

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Hiramine, Y. Osaka J. Math. 23 (1986), 563-575

ON TRANSLATION PLANES OF ORDER q³ WITH AN ORBIT OF LENGTH q³—I ON *L*

YUTAKA HIRAMINE

(Received May 2, 1985)

1. Introduction

In his paper [7], Suetake constructed a class of translation planes of cubic order q^3 and he improved his results for each prime power q such that 2 is a nonsquare element of $GF(q)$. Any plane of the class admits a collineation group *G* of the linear translation complement such that

(*) G has orbits of length 2 and q^3-1 on l_{∞} .

In this paper we construct a new class of translation planes of order $q³$ with the property (*) for each prime power q with $q \equiv 1 \pmod{2}$ (§2). If π is any translation plane of order q^3 with the property (*) and if π is not an Andre plane, then we have either (i) the linear translation complement $LC(\pi)$ is of order $3^{i}(q^{3}-1)(q-1)$ with $0 \leq i \leq 2$, or (ii) $q=3$ and $LC(\pi)$ is isomorphic to *SL(2^y* 13) (§3). In §4, we present a certain characterization of the class of planes with the property (*). Throughout the paper all sets, planes and groups are finite. Our notation is largely standard and taken from [3] and [5],

2. Description of the class of planes Π

Let $F=GF(q^3)$ be a field order of q^3 , where $q=p^*$ and p is an odd prime. Let K be a subfield of F order q . Throughout the paper we consider the translation plane π of order q^3 which is a 6 dimensional vector space over K.

To represent spread sets and collineation groups of π , we use a method of [6]; Let $w{\in}F{+}K$ and put a 3×3 matrix $W{=}\n\bigl(w\,\,\overline{w}\,\,\overline{\overline{w}}\,\,\bigr),$ where $\overline{w}{=}\overline{w}^4$ $\sqrt{w^2} \; \overline{w}^2 \; \overline{\overline{w}}^2$ and $\overline{w} = w^{q^2}$. Let $M(3, q_1)$ be the set of all matrices over $GF(q_1)$ for a prime power q_1 . Set $M(3, q)^* = W^{-1}M(3, q)W \subset M(3, q^3)$, $GL(3, q)^* = W^{-1}GL(3, q)W$ *ua τ b* and $V^* = V(3, q)W = \{(v_1, v_2, v_3)W \, | \, v_1, v_2, v_3 \in K\}$. Then $M(3, q)^* = \left| \left(\begin{array}{cc} b & a & \overline{c} \end{array} \right) \right|$ $GL(3, q)^* = {P \in M(3, q)^* | \det(P) \neq 0}$ and V^*

(cf. [6]). Here *"dei"* means the determinant of a matrix. Clearly *GL(3, q)** acts naturally on V^* as the general linear group of the vector space over K . The

 \sqrt{a} **c** b notations $\bigl\vert \ b \ a \ \bar{c} \, \bigr\rvert$ and $(a, \bar{a}, \bar{\bar{a}})$ are abbreviated to $[a, \, b, \, c]$ and to $[a],$ respectively. *\c b a)*

For $k \in K$, we have $k[a, b, c] = [ka, kb, kc]$ and $k[a] = [ka]$. Set $I(x) = [x, 0, 0]$, $I=I(1)$, $O=I(0)$ and $J=[0, 1, 0].$

Under these conditions a set $\Sigma \subset GL(3, q)^* \cup \{O\}$ is defined to be *a spread set* if $O \in \Sigma$, $|\Sigma| = q^3$ and det $(M-N) \neq 0$ for any two distinct M, $N \in \Sigma$.

The translation plane π which corresponds to Σ is defined in the usual manner ([5]); the set of points of π is $V^* \times V^*$ and the set of lines passing through the origin is $\mathcal{L} = \{L(M) | M \in \Sigma\} \cup \{L(\infty)\}\$, where $L(M) = \{([x], [x]M)\}\$ $x \in F$ } and $L(\infty) = \{([0], [x]) | x \in F\}$.

Throughout the rest of this paper let u be a nonsquare element of K . As $(q^2+q+1 \equiv 1 \pmod{2}$, u is also a nonsquare element of F. Let F be the algebraic closure of *F* and set $\tilde{F} = F - \{\pm 1\}$, $F^* = F - \{0\}$, $K^* = K - \{0\}$.

