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Robertello’s invariant of a classical knot in [9] was generalized by Gordon
in [2] to an invariant of a knot in a Z-homology 3-sphere, and by the author
in [5] to an invariant, §(kC.S), of a knot %k in a Z,-homology 3-sphere S. In
this paper, we shall generalize this invariant to two mutually related invariants,
S(LcS) and §(LCS), of a proper link L in a Z,-homology 3-sphere S. In
the case of a classical proper link, this §,-invariant can be considered as an
invariant suggested by Robertello in [9, Theorem 2]. A difference between
(L S) and §(LcS) is that §,(LC.S) is generally an oriented link type in-
variant, but 8§(LC.S) is an unoriented link type invariant. A proper link in
a Z,-homology 3-sphere (which is not a Z-homology 3-sphere) naturally occurs
when considering a branched cyclic covering of a 3-sphere, branched along
a certain proper link. (If the number of the components of the link is >2,
the branched covering space can not be a Z-homology 3-sphere by the Smith
theory.) So, we consider a proper link L in a Z,-homology 3-sphere S, ob-
tained from a proper link L in a Z,-homology 3-sphere S by taking a branched
cyclic covering, branched along L. When the covering degree is prime, we
shall establish a relationship between §(Lc S) and §(LC.S) and then a relation-
ship between 8,(Lc S) and §,(LC S).

In Section 1 we define and discuss the slope of a link in a 3-manifold as
a generalization of the slope of a knot in a 3-manifold, introduced in [5]. In
Section 2 the §,-invariant and the 3-invariant are defined and studied. Section
3 deals with relationships between §(Lc S) and 8§(LCS) and between 8,(LcC.S)
and §,(LCS).

Throughout this paper spaces and maps will be considered in the piece-
wise linear category, and notations and conventions will be the same as those
of [5] unless otherwise stated.

1. The slope of a link in a 3-manifold

Let M be a connected oriented 3-manifold. Let L be an oriented link
with 7 components in the interior of M. Let o(L) denote the order (=>1) of
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the homology class [L]eH(M; Z). Let 7H,(M) be the torsion part of H,
(M; Z). Let ¢: TH (M) X vH)(M)—> Q|Z be the linking pairing.

DerFINITION 1.1. The slope of the link L, denoted by s(L)=s(LC M) is
defined by the identity
—¢([L], [L]) (o(L)<+0),
= (o(L)=+-0).

If s(L)=0, then we say that the link L is flat.

When r=1, s(L) is the same as the slope defined in [5, Definition 1.4] by
[5, Lemma 1.8]. Letr>2. Let B,, B,, -+, B,_, be mutually disjoint oriented
bands in the interior of M attaching to L as 1-handles. If we obtain a knot
k from L by surgery along such B, B,, -+, B,_,, then we say that the knot &
is obtained from L by a fusion.

S(L) =

Lemma 1.2. Let k be a knot obtained from a link L by a fusion. Then
s(L)=s(k).

Proof. Clearly, [L]=[k] in H(M; Z). The result follows from Defini-
tion 1.1.

Assume that each component %; of L is a knot of finite order, i.e., o(k;)<<

+ o0, 7=1, 2, «--, r. Then the total Q-linking number AL)=MLcCM)eQ

of the link LC M is defined by AM(L)= ] Link,(k;, ;). When r=1, we under-
Y

stand that A(L)=0.
Lemma 1.3. In Q/Z s(L)=3).1 s(k:)—2M(L).

Proof. Since o(L)<—+ oo and [L]=3%L; [k], s(L)=—¢([L], [L])=2]it1—
¢([], [B]) =223 ¢([k], [k;]). Using that ([ki], [k;])=Linky(k;, ;) (mod 1)

for 7= j and s(k;)=—¢([%:], [k:]), we have a desired congruence.

