(x) = e py(x, £)0(E)
for uc¥. Thus the proof is clear. Q.E.D.
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Proposition 1.11. For any fixed 0<h<<l and the operator P,=p,(X,
D,,X',D,.,X")yE B}s(h) we have

(1.55) (Pyu, v) = (u, P,*v), u,ve?,
where P,*=p,*(X,D,,X’,D,,X""Y€ B(h) is defined by
(1.56) P B B8 = S B B ).
Furthermore P,: $—% is extended to the operator P,: '—%’ uniquely by
(1.57) (Pyu, v) = (4, P*v), uc¥’, ved,
where &' denotes the dual space of &.
Proof is clear by Proposition 1.10.

Remark. If P,=p,(X,D,,X')E B}s(h), then we have Pif=p¥(X’,D,,X").
But from the definition (1.9) we can get easily P¥=p§(X,D,,X").

Theorem 1.12. Let M= 2( [%i]+l:%]+2> Then, there exists a constant
C such that for any P,—=p,(X,D,, X")E B} (k) we have
(1.58) 1Pl =Cl o P llull: (S IARY)).

Proof. Set 7,(x,&,x")=h""p,(h°x,h~°E,h’x’). Then noting §<p we have
for |a+B+-B8'I=M

|rhgg?ﬂ’) (x: ‘E) x,)l = | D | %'l”) .
By a change of variables x=A%%, E=h"°¢, x'=HZ%’, we have
Pou(i®) — hmos~§§e‘<?'?’>'5rh(i’, £ &)
X u(h*%")dEdx’ .

Then, setting v,(X)=u(h’%) and w,(¥)=Pu(h’%) we have by the Calderén-
Vaillancourt theorem ([1])

(1.59) llewoll 2= C | ps | SPR" (04[22
for a constant C independent of O0<h<1. Q.E.D.

2. A family of phase functions

Let 3™~(R™) denote the set of C”-functions f in R*”=R;X R; whose
derivatives 8§D§ f(x,&) are bounded on R** for |a+@|=m. Then, we define
the classes of phase functions as follows.

DrrFINITION 2.1. 1) For 0=7<1 and integer /=0 we say that a real valued
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function ¢(x,£) in R* belongs to the class P(7,I) of phase functions, when
o(x,£) is of class C'*? and satisfies for J(x,&)=¢(x,E)—x-&

IT1i= 3 sup {16 £)1 /< 51471
sup {| J{@(x, &) [} =.

2=+ BlSI+2 %, ¢

@2.1)

ii) We say that a phase function ¢(x,£) (€P(,l)) belongs to the class
P(r,l), when ¢(x,&), moreover, belongs to B*(R™).

iii) We say that a family {¢,(x,&)}o<s<; of C=-functions ¢,(x,£) in R* be-
longs to the class {P, s(7,/;/)}o<si<i With 0S8=<p=1, when the functions

2.2) {%(x, E)Eh":%h(kax, h:"E) ;

Ji(x, E)=17 (K%, h™°E) ,
satisfy
(2.3) (%, ) P(1,1) for any (0, 1)
and
24 sup | B (. 6)| <co for |a+p|z2.

We write this as {¢,(%,£)}o<s<1 € {P5 5(7,1;5)} o<s<1 OF simply as ¢, (x,E) E P, 5(7,1;

Remark 1°. If ¢, (x,E)=¢(x,E)=P(,l) (independent of 0<k<1), then
du(x,E)EP, o(7,1;h). So we can write P(7,l)C P, (7,1 k).

2°. By the definition, P(r,l)C P(,]).

3°. P(r,)cP(r,I'), P(r,)CP(=",I'),if T<7’and I=]"

4°. For ¢(x,E)=P(r,l) set ¢, (x,E)=h"Hp(h°x,k’E). Then, ¢,(x,&)E
P(r,1; k), since $,(x,&) defined by (2.2) is equal to ¢(x, ).

5°. In sections 3 and 4, for ¢,(x,E)EP, s(7,0;k) we often use the im-
portant semi-norm | J, |, - (6 =0, integer) with J,(x,&)=¢,(x,£)—x+£ defined by
(2.1) [ Jilee =, 20 sup {ILEB@®H1},

25w+ BI<2+C
0<A<L0

where fh(x, E)=u(x,E)—x-E(E P, o(T,0;k)). Then, sinceihth, we have | /],

=17, |2, and (2.1)" is rewritten as

21" Jilew =, 3,500 VFOPTEL TG, )13
0<r<L1

by virtue of (2.2). For ¢(x,&)EP(7,0)C P, ((7,0;k) we have
2.1y [ Jileo=,_ 20, sup {IJE I}

2<|w+B|S2+0 %,
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Proposition 2.2. Let ¢,(x,&)EP(7,0), j=1,2,+, and let 7.= 2 i=To

for some 0<7,<<1/2. Then, for any v=1 and (x,E)ER™ the solution {Xi,Ei};-,
(%, &) (€ R®") of the equation

1=
ey m e, 07
exists uniquely, where Xy=x, Ey1=E.

Proof. Set
(2.6) ¥ =X—-X{"\ 9 =E-E", (j=1,7).
Then

(2 7) {XJ = x+5’1{ (5’5 =}’H— +,’,V5, -3 = O, ]= 0) % Z/) ’
' E{. == 771:_'_5 (771; = 77‘1_"‘ +7]:; 77¥+1 = 0’ ]= 17 **% V+1) )

and the equation (2.5) is equivalent to
{ 1) yi=VeJ(x+57",7+E),
ii) 7 = Vx]i+l(x+5’{; %?’;H‘FE) s
Now we define a mapping 7T%: R¥*S (Y, )= (y3, Y475, ***, 1) > (T, 1)
—(yw :,ﬁ}n A :';7:): Tv(yv;n‘u)Eszn by
i) ¥ =Ve]i(x+3" 5H+E),

(29) { ~F =j+1
ll) 775 V],+1(x+yw 7 +E)

(2.8) (G=1,,v).

G=1,--,7).
Then, using the norm
I wll = 2 (151 + 1),

we have for (,77)= T\(y!,m,)

ljj'i__ i!
= |VeJ (a3 T 4+E) = Ve (x5 TAE) |

S'VWJ(xﬂ% 0( 7 — 37, AA-EHOGT—7)) |40+ 1 57— 57
[ 19T o 30557 5170, FiH-E+ O —7) |46 - |5/~
< 7, 39t —st 1+ It —]).

Hence we get
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23 1353 Sl @, ) — (@ )
(ﬁ"v+1 =7+ "'+Tv+1) ’

and similarly get

2 177 =7 =Pall(ws, 20)— (s )1l
Consequently we get

“(y;) ﬁ\’l) (g\'; ;)v)” éZTOH(y\,n "C)—(y‘n ’lv)” ’

which means that the mapping 7, is contractive. Hence, we see that the
equation (2.8) has a unique solution {y,,n.} (x,£). Q.E.D.

Proposition 2.3. Let ¢;(x,E)EP(1;,1) (resp. P(7},1)), j=1,2,+, and let
T STy for some 0<7,<<1/2. Then we have that the solution {Xi, Ei}%_,(x,E) of
(2.5) is of class C'™** (resp. C*).

Proof. Consider the function {fy, g,}(2s, ¥v; %, E)={F1, ==, v, &3, "> v}
(24,Yv; %, &) defined by

{ 1) f'{a = Z,{—Vs]j(x-}—fi—l, 7_5"*‘5) ’
ll) gi’o = yi_vx]]+l(x+§{n ;7—’{1_H+E)
G=1, -, 0,80 = 0, 721 = 0).,

(2.10)

Then, we have the Jacobian

D(f,, g9,) _ det [I_<Hu H12>] ,
D(z,,v,) H, H,

where I is the unit matrix and
Hy = [hy s = V.V J; (k<j), =0 (kZj)],
Hp = [hy = VeVe ] (k=)), =0 (R<j)],
Hy, = [hzl,ik = V,V,]j“ (kéj)’ =0 (k>J)] ’
Hy = [hzz ik = V;,:V,],-ﬂ (k>j): =0 (kéj)] .

D(fw g‘u)
=+0, since
D(z,,v.)

2} (W all -l ) S 3 (547500 S2m0< 1,

Hence, we have

and

2 (il -l ) S 3 (7750) S27<1.
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Then by the implicit function thorem we see that the solutions of (2.8) and also
(2.5) are of class C**! (resp. C™) with respect to (x,&). Q.E.D.

Proposition 2.4. Let ¢,(x,&)EP(7;,1), j=1,2,--, and let T.<7, with
0<T,<1/4. Then we have
i) There exists a constant ¢,>0 such that

(2.11) (X=X, Bl —E) | <47 <w; &>
w=1,7=1, -, v+1)
and
(2.12) |0g08(X{—X{, B —Ei) | <¢rr;
rzl,j=1,-, v+, 1= |at+ Bl =I4+1).
it) Furthermore, assume that ¢,(x,E)EP(7;,1), j=1,2, -+, and, setting
ji(x: E) = ¢i(x) E)—x”f’ V= (Vx, VE) ’
assume that
(2.13) “{GV]j(x, E)7;}5-1 is bounded in B(R™)”.
Then we have
(2,.14) “AV(XI—X{ BUT B 7} y=pery,, i bounded in B(R™).”

Proof. Since yi=Xi]—Xi™, ni=Ei—E{" (j=1,--,v, Xo=x, Ey"'=E) are
the solution of (2.8), we have

Vi St la+37 FHAE
én{;(lyﬁl + 2D +<x; Y,

(2'15) |77{/| §71+1<x+5’1’;; §5+1+§>
< ST+ 17 )< £5)
(] - 1’ “ee, p) :

Here, we used the inequality
(2.16) laty; EF= |yl 412l +<x; &, (x,E), (y, 1) ER™.
Then, from (2.15) we have

DRI+ D=2 { (54 + )+ £}
and noting 27.,(1—27.)'=<1 by 7..<1/4 we have

(2.17) 211yl + ) =< &
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Applying (2.17) to the right sides of (2.15), we get

|yi] S27<x; >, || £27;,<x; E> (v21,j=1, -+, v),

which means that (2.11) holds. If we differentiate the both sides of (2.8), by
induction we get (2.12) by the similar way. Also (2.14) can be obtained simi-
larly. Q.E.D.

Summarizing Propositions 2.2-2.4, we get

Theorem 2.5. Let ¢;(x,E)EP(r;, 1), j=1,2,-++, and let T.=7, with
0<Ty=1/4. Assume, further, that {GV Ji(x,E)[7;} 71 is bounded in B(R?). Then,
there exists a constant ¢;>0 such that the solution {X}, Bi}_\(x, E) of (2.5) exists
uniquely and satisfies

(X=X BiT—E)) | <47 <x; £,
(2.18) [(Xi—x, Bi—E)| S47,.<x; £

w=1,j=1, -, v),

and

|005(X{—X {7, B{T ' —Ei) | =c;,
(2.19) lagaf(X{;—x, Ei—&)| =S¢y

(wzl,j=1, v, 15 |a+B|=H+1).
Furthermore we have
“AvXi—Xi BB}z,

(2.20) and {V(X {—x, B{—E )Ty sad YIRS

are bounded in B(R*™)”.

DEFINITION 2.6. Let ¢;(x,&)EB(r;,0), j=1,2,--, and let 7.=37,<,
=1

with 0<7y<1/2. Then using the solution {Xj, E{}}_i(»,&) of (2.5) (from Pro-
position 2.2), we define the #—(v-+1) product @, ;= #:+-#b,., of ¢y, -+, Py11 by

(221) @y E) = 2 (X E) XL E)+ (X5 )
with X%=ux.

Theorem 2.7. Let ¢;(x,&)EP(7;;0), j=1,2,---, and let T.<7, with a
small constant 0<<1,=1/4. Then, we have the following:
1) There exists a constant cy=1 with c¢,ry<<1 such that

(2.22) D, 4y(x, E)EP(CO?V+11 0) (=1),

and we have
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(2.23) { i) V@, &) = Vi(x, By

1) Vi@yn®, £) = Vedy(X5, £)
and, setting J,1(%,8)=D,y(%,&)—x-&,
{ i) Velin( £) = Volie B2 (RE—EL),
i) Vedin(® B) = 3 (X=X )+ Ve ool X3 )
i1) We have the associative law:

Doy = (Pl HDu )Py
= bh(dHHbyn) -

iii) Furthermore, assume that ¢;(x,E)EP(7;,1), j=1,2,+, and let T =7,
with a small constant 0<r,,;=7,. Then, there exists a constant c,,(=c,) with
Co,1To,1 <1 such that

(2.26) Dy a(, E)EP(cy ooy )
and, if {VV J;(x,8)/7;} 51 is bounded in B(R®™), we have
(2.27) AUV Tysr(®, )Ty} o1 is bounded in B(R™)” .

(2.24)

(2.25)

Proof. i) Using the definition (2.21) we can write

Ty, &) = 2 {]J XL E H‘{:)‘}’(Xj 1"‘X])
+Jv+1(XVm §)+E(X" X3- E
= 2 {(x37, '"’H-(X’~1 Xj)-(E—8)} .
Then, by Proposition 2.4 and (2.11) we have
[Ty (6, E)l = 2 {r <X ->2+4"' 47, .5 E57
and, writing X! != 2_,"(){"E Xk Htx, E{,—E( — BN E, we get by (2.11)
(2.28) [Ty 1(, E) | S C 7y alx; £°

for a constant C,>0.
From the definition (2.21) and Proposition 2.3 we see that ®,,,(x,§) is
C'-class. Then, differentiating the both sides of (2.21) we have

ViPyu(x, E) = 2I{V.XI V. + V.V,
- VxX_:\JIE\{ - VxézX’{l} + exX:vx¢v+l )

and using (2.5) we have
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vama=vm+gﬁxwm*
+2{V.EX{— V. X{E—V,E{X])
FVXUE, = Vi, B
Hence, we get (2.23)-i). From (2.23)-1) we write
ViTous(®, ) = VD, (x, £)—E
= V. Ji(% E.)+(E—E)
= V. )i B3 (B —EE),

and get (2.24)-i). Similarly we get (2.23)-ii) and (2.24)-ii).
From Proposition 2.4 and (2.24) we have for a constant C,>0

(2.29) |V Ty ii(2, E) | = Comy s £
Similarly, if we differentiate the both sides of (2.24), we have for a constant C5>0
(2.30) | VYT, i(%, )| < Coy -

Hence, setting ¢,=C,+C,+C; and choosing 0<7,=1/4 such that ¢7,<1,
from (2.28)—(2.30) we get (2.22).

ii) Let ®,(x, E)=(¢1##¢V) (%,€) and ®v+1(x’ ‘E)z(q)v#(bwl) (*,8). Let
{X,,E.} (%,£) be the solution of

) X =V E,),
(231) {11) év = V,¢v+1(Xw ‘S) .