We now define Π_K a class of translation planes of order q^3 . Let Φ_K be the set of all ordered triples $(a, b, c) \in K \times K \times K$ such that

 $\mathcal{S}_{(a,b,c)} = \{I(x) \, [a,b,c] \, I(x) \, | \, x \in F\} \cup \{I(x) \, u[a,b,c]^{-1} \, I(x) \, | \, x \in F\}$

is a spread set. We denote by $\pi_{(a,b,c)}$ the translation plane corresponding to the spread set $\Sigma_{(a,b,c)}$ and set $\Pi_K = \{ \pi_{(a,b,c)} \, | \, (a, \ b, \ c) \in \Phi_K \}$. Furthermore set $\Pi = \bigcup_{\kappa} \Pi_{\kappa}$, where *K* runs through all finite fields of odd characteristic.

Clearly the set of matrices $I(x)$ ($x \in F^*$) forms an abelian group of order q^3-1 . Hence an ordered triple $(a, b, c) \in K \times K \times K$ is contained in Φ_K if and only if

(i) $f(x) = \det (I(x) [a, b, c] I(x) - [a, b, c]) \neq 0$ for any $x \in \tilde{F}$,

(ii) $g(x) = \det (I(x) [i, j, k] I(x) - [i, j, k]) \neq 0$ for any $x \in \tilde{F}$, where $[i, j, k] =$ *u*[*a*, *b*, *c*]⁻¹, and

(iii) $h(x) = \det(I(x)[a, b, c] I(x) - [i, j, k]) \neq 0$ for any $x \in F$. Using these we can show that $\Phi_K = \Phi_K^{(1)} \cup \{k\}^{(2)}$, where $\Phi_K^{(1)} = \{(a, b, c) \in K \times K \times K\}$ $\{a(a^2-bc)=0, b^3+c^3-2abc\neq0\}$ and $\Phi_K^{(2)}=\{(a, b, c)\in K\times K\times K\mid a(a^2-bc)\neq0,$ $b^3+c^3-2abc=0$ } (Proposition 1). As a corollary, we have

Theorem 1. $\Pi_K = \{ \pi_{(a,b,c)} | (a, b, c) \in \Phi_K^{(1)} \cup \Phi_K^{(2)} \}.$

In the rest of this section we prove $\Phi_{\texttt{K}}{=}\Phi_{\texttt{K}}^{(1)}{\cup}\Phi_{\texttt{K}}^{(2)}.$ Let $(a,b,c){\in}{K}{\times}{K}{\times}$ *K* and set $A=a$, $B=a^2-bc$, $C=b^3+c^3-2abc$ and $D=a^3+b^3+c^3-3abc$. Then $AB+C=D=$ det [a, b, c].

Lemma 2.1. *Assume* $D+0$ *. Then*

(i) $f(x)=ABN(x^2-1)+CN(x^{q+1}-1)$ and $g(x)=u^3D^{-2}f(x)$. Here $N(x)=$ *z q2+q+ for*

(ii)
$$
h(x)=D^{-1} \det (([a, b, c] I(x))^2 - uI).
$$

Proof. By direct calculation we have (i) and $g(x)=u^3 \det (I(x) [a, b, c]^{-1})$ $I(x)$) det ([a, b, c] $-I(x)^{-1}$ [a, b, c] $I(x)^{-1}$) det [a, b, c] $^{-1} = u^3$ (det [a, b, c]) $^{-2} f(x)$ hence (i) holds. Similarly we have (ii).