For each element s€(Q/Z we can have coprime positive integers @, b such
that s=a/b (mod 1). This fraction a/b and the denominator & are called a
normal presentation and the demominator of the element s€Q/Z, respectively.
Now we assume that the denominator of the slope s(&;) is odd, =1, 2, -, 7.
Then s(k;) has a normal presentation of type 2a,/b;, i=1, 2, -+, 7.

DrrFINITION 1.4, We define
s*¥(L) = 2211 a;/b;—n(L)
in Q/Z and call it the half-slope of the link LCS.
The following is easily proved.
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Lemma 1.5. In Q/Z 2s*¥(L)=s(L), and if s(L)=0, then s*(L) is 0 or 1/2
according as the denominator of N(L)EQ|Z is odd or even.

2. The d,invariant and the g-invariant

We consider an oriented link L with components k;, i=1, 2, -+, 7, in an
oriented Z,-homology 3-sphere S.

DeriNiTION 2.1. The link L is proper if the mod 2 linking number, Linkg
(k;, L—Fk;),=0 for all 7, 1<i<r. (We understand a knot to be a proper link.)

Let W be a compact oriented 4-manifold. Let F be a locally flat, ori-
ented (possibly disconnected) surface of (total) genus 0 in W. We say that
such a pair FC W is admissible for a link LC.S, if S is a component of W, oF
=L, H(0W; Z,)=0 and [F3]leH,W; Z,) is characteristic, i.e., [F3]-x=x" for
all xeHy(W; Z,), where F3 is a (mod 2) cycle obtained from F by attaching
(mod 2) 2-chains ¢; in S with 8c,=—k;, i=1, 2, «-+, 1.

Lemma 2.2. For any proper link LCS there exists an admissible pair
Fcw.

Proof. Let T(L)=U;L;T(k;) be a tubular neighborhood of L= UL, k;
in S. Construct a 4-manifold W= (—S)x[—1, 1JUD*xD}{U -+ UD*x D?
identifying T(k;)x 1 with (8D*)x D%, i=1, -, r, so that H,(0W; Z,)=0. Let
D;=(—k;)x[—1, 1JUD?*x0; be a disk. Let F=U;.; D;. To show that
FcW is admissible for LCS, it suffices to check that [FyleH(W; Z,) is
characteristic. Note that [D}],i=1, -+, 7, form a basis for H,(W; Z,). Since
[F3]=2):L1[D?], we have
[F2]-[D%] = [D&l+ 23 [Dih]-[Dr

= [D:P+Linkg(L—k;, &;),

= [DLP i=1, -, r.
This implies that [F5] is characteristic. 'This completes the proof.

The pair FC W, constructed in the proof of Lemma 2.2 is called a stand-
ard admissible pair for the proper link LS.

DeriNITION 2.3. Let LC S be a proper link. Then we define
8(L) = Sy(L.C S)=([F§F—sign W)/16— u(aW)

in Q/Z for any admissible pair F C W for LC.S, where F} is a rational 2-cycle
obtained from F by attaching rational 2-chains ¢? in S with 0cf=—k;, i=1,
l.o’ r.

RemARk 2.4. We can define the invariant §,(L C.S) by using a more gen-
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eral pair FC W, where the (total) genus of F may be positive or F' mac be non-
orientable (cf. Freedman-Kirby [1], Guillou-Marin [3], Matsumoto [7]).

To see the well-definwsness of §y(L), consider a standard admissible pair
F*cCW?* for LS. Construct an oriented 4-manifold W=W U — W* identify-
ing two copies of S. Then X1=FU —F%* is the disjoint union of 2-spheres.
Since [F3] and [F#*] are characteristic, we see that the mod 2 homology class
3, €H,(W; Z,) is characteristic. By the Rochlin theorem ([6], [10]), u(d W)
—(F—sign W)[16 in Q/Z. But, p(dW)=pu(@W)—u(@W*), [P=[F4—
[—F% P=[FsP—[F%'] and sign W=sign W—sign W*, where we count
[F§*P [F§*F in W*. It follows that

([F§]?—sign W)/16— p(0W) = ([F§*]*—sign W*)/16— u(dW*)
in Q/Z, showing the well-definedness of 8,(L).