Then we have
(2.32) D, 4y(x, §) = Dy(x, év)—Xv'év‘f‘ﬁbvﬂ(Xw £).
On the other hand, by the definition of ®,(x,&) we have
~ y-1 . ~ . ~
q)v(x’ E.,) = ,Z=1 {¢]( \jl:}(xr E'v): E{J-—l(x’ Ev))
(2.33) — X i(, By) By, By}
+u(X3Zi(x, By, By
and for {X7_,, Ei_}zi(», E,) we have
X‘{;—l(x’ éV) = V£¢j(X£:}(x’ éV)’ E{—l(x’ gv» ’

(2.34’) E{;—‘l(x! év) = Vz¢j+l(X\J;—l(x) év), Ei:i('x’ é'u))

(j = 1; °tty V_l, Xs—l(x) év) = X, E:—l(x: év) = év) .

Hence, if we set
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lel(xr E) = X{—l(x; éu(xy E)) )
(2-35) év(x, E) == E{—l(xy év(xr E)))] = 1’ R v—1 )
va(x, E) == Xv(x) f)’ é:(x, g) = gv(x’ E ):

we have by (2.34)
{X{, = V&‘bi(}z{:_l, é{,) ’

2.36 ~ . R
( ) E{: = Vx()bj-l-l(Xi) E\’l+1)’j = 1’ B 1}—1 .

From (2.31)-ii) we have
(2'37) é: = Vx¢v+l(X\\:7 E) 1)
and applying (2.23)-ii) to (2.31)-i) by replacing »+1 by », we have

X=X, = Vip(XiZi(x, By, E,)

2.38 - ~
( ) == V£¢V(va—l, E: .

Hence, from (2.36)-(2.38) we see that {Xi, E}%.,(x,£) is the solution of (2.5),
and by the uniqueness, is equal to {X{, E{}i_(x,€). Then from (2.32) and
(2.33) we have D1y (x, E):®V+l(x’ E)z((¢1##¢v)ﬁ¢v+1) (x, £). Similarly we get

¢v+1=¢’1#(¢2#"'#¢w1)~
iii) If we differentiate the both sides of (2.24), then from Theorem 2.5
we get (2.26) and (2.27) by induction. Q.E.D.

Theorem 2.8. Let {¢j,h(x;f)}o<h<1»j=1,2, -+, belong to {Pp,B(Tj) 057)} o<i<1s
and let .. <7, with 0<7,<<1/2. For ¢; ,(x,£) we define ¢; ,(x,) by
(2.39) Gi (%, E) = B0, (Hox, h°E) .

Then we have the following :

i) Let {Xj,,Ei}ii(x8) and {X3,,55 ,}-i(%,E) be the solution of the
equation (2.5) for {¢p;,}5i1 and {P; ,}5il, respectively. Then they are umiquely
defined as C~-functions on R; X R}, and satisfy the relation

X (%, &) = 72X (W%, h°E),
(2.40) é{;,h(x, £) = WE] ,(h°x, k™)
(V;Lj = 1’ Y V) .

ii) Let @y, (%) and D, ,(%,E) be defined by (2.21) for {¢;,}}ii and
{P; s} jil, respectively. Then we have the relation
(2 41) { 1) (iv-l-l,h(x, E) = hp_8®v+1,h(hsx: h_pE) ’

’ ii) (I)v+1,h(x’ &)= hs‘p&)vﬂ,h(h_sx: hpf) .
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Proof. i) From (2.5) for {§;,}}1 and (2.39) we have

Ql.(x, E) = 1™V, 4(B XI5 (%, £), BB 4(%, 6)),
(2.42) E{ (%, &) = W'V 11 s(BX] 4(x, E), B~ PEIN (%, )
(X0, E) = 2, Vi (0, E) = £) .
Then from (2.5) for {¢; ,}j1i we get easily (2.40), since the solution of (2.5) is
unique. By Proposition 2.3, the solution is C*.
ii) If we use (2.39) and (2.42), then by the definition (2.21) for ®,.,, 4(,&)

we have

cB‘H—l,h(xy £)
— 30, (KL, B0E), B, )
(2.43) e 5 w(Wox, hPE) - WPE (W, h™°E)}

HH Py (X5 u(Hox, B7PE), BE)
= h*" B¢V+1,h(h X, h~ pg) ’

which proves (2.41)-1) together with (2.41)-ii). Q.E.D.
Summing up, we have the following
Theorem 2-9- Let {¢j h(x E)}o<h<1,j 1 2 belong to {Pp S(Tpl h)}0<h<1,

and let 7..<7,=1/4. Let {X{, i B3} =, E) and &D,ﬂ #(%, E) be defined by (2.5)
and (2.21) for {p; ,} i1 of (2.39), respectively. Assume, further, that vvJ] ia(%,E)/
T}izpey @5 bounded in B(R™) for J; y(x,£)=; y(x,E)—x-E. Then, for {X,,
Bl o E) (021, 0<h<1) and ®,,, ,(x,E) (v=1, 0<h<1), Theorem 2.5 and
Theorem 2.7 hold, respectively, and {ev.l\,ﬂ' (%, E) [Ty 1} y=12. 15 bounded in B(R?™).

0<h<1

3. A family of Fourier integral operators

We define a family of Fourier integral operators.

DerFINITION 3.1, Let {$4(%,£)} o<1 € {Ps,5(7,0;8)}o<h<a and {pi(x, &)} o<i<ss
{2, %)} o<cicr € {Brs(h)}o<cs<i(0=<8=<p=1). Then, the associated family of
Fourier, and conjugate Fourier, integral operators P,(¢,)=p,(¢,;X,D,) and
Ou(d¥)=qu(d¥;D,, X’) are defined, respectively, by

Py(dr)u(x)

(3.1) —0,— s Seiw,,(x.s)-x’-aph(x, E)u(x')dEdx’

and
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Ou(p¥ )u(x)

(3.2) _ OS—SS ¢t g (E, x"Yu(x")dEdx’

forucs¥. We write these as

{Pu(n)}o<i<i € {Bs(P1)} o<a<a »
{04} o<n<i € {B2s(DF) } o< »

or simply

Py() E By's(b4), Qu(dF) E Bra(9i) .

ReMARK. By the following proposition we can write also for u€4

3.1y Pi(u)u(x) = [esD p,(x, EYAE)E
T . ,
(3.2 OgtyutE) = [ o008, Yu(x' )

The following proposition justifies the above definition.

Proposition 3.2. Let ¢,(x,E)EP, s(7,0;k). Then for any fixed 0<h<1,
Py(p)EBrs(ds) and Q,(pF)E By s(pi) define continuous maps: Py($,), Ou(d¥):
$—7.

ReMARK. For P,(¢,)=pu(¢s; X, D.) € Bs(p,) if we define Qi (i) =gi(¢p5;
D,, X')EBI$1) by giE,+)=pu(',£), then we bave (P,(by)u,0) =, Oi(#1)o)
for u,vE¥. Hence, by this relation we can extend P,(¢,): =% to ¥' %',
uniquely. The same thing holds for Q,(¢¥) € B2s(p¥).

Proof. We first give the proof for Q,(¢¥)=qu(p¥; D., X')E Bry(d¥).
Set Yry(%,E,x" )=xE—p,(x",E)=(x—x") < E—J,(x',E). Then, we have from
2.2)
IVl Z 18| —Th™*Ch~%%"; B°E>
> (1) |E| —Th* >
Hence we have |V, |=(1—7)|E]/2 if (1—7)|E]|/2=h"<h %x"> and have

2=2(1—")|E|[(hP}<h 2" >) if (1—T)|E|/2=h™*<h~%x">. So there exists a constant
C.,,>0 such that

(3.3)

(3'4) <Vx,‘1b'h>g CT,h<E>/<x,> .
On the the other hand using the inequality
(3.5) EKE—*=2%n>?,

we have for some constants ¢, C; ,>0,
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PV e )? = <) [{x—Vedy)*
S V(2 £ = C<V£Jh(x’a E)+x'>2

SO x84
Hence we get for some C, ,>0
(3.6) Vo= C’r,h<‘x>/<x’; £ .

Now setting

{Ll = <Vx’1]"h>—2{1_ivx’1:b'h'vz’} )
L, = V> {1—iVir, - Vi}
we write
Ou(pi yu(x)
= [[emeryscLy-tae, o) dar,

where ‘L; (j=1,2) denote the transposed operators of L;. Then noting u(x")E¢
and choosing large integers ,># and [,>1,-+n, we see from (3.4) and (3.6) that
Ou(d¥): $—¢ is continuous.

For P,(¢;) € B;'s($s), consider v,(x,&,2")=¢,(x,&)—x"+&. Then V, /v,=—F
and Vy,=Vd,(x,E)—x’. Hence noting

Vepu(x, £); E>=c(1+ | Ve Ju(x, E)+x| + | E])
Zc' (14+-(1—7)<x; D) =<

for constants ¢, ¢, ¢”>0 and again using inequality (3.5), we obtain

(3.7) PV Cr a5 £
for some constant C,;>0. Hence we see that P,(¢,):¥—% is continuous
in a way similar to the proof for Q,(¢¥). Q.E.D.

Corollary. Let ¢y(x,E)E P, s(7,0;h). Let p; ,(x,£) and q; ,(E,x")E B} s(h)
converge to some p,(x,&) and q,(&,x")EB;s(h) as j—oo tn B}'s(h), wespectively.
Then for any uE¥, P; j(p,)u and Q; (i) converge to Py(p)u and O,(dpF)u
in¥ as j— oo, respectively.

Proposition 3.3. For ¢(x,&)EP(7,]) set
Vol £,2) = | Vbl +0(s—x), £)d8
(= V@', %),
eb(e, €)= [ Veb(w', £+ OE—EN)0
(= Ved(e, 5" 8).

(3.8)
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Then, the inverses
{E = E(x, 7, x') = v,,(f)'l(x, %),
® =« w, &) =Vep(E,w', E')

of the mappings: E—n=V,p(x,E,x') and x'—w’'=Vp(E,x',E’), respectively, exist
uniquely, and satisfy

(3.9)

)

(3.10) ” g—i—

ox’ T
_Il<
ow’ l.

and for constants C, Cp ap', Cap o

aga;ag:(a_f>'< {Cﬁ (18+a+8'1=)),

(3.11) /| " \Compr| J 12,014+ 1T120)7,
6‘;6,5?6;;(6#,) - {c,r (lat+B'+a'|=D),
aw C“.f",ﬁ’l.]lZ.v'(l"}"I]Iz,a') —l,

where o= |B+a+p'| 21, o'=|a+B'+a’'| 21, and | ]|, is defined by (2.1)'.
Proof. Set
- 1
¥, J(x, £, %) = S.,V‘ J@'+0(x—a'), £)d6

(3.12) ,
) x, ) = [ Vel E4-0E—E)d0

According to [8] consider the mapping Y=F,(§): R"S£+— yER" defined by
(3.13) F, () =n—V J(x,E ).

Then we see that £=V, ¢ !(x,n,x’) is determined as the fixed point of this

mapping. Since ”VZV?, JI|=7<1, it is easy to see that the map F, is con-
tractive. Hence, we get the uniquely determined fixed point & of F, satisfying
n:V,¢(x,E,x’).

Using the relation

2 — 1+ W®), WE) = | Ve S o), )0,

0g
we get
0F _ (0" _ 1SV —mwie)
(3.14) oy = <ag> = I+ (= W)
and
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Hence, we get the first part of (3.10), and similarly get the second part. To
get (3.11) we differentiate the both sides of (3.14). Then, by induction we

have (3.11). Q.E.D.
Theorem 3.4. For ¢,(x,E)E P, 5(7,1; k) set
(3.15) i(x, E) = h* ¢, (Kx, h™°E) (€ P(7, 1), 0<h<]1)

and define V ,p,, Vi, and Vb, Vidy, respectively, by (3.8). Then, we have

(3.16) {vx(i)h(x: £, &) = h™*V,$y(h %%, KE, k%),
' Vepu(E, x', §') = h*Vey(WE, k%", K°E")
and, the inverses

&= vxd)h_l(‘x’ 75 x’)’ E = vx{ﬁil(x: 7 x’) ’

¥ = Vi€, w', E'), ' = Vi gi'(E, w', E')

Of the mappings n=v,¢h(x,§,x'), ’7=6x$h(x:g)x,)» w’:Vggbh(f,x"E’), w':'v&'qgh
(&,2',E') exist uniquely and satisfy the following:

{\7“”5 (e, m, %) = B0 e, Hen, B
Vedil(E, ', E) = WVFE, b, IE),

(3.19) Vol V05Y) (%, 7, %), Vur(Vei?) &, ', E') B o(h) ,
o(V.pi') 8V¢,,1
) P s

(3.17) {

(3.18)

(3.20) ’

ReMARK. Since ¢,(x,£)EP(7,l) (0<h<1), we see from (3.16) that
(3.21) VeV i, £, 1), VoVedi(E, o', ) EB(h) .

Proof. (3.16) is clear. The existence of V,p;?', Vedi' and the relation
(3.18) are clear from (3.16). Since @,(x,&)eP(,l) (0<h<1), we can apply
proposition 3.3 to ¢,(x,£). Then we have (3.10) for V' and Vidir!. Thus
(3.20) follows from (3.18) and (3.10). Moreover, since {J,{§ (x,&)}o<sc:(l 2+ 3|
=2) is bounded in B(R*) by the definition of {P, s(7,l;4)} <1<, We have (3.11)
for V,i! and Vi for constants independent of 0<<h<<1. Then (3.19) follows
from (3.18) and (3.11). Q.E.D.

Under these preparations, we begin to study the calculus of Fourier in-
tegral operators.