Lemma 2.2. Let $r(t, x) = \det(xI - [a, b, c]I(t))$ be a characteristic poly*nomial of* $[a, b, c]$ $I(t)$ with $t \in F$. Then

(i) $r(t, x) = x^3 - AT(t)x^2 + BT(t^{q+1})x - DN(t)$. (Here $T(z) = z + z^q + z^{q^2}$ is *the trace map.)*

(ii) Let $t \in F$. Then $h(t)=0$ if and only if $u=-BT(t^{q+1})$ and $uAT(t)$ $=-DN(t).$

Proof. By direct calculation we have (i). Suppose $u = -BT(t^{q+1})$ and $uAT(t) = -DN(t)$ for some $t \in F$. Then, by (i), $r(t, x) = x^3 - kx^2 - ux + uk =$ $(x-k)(x^2-u)$, where $k=AT(t)\in K$. Let v be a root of x^2-u in the algebraic closure \bar{F} . Then v is an eigenvalue of $[a, b, c] I(t)$. Hence $h(t) = 0$. Conversely, assume $h(t)=0$ for some $t \in F$. Let z_1, z_2, z_3 be the eigenvalues of [a, b, c] $I(t)$. Then, by Lemma 2.1, $z_i^2 = u$ for some *i*. As $r(t, x)$ is a cubic polynomial over *K* and $z_i \in \overline{F}-F$, $r(t, x)=(x-k)(x^2-u)$ for some $k \in K$. Hence $AT(t)=k$, BT $(t^{q+1}) = -u$ and $-DN(t) = ku$. Thus $u = -BT(t^{q+1})$ and $uAT(t) = -DN(t)$.

In Lemmas 2.4-2.7, we assume the following.

Hypothesis 2.3. (a, b, c) $\in \Phi_K$ and $ABC = 0$.

Lemma 2.4. Set $i = uA/D$, $j = u/B$ and $w(x) = (x^3 - jx)/(x^2 - i)$. Then,

- (i) *i is nonsquare in K.*
- (ii) *w(x) is a bijection from K onto itself.*

Proof. Since $C \neq 0$, $i(i-j) \neq 0$ and so $(x^3 - jx, x^2 - i) = ((i-j)x, x^2 - i) = 1$. Deny (ii) and let $e \in K - \{w(t) | t \in K, t^2 - i \neq 0\}$. Then $x^3 - ex^2 - jx + ie$ is an irreducible polynomial over K. Let t be a root of this polynomial in \bar{F} . Then $t \in F-K$ and so $x^3 - ex^2 - jx + ie = (x-t)(x-t^q)(x-t^{q^2})$. Hence $T(t) = e$, $T(t^{q+1})$ $=-j$ and $N(t) = -ie$ and so $u = -BT(t^{q+1})$ and $-DN(t) = uAT(t)$. This contradicts (ii) of Lemma 2.2. Thus (ii) holds and (i) follows from (ii).

Lemma 2.5. Set $k=3i^2+6ij-j^2$. Then, either $9i=j$ or $F(y)=4iy^4-ky^2+$ *M 2) is nonsquare in K for*

Proof. We have $w(x)=w(y)$ if and only if $(x-y)((y^2-i)x^2-(i-j)yx-i)$ (y^2-j) =0. By (i) of Lemma 2.4, y^2-i+0 . Assume $F(y)$ is square in K for some *y* and set $v = \sqrt{F(y)} \in K$. Then $w(x) = w(y) = w(x')$, where $\{x, x'\} =$ ${((i-j)y \pm v)/2(y^2-i)}$. By Lemma 2.4 (ii), $y=x=x'$. Hence $v=0$ and $y(2y^2 - 3i + j) = 0$. As $ij \neq 0$, $y \neq 0$ and so $0 = v^2 = 4i((3i - j)/2)^2 - (3i^2 + 6ij - j^2)$

 $(3i-j)/2+4i^2j=(i-j)^2(9i-j)/2$. Therefore $9i=j$.

Lemma 2.6 $9i+j$.

Proof. Assume $9i = j$. Then $9AB = D$. As $D = 0$, char $K = 3$. Let $e \in K$ $-R$, where $R = \frac{27(x^3 - 3x^2 - 2)}{(3x+1)}x \in K$, $x \neq -3^{-1}$. Since $(x^3-3x^2-2)=(3x+1)(9x^2-30x+10) - 64$, $S(x)=27(x^3-3x^2-2)-e(3x+1)$ is ir reducible over K. Hence $S(x)=27(x-t)(x-t^q)(x-t^{q^2})$ for some $t\in F-K$. Therefore $T(t)=3$, $T(t^{q+1}) = -e/9$ and $N(t)=2+e/27$. In particular $T(t) T(t^{q+1}) - 3N(t) + 3 = 0$. However, by Lemma 2.1(i), $f(t) = AB(N(t^2-1) + 8N(t^2-1))$ $(t^{q+1}-1))=AB(T(t)-T(t^{q+1})-3N(t)+3) (T(t)+T(t^{q+1})-3N(t)-3)=0$, a contradiction.

