

Title	On the Robertello invariants of proper links
Author(s)	Kawauchi, Akio
Citation	Osaka Journal of Mathematics. 1984, 21(1), p. 81-90
Version Type	VoR
URL	https://doi.org/10.18910/4202
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kawauchi, A.
Osaka J. Math.
21 (1984), 81-90

ON THE ROBERTELLO INVARIANTS OF PROPER LINKS

Dedicated to Professor Minoru Nakaoka on his 60th birthday

AKIO KAWAUCHI

(Received September 14, 1982)

Robertello's invariant of a classical knot in [9] was generalized by Gordon in [2] to an invariant of a knot in a Z -homology 3-sphere, and by the author in [5] to an invariant, $\delta(k \subset S)$, of a knot k in a Z_2 -homology 3-sphere S . In this paper, we shall generalize this invariant to two mutually related invariants, $\delta_0(L \subset S)$ and $\delta(L \subset S)$, of a proper link L in a Z_2 -homology 3-sphere S . In the case of a classical proper link, this δ_0 -invariant can be considered as an invariant suggested by Robertello in [9, Theorem 2]. A difference between $\delta_0(L \subset S)$ and $\delta(L \subset S)$ is that $\delta_0(L \subset S)$ is generally an oriented link type invariant, but $\delta(L \subset S)$ is an unoriented link type invariant. A proper link in a Z_2 -homology 3-sphere (which is not a Z -homology 3-sphere) naturally occurs when considering a branched cyclic covering of a 3-sphere, branched along a certain proper link. (If the number of the components of the link is ≥ 2 , the branched covering space can not be a Z -homology 3-sphere by the Smith theory.) So, we consider a proper link \tilde{L} in a Z_2 -homology 3-sphere \tilde{S} , obtained from a proper link L in a Z_2 -homology 3-sphere S by taking a branched cyclic covering, branched along L . When the covering degree is prime, we shall establish a relationship between $\delta(\tilde{L} \subset \tilde{S})$ and $\delta(L \subset S)$ and then a relationship between $\delta_0(\tilde{L} \subset \tilde{S})$ and $\delta_0(L \subset S)$.

In Section 1 we define and discuss the slope of a link in a 3-manifold as a generalization of the slope of a knot in a 3-manifold, introduced in [5]. In Section 2 the δ_0 -invariant and the δ -invariant are defined and studied. Section 3 deals with relationships between $\delta(\tilde{L} \subset \tilde{S})$ and $\delta(L \subset S)$ and between $\delta_0(\tilde{L} \subset \tilde{S})$ and $\delta_0(L \subset S)$.

Throughout this paper spaces and maps will be considered in the piecewise linear category, and notations and conventions will be the same as those of [5] unless otherwise stated.

1. The slope of a link in a 3-manifold

Let M be a connected oriented 3-manifold. Let L be an oriented link with r components in the interior of M . Let $o(L)$ denote the order (≥ 1) of

the homology class $[L] \in H_1(M; \mathbb{Z})$. Let $\tau H_1(M)$ be the torsion part of $H_1(M; \mathbb{Z})$. Let $\phi: \tau H_1(M) \times \tau H_1(M) \rightarrow \mathbb{Q}/\mathbb{Z}$ be the linking pairing.

DEFINITION 1.1. The *slope* of the link L , denoted by $s(L) = s(L \subset M)$ is defined by the identity

$$s(L) = \begin{cases} -\phi([L], [L]) & (o(L) < +\infty), \\ \infty & (o(L) = +\infty). \end{cases}$$

If $s(L) = 0$, then we say that the link L is *flat*.

When $r = 1$, $s(L)$ is the same as the slope defined in [5, Definition 1.4] by [5, Lemma 1.8]. Let $r \geq 2$. Let B_1, B_2, \dots, B_{r-1} be mutually disjoint oriented bands in the interior of M attaching to L as 1-handles. If we obtain a knot k from L by surgery along such B_1, B_2, \dots, B_{r-1} , then we say that the knot k is *obtained from L by a fusion*.