DEerFINITION 2.5. Two links L;C.S;, 1=0, 1, are said to be cobordant in
the weak sense if:

(1) 'There exists a compact oriented 4-manifold W such that dW=—S,U
Sy and H (W, S;; Z,)=0, =0, 1.,

(2) There exists a locally flat, compact oriented (possibly disconnected)
surface F of (total) genus 0 in W such that 0F=—L,UL, (See Figure 1).

w
Figure 1.

Theorem 2.6. If proper links L;CS;, i=0, 1, are cobordant in the weak
sense, then 8,(L,)=38,(L,).

Proof. Let FC W be a cobordism pair for L;CS;, =0, 1, stated in Defini-
tion 2.5. Construct an oriented 4-manifold W'=W UD*X [0, 1] identifying
a 3-cell in S;—L; with D®x{ for each 7, 7=0, 1. Then 9W’ is a connected
sum (—Sy)#S;, which is a Z,-homology 3-sphere containing a proper link L’,
regarded as the union —L,UL,. Clearly, 8,(L'C(—Sp)#S;)= —8(LyC Sp)+
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8(L,cS;). Note that H(W'; Z,)=0. Then FCW’ is admissible for L'C
(—Sy)#S,, and hence

8L’ C(—SY4Sy) = ([F3T—sign W')/16—u((—SY#S) = 0,

because W' is spin and H,(W’; Q)=0. Thus, 8y(L,CS,)=08y(L,CsS,). This
completes the proof.

In [5, Definition 2.1] the 8-invariant 8(k) of a knot % in S was defined so
as to be 8(k)=25(k).

Corollary 2.7. Let kCS be a knot obtained from a proper link LCS by
a fusion. Then 8,(L)=238,(k)=25(k).

Proof. The knot RC S and the link LC S are cobordant in the weak sense.
The result follows from Theorem 2.6.

By a Dehn surgery we obtain from a knot 2CS a unique (up to homeo-
morphism), closed, connected, oriented 3-manifold M such that H,(M; Z)/odd
torsion==Z, called a Z,-homology handle (cf. [5, Remark 1.6 and Corollary

1.7]). In [4] we defined an invariant (M), being 0 or 1, of M, calculable
from the Z,-Alexander polynomial of M.

Corollary 2.8. Let LCS be a proper link. Let M be the Z,-homology
handle of a knot kC S, obtained from L by a fusion. Let a/b be a normal presen-
tation of the slope s(LC.S) with a odd. Then we have

8y(L) = €(M)/2+(a/b—ab)/16
n Q|Z.
Proof. By Lemma 1.2 s(L)=s(k). By Corollary 2.7 §,(L)=8(k). Then

the desired congruence follows from [5, Theorem 2.7 and Corollary 3.6].

DeriNiTION 2.9. For a proper link L in S we define
(L) = §(LcS) = §(LcS)+MLcS)/8
in Q/Z.

RemMARK 2.10. Definition 2.9 is analogous to Murasugi’s definition of the
unoriented link type signature in [7] (cf. [5, Remark 4.8]).

Theorem 2.11. The invariant 8(LC S) is an unoriented link type invariant
of a proper link LCS. That is, (LCS)=38(L'CS") for any link L'C S’ with
an orientation-preserving homeomorphism S— S’ sending L to L' setwise.

Proof. It suffices to show that §(L) does not depend on any particular
orientations of the components, k;, of L. Let F=U;.,D;CW be a standard
admissible pair for L=U L1k, CS. Note that [F51?=2],L:[Die)?+2>2)[Die]*

>3
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[Die]=231 [Die]P—2ML). Then
S(L) = 8(L)+ML)/8 = (2L, [Die)—sign W)/16— u(dW) .

Since [D}o]? is not altered by changing the orientation of D; (that is, k;), we
have a desired result.