Lemma 2.7. $q \le 13$.

Proof. By Lemmas 2.5 and 2.6, $F(y)$ is nonsquare in K for any $y \in K$. Applying Lemma of [8], either $q \le 13$ or $k^2 - 4 \times 4i \times 4i^2 j = (i-j)^3(9i-j) = 0$. Again, by Lemma 2.6, $9i - j \neq 0$ and therefore $q \leq 13$.

Lemma 2.8. Let $E(y)=dy^4+ey^2+f$, d, e, $f\in K$ and assume that d is non*square in K.* If $q \leq 13$ and $E(y)$ is nonsquare for each $y \in K$, then $e^2-4df=0$.

Proof. Let K_1 be the set of nonzero square elements of K . The $E(y)$'s satisfying the conditions above are as follows, which we obtained by using a computer

(1) *K=GF(13): (d, e, f)=(2m,* 2m, *7m), (2m, 5m, 8m), (2m, 6m, Urn),* $(2m, 7m, 11m)$, $(2m, 8m, 8m)$, $(2m, 11m, 7m)$, $m \in K₁$.

(2) K=GF(11): (d, e, f)=(2m, m, 7m), (2m, 3m, 8m), (2m, Am, 2m), $(2m, 5m, 11m), (2m, 9m, 6m), m \in K₁$.

(3) $K = GF(9) = \langle w \rangle GF(3)$, where $w^2 = -1$: $(d, e, f) = ((w+1)m, m, (w+1))$ *2)m), ((w+l)m, 2m, (w+2)m), ((w+l)m, wm, (2w+l)m), ((w+l)m, 2wm, (2w+* $1\vert m\rangle$, $m \in K_1$.

(4) $K=GF(7)$: $(d, e, f) = (3m, 3m, 6m)$, $(3m, 5m, 5m)$, $(3m, 6m, 3m)$, $m \in K_1$.

- (5) $K=GF(5)$: (d, e, f) = (2m, 2m, 3m), (2m, 3m, 3m), $m \in K_1$.
- (6) $K=GF(3)$: (d, e, f) = (2m, m, 2m), $m \in K_1$.

Using these, we can verify that $e^2-4df=0$ for each case.

Proposition 1. $\Phi_K = \Phi_K^{(1)} \cup \Phi_K^{(2)}$.

Proof. Assume $D+0$ and $AB=0$. Then $C=D+0$. Hence, by Lemma 2.1, $f(x) \neq 0$ and $g(x) \neq 0$ for any $x \in \tilde{F}$. By Lemma 2.2, $h(t) \neq 0$ for any $t \in F$. Therefore $\Phi_{K}^{(1)} \subset \Phi_{K}$.

Assume $D+0$ and $C=0$. Then $AB=D+0$ and so, by Lemma 2.1, $f(x)=0$ and $g(x) \neq 0$ for any $x \in \tilde{F}$. If $h(t) = 0$ for some $t \in F$, then $t \neq 0$ and $T(t)$ $T(t^{q+1})$ $-N(t)=0$ by Lemma 2.2 (ii). Since $T(t) T(t^{q+1})-N(t)=N(t+t^q)$, it follows

that $t^{q-1} = -1$. However, this implies $2|q^2+q+1$, a contradiction. Therefore $\Phi_{K}^{(2)} \subset \Phi_{K}$.

Assume $D+0$ and $ABC+0$. Then, by Lemmas 2.5–2.8, $k^2-4 \times 4i \times 4i^2=$ 0. As we have seen in the proof of Lemma 2.7, this is a contradiction. Therefore $\Phi_K = \Phi_K^{(1)} \cup \Phi_K^{(2)}$.

REMARK 2.9. We can easily verify that the planes constructed in [7] are contained in $\{\pi_{(a, b, c)} | (a, b, c) \in \Phi_K^{(1)}\}$ ($\subset \Pi_K$).

3. The planes with the orbits of length 2 and q^3-1

Throughout this section we assume the following.