Lemma 1.2. *Let k be a knot obtained from a link L by a fusion. Then $s(L) = s(k)$.*

Proof. Clearly, $[L] = [k]$ in $H_1(M; \mathbb{Z})$. The result follows from Definition 1.1.

Assume that each component k_i of L is a knot of finite order, i.e., $o(k_i) < +\infty$, $i = 1, 2, \dots, r$. Then the total \mathbb{Q} -linking number $\lambda(L) = \lambda(L \subset M) \in \mathbb{Q}$ of the link $L \subset M$ is defined by $\lambda(L) = \sum_{i>j} \text{Link}_M(k_i, k_j)$. When $r = 1$, we understand that $\lambda(L) = 0$.

Lemma 1.3. *In \mathbb{Q}/\mathbb{Z} $s(L) = \sum_{i=1}^r s(k_i) - 2\lambda(L)$.*

Proof. Since $o(L) < +\infty$ and $[L] = \sum_{i=1}^r [k_i]$, $s(L) = -\phi([L], [L]) = \sum_{i=1}^r -\phi([k_i], [k_i]) - 2 \sum_{i>j} \phi([k_i], [k_j])$. Using that $\phi([k_i], [k_j]) \equiv \text{Link}_M(k_i, k_j) \pmod{1}$ for $i \neq j$ and $s(k_i) = -\phi([k_i], [k_i])$, we have a desired congruence.

For each element $s \in \mathbb{Q}/\mathbb{Z}$ we can have coprime positive integers a, b such that $s \equiv a/b \pmod{1}$. This fraction a/b and the denominator b are called a *normal presentation* and the *denominator* of the element $s \in \mathbb{Q}/\mathbb{Z}$, respectively. Now we assume that the denominator of the slope $s(k_i)$ is odd, $i = 1, 2, \dots, r$. Then $s(k_i)$ has a normal presentation of type $2a_i/b_i$, $i = 1, 2, \dots, r$.

DEFINITION 1.4. We define

$$s^*(L) = \sum_{i=1}^r a_i/b_i - \lambda(L)$$

in \mathbb{Q}/\mathbb{Z} and call it the *half-slope* of the link $L \subset S$.

The following is easily proved.

Lemma 1.5. *In Q/Z $2s^*(L)=s(L)$, and if $s(L)=0$, then $s^*(L)$ is 0 or $1/2$ according as the denominator of $\lambda(L) \in Q/Z$ is odd or even.*

2. The δ_0 -invariant and the δ -invariant

We consider an oriented link L with components k_i , $i=1, 2, \dots, r$, in an oriented Z_2 -homology 3-sphere S .

DEFINITION 2.1. The link L is *proper* if the mod 2 linking number, $\text{Link}_S(k_i, L-k_i)_2=0$ for all i , $1 \leq i \leq r$. (We understand a knot to be a proper link.)

Let W be a compact oriented 4-manifold. Let F be a locally flat, oriented (possibly disconnected) surface of (total) genus 0 in W . We say that such a pair $F \subset W$ is *admissible* for a link $L \subset S$, if S is a component of ∂W , $\partial F=L$, $H_1(\partial W; Z_2)=0$ and $[F_2^+] \in H_2(W; Z_2)$ is characteristic, i.e., $[F_2^+] \cdot x = x^2$ for all $x \in H_2(W; Z_2)$, where F_2^+ is a (mod 2) cycle obtained from F by attaching (mod 2) 2-chains c_i in S with $\partial c_i = -k_i$, $i=1, 2, \dots, r$.