Therem 3.5. Let Py($,)=pu(Ps; X, D.)E B s(d,) and Q,(d¥F)=q,($¥;D,,

X"YE B(dF) for pu(x,E)EP, 5(7,0;h). Then we have the following:
i) Setting
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sh("c: E: x,)

(3.22) = pilw, Vair(x, &, %))gu(Vodi ' (x, £, '), ")
D(vxd)il) ’ m+m’
d . (x, & x)| (€Br™(h),
we define r,(x,E) by
(3.23) ra(x, E') = Os—SSe"'””s,,(x, E' b, xy)dndy .

Then, we have r,(x,E)E B ™ (k) and

(3.24) Py($4)Qu(¢¥) = 74(X, D) .

Moreover, we have the estimate

(3:25)  Irl i ISCrexp (| il orszme) | 241 0om |04 ¥3%0,  (>m, even),

where | J; |2, is defined by (2.1)".
if) Setting

sh(&) x’) E,)
(3.26) = (&, Ve (€, *, ENpu(Vedi (€, x', E'), E')
D(vg(ﬁ;l) 1 ogr m+m’
x ] ARG OF
we define r,(x,£) by
(3.27) ra(x, &) = O,— Xge""”sh(i "+, x+,&")dndy .

Then, we have r,(x,E)E B}y ””(h) and

(3.28) Ou(di)Pu(¢s) = (X, D) .

Moreover, we have the estimate

(3.29) |7l Cy exp (1 ul s pvm) | 211 ong 1031 950 -

RemARK. Strictly speaking, in (3.25) and (3.29) we can replace exp (| /12, 1+2n,)
by (1+1J4ls, ,+2,,0)" for some I’. The situation will be the same in all the state-

ments in what follows.

Proof. i) From (3.1)’, (3.2)" and Proposition 3.2, we write for u€¥
Kyu(x)=Py(b:) Ou(piJu(x)
= 0, [ene0men 0, . £)q,(¢, 2"yt )dE s’

Using ¢,(x",5)—du(®,0)=(x—x")+V,du(%,¢,2"), by Theorem 3.4 we make the
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change of variable £=V,$,(x,{,x"). Then, we have

Ku(x)
.30 ,
(3.30) = Os—ﬂe"(""‘ Y (e, E, 2 Yu(x")dEdx’ .

Now set
'yh(x) g.v x,) = Ph(x: t)qh(gx x,) ]
(3.31) ol £, w) = v, (h, B0, ),
Su(x, E, x") = s,(h°x, h™PE, h®x") .
Then, by the definition we see that
u(x, &, x)EBEY™(R) ,
and, noting (3.18), see that

gh(x E, xl) = "7;,(90 vxqgh_l(x E: xl)’ x,)

(3.32) DV, &) ,
X £ EBT™ (h)) .
) (s, ,) | (B8 0)
Hence, noting (3.11) of Proposition 3.3, we have
(3.33) |81 O S C L T2, 21 2l 71441 7

On the other hand by Theorem 1.4 we see that 7,(x,&)=s, (x,£). So we
have (3.24), and by (1.23) have

(3.34) |fh|5m+””§C,Ish|5'f§,§:’) (m,>n, even).

Hence, noting [s;|{™™" (in Br#™ (h))=]5,] " (in By3™(k)) and | Julz=
[ Jil2,, from (3.33) and (3.34) we have (3.25).
ii) We write for u€¥

/\
Ka®) = OnsPPy(dauld)
— 0, [[eren o 0g, (€, )pu(a", £

X U(E')dE"dz" .
Using ¢4(2,E)—pu(2,E")=(E—E")*Vid,(£,2,E’), we make a change of variable
x'=Vp,(€,2,E"). Then, we can prove ii) in a way similar to i). Q.E.D.

Theorem 3.6. Let P,(¢,)=pu(ds; X, D,)E B} s(b,) and Qu(d¥)=q\(d5; D,,
X E By (dF) for ¢u(%,E)EP, 5(T,1;h). Then, Py(d;), Qu(di): L(R")— L(R")
are continuous and we have for uc¥
{”Ph(s‘bh)u”LzéC exp (| Jil2,arv2)™ | i | 572 2m el 2

3.35
(3:35) Q@Y7 C exp (1T s aeran) ™ | | Eans il 22,
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where M= 2([%] + [%”] + 2).

Proof. Since [[Py(aulltSIIP(0)*Puldoullzlulls and [1Qu(gHullte=
HOWPF)*Ou(dr)ull 2llul] 2 for ued, noting the remark of Proposition 3.2 we get
(3.35) from Theorem 1.12 and Theorem 3.5. Q.E.D.

Theorem 3.7. Let P,=p,(X,D,)EB}s(k) and O, (ds)=q(bs;X,D,)E
BZs(¢y) for du(x,E)EP, o(7,0;k). Then, we have the following:
1)  Setting
s(x, , 7, &)
= 20, E+ Vi B ), ) (EB3™(R),
we define r,(x,E) by

(3.37) 7o, E') = os—jse~fy-"sh(x, £, 2y, ENdndy .

(3.36)

Then r,(x,&)E ,’,",;”‘/(h) and Ry (p,)=71,(ds; X, D,)=P,0,($)). Moreover, we have
(3.38) |7l ™IS Crexp (| Julorsang—s) | Bal Peny | 911520, (mg>m, even).
In the case: 0=8<p=1 we have the asymptotic expansion formula
74(% £')

3.39 -
( ) =~ ; % D:/ {Pia)(xf Vz¢h(x: ‘E,J x’))qh(x” E’)} 12/=x «

it) Setting

(3.40) s, €, £ :
= @(® E)pu(x'+ Ve Ju(E, 6, £), &) (€BI3™ (),

we define r,(x, E) by
(3.41) (e, ) = O {7, &4, 54y, €y mdy
Then, we have r,(x,£) EB,’,’f;’”'(h),Rh(cj)h)Er,,(m ; X,D,)=0,($1) P}, and the estimate
of the form (3.38).

In the case: 0=8<<p=1 we have the expansion formula

rh(x) EI)

3.42 -
CE o Lot Do el % 8, e

ReMARK. For P,=p,(D,,X’)E Bs(k) and Q,(¢5)=q(¢¥F ; D,,X') E Br(d¥F),
consider (P,Q4(¢¥))* and (Qu(¢¥)P,)*. Then, from Theorem 3.7 we have a
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similar theorem for P,Q,(¢7¥) and Q,(¢¥)P,.
Proof. i) We have formally for uc¥

P,0i(bs)u(x)
= [emer ([ [etpute, Braute, &)Y E N aE
where

V= du(x’, ") —Pu(x, E')+(x—2n")-&
= —(x'—x)-(E—&'—V.J(x, &, ).

Then, by the change of variable £=£—V, J(x,£’,x’), we see that for
(%, ) = Os-—Sge‘“"“)'@'s’)sh(x, E,x', E"dEdx’

we have R,(¢,)=P,0,(¢,). Again by the change of variable: x'—x=y,
E—E&'=n we get (3.37).
Now set .

Su(x, E, &', E") = 5,(h°%, h™°E, K", h*E") .
Then using (3.16) we have

Su(x, &, 2", &)
(3'43) = Ph(haxx h_p(g+vz]h(x) E’: x,)))qh(hsx,; h—pg)
EBr™ (h).
So we see that sh(x,f,x’,’g")EB{,’fg""'(k). Since 7,(x,&)=s, ,(x,£) in Theorem 1.4,

we see that 7,(x,£) €B"™ (k) and satisfies (3.38).
In the case 0=8<<p=1, again by Theorem 1.4,

rh(x, EI)N ; ;1"‘ shgg::g (xx E,: x: gl)

~ 3 L DU £l £ ), E e

Then noting £'+V, J(x,&", 2" )=V ,b,(x,E",x"), we get (3.39). Similarly we can
prove ii). Q.E.D.

Theorem 3.8. Let [=5n, with an even n,>n and take a small 0<¥<1.
Then, for any ¢,(x,E)EP, 5(%,1; k) we can find q,(€,x") and r,(x,E)E B} 5(h) such
that for Q,(¢¥)=q,(¢¥ ; D,, X’) and R, (¢p,)=r(ps; X, D,) we have

{i) L($)Ou(9F) = Qu(diN(bs) = 1,

3.44
G4 i) IGH)R,(b) = R(n)(9F) = 1,
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where I(¢,) and I(p¥) denote the Fourier, and conjugate Fourier, integral operators
with symbols 1, respectively. Moreover we have

(3.45) [ 1%, [n|P=C, exp (2| Ju |2,1+7no) .
Proof. By Theorem 3.5 if we set
sh('x, El)

D(v:r‘i);l) 4
—D_(S)— (x: f +7]1 x+y) dﬂd_’)’ ’

o fjer

I(¢n)1($7) = (X, Dy) .

then we have

Define s, 4(x, £) by
So, (%, &") = sy(x, ") —1

(3.4‘6) . —iyen D(vx(ﬁ_l) ,

=0, {fe {T(E)h_(x,g o, x—!—y)‘—l}a‘ndy.
Then we have for S, ,=s, ,(X, D,)
(3.47) (p)I(pi) = I+, -
Since
(3.48) o, £, 2) = | POV (o £ o0 1282,y

D(g)
by Theorem 1.4 we have for a constant C;>0
(3.49) [$04] V= Coilto 4|20, ((no>n, even).

Hence, by Theorem 1.9, if Cs,|t,,|$)=<¢, for a constant ¢, of Theorem 1.9,
the inverse (I+S, )" exists in Bj ;(k). Then, setting

(3.50) Ou(pi) = I($) [+So.)7"
we get the required equality (i) of (3.44).
Since
(3.51) o(I+Son) ™) = 14 2 (—1)o(S3,),

by Theorem 1.8 we have, using the constant C, of Theorem 1.8
| (S5 15"
v+1
(3.52) <Cyt S I Isosl R, -

I+l ST =1
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Hence, we have for a constant M,
(3.53) lo(STE) S MCE (150,41 500 1)
when v+1</, and

lo(SSH) = Mp' CyH (I 5o, S0)
X (| So,n | 32:)0-”)1

when v+1>1I. From (3.11) and (3.48) we see that for a constant M;>0

(3.54)

(3.55) [to,u | 0= M1 Tl i1 1 Jal20)™ -
Hence, by (3.49) we have
(3.56) 153190 S Con M| | 2550
if | Julzsm=1. Hence, if we set /=>5n, and choose 0<<#<1 such that
C\Ca M, 725" <12,
then from (3.49), (3.51)-(3.56) we see that
(3.57) |o((I+S0s) )OI, exp (1 4 ls150) -
Finally, applying Theorem 3.7 to (3.50), we get (3.45) for ¢,, and similary get
(3.45) for r7,. Q.E.D.

4. Multi-products of Fourier integral operators

The following theorem is the basic one for the calculus of Fourier integral
operators.

Theorem 4.1. Let ¢; ,(x,E)EP, 5(7;,0;k), j=1,2, with 7,4-7,=1/4, and
define g,(x,&) by

(4.1) g%, &) = os_sgewhu,s,x/.e')dgdxf ,
where
(4.2) ‘Ifh(x: E: X, E )

= b u(®, &) —x" -+ u(x', ) —(brilhbz,) (%, E') -

Then, q(x,E)E B; o(h), and for Q (s sl 1)=qu(d1,i#bz,15 X, D) we have
(4.3) L(ps, i) I(b2,5) = Qu(br, bz, ) -

Moreover, there exist constants C;>0 such that

(4.4) IQhI(IO)gcl €Xp (;1 l.]j,h ‘2,21+2n+1)
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and
2 2
(4-4‘)' |9h—1 |So)§ CI(IZ=l I]j,h [z,zz+zn+z) €xXp (’Eﬂ |]i,h | 2,21+2n+2) .

Proof. I) Set ®@,(x,E)=(ci##¢,4) (,E). Since we can write formally for
ucd

L(d1, 1) 1(: 4)u(x)
_ Se‘oh(”sl) {S Sei¢h(x,£.x’,gl)d§dxr} AE"AE,

we get (4.3) by limit process if we show g,(x,E)EB; (k). So, setting

(4.5) Gu(x, ) = qu(K’x, k™€),
we shall show that
(4.6) gi(x, EYEBG o(h) .

This will be done through several steps.
Noting (2.39) of Theorem 2.8, set

B u(0, E) = B3¢, y(WPx, hFE), j=1,2,
4.7 D, (x, &) = 73D, (K%, h°E),
Vu(%, &, %, E) = B3y (h°x, kP8, %', h™PE") .
Then, from the definition of ¢;,, Theorem 2.8 and Theorem 2.9, we have
i) $i,h(x’ E)EPO,O(TJ" O;h)’ ]= 1,2,
(4.8) ii) ®u(x, E)EP, ((c,7, 03h)
with some ¢,=1 and 7 = 7,+7,.

We also have
gu(x, &)

(4‘.9) _ h-zna'os_gSeih‘Zo':ﬁh(x,Ssx’,g’)dfdx; ,

where o=(p—9)/2.

II) Let {X,,E,} (x,&) be the solution of
(4'-10) Xh = V&%,h(x, éh), éh = xéEZ,h(Xh) f) .
Then we have
(4'11) 5;,(96, E) = &l,h(‘x’ éh)_)?h'éh—l"“f)z,h(‘x?h’ E)
and for |a+8|=1
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(#.12) lagag(Xh—x’ éh_‘f) |= Cm,B(']1|2,|a+B|—1+ Ijzlz,!aﬂ»ﬁ!l—l)mﬂgl ’

which is proved by induction by using (4.10).
Now we make a change of variables: x'=X,(x,&")+y, E=E\(*,&")+7.
Then, setting

Py, 75 %, ) = Bualx, B, E)+n)—(Xilw, £)+9) (B, £)+)

(4.13) + & u(Zilx, E)+y, E)—Du(, £),

we can write
(4.14) 8w &) = b0, {er s 0y
From (4.13) we have

Vy¢h = _(éh+77)+vz$2,h(xh+y’ E) )
VuPr = —(Xh+y)+Vs$1,h(x, E::h"*‘ﬁ) .

Hence, using (4.10) we have

(4.15) {

{Vy@h = _77+ 6::V::j'z,h()znh) E’ Xh+y)y ’
(4.16) il
Vﬂ¢h = —y—,"vivfjl,h(:'ha X, “:h+77)77 ’
where

o Joale £ %) = | VTos(et 0 —x), £)d0,
(4.17) ;

Veloalt, &) = | VeT,u(w E+0E—£)d0 .