Hypothesis 3.1. (i) π is a translation plane of order q^3 with kern K= *GF(q)^y where q is a power of an odd prime p.*

(ii) *A subgroup G of the linear translation complement of π has orbits* Γ *and* Δ of length 2 and q^3-1 , respectively, on l_{∞} .

(iii) *π is not an Andre plane.*

Let Σ be a spread set corresponding to π and let $C(\pi)$ denote the translation complement of π . The linear translation complement $LC(\pi)$ of π is defined

by the set of all nonsingular 6×6 matrices $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ such that (i) A, B, C, $D \in M(3, q)^*$.

(ii) If C is nonsingular, then $C^{-1}D \in \Sigma$. (In this case $L(\infty)g=L(C^{-1}D)$.)

(iii) If C is singular, then $C=0$ and D is nonsingular. (In this case $L(\infty)$) $g=L(\infty)$.)

(iv) Given $M \in \Sigma$, if $A+MC$ is nonsingular, then $(A+MC)^{-1}(B+MD)$ $E \in \Sigma$. (In this case $L(M)g = L(M_1)$, where $M_1 = (A + MC)^{-1}(B + MD)$.)

(v) Given $M \in \Sigma$, if $A+MC$ is singular, then $A+MC=0$. (In this case $L(M)g=L(\infty)$.)

Set $\mathcal{L} = \{L(M) | M \in \Sigma\} \cup \{L(\infty)\}\$. Then, since the restriction $LC(\pi)\mathcal{L}$ is isomorphic to $LC(\pi)^{l_{\infty}}$, we often identify $\mathcal L$ with l_{∞} .

By Lemma 2.1 of [5], without loss of generality we may assume $\Gamma = \{L(\infty),$ *L*(*O*)} and $G = LC(\pi)_{\Gamma}$, the global stabilizer of Γ in $LC(\pi)$. Set $H = G_{L(\infty), L(0)}$, the stabilizer of $L(\infty)$ and $L(O)$ in G. Then $|G:H| = |\Gamma| = 2$ and $\left\{ \begin{pmatrix} A & B \\ C & C \end{pmatrix} \right\}$ $, B \in GL(3, q)^* \ge H \ge \{a \begin{pmatrix} I & O \\ O & I \end{pmatrix} | a \in K^* \}$. Moreover $|\Delta| = q^3-1 | |G|$ and so $(-1)(q^2+q+1)/2$ | |H|. \overline{Q} Set $U_1 = \{I(a) | 0 \neq a \in F\}$ and $U = U_1 \langle f \rangle$, $J = [0, 1, 0]$. Furthermore set

 μ and σ $-$

Lemma 3.2. Let K_1 or K_2 be the group of homologies in H with axis $L(\infty)$

or $L(O)$, respectively. Let f_1 or f_2 be a homomorphism from H to $GL(3, q)^*$ defined by $f(A|O) = B$ or $f(A|O) = A$, respectively. Then, a basis may be choosen \sqrt{O} *B'* \sqrt{O} *B' for* $\pi (=V^* \times V^*)$ so that $H \leq \tilde{U}$ and $f_i(H) \leq U$ for $i=1, 2$. In particular, $|H/K_i|$ $|3(q^3-1)|$.

Proof. Clearly K_1 and K_2 are normal subgroups of H and $K_1 \cap K_2 = 1$. Hence $H/K_1\!\!\simeq\!\!f_1\!(H)\!\subset\! GL(3,\;q)^*$ and H/K_1 has a normal subgroup K_1K_2/K_1 $(\simeq K_2)$. By Hypothesis 3.1 (ii), K_1 and K_2 are G-conjugate and $|K_1| = |K_2|$ $|q^3-1$. In particular $p \nmid |K_2|$.