Lemma 2.2. *For any proper link $L \subset S$ there exists an admissible pair $F \subset W$.*

Proof. Let $T(L)=\bigcup_{i=1}^r T(k_i)$ be a tubular neighborhood of $L=\bigcup_{i=1}^r k_i$ in S . Construct a 4-manifold $W=(-S) \times [-1, 1] \cup D^2 \times D_1^2 \cup \dots \cup D^2 \times D_r^2$ identifying $T(k_i) \times 1$ with $(\partial D^2) \times D_i^2$, $i=1, \dots, r$, so that $H_1(\partial W; Z_2)=0$. Let $D_i=(-k_i) \times [-1, 1] \cup D^2 \times 0_i$ be a disk. Let $F=\bigcup_{i=1}^r D_i$. To show that $F \subset W$ is admissible for $L \subset S$, it suffices to check that $[F_2^+] \in H_2(W; Z_2)$ is characteristic. Note that $[D_{i2}^+]$, $i=1, \dots, r$, form a basis for $H_2(W; Z_2)$. Since $[F_2^+] = \sum_{i=1}^r [D_{i2}^+]$, we have

$$\begin{aligned} [F_2^+] \cdot [D_{i2}^+] &= [D_{i2}^+]^2 + \sum_{j \neq i} [D_{j2}^+] \cdot [D_{i2}^+] \\ &= [D_{i2}^+]^2 + \text{Link}_S(L-k_i, k_i)_2 \\ &= [D_{i2}^+]^2, \quad i=1, \dots, r. \end{aligned}$$

This implies that $[F_2^+]$ is characteristic. This completes the proof.

The pair $F \subset W$, constructed in the proof of Lemma 2.2 is called a *standard admissible pair* for the proper link $L \subset S$.

DEFINITION 2.3. Let $L \subset S$ be a proper link. Then we define

$$\delta_0(L) = \delta_0(L \subset S) = ([F_2^+]^2 - \text{sign } W)/16 - \mu(\partial W)$$

in Q/Z for any admissible pair $F \subset W$ for $L \subset S$, where F_2^+ is a rational 2-cycle obtained from F by attaching rational 2-chains c_i^q in S with $\partial c_i^q = -k_i$, $i=1, \dots, r$.

REMARK 2.4. We can define the invariant $\delta_0(L \subset S)$ by using a more gen-

eral pair $F \subset W$, where the (total) genus of F may be positive or F may be non-orientable (cf. Freedman-Kirby [1], Guillou-Marin [3], Matsumoto [7]).

To see the well-definedness of $\delta_0(L)$, consider a standard admissible pair $F^* \subset W^*$ for $L \subset S$. Construct an oriented 4-manifold $\bar{W} = W \cup -W^*$ identifying two copies of S . Then $\Sigma = F \cup -F^*$ is the disjoint union of 2-spheres. Since $[F_2^+]$ and $[F_2^{*+}]$ are characteristic, we see that the mod 2 homology class $[\Sigma]_2 \in H_2(\bar{W}; \mathbb{Z}_2)$ is characteristic. By the Rochlin theorem ([6], [10]), $\mu(\partial \bar{W}) = ([\Sigma]^2 - \text{sign } \bar{W})/16$ in Q/Z . But, $\mu(\partial \bar{W}) = \mu(\partial W) - \mu(\partial W^*)$, $[\Sigma]^2 = [F_2^+]^2 - [-F_2^{*+}]^2 = [F_2^+]^2 - [F_2^{*+}]^2$ and $\text{sign } \bar{W} = \text{sign } W - \text{sign } W^*$, where we count $[-F_2^{*+}]^2, [F_2^{*+}]^2$ in W^* . It follows that

$$([F_2^+]^2 - \text{sign } W)/16 - \mu(\partial W) = ([F_2^{*+}]^2 - \text{sign } W^*)/16 - \mu(\partial W^*)$$

in Q/Z , showing the well-definedness of $\delta_0(L)$.