So from (4.16) and (4.12) we have
418) (A=) (IyI+ 2=V, Pl + V.2l =1+ (131 +121),

and
i) 10808V, Vi) | = Cas(1+ 3] ialiars) ™11+ 1)
ii) 83050585 (V, 34, V. P)|
éca,ﬂ,a/,ﬂl(l‘i“ E |]k,h lz,|a+ﬂ+a’+6’|)'a+m+l<y§ )4
(la’™+RB'121).
On the other hand, using (4.10), (4.11) and (4.13) we can write
Py = —y"']_*—(vzjz,h(xhx f: Xh+y)—vx.72,h(Xh’ E))y
+(Véjl,h(ah’ X, Eh“l‘"?)—‘vij,h(x, Eh))ﬂ ’

and from this we can write

(4.19)

(4.20)
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(4'21) ¢h == —J"77+ v125.72,}1(22'}1) f; Xh—'_y)y'y_'_?gz,h(é‘ha x) éIz_l""’7)77'77 ’
where

ViTp0, &%) = [ (1= OV, sl 0w —), £)d0,
(4.22) ’
TeJaE 3 )= | (1= 0099y aw, E-+0(E )0

Then, from (4.20), (4.12) we have

i) 0505, <Cop(1+ kZ [ Jenlz 108120 " P21y 1+ 171])

la+8]21),
(423 Jiiy |0%20705' 3, ( )

SCopap(l+ ZJI | Jen lz,lw+5+a’+ﬂ’|—1)|w+m+l<y§ 7
(lat+B121, |a'+8'|21).
From (4.21), (4.12) we have
i) |0;0%p,] éCw,s(l*i—h:Zl | Jonlz wee) P4y |+ 7] )2

(let+Bl21),

i) [950%(V, P, Vo P)
(4.24) =Cap(1+ E | Jien |2,1+|m+Bl)la+m+l( [y +121)<y;w>
(let+B121),

iii) |0;080% 05'®,|
< Capr (14 23 1 b s ssrarsan) * 5 2
(la+B121, |a’+8'122).
ITII) Let X,(y,7) be a C7-function in R* such that
0=X,(y,7)<1 on R*,

4.25

(*+29) Xy, m) = 1(191+ 121 S1/2), = 0 (|91 + 7] Z1).
Set

(4.26) Bo(, &) = W[ [ Pix,andy,

and, letting Xm(yﬂ?) = l—Xo(y, 77)’ set
(4.27) G p(, ) = h'z”"Os—SSe“‘_z";hxmdndy :

Now, setting

) T =14+27(|V,p 2

i) L,=T"'"{1—i(V,$, V,+V. P Va)},
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we write for [=2n-+1
(4.29) Bos(, &) = [ [ B L,y Xodtndy

Then, if we use (4.16), (4.18) and (4.19), by induction we see that (‘L,)'X,
has the form

(‘L)X
4.30 1 h° By
( ) = Z ( ('IZ; 77')‘)‘ 6(y,'n)xo ’

== Aj v,
T wa=ise 0
st

where a; .. , ; are functions of (y,7;x,&) such that
2
(+:31) 10508 0,4 | < Ca (14 23 | Jin o v1avpr) %4

Here we used the fact that |y| 4 |%| =1 on supp X,.
From (4.30) and (4.24)-ii) we see that we can write

ag’a?(‘Lh)IXo
32 1 o “(y, 7)) Av
(4.32) = 2 ai.’ﬁ-».h(h—*(lj,}jL)) a(y,n)xo ’

TV 1u/2si<i+ia+pl
visi

where a}f,.,, are functions of (y,7;x,£) satisfying the estimates of the form
(4.31).

Then, for any a, 8 if we set I=|a+8|+2n+1, we have from (4.18),
(4.24)-1), (4.29) and (4.32) that

10505Gs (%, €) |

= Capt|| dndy

(3] + [
X (14 ,,23 | Jen |z,1+1m+a|)(I+'¢+B')“d+m+n

2
SCLa(1 23 1 bl 2tarprszuep) @S P2 DASERIED,

Hence, we have
2
(4'33) qu.hl(10)§01(1+ ,,z;'l I]k,hI2,21+2n+1)(21+2n+1)(1+1) .
IV) For g i(x,E), setting

(4.34) {i) L= V.8 "+ [V, Pil*,

ii) Ll,h = —ihzo-r-l_l(vy¢h'Vy+vﬂ¢h‘v"1) ’

we write with [=2n--1
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g 4(%, £)

(+35) — h‘z””gse""_z"ah('Ll,,,)’X,,dndy.

Then, by induction we see that (‘L; ;)"X.. has the form
(*Ly )Xo

4.36 | ad
( : - FlEala”‘.V.h(y’ ﬂ)#a’zy.'l)x‘” ’
1
vist

where ay , , are functions such that
2
(4.37) |050%au, v 1| = Cap(1+ ?‘:1 | Jnl2, 1 10400) 7B

Then, for any «, B if we set I=|a-+B|+2n+1, we have from (4.18), (4.19)
and (4.35) that

| 0505 o 4(, E) |
éca,ﬁ(1+ é I]h,h I 2,2la+ﬂ|+2n+1)(lm+ﬂl+2”+1)(|a+m+1)
4.38) =
( ‘ % j2oU-19+B1-n) dndy

i1+ Pyl [y 1+ 1n])71or®
SCo (14 23 [ Jonlaptasarazsn)(*F 2 DORD.

Hence we get
(439) |8 s | DS CILH 3 | Jularvansn) I
From (4.33) and (4.39) we get (4.4).
V) In order to get (4.4)" we write
(4.40) P = =y 1+, 15 % §) -
Then, we can write

eih_z"‘vh_e—ih“z"'y-n

(4.41) = z'e"'"—""”h'z"'?;,Sle‘°"—2"7’hd0 .

Hence, noting 0
o0, — (e rranay =1,

and setting

Popn = —Y0+0%,,

Bo = h7°0,— (¥ Fas(nro5,)dndy,

(4.42)
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we have

1
(4.43) Gu(x, E)—1 = Soqo’,,(x, £)d.
For ¥, we have by (4.21), (4.12) the estimates
) 105059, < Cap(2} 1 Jhalstoss)
X (1+§ |fk,h[z,lm+ﬂl)m+m(|y| +Inl),
.o @ ~ ~ 2
ii) Iagag(vﬂh, Vv;')’h)] écm,ﬁ(gl I]k,hl2,1+ld+5l)

(4.44) 2
><(1+§ l]k,hlz,1+|a+f3|)'“+ﬂl(|y| + 191Xy,
™ @ s ~ 2
m) lagagan 6? il éc«,ﬁ,a’,ﬂ’(g ']k,h |2,Im+ﬂ+o’+ﬂ’l)
(XD s lowmsarssn) Py (la'+8122)
Then, replacing @, of (4.23) by @, , we get (4.4)" in a way similar to the proof
for @, in II)-1IV). Q.E.D.

The following theorem gives a representation formula for the multi-product
of Fourier integral operators.

Theorem 4.2. Let ¢; (x,E)EP, o(7j, 1), j=1,2,+, and let 7. <% with |
and * of Theorem 3.8. Define ®; , and @, ; , by
1) @;,= q)l,hﬂ'"#q)j,h =1 -, v+1),
(I)o,h =x-£,
ll) (I)V,i,h = ¢i,h#"'#¢’v+l,h (J = 1) "y D+1) )
(I)v,v-a—z,h = x-£,

for v=1. Letr; (x,E), 1y ; (E,x")EB] o(h) be the symbols (found in Theorem 3.8)
for ®; 4, @ ; 4, respectively, such that

(4.45)

(4.46) R; (DENI(D;,4) = (D@ ;, )Ry ;, (D) = 1.

Set for p; y(x,E)EBi(k) (j=1,--+,v+1)

i) Qjn=LD;11)P; i(b;n)R; (DFs) (EBFYH))

i) Ovjs= Ry ;u(®¥; )P u(D;)(Dy js11) (EBY(R)) .
Then, we have the representation formula

P1,h(¢1,h) P’v+l,h(¢v+l,h)
(4‘-4‘8) = Ql,h Qv+1,hI(<D»+x,h)
= I(q’wl,h)Qv,n.h Q’“,V+1,h .
Moreover, for the symbols

(4.47) {
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{Qj,h(xv £) = a(Qs.4) (% E)EBT4(R)

4.49
(+49) Gos (8, E) = (O 1.) (3 E)EBIIH)

we have the estimates

j .
i) 1gis | <C, exp (01(1"‘521 | Js.nl 2,k)k+2) [ 2l (I'Z"s)no ,
. V+l .
i) g julYP’=C;exp (51(1+2 | Joul o)D) pial Ty s
S=j

where ny>n is even; k=2l+15ny+1; and C,, ¢, are positive constants.

(4.50) {

Proof. We give the proof only for Q;,. Then, the proof for Q, ;; is
done in the similar way. The formula (4.48) is clear.
We write

i1 = (L(@j-1,)Pj (D, ))R; (T 1) -

Then, by Theorem 4.1 and Theorem 3.5 we see that Q; ,& BT (k).
By Theorem 3.8 there exist symbols z; ,(&,4") € B} 5(h) such that

(4.51) I=I(¢; n)T; i(dEn)
and
(4-52) |tj,h l SO)écl eXP(ZIJj,h |2,1+7n0) .

Then we can write
(4.33) Qi = (I(®;-1,)($;,1)) (Ts,4(T1)P;,1(B; )Ry o(PF) -
By Theorem 3.5-ii) there exist symbols s; ,(x,&) € By4(k) such that
(4.54) T; (i )P u(bin) = Sin
and by (4.52)

1s; s P = Cr exp (| Jinlz o) | a2y | i 4| 20,

4.55
( ) =C, CXP(3 l]j,h|2,l+9no)lpi,h|%j2)"o .

Hence we can write

(4.56) Oip = (D1 ) ($;,)S; 1R /(DFs) -
By Theorem 4.1 there exist symbols u; ,(x,&) € B; 5(k) such that
(+57) @51 )($5,) = Usal ;1)
and
(4.58) | UZR) l V< C, exp( |Jj—1,h I 22042n+1 T |]j,h lz,zz+2n+1)

where J;_; ,=®;_, ,—x-£. Then, we have
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(4.59) Ojp = U; (@} 1)S; 4R, /(@Fs) -
By Theorem 3.7-ii) there exist symbols k; ,(x,£) € B74(k) such that
(4~60) Uj,h(q:'i,h)Si,h = Kj,h(cbj,h)
and by (4.55) and (4.58)
|k |(m’)<Cl eXP(lJ; Wz 1+2ng— 1)!“1 h|1+2n0[6‘, h|1+2n0
CXP( 2 [T nlop+4Tinlzw) | 2i il Soibny
where k’=2l4+11n,+1. Then we have

(4.61)

(4.62) Qi = K (®@; )R, i(DFs) -

Finally by Theorem 3.5-i) there exist symbols g; ,(x,&) € B7.3(h) such that
(4.63) K; l(®@; )R; (®@Fr) = ¢; (X, D,)
and by (4.61)

g, =C, eXp(l-’, L2, 2m0) [ R i | 8800 7,1 § 220,
=Clexp(2 2 l"s wlo e 4 Tl 2 ) | 27 a | Tiddno | 7,5 2mg -
By the definition of 7; , and Theorem 3.8 we have
(4.65) 17,1220 < C1 exp (21 1| 2 140mp) -
Thus, noting by (2.23) and (2.20) that
i nlz20= C”(1+Z‘ [ Jonl2n)'™
for any /, we get (4.50)-i) from (4.64) and (4.65). Q.E.D.

(4.64)

We conclude this section with the following theorem which summarizes
the calculus of Fourier integral operators we have studied.

Thecrem 4.3. Let ny,>n be an even integer and put [=21m,--1. Let
#>0 be sufficiently small as in Theorem 3.8. Let ¢; ,(x,E)EP, 5(7;,1:h) for j=

1,2,:--, and let ?Nzi'rj§$. Let v=1 be an integer and put ., ,=o, B

Jj=1
Bbvirn  Let p; u(x,8)EBTH(R) for j=1,-++,v+1.

Then there exists a symbol r,,ﬂ,,,(x,E)EBf, Y (h) (M py=my+ - +m, ) such
that

(4-66) Pl,h(¢1,h) Pv+1,h(¢v+1,h) = RV+l,h(ch+1,h)
and
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|7’v+1 h|(1“”)
v+1
(4.67) =CiPexp(@E(1+2 1 Toslen)s)
X 2 IPJ hlgno-&l,:

Iyt iy g Si+2ng j=1

where J; y=¢; ,—x-E; ki=21425n,+1; and C,, ¢, are positive constants.
Proof. By Theorem 4.2 we can write

Pl,h(¢1,h) Pv+1,h(¢v+1,h)
= I(¢"u+1,h)Ql,h Qv+1,h )

where Q; , is defined by (4.47) of Theorem 4.2. By Theorem 1.8 there exists
a symbol s, 4(, E)EB"‘"”(k) such that

(4.68)

(4'69) Ql,h Qv+1,h = S'v+1,h
and
(4.70) sl 020 S T gyl G, -

I+ Fhy 4 SE =1

v+l

In (4.70) we note that |g; ;|92 :,=1g; 4|57 except I numbers of {g; ;}}z1.
Then, setting /=3n, in (4.50), we have by Theorem 4.2

(4.71) 1g; sl =<C11pjs) 57,

and for |g; ;|97 ; we have

(4.72) [g;nl 5221, =Cy exp(c,(l—}—z | Jonl2,m)" 2 | 2,41 V7 Eom,
(n; = 21;4-21n,+-1) .

Hence, from (4.70)-(4.72) we have for k{=2]+21ny+1

| Syap | v+ S CY exp (lc,(1+2 | Jonl2a/)H*%)
X 2 H!P: hll,+9no

Bty pSti=1

(4.73)

On the other hand, by Theorem 3.7-ii) there exists a symbol 7., ,(x,&)E
B3k such that

(4.74) L(D@yi1,1)Svi1,8 = Ruiy s(Prsrn)
and
(4.75) |7y n ¥+ < C exp( [Jos1,i ] 2,14200-1) [ S0, oD,

Hence, from (4.73) and (4.75) we have (4.67) for positive constants €}, &;. Q.E.D.
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5. Approximate fundameutal solution

In this section, using the theory developed in sections 1-4, we shall con-
struct the approximate fundamental solution for the Cauchy problem of a Schro-
dinger equation.