A link LC.S is amphicheiral if there is an orientation-preserving homeo-
morphism S——.S sending L to itself setwise. The following is direct from
Theorem 2.11.

Corollary 2.12. If a proper link LCS is amphicheiral, then 28(L)=0
in Q/Z.
Here is an example of a classical proper link.

ExampLE 2.13. Let L, be an 7-component link in a 3-sphere S? illustrated
in Figure 2, where r>2. The link

Figure 2.

L, is clearly proper. Choosing a suitable orientation of S3 A(L,)=r. Since
we can have a trivial knot from L, by a fusion, we see that §,(L,)=0. There-
fore, 8(L,)=r/8 in Q/Z.

3. Branched cyclic coverings and the 3- and 8-invariants

We consider a link Zc S obtained from a link LC.S by taking an n-fold
cyclic branched covering of S, branched along L. Namely, S is the branched
covering space over S, associated with an epimorphism H,(S—L; Z)—Z, send-
ing each meridian of L to a unit of Z,, and L is the lift of L. We assume that
S is a Z,-homology 3-sphere.

First we consider the case z=2. Then L and L are knots by the Smith
theory. Let L=k and L=F.

Theorem 3.1. Let 2a/b be a normal presentation of the slope s(k). Then
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8(k) = 8(k)—(a/b—ab)/8
in Q|Z. In particular, if k is flat, then 8(k)= (k).
Proof. By [5, Lemma 4.5] s(k)=2s(k)=4a/b. Since (2a-+b)/b and (4a-+b)/b

are normal presentations of s(k) and s(k), respectively, we see from Corollary

2.8 that
3(F) = €(I)2+ {(2a+b)/b—(2a-+b)b} /16 = & (M)[2+(a/b—ab)/8—+(1—b?)/16 ,

and

8(k) = €(M)/2+ {(4a+b)/b—(4a-+b)b} /16 = € (M)/2+(a/b—ab)/4+(1—b7)/16,

where M and M are the Z,-homology handles of kC S and kC S, respectively.
Since M is a 2-fold covering space of M, it follows from [4, Lemma 4.2] that
€(M)=&(M). Now we have a desired congruence. This completes the
proof.

Next, to consider the case that the covering degree z is an odd prime p,
we remark the following:

Lemma 3.2. \(L)=x(L)/n.
Corollary 3.3. L is proper if and only if L is proper.

Proof of Lemma 3.2. It suffices to show that for i==j Links(k;, k;)=
Linkg(k;, k;)/n. Let F; be a characteristic surface (cf. [5]) of %; in .S such that
L—kF; intersects F; transversally. Write [0F;]|=a,r;,[m;]+b;r;[l;] in H(0T(k;); Z)
for a meridian-longitude pair (m;, [;) of T(k;) such that the lift of /; has =
components, where (a;, b;)=1 and 7, is an integer>0. Let /; be a component
of the lift of /;, For the lift 7; of m;,, the pair (M;, [;) forms an m.l. pair of a
tubular neighborhood T'(k;) of k; which is the lift of 7T(k;). Note that the
lift '; of F, is an oriented surface which is a branched Z,-covering space of
F; branched over the set F;N(L—&k;). Clearly [0F;]=ax[#,]+brmn[l;] in
H,(0T(k;); Z). Since the intersection numbers, Int(F, ;) and Int(F; k) are
equal, we have

Links(k;, k;) = Int(F;, k;)/brm = Int(F;, k;)/brm = Linkg(k;, k,)/n .
This completes the proof.

Proof of Corollary 3.3. When 7 is even, L and L are knots by the Smith
theory. So, assume 7 is odd. It suffices to show that Linkz(k, k,),=
Linkg(k;, k;), for i==j. This is obtained by a mod 2 version of the proof of
Lemma 3.2, since b;7;n is odd. This completes the proof.

We shall show the following theorem, where note that (p*—1)/8 is an in-
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teger.