DEFINITION 2.5. Two links $L_i \subset S_i$, $i=0, 1$, are said to be *cobordant in the weak sense* if:

- (1) There exists a compact oriented 4-manifold W such that $\partial W = -S_0 \cup S_1$ and $H_*(W, S_i; \mathbb{Z}_2) = 0$, $i=0, 1$,
- (2) There exists a locally flat, compact oriented (possibly disconnected) surface F of (total) genus 0 in W such that $\partial F = -L_0 \cup L_1$ (See Figure 1).

Figure 1.

Theorem 2.6. If proper links $L_i \subset S_i$, $i=0, 1$, are cobordant in the weak sense, then $\delta_0(L_0) = \delta_0(L_1)$.

Proof. Let $F \subset W$ be a cobordism pair for $L_i \subset S_i$, $i=0, 1$, stated in Definition 2.5. Construct an oriented 4-manifold $W' = W \cup D^3 \times [0, 1]$ identifying a 3-cell in $S_i - L_i$ with $D^3 \times i$ for each i , $i=0, 1$. Then $\partial W'$ is a connected sum $(-S_0) \# S_1$, which is a \mathbb{Z}_2 -homology 3-sphere containing a proper link L' , regarded as the union $-L_0 \cup L_1$. Clearly, $\delta_0(L' \subset (-S_0) \# S_1) = -\delta_0(L_0 \subset S_0) +$

$\delta_0(L_1 \subset S_1)$. Note that $H_2(W'; Z_2) = 0$. Then $F \subset W'$ is admissible for $L' \subset (-S_0) \# S_1$, and hence

$$\delta_0(L' \subset (-S_0) \# S_1) = ([F_Q^+]^2 - \text{sign } W')/16 - \mu((-S_0) \# S_1) = 0,$$

because W' is spin and $H_2(W'; Q) = 0$. Thus, $\delta_0(L_0 \subset S_0) = \delta_0(L_1 \subset S_1)$. This completes the proof.

In [5, Definition 2.1] the δ -invariant $\delta(k)$ of a knot k in S was defined so as to be $\delta(k) = \delta_0(k)$.

Corollary 2.7. *Let $k \subset S$ be a knot obtained from a proper link $L \subset S$ by a fusion. Then $\delta_0(L) = \delta_0(k) = \delta(k)$.*

Proof. The knot $k \subset S$ and the link $L \subset S$ are cobordant in the weak sense. The result follows from Theorem 2.6.

By a Dehn surgery we obtain from a knot $k \subset S$ a unique (up to homeomorphism), closed, connected, oriented 3-manifold M such that $H_1(M; Z)/\text{odd torsion} \cong Z$, called a Z_2 -homology handle (cf. [5, Remark 1.6 and Corollary 1.7]). In [4] we defined an invariant $\in(M)$, being 0 or 1, of M , calculable from the Z_2 -Alexander polynomial of M .

Corollary 2.8. *Let $L \subset S$ be a proper link. Let M be the Z_2 -homology handle of a knot $k \subset S$, obtained from L by a fusion. Let a/b be a normal presentation of the slope $s(L \subset S)$ with a odd. Then we have*

$$\delta_0(L) = \in(M)/2 + (a/b - ab)/16$$

in Q/Z .

Proof. By Lemma 1.2 $s(L) = s(k)$. By Corollary 2.7 $\delta_0(L) = \delta(k)$. Then the desired congruence follows from [5, Theorem 2.7 and Corollary 3.6].

DEFINITION 2.9. For a proper link L in S we define

$$\delta(L) = \delta(L \subset S) = \delta_0(L \subset S) + \lambda(L \subset S)/8$$

in Q/Z .

REMARK 2.10. Definition 2.9 is analogous to Murasugi's definition of the unoriented link type signature in [7] (cf. [5, Remark 4.8]).