For a Fréchet space V' we denote by B"([0,T];V)(0<T<1) the set of
V-valued C”-functions u(¢): [0, T]S¢t—u(f)cV. Let B*~(R™)(k=1) denote
the Fréchet space of C-functions F(x,£) in R*, such that 9;05F(x,&) (|a+R8]|
=k) are all bounded, and provided with semi-norms |F|,=|F|,, (I=0,1,---)
defined by

IFli=, 2, sup {102 £)] w3 7471
(5.1) o+ BISh=1 %,

sup {|0§DEF(x, £)|} .
kSl +BISE+T Z,E
Now considar a real-valued symbol H(¢,x,£) with a parameter ¢&[0,T],
which belongs to F(I;; $*>(R*)) with I;=[0, T], and set
(5.2) H,(t,x,E) = h*PH(t, h %%, i’E) (0=<0=p<1).
Let K,(t,x,&) be a symbol which has the form

{Kh(t: X, g) = Hh(t) X, ‘f)_I"'Hh(t) X, g) )

-3) B,(t, %, E)€ F(Ir; B (k) (I = [0, T], 0<8=<p=1).

RemMARK. By the careful check of the discussions in what follows we can
replace the conditions H(¢,x,&)€ B(I;; B>(R™) and H,(t,x,E)sBY(I,;
B} 5(h)) by the weaker conditions:

“H(t,x,£) and H,(t,%,&),0<t<T, are bounded in $*~(R*) and in B ;(h),
respectively, and 9;07H(t, x,&) and 9;07H,(¢,x,£) are continuous on [0, 7] x R
for any «, B”.

When 0<8<p=1, we assume further that H,(¢,v,£) has the asymptotic
expansion

(5.4) ity 2 I~ A VH (0%, ) (mod B(Lr; Bra(h)))
where
(5.5) Ht, x,E)e PIr; BR™), j=0,1, .
For K,(t)=K,(¢,X,D,) we consider the Cauchy problem of Schrodinger
type
Lau=(D+K,t,X,D,))u =0 on [0,T,],

(5.6) U] ey = P() ELOSs<T,)

for some small 0<T ,<T.



334 H. Krrapa anp H. Kumano-co

Let Hy(t)=Hy(¢t,X,D,) be the Weyl operator for the symbol H,(t,x,&)
defined by
Hi (@, %, &)
— K0, — SSe"'"”H(t,h's(x-{—%), RP(E ) dndy .
Then, it is easy to see that Hj'(¢,x,£) has the form (5.3). Furthermore, when
0=<8<p=1, we have the asymptotic expansion

58) Hii(t, x, &) = Hy(t, , £)+H(t, %, £),
& Hy(t, =, E)“’%h(pzz;m: CHE 6,0, 1)

X+X’

(5.7)

Since Hy(t,X,D,)=H,(t, , D), we see that Hj'(¢) is symmetric in the

sense
(5.9) (HP (v, w) = (v, HY (H)w) for v,wE?.
For H,(t,X,D,) we have
(H,(t, X, D,)v, w) = (v, Hy(¢t, X', D,)w) (v,wEY¥).
So we see that H,(¢,X,D,) is symmetric, it and only if
(5.10) Hy(t, x, &) = OS—SSe"y"’H,,(t, xty, E4n)dndy
Consider the Hamiltonian operator
H,(t) = H(, X, D,)
B 3 (O, Deyth 32 i Dey V2, )}
' sk
where a;,(t), b;s(t) are real valued continuous functions on [0, T], and V{(¢,x) is
a real-valued function of class B°(I;: B*(R?)). Then, it is easy to see that
H,(t,X,D,) is symmetric, since (5.10) holds for H,(t,x,£).

In what follows we shall construct the fundamental solution U,(t,s) for the
Cauchy problem (5.6), that is,

{L,,U,,(t, )=0 (0=s,t=T),
Uys,s)=1.
Let (q(t,s;%,E), p(t,5;x,£)) be the solution of the Hamilton equation

(5.11)

(5.12)

‘% q(t,s) = VeH(t, q(t, ), p(t,9)) ,
(5.13) p
S P69 = —V.H(t, 41, 9), p(2, 5))
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on [0, T'] with the initial condition
(5.14) q(s, ) =x,p(s,5) =& (0=s=T).
Then, we summarize from [6] the fundamental results as follows.
Proposition 5.1. i) The solution (q(t,s;x,&), p(t,s;%,E)) belongs to B
(172, B =(R™)) with I,’=[0,T]x[0,T] and satisfies

“Uq@, 53 %, E)—x)[(t—9), (P, 55 %, E)—E)/(t— )} o, 57

615 .
is bounded in B"=(R*)”,

where B (1;%; B"“(R™)) is understood to be the space of C*'-mappings from I =
[0, TT? to B“=~(R*™).

ii) Take a small T(0<T,=T). Then, for (¢,5)E1;? there exist the inverse
C~ diffeomorphisms xv— y(t,5;x,E) and E->n(t,s;x,€) of the mappings yr> x=
q(t,s;9,8) and ni—E=p(t,s;x,7), respectively, and they satisfy
(5.16) (2,55 %, &), n(2, 55 x, E)E B (I} B(R*™)) (I, = [0, T])
and

“{(y(t) $5 X, E)'—x)/(t—s)) (ﬂ(t; §5 X, E)'—E)/(t_—s)}oés,iéf'o

617 . .
is bounded in B"~(R*)".
Now we construct the solutlon of the Hamilton-Jacobi equation

0,p(t, 55 x,E)+H(t, x, V. p(t,5;x,E) =0 on [0, TJPXR™,
¢(S’s;x) E)Z x.g (OéséTO)

as follows (cf. [8]). Define ¢(¢,s;x,£) by
(5.19) o(2, 55 %, E) = u(t, s; y(¢, s; %, E), E),

(5.18) {

where u(t,s;y,7) is defined by
u(t, s3 9, m)

(5.20)
= yent € VsH—H) (7, 4(r, 53 3, ), D7, 53 3, m)d

t
s
Then we have

Proposition 5.2. For the solution ¢(t,s;x,&) of (5.18) we have

{Vx¢(t: S; x: E) = ﬂ(s: t; x: E) ’
Ved(t, s; x,E) = y(¢, s; %, ),

(5.22) 0.p(t, s; %, E)—H(s, Vep(2,s; %,£),E)=0 on [0, T,’XR*,

(5.21)
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and for J(t,s;%,E)=¢(t,s;%,E)—x-&
(5.23) “QJ@, 55 %, 8))(2—9)}oss 157, 1S bounded in F>=(R™)”.

Furthermore, for any fixed I there exist T(0<T,<T,) and c,(=1) such that ¢,T,<1
and

(5.24) #(t, s; %, E)EP(c)|t—s],]) on [0, T)).

Proof. Asto (5.21) see Proposition 3.5 of [6]. Then using Proposition
5.1, we obtain (5.23). For (5.22) see Theorem 2.1 of [9]. (5.24) is an imme-
diate consequence of (5.23). Q.E.D.

Now define ¢,(¢,8)=¢,(t,s;%,&) for 0<h<l by

(5.25) ou(t, s; %, E) = B*PP(2, s; h~%x, BE) .
Then we have
Proposition 5.3. The phase function ¢,(t,s;x,E) satisfies

0,04(2, 83 %, E)+H,(t, x, V. pu(t, s;%,E) =0 on [0, TPXR™,

5.26
( ) {gbh(s) .T; x’ E):x'(’f,

and
(5.27) 0,pu(t, 53 %, E)—H, (s, Vepu(t, 53 %, E), E) =0 on [0, TPXR>".

Furthermore, for any fixed I we have with 0<T,<T, and c, of Proposition 5.2

(5.28) Gult, 53 %, E)EP, (e lt—s], ;) on [0, T}F.
Proof. We obtain (5.26) and (5.27) easily from (5.18) and (5.22), and we
get (5.28) from (5.24). Q.E.D.

In the following we switch to another small 7,>0 such that T,< T,, if
necessary.

Now we first define two kinds of approximate fundamental solution as
follows. Let E\(¢,(2,5))=en(Ps(t,5);2,5;.X,D,) be the Fourier integral operator
with the phase function ¢,(2,s) and the symbol e,(z,s,x;&) of class B'(Ir?;
B, (1) (Iz,"=[0, T]").

DerFINITION 5.4. We say that E,(¢,(¢,s)) is the approximate fundamental
solution of order zero and order infinity for the problem (5.6), when E,(¢,(t,s))
satisfies, respectively,

529 ) o(LuEAa(t, )& B3 Balh)
i) Eypu(s,8)) =1 (0=s=T))

and
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(5.30) { D) a(LiE(ut, ) € B Ur,%; Brs(h))

i) Efgu(s ) =1 (0=s=T,).

In order to make the discussion clear in what follows we introduce the
following

DEFINITION 5.5. We say that a C*-function P,(x,£) on R** with a para-
meter (0, 1) belongs to the class By (k) for real m,l and 0=<8=<p=1, when
(%, E)h 3% ; BE>~" belongs to By(h).

ReMARK 1°. By the definition we have Bjiy’(h)= By s(h).
2°. Sett)(x,E)=<h"%x;k°E> and 1, ,(x,E)=t,(x,£) for real . Then we have

(5.31) Itl,hgg (%,8)] éca,ﬂ,lhmm—smltl—la+3l,h(x: £).
3°. If m=m' and I<I', we have B (h)C Bry" (k).
4°. If a C~-function s, ,(x, &) satisfies

(5.32) 51,188 (%, E) | SCap A1 281010y (%, E)

then we have

(5.33) 51,18 (%, E) E BRI ~oPL1H (R

In particular, by (5.31) we have

(5.34) T CRIT: Al (]

5°. For p(x,E)sB~(R*™), set py(x,E)=p(h~°x,h’E). Then p, satisfies
(5.32) with s, ,=p; and /=k. Thus we have

(5.35) 24l (v, E) S BLEIH PR

Proposition 5.6. Let =0 and let I denote the minimum integer not less
than l. Let py(x,E)EByy (k) and $,(x,E)EP, 5(7,0;k), and consider the pseudo-
differential operator P,=p,(X,D,) defined by (1.10) and the Fourier integral operator
Py(¢p)=pu(ps; X, D,) defined by (3.1) or (3.1)'. Then, we have the following

1) P, Py(pn): ¥ =9 are continuous.

2) Assume further that

(5.36) PuiB (x, E) S BRI () (Ja4-B| 1)

and let Q,(b1)=qi(ds; X, D,) E B"5($,). Then in Theorem 3.7 we have for r,(x,£)
defined by (3.36) and (3.37) (resp. (3.40) and (3.41)) that

{ 1) rh(x: E)EB;’:;M/J(’I) ’

5.37
G37) i) 7,(ps; X, D,) = P,Ou(ds) (resp. Qu(bi)Ps) -
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Furthermore we have the expansion formulae

rh(x) g')—IENﬁ D’:’ {Pid)(x: v.1:4’};(‘7") E’J x,))Qh(x') E')} [x/=x
(5.38) (resp.
74(x, E")— P &1—' ag‘{qh(x, S)Ph(a)(vé(ﬁh(f, %,&"), €} e=¢)

lejl<y !

EBII™HC-ONRY for any N=1.

RemARk 1°.  We should note that, in general, the symbol p,(x, &) of the Fou-
rier integral operator P,(¢;) in Proposition 5.6 is not bounded on R} X R} for
any fixed #=(0,1). The statement 1) means that Py(¢,): ¥—% is well de-
fined and the statement 2) means that Theorem 3.7 holds for the present Fourier
integral operator Q,(¢,) in a slightly modified form.

2°. When 0=8<p=1, the expansions (5.38) coincide with (3.39) (resp.
(3.42)).

Proof. 1) The continuity of P,; ¥—¢ is clear, and that of P,(¢,): $—¢
can be proved in completely the same way as that of the proof of Proposition

3.2.

2) We get (5.37)-ii) in the same way as in the proof of Theorem 3.7. To
get (5.37)-1) we make in (3.37) (resp. (3.41)) Taylor’s expansions of order N =0
for s,(x,&"+7, x+y,&’) in 5 (resp. y). Then, using (5.36), we see that

sh(m'O)(x; ‘i:) xl) El) = ph(d)(x: ‘E_i_ V:c‘]h(x‘v f,) x/))qh(‘xl) El)

(resp. Siq,m(%,E,%",E )=y, E)pua(x'+ Ve Ju(E,2,E"),E")) belongs to By ™ **"(k)
(resp. Bpg™ ~®N(h)) for |a|=N(=I). Hence, we obtain (5.38), and setting N=

I we get (5.37)-i). Q.E.D.
Now, for a fixed aj(t,s;x,&) € B'(I17; BS,o(h)) set

(5:39)  alty53 % E) = ailt, 53 b, W) (S B3 BLo(h))),

and consider

(5.40) Ty, s)=Hy(t, X, D.)ay($u(t, 5); 8, 55 X, D,) .

We note that H,(t,x,E) satisfies the condition (5.36) with m=8—p and /=2.
Hence, by Proposition 5.6-2) we see that there exists v,(t,s;%,&)€ S (I };
B 7%(h)) such that

(5.41) Ty, 8) = vu(pu(, 8)5 8,55 X, D,) .

Furthermore, by (5.38) for N=2 there exists 7,(¢,s;x,&)€ B°(I1?; B; 5(h)) such
that
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Vit 53 %, §)
= H,(t, %, V.,)a,(t, s; x, £)

(5.42) + 2 HEt, 2, V.ba)ay o2, 5 %, g)

—— { 2 HO(t, x, Vabi) 5o ¢h}ah(t: s; %, )

+h 0L, 55 %, E)

where H{’=0; H), a,,,=D, a, and Hy""=0; 8; H,. For the operator
(5.43) (@, 5)=H,(t, X, D,)a,(u(t, 5); t, 53 X, D)),
by Theorem 3.7 we can find 7,(t,s;x,&) € B°(I1*; B} 5(k)) such that
(5.44) Dy, $) = W(du(t, 8); £, 53 X, Dy)
and we can write for some 7,(t,s;x,8)€ B°(I1?; BS 5(h))

(2, 55 %, &)

(5.45) Wt 2, V.dp)au(t, s; %, E)-+h" %7, (¢, 53 %, E) .