Assume K_2 is nonsolvable. Then H/K_1 has a normal subgroup isomor phic to $SL(2, 5)$ by Corollary 3.5 of [5] and $p \nmid | SL(2, 5)|$. In particular K_1 has a characteristic subgroup isomorphic to $SL(2, 5)$ and so $O_p(H/K_i)=1$ by the structure of Aut(PG(2, q)), $1 \le i \le 2$. Let g be a natural homomorphism from $GL(3, q)^*$ into $PGL(3, q)$. Applying the results of [2], $|g(f_1(H))|$ 3 $\|PSL(2, 5)|(q-1)$. Hence $\|H\| \le |K_1| \times (q-1)^2 \times 180$. On the other hand $|K_1K_2| = |K_1|^2 \mid |H|$ and so $|H| \mid (q-1)^4 (180)^2$. However, since $(q^2+q+1, 2)$ $(x,5)=1$, we have $(q^2+q+1, |H|) \leq 3$, contrary to $(q^3-1)/2 |H|$. Therefore *K2* is solvable.

Assume $(|K_2|, q^2+q+1)$ >3. Then $(|g(f_1(K_2))|, q^2+q+1)$ >3. By [2], $\vert \textit{g}(f_{\textit{1}}(H)) \vert \, \vert \, 3(q^2+q+1)$ (3, $q-1$) and $f_{\textit{1}}(H)$ is $GL(3,q)^*$ -conjugate to a subgroup of U .

Next assume $(|K_2|, q^2 + q+1) \leq 3$. Then $g(f_1(H))$ is a subgroup of $GL(3, q)^*$ such that $(q^2+q+1)/(3, q-1) \mid |g(f_1(H))|$. By [2], we have either $SL(3, q)^*$ ≤ $f_1(H)$ or $f_1(H)$ is $GL(3, q)^*$ -conjugate to a subgroup of U. Suppose $SL(3, q)^* \leq$ $/1~0~1^\circ$

and let *z* be an element of order *p* such that $Wf_1(z)W^{-1}$ $=$ $\mid 0~1~0$ \mid . Then

z fixes exactly q^2 vectors in $L(\infty)$. Therefore the fixed structure of *z* is a subplane of π of order q^2 , contrary to Bruck's Theorem [4]. Thus, choosing a suitable basis of V^* , we may assume $f_1(H) \subset U$. By considering the mapping f_2 , similarly we may assume $f_2(H) \mathop{\subset} U$. Thus the lemma holds

Lemma 3.3.
$$
G-H \subset \{ \begin{pmatrix} O & A \\ B & O \end{pmatrix} | A, B \in U \}.
$$

Proof. Let $z = \begin{pmatrix} 0 & A \\ B & C \end{pmatrix} \in G-H$ and let $h = \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} \in H$. Then $z^{-1}hz =$ $\left(\begin{array}{cc} B & D \\ O & A^{-1} \end{array} \right) \in H$ for any $h \in H$. Since X, $Y \in U$, $A^{-1} f_1(H) A$, $B^{-1} f_2(H)$ $B\subset U$. Hence *A* and *B* normalize the cyclic subgroup of *U* of order *t*, where *t* is a prime with $t \mid (q^2+q+1)/(3, q-1)$. As U is a maximal subgroup of GL $(3, q)^*$ by [2], A and B are contained in U.

Lemma 3.4. $\Sigma \cap U = \phi$.

Proof. Suppose false. By Lemmas 3.2 and 3.3, together with the transi tivity of G on Δ , Σ is contained in $U\cup\{O\}$. Let $M \in \Sigma$ —{O}. By considering $M^{-1} \Sigma$, we may assume that Σ contains *I*. Since $I(x)^{-1} [a, b, c] I(x) = [a, bx^{1-q},$ *cx*^{1-*q*2}) for $x \in F$ and $N(x^{1-q}) = N(x^{1-q^2}) = 1$, we have $(LC(\pi))_{(L(I))} \geq \left\{ \begin{pmatrix} I(x) & O \\ O & I(x) \end{pmatrix} \right\}$ $|x \in F^*$. Hence π is an Andre plane by Corollary 12.2 of [5], contrary to Hypothesis 3.1 (iii).

Lemma 3.5. Set $K_0 = \left\{ \begin{pmatrix} R & I \\ O & I \end{pmatrix} \mid k \in K^* \right\}$. Let P be a point on Δ . Then, (i) If $s = \begin{pmatrix} A & O \\ O & B \end{pmatrix} \in H - K_0$ fixes a point P, then either A or B is contained $in U-U$

(ii) H_P/K_0 is isomorphic to a subgroup of $Z_3 \times Z_3$.