Theorem 2.11. *The invariant $\delta(L \subset S)$ is an unoriented link type invariant of a proper link $L \subset S$. That is, $\delta(L \subset S) = \delta(L' \subset S')$ for any link $L' \subset S'$ with an orientation-preserving homeomorphism $S \rightarrow S'$ sending L to L' setwise.*

Proof. It suffices to show that $\delta(L)$ does not depend on any particular orientations of the components, k_i , of L . Let $F = \bigcup_{i=1}^r D_i \subset W$ be a standard admissible pair for $L = \bigcup_{i=1}^r k_i \subset S$. Note that $[F_Q^+]^2 = \sum_{i=1}^r [D_{iQ}^+]^2 + 2 \sum_{i>j} [D_{iQ}^+] [D_{jQ}^+]$.

$[D_{iQ}^+] = \sum_{i=1}^r [D_{iQ}^+]^2 - 2\lambda(L)$. Then

$$\delta(L) = \delta_0(L) + \lambda(L)/8 = (\sum_{i=1}^r [D_{iQ}^+]^2 - \text{sign } W)/16 - \mu(\partial W).$$

Since $[D_{iQ}^+]^2$ is not altered by changing the orientation of D_i (that is, k_i), we have a desired result.

A link $L \subset S$ is *amphicheiral* if there is an orientation-preserving homeomorphism $S \rightarrow -S$ sending L to itself setwise. The following is direct from Theorem 2.11.

Corollary 2.12. *If a proper link $L \subset S$ is amphicheiral, then $2\delta(L)=0$ in Q/Z .*

Here is an example of a classical proper link.

EXAMPLE 2.13. Let L_r be an r -component link in a 3-sphere S^3 , illustrated in Figure 2, where $r \geq 2$. The link

Figure 2.

L_r is clearly proper. Choosing a suitable orientation of S^3 , $\lambda(L_r)=r$. Since we can have a trivial knot from L_r by a fusion, we see that $\delta_0(L_r)=0$. Therefore, $\delta(L_r)=r/8$ in Q/Z .

3. Branched cyclic coverings and the δ - and δ_0 -invariants

We consider a link $\tilde{L} \subset \tilde{S}$ obtained from a link $L \subset S$ by taking an n -fold cyclic branched covering of S , branched along L . Namely, \tilde{S} is the branched covering space over S , associated with an epimorphism $H_1(S-L; Z) \rightarrow Z_n$ sending each meridian of L to a unit of Z_n , and \tilde{L} is the lift of L . We assume that \tilde{S} is a Z_2 -homology 3-sphere.

First we consider the case $n=2$. Then L and \tilde{L} are knots by the Smith theory. Let $L=k$ and $\tilde{L}=\tilde{k}$.

Theorem 3.1. *Let $2a/b$ be a normal presentation of the slope $s(\tilde{k})$. Then*

$$\delta(\tilde{k}) = \delta(k) - (a/b - ab)/8$$

in Q/Z . In particular, if \tilde{k} is flat, then $\delta(\tilde{k}) = \delta(k)$.

Proof. By [5, Lemma 4.5] $s(k) = 2s(\tilde{k}) = 4a/b$. Since $(2a+b)/b$ and $(4a+b)/b$ are normal presentations of $s(\tilde{k})$ and $s(k)$, respectively, we see from Corollary 2.8 that

$$\delta(\tilde{k}) = \in(\tilde{M})/2 + \{(2a+b)/b - (2a+b)b\}/16 = \in(\tilde{M})/2 + (a/b - ab)/8 + (1 - b^2)/16,$$

and

$$\delta(k) = \in(M)/2 + \{(4a+b)/b - (4a+b)b\}/16 = \in(M)/2 + (a/b - ab)/4 + (1 - b^2)/16,$$

where \tilde{M} and M are the Z_2 -homology handles of $\tilde{k} \subset \tilde{S}$ and $k \subset S$, respectively. Since \tilde{M} is a 2-fold covering space of M , it follows from [4, Lemma 4.2] that $\in(\tilde{M}) = \in(M)$. Now we have a desired congruence. This completes the proof.

Next, to consider the case that the covering degree n is an odd prime p , we remark the following:

Lemma 3.2. $\lambda(\tilde{L}) = \lambda(L)/n$.