Theorem 3.4. Let L=U;L,k;CS be a proper link and assume that the
covering degree is an odd prime p. Let 2a;[b; be a normal presentation of the
slope s(k;), i=1, 2, ---, 7. Then

8(L) = pS(L)—{(p*—1)/8} 22:Zs aifb;
in Q/Z.

Proof. Let FCW and FC W be standard admissible pairs for LS and
Lc S, respectively, such that FC W is obtained from FCW by taking a Z,-
covering branched along F. [One can see directly or by a transfer argument
that such pairs exist.] Let dW—S=S* and 0W—S=S* By the proof of
Theorem 2.11,

8(L) = (X% [Die)—sign W)/16—p(S)—u(S*), and
(L) = (L1 [Die]—sign W)/16—u(S)—u(S¥),

where F= U ;%,D;, F= U ., D;, and D; corresponds to D;. Then since [DioJ*/p
=[D3e]? (cf. [5, the proof of Lemma 4.9]),

8(L)—pd(L) = (1—p") 2211 [Dio]/16+(—sign Wp sign W)/16
~(#(8)—pu(S))—(u(S*)—pu(S*)) .
By the definition of @-invariant in [5, Section 4],
a(Z,, 8)+a(Z, §%) = —sign W-p sign W—(5,7. [Di]?) (p°—1)/3
Therefore,

S(L)—pd(L) = {1—p*+(p*—1)/3} (i1 [Diel)/ 16— (1(S) —p ()
—a(Z,, $)/16)—(u(S*)—pu(S*)—a(Z,, 5*)/16).

First, let p>3. Then by [5, Theorems 11.1 and 12.1],
w(S*) = pu(S*)+a(Z,, §%)/16, and
w(S) = pu(S)+a(Z,, 8)/16+{(p*—1)24} 2L aifb;

where note that (p*—1)/24 is an integer. Since [Djo]?*=2a;/b; (mod 1) (cf.
[5, Lemma 2.6]), it follows that

S(L)—pB(L) = — {(p*— 1)/24} Sha [DieF— {(p°—1)/24} it aft,
= —{(*—1)/8} DLaaifb; .

Now let p=3. By [5, Theorems 11.1 and 12.1],
w(S*) = 3u(S*)+9a(Z,, §%)/16, and
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w(S) = 3u(S)+9(Zs, S)/16+3 X% arfb
Directly or by a transfer argument, sign W= sign W. Then
a(Zs, 8)[2-+a(Zs, S*)[2 = —sign W|2+3 sign W[2— (L1 [Di])4/3
= —(XiL1[Dio])4/3 (mod 1).
Then,

S(L)—38(L) = — (L1 [D¥e])[3—a(Zs, S)[2—t(Z, S*)[2
—3XNl1a;/b; = SN [DieP—33Nma/b; = —D it a;/b;

in Q/Z, because [D¢]*=2a;/b; (mod 1). This completes the proof.

Theorem 3.5. Let LCS be proper and assume that the covering degree
is an odd prime p. Then we have

8o(L) = pdy(L)— {(p*—1)/8}s*(L)

in Q|Z, where s*(L) is the half-slope of the link LS.

Proof. By Theorem 3.4,

S(L)-+MI)/8 = pSL)+PM(L)/8— {(p—1)/8} Sz ab
Since ML)/p=x(L) by Lemma 3.2, we have
8o(L)—p8y(L) = —{(#*—1)/8} (Xilraifb;—NML)) = — {(p*—1)/8}s*(L) .

This completes the proof.

Corollary 3.6. If L is flat, then §(L)=384(L).

Proof. By Lemma 1.5 s(L)=0 implies s*(L)=0. So, by Theorem 3.5
8(L)=p8(L). By Lemmas 1.3, 3.2 and [5, Lemma 4.5], s(L)=ps(L), so that
s(L)=0. By Corollary 2.8 2§,(L)=0. Using that p is odd, the proof is com-
pleted.
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