On the other hand we have
Dtah(¢h(t) S); t: 55 X, Dx)
(5'46) = (at¢h'ah) (¢h(t) S); t) §5 X) Dx)
+(Dtah) (¢h(t1 S); t: S; X) Dx) .
Hence, summarizing (5.40)—(5.46), we see by (5.26) that there exists a
symbol b,(z,s;x,8) € B(I1,?; B 5(k)) such that

Lhah(¢h(t1 S); t) S; X) Dx)

5.47
O (L) a9 1,53 X, DY+ H- byt )3 1,53 X, D),

where [, is the transport operator defined by
(L) (8, 55 %, )
(548) = D+ ZHW(t x, V,th)D,Jah
{—— ( S1HYN(t, %, V)

3 8 ¢,,)+H,,(t, X, Vx¢h)} a .

i %k

Now we set
(5.49) W(t, %, E) = Hy(t, Bx, h™°E) (€ BI1; BS.o(h))) -
Then, from (5.2), (5.25) and (5.39) we can write
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(Liat) 8, s; %, E)=(Lsay) (¢, 53 KPx, h™PE)
(5.50) =D+ Zl HO(t, %, quS)Dx,ah

{_—(2 HU k)(t X, chl)) ¢)+Hh(t X, vx¢)}ah .

86

Theorem 5.7. Let I(p,(t,s)) be the Fourier integral operator with phase
Sunction ¢,(t,s) and symbol 1. Then, I(¢p,(2,s)) is the approximate fundamental
solution of order zero for L,.

Proof. It is easy to see I(¢,(s,s))=1I. Consider L,I(¢,(t,s)). Noting

2
H{M(t,x,V,.$,) $rEB(I1,%; B 5(h)), by (5.48) we see that L,a, belongs to
B(Ir,2; By s(R)). ]Hénce, from (5.47) we obtain (5.29)-i). Q.E.D.

Theorem 5.8. When 0<8<<p=1, there exists a symbol et,s;x,E)E B
(I7,2;Ba s(h)) such that E,($u(2,5))=eu(Pu(t,s);t,5;X,D,) is the approximate
fundamental solution of order infinity for L,.

Furthermore, there exists a series of symbols a\(t,s;%,E)E B (Ir2; B(R™)) such
that

(5 51) {ao(s;s; x’ E): 1 ’
' as,s;x,E) =0 (»=1)
and
(5.52) ex(t, 53 %, E)~ f}o Re=%ay(t, 53 B0, IE) .

Proof. I) Noting (5.4) we define transport operators JI(;, and IJIC cor-
responding to £, and [}, respectively, by

M,a, = D,ah—}—z H{(¢, x, V,,d),,)D A

5.53
©-33) +{- (EH(] o, x, Vx¢h)a 3 bi)+Ho (2, %, V.pr)}a,
and ’
NMa = D, a+ EH‘”(t x, V,d))D a
(5.54)

+{— (ZH" O(t, %, Vi) )+ H(t, x, V.p)}a,

9, 8
where H(¢,x,£) is a symbol of (5.5) and
(5.55) H, (t, x, &) = Hyt, b~ %, h°E) .

We set for a,(t,s;x,&) € B(I?; B(R™))
(556)  auultys % E) = ault, 53 B, E) (€ B(Iy%; B 1)) -
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Then, in the similar way to the discussion from (5.40) to (5.46) in order to get
(5.47) we see by (5.4) that we can write
Vo i(t, $; %, E)=o(Lyay o(Pi(t, 5); £, 55 X, D))
(5.57) ~Muay 42, 55 2, E)+ ,,i" BC=Okb, (2, 53 ™%, B°E)
(mod B°(I72; B;s(h)))
for some b, 4(t,s;x,E) € B°(I7,?; B(R*™)) determined by H, H; (j=0,1-+-) of (5.4)

and a,.
II) Now, we first determine g, ,(1,s;,&) by
558 e =0 o 1Ee
ay 4(s,8) =1 on [0, T;] xR,

which is equivalent to
IMqa(t, s) =0 on [0, ToPx R,
ays,s) =1 on [0, T,] X R*™.

Then, a,(¢,s) can be solved as

(5.59) {

aft, s; x, E)

(5.60) P [“S '% (ZH @B(r, X(7), 9(s, t; X(7), £))

X 5—?%—4)(7, s; X(7), £))+iH (T, X(7), 5(s, t; X(7), E))}d7] ,

XjT %k

where X(7)=q (7,s;y(¢,5;%,),E), and y(¢,s) and 7(¢,s) are the functions in
Proposition 5.1-ii). Then, it is easy to see that

(5.61) ay(t, s; x, £)E B (I B(R™)).
Now, by induction we determine a, ,(¢,s;%,&) (»=1,2,-++) by the equations
Myt it 23 b1ty 53 570, E) = 0 on [0, TPx R,
a, (s, ) =0 on [0, T, X R*,
which are equivalent to
Mart+ byt 53 %,8) =0 on [0, TEX R,
{av(s, 5) ;00 on [0, To] X R* .

(5.62) {

(5.63)

Then, the solutions a,(¢,s) are given by

ay(t, 55 %, £)
v-1

t 236y y (7, 53 X(7), £)

(5.64)
— —ao(t, §5 X, ‘E) Ss = ao(’r, s3 X(T), 5)
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Then, step by step we can check that

(5.65) ay(t, s; x, E)EB' (I 2 BR™)  (v»21).
Now, for any fixed N =1 set
(5.66) exalt, 53, 8) = SYHO V0, (t, 533, 8)

Then, from (5.57), (5.58) and (5.62) we see that for Ey ,(¢u(2,5))=en, s(Pa(t,5);
t,s; X, D,)

o(LiEy w(Pult, 9))) € B(I7,7; BEy ¥V (R)) ,

Ey i($u(s,8)=1.

ITII) Finally, by Theorem 1.3 we can find e,(t,s;x,&) satisfying (5.52) in
the form

(5.67)

(5.68) ex(t, 53 %, 8) = SIACTIN(ET )y o, 5 %, E) -
Noting Proposition 5.6, we can write for ve¢
LE (2, 5))v
= gh(”'”"X(EI ‘W) Lyay (2, 5); 8,53 X, D)o
(5.69) = L,Ey i(pu(t, 5))v

+ S HCOX(E ) Lya, (it )3 £, 55 X, Do

+by (b2, 5); 2,55 X, D)o
for some by 4(t,5;%,&) € B(I1?; Brs(k)). We note from (5.57) and (5.62) that
(5.70) o (Lyay i(Pa(t, 5); 8, 53 X, D,)) € B(I,7; B s(h)) -

Hence, taking an appropriately decreasing sequence {€;}7.; again if ne-
cessary, we see from (5.67), (5.69) and (5.70) that for any N

(5.71) (LB $4(2, 9)) € B(Ir)*; BN (h))
which proves (5.30). Q.E.D.

As a special case of L, we consider an operator L, defined by
(5.72) L, = D,+Hyt, X,D,).

Then, we can show that the approximate fundamental solutions have stronger
properties which are effective to guarantee the convergence of the iterated
integral of Feynman’s type.

Theorem 5.9. 1) Set
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(5.73) &oult, 53 %, &) = a(Lil($4(2, 9))) -
Then we have
(5.74) “L&o.a(t, 85 %, E)(t—9)}oss 11, 25 bounded in B (h)”.

2) Let Ey(¢u(t,5)=24(du(2,5);t,5;X,D,) be the approximate fundamental
solution (of order infinity) for L, which is constructed in Theorem 5.8 with H,(t,
%,E)=0. Set

(5.75) 8t 55%, E) = o(LiEy(u(2, 9))) -

Then we have
“A@ut, 55 %,8)—1) [ (2=} 05,157, and

(576) {atélt(r: S5 %, E)/(t_s)7 6sé’h(t»v %, E) /(t_s)}ogs,tgro
are bounded in By (h)”,

and
(5.77) “{ge,n(t, 53 %, ) [(t—5)} o5 11, 15 bounded in By s(h)”.

Proof. 1) By Propositlon 5.6-2) and Taylor’s expansion of order 1 we
can write

a(H,(t, X, D)I($u(t, 5))) (x, ")
= Os—sge"""'H e %, &'+ VL, 53 %, & x+y)) dndy
(578) = Hillx Vidilt, i %, E)
+{ 10— SV HI A 3, 8400+ 9, Tt 55,87, 549)

1 2
([ 050 Julty 53 24-0,9, £)d0)} dndy1as
X%

Then, noting (5.26) and (5.28) we get (5.74).
2) In (5.60) set H,=0. Then, noting (5.28) we see that

“{(ao(t: s)_l)/(t_s)zy atao(t: s)/(t-—s), 6sao(t: s)/(t—s)}ogs,iéTo

5.79
G795 bounded in B(R™Y”,

which means that for 4, , defined by (5.56)

“{(a0,i(t, )= 1) (t—5), B10,1(2, 5) | (2—5), Bsa0,u(t, ) [ (£—5)}oss,es57,

5.80
(5.80) is bounded in B s(R*)”

Now we assume that for a, , defined by (5.56)

“{a’ﬂ,h(tx s)/(t_s)zv atav,h(t: s)/(t_s)x asav,h(t: s)/(t_s)}oss,tgro

5.81
(5:81) is bounded in By 5(R*)”.
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Consider
Vvt 55 %, E)
= o(Hy(t, X, D,)ay, ($u(t, 5); £, 55 X, D,))
(5.82) = H,(t, %, V.ps)ay y+-Lyay y—Dsay 4
+ I HOI, (55 %, )
+hP N, v (L, 55 %, E) v=1),

where

(5.83) by i i(t, 85 %, E) = by 48, 53 B~ %%, h°E)

for b, of (5.57) with H,=0, and ¢, y 4 are the remainder terms.
Set

(5.84‘) sh(t)s;x) ‘f) xl: EI)

= Hh(t) x) ‘E—*—vx]h(t) S', x) E'J x,))aV,h(t) S; x,.v EI) .
Then by Proposition 5.6-2) we have
Vv u(t, 55 %, &)

(5.85) )

= 0= [[erst, s 0, €' +n, aty, €)atndy

In (5.85) we make Taylor’s expansion. Then using (5.81) we see by
(5.84) that

“Abvr a2, 5) [ (t—9)} 0ss,tsT, 1S

5.86

( ) bounded in Bg,s(h) (k = 1, 2’ ...)”
and

(5.87) “Lev, vty ) [ (E—5)}oss 17, 18

bounded in B 4(h) (N = 1,2, -+)".

Hence, by (5.80) we see that we obtain (5.86) and (5.87) for »=0. Then, by

means of (5.64) we see that for a, , defined by (5.56) the statement (5.81) holds

with v=1. Consequently we obtain (5.81), (5.86), (5.87) for any »=0,1,---.
Now we remind by Theorem 1.3 that &,(¢,s;,&) has the form

éh(t: $5 X, E)

5.88 o
(5-88) = Z_,_‘ hE=OVX(E7 h)ay 42, 55 %, E)

for an appropriately decreasing sequence {€;}7.o. Then, by (5.81) we get (5.76).
Now from (5.62), (5.82) and (5.86), (5.87) we see that

“ {U(Ehav,h(ﬁbh(t: 5); 2,85 X, Dx))/(t—s)}ogs,tg:ro

5.89
(5:89) is bounded in By5(h)”.
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Hence, in the similar discussion as in III) of the proof of Theorem 5.8 we can
obtain (5.77). Q.E.D.

6. Fundamental solution

In this section, using the approximate fundamental solution, we construct
the fundamental solution U,(t,s) for L,, and derive the main properties of
Ui(t,s).

Theorem 6.1. For a sufficiently small 0<<T,<T there exists uniquely the
Sfundamentl solution U,(t,s) in the class of Fourier integral operators with phase
Sfunction ¢,(t,s) and symbols of class B'(Ir?; By 5(h)), and there exist symbols d,
(t,8;%,8)E BI7}?; By s(h)) incase 0S8 = p=1 and d.. ,(2,s;%,E) € B'(I12; Brs(h))
in case 0=0<p=1 such that for

(6 1) {Do,h(¢h(t) S)) = do,h(¢h(t1 S); t’ $5 X, Dx) ’
’ D.. (bilt, 9)) = du (bilt, )3 2,53 X, D,)

we can write

Uh(t) s) = I(()bh(t: s))+D0,h(¢'h(t) s))

(6.2) 0Sh< =)
and
(6.3) U2, 5) = Ex(u(t, )+ Do i(di(t, )

where E(piu(t,5))=ei(Pu(t,);t,5;X,D,) is the approximate fundamental solution
of order infinity (given in Theorem 5.8).
Furthermore, we have

(6.4) “Adou(t, 5) [ (t—5)}oxs, 11, 15 bounded in B g(h)”.
and
(6.5) “Ade 12, 5) | (t—9)} 055,457, 15 bounded in By y(h)”.

Proof. We consider only the case 0=86<p=1 for E,($,(¢,s)). Then the
case 0=8=<p=1 is proved similarly for I(¢,(,s)).

I) Let =2Iln,+1 (n,>n, even) and choose a sufficiently small 0<#<1
such that Theorem 3.8 holds. Take a small 0<T,<T such that the con-
stant ¢r of (5.8) in Proposition 5.3 satisfies

(6.6) Ty, =%.
Then, we see that for any subdivision A: t=¢=---=t,=s (¢,s<[0, T])

du(t, L) B Pu(ts, L) H -+ B du(tss 5)



346 H. Krrapa and H. Kumano-co

is well defined. On the other hand we can easily see that

(6.7) bi(t, ) u(0, 5) = du(t,8) (2, s€[0, Ty], 1=0=)

holds (cf. for example, the proof of Theorem 2.3 in [10]). Hence, we have
bilt, L) B Pults, 1) 8 -+ §ba(ts, 5) = Bul?, 5)

(6.8)
(t: SE[O) To ’ tztlz o thS) .