Corollary 3.3. \tilde{L} is proper if and only if L is proper.

Proof of Lemma 3.2. It suffices to show that for $i \neq j$ $\text{Link}_{\tilde{S}}(\tilde{k}_i, \tilde{k}_j) = \text{Link}_S(k_i, k_j)/n$. Let F_i be a characteristic surface (cf. [5]) of k_i in S such that $L - k_i$ intersects F_i transversally. Write $[\partial F_i] = a_i r_i [m_i] + b_i r_i [l_i]$ in $H_1(\partial T(k_i); Z)$ for a meridian-longitude pair (m_i, l_i) of $T(k_i)$ such that the lift of l_i has n components, where $(a_i, b_i) = 1$ and r_i is an integer > 0 . Let \tilde{l}_i be a component of the lift of l_i . For the lift \tilde{m}_i of m_i , the pair $(\tilde{m}_i, \tilde{l}_i)$ forms an $m.l.$ pair of a tubular neighborhood $T(\tilde{k}_i)$ of \tilde{k}_i which is the lift of $T(k_i)$. Note that the lift \tilde{F}_i of F_i is an oriented surface which is a branched Z_n -covering space of F_i branched over the set $F_i \cap (L - k_i)$. Clearly $[\partial \tilde{F}_i] = a_i r_i [\tilde{m}_i] + b_i r_i n [\tilde{l}_i]$ in $H_1(\partial T(\tilde{k}_i); Z)$. Since the intersection numbers, $\text{Int}(\tilde{F}_i, \tilde{k}_j)$ and $\text{Int}(F_i, k_j)$ are equal, we have

$$\text{Link}_{\tilde{S}}(\tilde{k}_i, \tilde{k}_j) = \text{Int}(\tilde{F}_i, \tilde{k}_j)/b_i r_i n = \text{Int}(F_i, k_j)/b_i r_i n = \text{Link}_S(k_i, k_j)/n.$$

This completes the proof.

Proof of Corollary 3.3. When n is even, L and \tilde{L} are knots by the Smith theory. So, assume n is odd. It suffices to show that $\text{Link}_{\tilde{S}}(\tilde{k}_i, \tilde{k}_j)_2 = \text{Link}_S(k_i, k_j)_2$ for $i \neq j$. This is obtained by a mod 2 version of the proof of Lemma 3.2, since $b_i r_i n$ is odd. This completes the proof.

We shall show the following theorem, where note that $(p^2 - 1)/8$ is an in-

teger.

Theorem 3.4. *Let $\tilde{L} = \cup_{i=1}^r \tilde{k}_i \subset \tilde{S}$ be a proper link and assume that the covering degree is an odd prime p . Let $2a_i/b_i$ be a normal presentation of the slope $s(\tilde{k}_i)$, $i=1, 2, \dots, r$. Then*

$$\delta(\tilde{L}) = p\delta(L) - \{(p^2-1)/8\} \sum_{i=1}^r a_i/b_i$$

in Q/Z .

Proof. Let $F \subset W$ and $\tilde{F} \subset \tilde{W}$ be standard admissible pairs for $L \subset S$ and $\tilde{L} \subset \tilde{S}$, respectively, such that $\tilde{F} \subset \tilde{W}$ is obtained from $F \subset W$ by taking a Z_p -covering branched along F . [One can see directly or by a transfer argument that such pairs exist.] Let $\partial W - S = S^*$ and $\partial \tilde{W} - \tilde{S} = \tilde{S}^*$. By the proof of Theorem 2.11,

$$\begin{aligned} \delta(L) &= (\sum_{i=1}^r [D_{iQ}^+]^2 - \text{sign } W)/16 - \mu(S) - \mu(S^*), \text{ and} \\ \delta(\tilde{L}) &= (\sum_{i=1}^r [\tilde{D}_{iQ}^+]^2 - \text{sign } \tilde{W})/16 - \mu(\tilde{S}) - \mu(\tilde{S}^*), \end{aligned}$$

where $F = \cup_{i=1}^r D_i$, $\tilde{F} = \cup_{i=1}^r \tilde{D}_i$, and \tilde{D}_i corresponds to D_i . Then since $[D_{iQ}^+]^2/p = [\tilde{D}_{iQ}^+]^2$ (cf. [5, the proof of Lemma 4.9]),

$$\begin{aligned} \delta(\tilde{L}) - p\delta(L) &= (1-p^2) \sum_{i=1}^r [\tilde{D}_{iQ}^+]^2/16 + (-\text{sign } \tilde{W} + p \text{ sign } W)/16 \\ &\quad - (\mu(\tilde{S}) - p\mu(S)) - (\mu(\tilde{S}^*) - p\mu(S^*)). \end{aligned}$$

By the definition of α -invariant in [5, Section 4],

$$\alpha(Z_p, \tilde{S}) + \alpha(Z_p, \tilde{S}^*) = -\text{sign } \tilde{W} + p \text{ sign } W - (\sum_{i=1}^r [\tilde{D}_{iQ}^+]^2) (p^2-1)/3.$$

Therefore,

$$\begin{aligned} \delta(\tilde{L}) - p\delta(L) &= \{1-p^2+(p^2-1)/3\} (\sum_{i=1}^r [\tilde{D}_{iQ}^+]^2)/16 - (\mu(\tilde{S}) - p\mu(S) \\ &\quad - \alpha(Z_p, \tilde{S})/16) - (\mu(\tilde{S}^*) - p\mu(S^*) - \alpha(Z_p, \tilde{S}^*)/16). \end{aligned}$$

First, let $p > 3$. Then by [5, Theorems 11.1 and 12.1],

$$\begin{aligned} \mu(\tilde{S}^*) &= p\mu(S^*) + \alpha(Z_p, \tilde{S}^*)/16, \text{ and} \\ \mu(\tilde{S}) &= p\mu(S) + \alpha(Z_p, \tilde{S})/16 + \{(p^2-1)/24\} \sum_{i=1}^r a_i/b_i, \end{aligned}$$

where note that $(p^2-1)/24$ is an integer. Since $[\tilde{D}_{iQ}^+]^2 \equiv 2a_i/b_i \pmod{1}$ (cf. [5, Lemma 2.6]), it follows that

$$\begin{aligned} \delta(\tilde{L}) - p\delta(L) &= -\{(p^2-1)/24\} \sum_{i=1}^r [\tilde{D}_{iQ}^+]^2 - \{(p^2-1)/24\} \sum_{i=1}^r a_i/b_i \\ &= -\{(p^2-1)/8\} \sum_{i=1}^r a_i/b_i. \end{aligned}$$

Now let $p=3$. By [5, Theorems 11.1 and 12.1],

$$\mu(\tilde{S}^*) = 3\mu(S^*) + 9\alpha(Z_3, \tilde{S}^*)/16, \text{ and}$$

$$\mu(\tilde{S}) = 3\mu(S) + 9\alpha(Z_3, \tilde{S})/16 + 3\sum_{i=1}^r a_i/b_i.$$

Directly or by a transfer argument, $\text{sign } \tilde{W} = \text{sign } W$. Then

$$\begin{aligned} \alpha(Z_3, \tilde{S})/2 + \alpha(Z_3, \tilde{S}^*)/2 &= -\text{sign } \tilde{W}/2 + 3 \text{ sign } W/2 - (\sum_{i=1}^r [\tilde{D}_{iQ}^+]^2)4/3 \\ &\equiv -(\sum_{i=1}^r [\tilde{D}_{iQ}^+]^2)4/3 \pmod{1}. \end{aligned}$$

Then,

$$\begin{aligned} \delta(\tilde{L}) - 3\delta(L) &= -(\sum_{i=1}^r [\tilde{D}_{iQ}^+]^2)/3 - \alpha(Z_3, \tilde{S})/2 - \alpha(Z_3, \tilde{S}^*)/2 \\ &\quad - 3\sum_{i=1}^r a_i/b_i = \sum_{i=1}^r [\tilde{D}_{iQ}^+]^2 - 3\sum_{i=1}^r a_i/b_i = -\sum_{i=1}^r a_i/b_i \end{aligned}$$

in Q/Z , because $[\tilde{D}_{iQ}^+]^2 \equiv 2a_i/b_i \pmod{1}$. This completes the proof.