Now we define

WV,h(¢h(t) S)) = wv'h((i)h(t) S); t: S; X) Dx)

7 v=1,2-)
by
(6.10) Wi (Pi(t, 8)) = —iL,E(4(2, 5))
and
(6.11) u,/”fl”'(‘i:”ft’ ) = S :Wl,,,(¢>,,(t, O)W,, i(4(0, 5))do
- SSS:...S: lWl.h(‘i’h(t: tl))Wl,h(Qbh(th tz))"' Wl,h(¢h(tv,s))dtv ’

where #,=(#;,**-,t,) and dt,=dt,+---dt,. Then we see by Theorem 5.8 that
there exists a symbol

wy (2, 83 %, £) E B (17,25 Bais(h))

such that we have (6.9) with v=1.
Furthermore, we see from Theorem 4.3 and (6.8) that there exist symbols

(6.12) Wi1,4(2, Tr, 3 %, E) E BA(Qy; Biis(h))
such that

(6.13) Wy (Pi(t, 1)) -+ Wy (@i, 5))
== wv+1,h(¢h(t; S), t; tv; s X) Dx) ’

where Q, denotes the domain defined by

(6.14) Q= {(t, ¢, 5)|2,s€[0, T, t=t= - =425}
Hence, we see that there exists a symbol

(6.15) wy (2, 85 %, E)E B Brs(h)) (v=1,2, )

such that (6.9) holds for any ».
II) Next we investigate the convergence of
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(6.16) ALty 3 2, E) = S ult, 53 %, ).
We note that for any N =0 we see that
wy (8, 83 % E)E B(I1}; Bro(h))

6.17
(617 CB(I7,%; B; o(h))
and that
(618) le,h(tl S) | Sﬂ)é I wl,h(t) S) I(IN)é “wl,hllsN) ’

where [, 4/|{"= max [w, ,(t,5)]{".
' t,5€(0,7] ’
In (6.13) we regard w, ,(¢;,%;4,) as
wy (L, t; %, E)EB(Ir,’; Byls(h))
(6.19) wy (L tiaas %, §) EB(Ir?; By o(h))
(] = 1, ey Uy by = S) .

Then, noting (6.18) we have by Theorem 4.3

(6.20) |@s41,4(2, Ty, 8) [V = (C o 4]§)**

for an integar /' and a constant C,. Hence, noting that

trt iy, —
(6.21) W1 42, 632, E) = 5 S S Byt b, 55 %, E)dE
we obtain

v
(348,915 =21 o s )7

6.22 '
( ) < 1 (N)\V+1

=" (Toclnwl,hlll' ) ’
from which we get
(6.23) s 1 L (TCole 15974

Hence, we see that the series (6.16) converges in B°(I7?; By s(h)) for any N,
which means that the series (6.16) convergas in B°(Ir?; By s(h)).

III) Setting DL y(pu(t,8))=d% i(Pu(t,5);2,5;X,D,), we define D, ,(¢u(2,5))
by

(6:24) Do (it ) = | Bulda(t, OIDL (406, 5))d0
and consider (6.3). Then, noting Proposition 5.6, we have for ve¥
LU, )0 = LE(i(t, 5))
— iDL (il s))v-l—S:L,,E,,(ci)h(t, )DL (40, 5))vdf .
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Then, by the definition (6.10), (6.16), (6.11) we have
L Uy(t, s)o = iW, (a2, $))v—1iDZ i($u(2, 5))v
t
+i{ W, s u(t, O)DL (40, ))0d0 = 0,

which means, together with U,(s,s)=1, that U,(z,s) is the desired fundamental
solution for L,.

Replacing E(¢4(2,5)) by I(pi(2,5)), we define W, ,(¢4(2,5)) by (6.10) and
(6.11). 'Then, fixing N=0 in II), we get the convergence of d. ,(z,s;%,&)=

f} wy 4(2,8;%,8) in B(I7’; By 5(h)), and see that U,(t,s) defined by (6.2) is also
v=1

the fundamental solution for L,.
IV) Finally we prove the uniqueness of U,(#,5). Consider L} defined by

(6.25) L¥ = D+Kij(t, D,, X'),

where Kj(t,&,x") is defined by

(6.26) Ki(t, €, %'y = Hy(t, &', £)+H,(t, ', E) .
Then, we have

(6.27) f :(L,,u, i)dt — S;(u Lia)dt

for u, a€ B'([ty,1.]; ¥) (0=1,<t,=T,) such that u(z,)@(t,)=u(t,)#(t,)=0. On the
other hand, by (5.2) we see that there exists Hj(t,x,£) €. B(Ir; B 5(h)) such that

(6.28) Ki@t, D, X'y = H,(t, X, D,)+Hi(t, X, D,).

Then, by the existence part of the present theorem we can construct the funda-
mental solutlon Ui(#,s) for L¥ of the form (6.2).

Now assume that there exists another fundamentl solution Uj(¢,s) in the
class of Fourier integral operators. Set for v&€¥ and a fixed s€[0, T']

(6.29) u(t, s) = (Ui(t, 5)— U2, 5))v .
Then, we see that

(6.30) Lyu(t,s)=0 on [0,T,], u(s,s)=0.
Set

a(t,s) =i UK, 0)u(@, 5)do .
To
Then, we have

(6.31) L¥a(t,s) = u(t,s) on [0, T,], @(T,s)=0.
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Then, noting (6.27), we have by (6.30), (6.31)

TO TO
0— S (Lyu, @)dt — S (u, L¥a)dt
(6.32) ’TO :
— S (2, 5), u(t, ))dt .
Hence, we get u(t,5)=0 on [5,7,]. Then, by (6.29) we have
(Ui(t, 5)—Uyt,5)v =0

for any v€Y. From this we see that the symbols of Uj(z,s) and U,(t,s) coin-
cide. Q.E.D.

The fundamental solution Uj,(t,s) of Theorem 6.1 has the following pro-
perties.

Theorem 6.2. Let U,(t,s) be the fundamental solution constructed in Theorem
6.1. Then, we have the following:
1) The Cauchy problem

L = f) € D(I1,; 9)
Uy =vEY (0<s<T))

(6.33) {

can be solved uniquely by

(6.34) w(t,s) = Uy(t, s)v+i$:Uh(t, Nf(0)dd (€B'I7,;9))-
2) The following relations hold:

(6.35) Uy(t, 0)UL(0, s) = Up(t, ),
(6.36) D, U(t, $)—Uy(t, )Ki(s, X, D,) = 0.

Proof. 1) Itis easy to see that u,(z,s) given by (6.34) satisfies (6.33). Now
let uy(¢,s) € B'(I1,;¥) satisfy

Lyu(t,s)=0 on [0,T],
6.37 {
(657) s = 0.
Set
(6.38) ayt, s) = zS; Uk, 0)u (0, $)d6 .
0

Then, we have
Li¥a(t,s) = uy(t,s) on [0, Ty, #(T,,s)=0.

Hence, we have
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STo(ul(t, 8), w(t, s))dt
_ STo(ul(t, 8), L, s))dt
— S“(L,,ul(t, 5), Gu(t, s))dt = 0.

So we have u,(¢,5)=0 on [s,T,]. Replacing T by 0 in (6.38) we get u,(z,5)=0
on [0,s]. Hence, the uniqueness of the solution of (6.33) is proved.
2) For vEY set

u(t, 8,s) = Uz, U@, s)v .
Then, we have

(6.39) {L,,u(t, 0,5)=0 on [0,T],

(@, 0,s) = Uy b, s)v.
On the other hand consider u(t,s)=U,(¢,s)v. Then we have

{L,,u(t, s)=0 on [0, T,

(640) u(0, s) = Uy, s)v .

Hence, by the uniqueness of the solutlon of the problem (6.33) we get U,(t,6)
U,(0,s)v=U,(t,5)v for any vE€Y. So we get (6.35).
From (6.35) we have for vE€¢¥

0 = Dy(U,(2, O)U,(0, s))v
= DyU,(t, 0)- U0, s)v+ Uy, 6)-D,U,(0, s)v
= DyU,(t, 0)- Uy(8, s)v—U,(t, 0)-K,(8, X, D,)U\(9, s)v .
Hence, setting 0=s, we get (6.36). Q.E.D.
For L,=D,+H,(t,X,D,) we have
Theorem 6.3. Let U,(t,s) be the fundamental solution for L,, and let
(6.41) {bo,h(¢h(t: 8)) = do(pu(t, )5 8, 53 X, D),
' D.. (2, 5)) = d s(a(t, 8); 2,53 X, D))

corresdond to D, ,(Pu(2,5)), Do s(Pi(t,s)) in Theorem 6.1, respectively. Then,
we have

(6 42) “ {Jo,h(t) s)/(t_'s)z’ 6tJ0,t(t: 3)/(t—s)’ asjo.h(tx s)/(t_s)}oss,tsTo

' is bounded in B} 5(h)”,

and
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“{de 4t 9) (=5, 0. 4(t, 5) [ (t—9), 0. (2, 8) ] (E—5)} o5 176

6.43
(643) 1s bounded in B;s(h)”.

Proof. In II) of the proof of Theorem 6.1 we have from Theorem 5.9
that

lw, (2, 1) |V Clt—1,(f, , [0, Ty))

for the case Jolh(t,s) with N=0 and for the case aﬁ,, #(2,8) with any N=0. Then
we can get (6.42) and (6.43). Q.E.D.

In what follows we investigate the L?-properties of U,(t,s). Let H,=L*R")
and let H, denote the Hilbert space obtained as the completion of ¥ with re-
spect to the norm

(6.44) o]l = { 2 ”deBv(x)HLZ(R")} vz,
We denote H, by H,;, when HvH2 is replaced by an equivalent norm
(6.45) llollen = { 23_II(27°%)* (WD) o()llz2an},

and similarly H, by H, ;, when ||v]|2n is replaced by A°~%[|9]|.2zm. We often
write |[v]];= HvllL ="-

Proposition 6.4. Let S;, for real | be pseudo-differential operators with
symbols s; ,(x,&) such that

(64‘6) |31,hggg (x) g) | gcw,B,IhPlﬁl—slﬂKh—sx; hPE>I'|°’+ﬁ| ,

and let ¢,(x,E)EP, (*,1;h) for #,1 of Theorem 3.8. Then, for any P,(¢))=
Pu(dn; X, D,)E B;'s($s) we have

(6.47) S_14Pu(Pn)S1 1 E Byls(Ds) -

Proof. Consider P,(¢,)S,;, for /=0. Then, by Proposition 5.6 we see
that there exists 7, ,(x,£) € B}y (k) such that

(6.48) Ph(¢h)sl,h = Rl,h(¢h)571,h(¢h; X,D,).
Now, by Theorem 3.8 we write I=R,(¢#)I(¢,), and by (6.48) write
(6.49) Py(dn)Sin = (R (Sn)Ri($i)I($4) -

Then, as in Theorem 3.5-i), setting

ql,h(x: E: x,) = rl,h(x) vxd);l(x E x'))

(6.50) } | D65

X790, ) | P 6o £, )
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and

(6.51) 7145, 8) = O, [e777q, (o, E-t-m, 5-+9)dmdy
we can write

(6.52) R (@ Ri($E) = 7,4(X, D),

where 7,(£,x") is the symbol of R,(¢5F).
Then, noting 7, ,(x,£) € Bjiy/ (k) we see that ¢, ,(x,&,x’) satisfies

(6:53)  1914iEen (%, E, &) | S Co g g 18I0 BOE S B™00

where (3 €50 >=(1+ |x |2+ |E|?4 |’ |24
Then, setting

{al,h(x: S’ x,) = ql’h(hsx, hnpf, hsx’) N
Vi.0(%, &) = v, 4(B°%, BFE),

and making a change of variables y=A%y, n=h"%%, we can write
654) (w8 = O ([, u(w, £+, w4-9)d503 .
Furthermore, we have by (6.53)
[Z1 4506 (2, &, &) | S Co p prh™x; E; 6D .
Then, from (6.54) we see that
|71 488 (%, E) | = Ca ph"ic; EDF,
from which we obtain
(6.55) 171,408 (3, E)| < Ca ph™+ 11 = 0PI, HOED!
Finally by (6.49), (6.52) we write
(6.56) S_ 1P dn)S1n = (S_1,471,(X, D)) () -
We define u, ,(x,£) by
657) sl &) = 0= [[es_, s, B4y, oy, BYdndy
Then, we have
(6.58) S_14714(X, D,) = p (X, Dy),

and, noting (6.46) for —/ and (6.55), we have, in the same way as the method
to get (6.55), that u, ,(x,£)EB;'s(h). Hence, using Theorem 3.7, we see from
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(6.56), (6.58) that (6.47) holds with /=0.
When /<0, we write

S—I,hPh((f’h)Sl,h
= I($s) (Ri(Pi) (S-1,,Pu(D1)))S1,3) -
Then, we get (6.47) with /=<0. Q.E.D.

Proposition 6.5. 1) Let TF be peudo-differential operators with symbols
(6.59) ti(x, &) = <h7x; BED?,  ti(x, &) = <h7’x; BPED.
Then, there exist pseudo-differential operators R; ,(j=1,2) with symbols 7; ,(x,&)
satisfying
(6.60) 7,48 (x, §)| = Co ph™ ¥ D0BID =00 PEL2TI%HEL - (j = 1, 2)
such that
(6.61) TiTw =I+R,,, T Ty = I+R,, .
Furthermore, we have for a constant C' >0
(6.62) CHITiollo =l = C(lI Tiollo+lvll) (vEH,,4) -

2) Let ¢y(x,E)E P, 4, T;h) with [,% of Theorem 3.8 and let P,(¢d,)=pi(Ps;
X,D,)EB]y($s). Then, we see that Py(p,): H, ,—H,, is continuous and for a
constant C >0

(6.63) ”Ph(qsh)W”z_h§Chm”vllz,h for ‘UEHz,h .
Proof. 1) We define 7, ,(x,£) by

(6.64) 7, &) = 2 5:{03'“3_”'"

X 14O, E+40n)tin(x+y, E)dndy}do .

Then, by the usual expansion formula of order 1 for o(T# T%) (x,£) we see that
we can write T T3 =I4R,,. Furthermore, from (6.64) we obtain (6.60) for
j=1. Similarly we get (6.60), (6.61) for j=2.

Now by definition we have for v

fo = (et 1B w4 g 190E)d
Thus, by Theorem 1.12 we obtain

1Tk ollo=C(llollo+11127% | *2]l+ 1 A°D; | *]lo)

6.65
(6.63) =Cllollyn for ve?.
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On the other hand we write for |a+B| <2
(h~%x)*(h*D,)Pv
= (h7%x)*(h*D,) Ty - Tiv—(h~*x)*(h°D,)PR; v .
Then, noting
o((h=*%)*(#D,YTF), o(h*%) (D) R, ) EBSA(R)

we get again by Theorem 1.12

(k=)W D, Poll,< C"(I Tioll+lloll)  (la+B1=2),
and get
(6.66) 1ol s =C (I Tl +olly)  for vES.