Theorem 3.5. *Let $\tilde{L} \subset \tilde{S}$ be proper and assume that the covering degree is an odd prime p . Then we have*

$$\delta_0(\tilde{L}) = p\delta_0(L) - \{(p^2-1)/8\} s^*(\tilde{L})$$

in Q/Z , where $s^*(\tilde{L})$ is the half-slope of the link $\tilde{L} \subset \tilde{S}$.

Proof. By Theorem 3.4,

$$\delta_0(\tilde{L}) + \lambda(\tilde{L})/8 = p\delta_0(L) + p\lambda(L)/8 - \{(p^2-1)/8\} \sum_{i=1}^r a_i/b_i.$$

Since $\lambda(L)/p = \lambda(\tilde{L})$ by Lemma 3.2, we have

$$\delta_0(\tilde{L}) - p\delta_0(L) = -\{(p^2-1)/8\} (\sum_{i=1}^r a_i/b_i - \lambda(\tilde{L})) = -\{(p^2-1)/8\} s^*(\tilde{L}).$$

This completes the proof.

Corollary 3.6. *If \tilde{L} is flat, then $\delta_0(\tilde{L}) = \delta_0(L)$.*

Proof. By Lemma 1.5 $s(\tilde{L}) = 0$ implies $s^*(\tilde{L}) = 0$. So, by Theorem 3.5 $\delta_0(\tilde{L}) = p\delta_0(L)$. By Lemmas 1.3, 3.2 and [5, Lemma 4.5], $s(L) = ps(\tilde{L})$, so that $s(L) = 0$. By Corollary 2.8 $2\delta_0(L) = 0$. Using that p is odd, the proof is completed.

References

- [1] M. Freedman and R. Kirby: *A geometric proof of Rohlin's theorem*, Proc. Sympos. Pure Math. 32, Part 2, Amer. Math. Soc., Providence, R.I., 1978, 85–97.
- [2] C. McA. Gordon: *Knots, homology spheres, and contractible 4-manifolds*, Topology **14** (1975), 151–172.
- [3] L. Guillou and A. Marin: *Une extension d'un théorème de Rohlin sur la signature*, C.R. Acad. Sci. Paris **285**, Serie A (1977), 95–98.
- [4] A. Kawauchi: *On 3-manifolds admitting orientation-reversing involutions*, J. Math. Soc. Japan **33** (1981), 571–589.

- [5] A. Kawauchi: *On the Rochlin invariants of Z_2 -homology 3-spheres with cyclic actions*, Japan. J. Math. **8** (1982), 217–258.
- [6] M.A. Kervaire and J.W. Milnor: *On 2-spheres in a 4-manifold*, Proc. Nat. Acad. Sci. U.S.A. **49** (1961), 1651–1657.
- [7] Y. Matsumoto: *An elementary proof of Rochlin's signature theorem and its extension by Guillou and Marin* (preprint).
- [8] K. Murasugi: *On the signature of links*, Topology **9** (1970), 283–298.
- [9] R. Robertello: *An invariant of knot cobordism*, Comm. Pure Appl. Math. **18** (1965), 543–555.
- [10] V.A. Rochlin: *New results in the theory of 4-dimensional manifolds*, Dokl. Akad. Nauk. SSSR **84** (1952), 221–224 (Russian).

Department of Mathematics
Osaka City University
Sumiyoshi-ku, Osaka 558
Japan