Hence, from (6.65) and (6.66) we obtain (6.62).
2) By (6.61) we write for vE?

TiPy(pn)v = TiPu(ps) (Tr - Ti —R, 4)v
= (TiPu(d)T7) (Tiv)—(Ti Pu(bn)Re,p)0 -
Then, from (5.34) with /=4-2, (6.60) and Proposition 6.4 we have
ITEPi(pn)ollo=CR"(II Tiiollo+lollo) -
Hence, by (6.62) we get (6.63). Q.E.D.
We have finally the following

Theorem 6.6. Let U,(t,s) be the fundamental solution for L, given by
Theorem 6.1. Then:

1) The operators U,(t,s): H—~H,, H,,—~H,, are uniformly bounded in
(¢,5,R) €0, T, % (0,1).

2) Ku(t,X,D,)Ut,s), Uy(t,s)K(t,X,D,), D;U,t,s), D;U(t,s): Hy ,—>H, 4
are uniformly bounded on [0, T J* < (0,1).

3) As an operator: Hy—~H, and H, ,~H, , we have

(6.67) Ut, HhU (0, s) = Uyt,s) (¢, 0,s<[0,Ty)) .
4) As an operator: H, ,—H, , we have

(6.68) LUyt s)=0 on [0, T,
Uys,s) =1 on [0, T,]

and

(6.69) D,U,(t, )— Uy(t, )K (s, X, D;) =0 on [0, T].
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5) The Cauchy problem

670) (Liw = f(t) € B Iz, Hy),
lu|t=s =vEH,,

has a unique solution u(t,s) in D°(Ir,; H, ;) N B'(Ir,; H, ), represented by
(6.71) u(t, s) = Uy, s)v+i$'U,,(e,s)f(a)de.

Proof. 1) is easy by Proposition 6.5-2).
2) We note that K (¢,x,&)=h*""H(t,h~%x,h°E)+ H,(¢t,x,E) satisfies

“AK e (2, x, &) <h™%; RPEDIHPI2Y 1, is bounded in

6.72
(6.72) Bipteli=88i(hy for |a+B] <27,
and by (6.61)
X,D
(6.73) Kit, X, DU, 9)

= (KW@ Ti) (Ti Ui(2, ) — (Ku() R i) Us(2, 5) -
Then, noting by (5.31) and (6.60)
K,@)Ty, Kh(t)Rz,hEBg._‘o‘P(h) ,

we see by Proposition 6.5 that K,(f)U,(t,s): H, ,—~H, , is uniformly bounded
on [0, T J*%x(0,1). Similarly we get 2) for U,(¢,5)K,(t,X,D,).

3) is clear from Proposition 6.5.

4) holds for ¥ by Theorem 6.2. Then, for vEH,,, choosing {v;}7-.C¥
such that v;—v in H, , we get 4) for vEH,,. Then 2) for D,U,(t,s), D,U,(t,s)
can be easily obtained.

5) is clear from Theorem 6.2 and 1)-4). Q.E.D.

Corollary. Let K, (t,X,D,) be symmetric. Then, we have that U,(t,s):
H,—H, is unitary, and have

(6.74) Uy, )*Uyt,s)=1 on H,.
Proof. For v&¥ we have by Theorem 6.2
0(U, (2, s)v, U2, 5)v)
= (0,U (2, s)v, Uy(t, s)v)+(U,(t, s)v, 8,U (1, s)v)
= —(@K,(Q) U2, s)v, U2, $)v)— (U2, s)v, iK,(£)U,(2, s)v) = 0.
So we have
(U8, )v, Uy(t, $)v) = (U,(s, 8)v, U,(s, §)v)

= (v, 9).
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Hence, we have (6.74) on ¥, and using Theorem 6.6-1) we get (6.74) on H,.

Q.E.D.
Now, we consider the case K,(t,X,D,)=K,(X,D,) (independent of £).
Then, setting

(6.75)  Uyt) = Uy(t, 0) (0<t<T,), = U,(0, —t) (—T,=<t=0),

we get
(6.76) U,(t,s) = Uy(t—s) .

For K,(X,D,) we define the domain 9(K,) of K,(X,D,) by
(6.77) 9DK,) = {veH, | KweH}(CH,),

where K,v& H, means that, for some {v;}7.,C¥ satisfving v;,—v in H,, K,v;
converges to some w in H, (then we define K,v=w). Let U¥(¢) be the fun-
damental solution for L¥, and let 9D(K;¥) be defined similarly, where K=
Ki(D,,X") (see (6.25)). Then, we have

Theorem 6.7. 1) Let K, and Ki¥ be considered as the closed operators
{Kh: (Hy2)9(K,)—> H,,

K¥: (HyD)9D(K¥) — H, .
Then, we have that Kif is the adjoint operator of K, and have

(6.78)

(6.79) (Ko, w) = (v, Kfw) (veD(K,), we DK¥)).
2) Ifved(K,), then we have

(6.80) U,(tyve D(K,)

and have

(6.81) K, U)o = U,t)Kv, vEDK,).

This holds also for Ki¥ and Uj(¢).
Corollary. If K, is symmetric, then K,: (H,D)9D(K,)—H, is self-adjoint.

Proof of Theorem 6.7. 1) The closedness of K, and Kjf is clear. For
ve H, assume that there exists #&E H,, such that

(6.82) (v, Kifw) = (0, w) for we DK¥).

Since ¥C D(Kj¥), we have (6.82) for we¥. Hence K, =0, which means
that D(K,) D D((KiF)*).

Now assume that v 9)(K,). Then, noting Theorem 6.6-2) and choosing
{w;}7-1C¥ so that w;}—»we&H, , in H,,, we see that
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(6.83) (0, Kifw) = (K0, w), weH,,.

Now, let T,, be a pseudo-differential operator with symbol ¢, ,(x,&)= {1+
&Ch7%x; hPED} T((0<<€<<1). Then, it is easy to see that £, ,(x,&) satisfies

(6.84) |0 453 (5, E) | < Cu gh?™1-8181Ch 0 oy 19481
and for any fixed 0<<h<1

(6.85) T,w—w (¢|0) in H, for WeH,.
Then, noting T, ,wE H, ;, for we Y(Ki¥)C H,, we have by (6.83)
(6.86) (v, KT, yw) = (Ko, Te ) (wE D(KF)) .
Hence from (6.86) we can write

(6.87) (@, T, i Kifw)+(v, [K¥, T, ;]Jw) = (K)o, T, ),

WherC [K}ik, Tg h]ZK;,kTg'k_ B’hK;ik. Then fOI‘ 'Ye,h:a([KZk)Tg,h])'__o-(K;szg’h)—
o(T, ,KiF), by Taylor’s expansion of order 1, we see that v, ,(x,£) satisfies

(6.88) [Ve, 1l (%, ) | < Ca gh™ 1 *1PICA™ 05 HPEDTIHEY,
and get

(6.89) [Ki, T, )Jw—0 (€} 0) in H,.

Then, from (6.85), (6.87) and (6.89), letting & | 0, we have
(6.90) (v, Ki¥w) = (K0, w) for w=DK}¥),

which means that v€ 9((Kj¥)*). Hence, we get (Ki¥)*=K,.
2) From Theorem 6.6—(6.68), (6.69), and (6.75) we have
(6.91) K,Uytyo = U,@t)K,v for vEH,,.
Then, using T, ;, for vE 9(K,) we can write
(6.92) K, U)T, o = U)K, T, yv
= U,0)T, ; Ko+ Uy2) [K}, T, 4]v .
Then, setting w, ,= U,(#)T, ,v, we have
we ;, = Uy(t)v
Kh'we,h g Uh(l)Kh'U, (€ y 0)
which means that U,($)ve 9(K,) and K, U, (H)o=U,($)K,». Q.E.D.
Finally we consider the convergence of the iterated integral of Feynman'’s
type. Let ﬁh(t,s) be the fundamental solution for L,=D,+H,(t,X,D,) and let
l:?h(th(f,s)) be the approximate fundamental solution of order infinity. Let

D, ,, D.. , be as given in Theorem 6.3.
Now for a subdivision A, for ¢,s&[0,T,] defined by
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(6.93) A U2 - 202,
we set

I(Ay; $u(t, 5)) = L(pu(, t))(Pu(ts, t2)) -+
6.94
( ) s L(pu(t, 9))

and
E\(Ay; dilt, 5)) = Eu(ou(t, 1)) Ey(a(ts, 1)) -+
RYACHCID)R

Then, by Theorem 4.3 we see that there exist symbols

(6.95)

(6.96) &1L, by, 85 %, E), 8. 4(1, by, 55 %, E) EBY(Qy; B 5(h))
such that

I(Ay; du(t, ) = &, (P, 8); 8, 8,5, X, D,)
Ey(Av; ¢u(t, 9)) = &u (da(t, 9)3 2, 53 X, D)
where Q, is defined by

Q, = {(t, t.,9) | :=t,=t,= - =t, =5}
(¢, s€[0, Ty)) -

(6.97)

(6.98)

Then, we have

Theorem 6.8. Let #,(t,s;x,E) be the symbol of Fourier integral operator
U #(2,5), that is,

z‘Zh(t} S; x: ‘f) = 1+‘io,h(t) s; x} E)

(6.99) = &,(t, 5; x, ’g‘)—l—d:,,,,(t,s; x,&).
Then, we have

«{é’o,h(t, t,,8; x, E)—,(t, s; x, ’g‘)}

(6.100) [A,] Ay,085,1STo
is bounded in B} 5(h)”,

and
e {é.,,,,,(t, t,,s; x,E)—d,(2,s; %, zg’)}

(6.101) [A Ay,085,45To

is bounded in B y(h)”,

where | A,| = max [tj—t; 1| (B=t, tvs,=59),
1Sjsv+

Corollary. We have for vEH,

(6.102) I(Z(Ay; du(t, )= T, ))olle=C| A lIv]l,
and
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(6.103) I(EW(A; dut, ) — Uiz, ))ollo =< Cuk™ | Ay | [[o]l,
for any N.

Proof of Theorem 6.8. We only prove (6.101). Then (6.100) will be

proved more easily.
By Theorem 6.3 we can write

(6.104) Ey(i(t, ) = Uy(t, s)—De ($4(t, ) -
Hence, by (6.94) we can write
E(Av; ¢, 9)) = (U4, 1) —D.. (a(t, 1))
(6.105) X (Oy(ty, t)—Dec i Pa(t1, 1)) -+
+(U(tsr )= Do (b3, 9))) -
Then, using the group property of ﬁh(t,s) we can write
Ey(As; ¢ilt,9))

6.106 ~ ¥ 1y
(6.106) = Ui, 9+ 32 (= 1TSUA; ¢4(1,9)),
where
T§(Ay; u(t, )
= 2 U, ts)Du s(Pults,s th41)
(6.107) S

X ﬁh(tkﬁ-l» tip) Do i(Pitags tayrn) +
vDe i(Pi(te;» th;41)) ﬁh(tkj+l: 5) .
Now from Theorem 5.9 and Theorem 6.3 we have
(6.108) |8, 9)]°<C, on [0, T,
and for any N =0
d. (9|0 |da (2, 8) |
(6.109) et ol §|C',,1‘,'}|l(t——s)ll2 on [0, T J*.
Then, regarding d.. ,(%,5) as
Jw,h(f'kl, te1) EBas(h)
Aot i) EBLs(H) (=2, v),
we see from (6.108), (6.109) and Theorem 4.3 that
(T 1§
. =°§k1§<@ém EA AR L P AU L P A AT L
ééf.’NIAvVo 2V Nty =t ey —tiaa] - |t — ]

<k < <hjsv

=CHy|AJTY.

A
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Hence, we see for a small 0< T,<T with C} yT,<1 that for any N

|5 (1T (5 O =Cal Ay

uniformly in (¢,s)[0, T]>. Q.E.D.

[2]
(3]
(4]
[5]
(6]
[7]
(8]

(9]

[10]

[11]

[12]

References

A.P. Calderén and R. Vaillancourt: A class of bounded pseudo-differential opera-
tors, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185-1187.

D. Fujiwara: A construction of the fundamental solution for the Schrodinger equa-
tions, Proc. Japan Acad. 4A (1978), 62-66.

D. Fujiwara: A construction of the fundamental solution for the Schrédinger equa-
tion, J. Analyse Math. 35 (1979), 41-96.

D. Fujiwara: On a nature of convergence of some Feynman path integrals, I, Proc.
Japan Acad. 55A (1979), 195-200.

D. Fujiwara: Remarks on convergence of the Feynman path integrals, Duke Math.
J. 47 (1980), 559-600.

H. Kitada: On a construction of the fundamental solution for Schrodinger equa-
tions J. Fac. Sci. Univ. Tokyo, Ser, IA, 27 (1980), 193-226.

H. Kumano-go: Pseudo-differential operators, Iwanami Shoten, Tokyo, 1974 (in
Japanese).

H. Kumano-go: 4 calculus of Fourier inlegral operators on R" and the fundamental
solution for an operator of hyperbolic type, Comm. Partial Differential Equations
1 (1976), 1-44.

H. Kumano-go: Fundamental solution for a hyperbolic system with diagonal prin-
cipal part, Comm. Partial Differential Equations 4 (1979), 959-1015.

H. Kumano-go, K. Taniguchi, and Y. Tozaki: Multi-product of phase functions
for Fourier integral operators with an application, Comm. Partial Differential
Equations 3 (1978), 349-380.

H. Kumano-go and K. Taniguchi: Fourier integral operators of multi-phase and
the fundamenial solution for a hyperbolic system, Funkcial. Ekvac. 22 (1979), 161-

196.
J. Chazarain: Spectre d’un Hamiltonien quantique et mechanique classique, Univ.
de Nice (preprint).

Hitoshi Kitada

Department of Pure and Applied
Sciences

University of Tokyo

Komaba, Meguro-ku Tokyo 153
Japan

Hitoshi Kumano-go

Department of Mathematics
Osaka University
Toyonaka, Osaka 560

Japan