Proof. Assume A, $B \in U_1$ and set $A = I(a)$ and $B = I(b)$. Let be a component corresponding to the line OP. Since *s* fixes OP, $I(a)^{-1}[x, y, z]$ $I(b)=[x, y, z]$, where $M=[x, y, z]$. Then $[ax, ay, \bar{a}z] = [bx, by, bz]$ and so $x(a-b)=y(a-b)=z(\overline{a}-b)=0$. If $x=0$, then $yz\neq 0$ by Lemma 3.4. From this $a=b=\bar{a}$ and hence $a=b\in K$. Similarly, if either $y=0$ or $z=0$, $a=b\in K$. On the other hand, if $xyz\neq 0$, $a=a=\bar{a}=b$, which also implies $a=b\in K$. Therefore $s \in K_0$ and (i) holds.

Set $W = \left\{ \begin{pmatrix} A & O \\ O & B \end{pmatrix} \in H_P | A, B \in U_1 \right\}$. Then $H/W_P \leq Z_3 \times Z_3$ and by (i) $W =$ K_0 . Thus (ii) holds.

Lemma 3.6.
$$
(q^3-1)(q-1) | |G|
$$
 and $|G| |2 \cdot 3^2(q-1)(q^3-1)$.

 $\Pr{\text{conf.}} \quad \text{Since} \ \ |G| = \left| G \colon G_P \right| \times \left| G_P \colon H_P \right| \left| H_P \colon K_0 \right| \left| K_0 \right| = (q^3-1) \, (q-1) \, | \, G_P \right|$ H : $H|\times |H_{P}$: $K_{\tt 0}|$, the lemma follows from the previous lemma.

We denote by *m^t* the highest power of a prime *t* dividing a positive integer *m.*

Lemma 3.7. $|G|_2 = ((q-1)^2)_2$.

Proof. \quad By Lemma 3.6, $(q-1)^2 \vert \ \vert G \vert$. \quad Set 2^r $=(q-1)_2$ and let S be a Sylow 2-subgroup of G. Then 2^{2r} | |S|. Assume 2^{2r+1} | |S|. Clearly S acts on the set of points $V_0 = \{([a], [b]) | a, b \in F^*\}$. Since $V_0 = q^6 - 2q^3 + 1 = (q-1)^5$ $(q^2+q+1)^2$ and $2\angle q^2+q+1$, S is not semiregular on V_o . Therefore some involution $s \in S$ fixes a point $Q \in V_0$. As G contains no Baer involutions, s is a homology with axis *OQ* by a Baer's theorem. Applying Lemma 3.3, *s=* $\left(\begin{array}{cc} \circ & 1 \\ \circ & -1 \end{array}\right)$ for some $A \in U$. Set $L(M) = OQ$, where $M \in \Sigma$. Then $([x], [x]M)s =$ $([x], [x]M)$ for any $x \in F$. Hence $[x] = [x]M A^{-1}$ for any $x \in F$. Therefore

M=A. However, this contradicts Lemma 3.4. Thus the lemma holds.

Lemma 3.8. *Either* (i) $|G| = (q-1) (q^3-1)$ or $3(q-1) (q^3-1)$ or (ii) $|G| = 3^2(q-1)(q^3-1), q^3-1$ | 2 | K_1 |² and a Sylow 3-subgroup of $K_1 \times K_2$ is not *contained in U . Moreover G contains an abelίan normal Hall subgroup of order* $(q^2+q+1)/(3, q-1).$

Proof. Deny (i). Then, by Lemmas 3.6 and 3.7, $|G| = 3^2(q-1)(q^3-1)$ and so it suffices to show that $q^3 - 1 \mid 2 \mid K_1 \mid^2$.

Let *R* be a Hall subgroup of *G* such that $|R| = (q^2+q+1)/(3, q-1)$. By Lemma 3.2, R is an abelian normal subgroup of G . Since K_1 and K_2 are Fro benius complements, a Sylow 3-subgroup S of $K_1 \times K_2$ is an abelian subgroup of rank 2. Therefore $N_R(S) = C_R(S)$ by Theorem 5.2.4 of [3]. Since $|H/K_1|$ $|3(q^3-1), 3(q-1)/2 | |K_1|$. Hence $|K_1|_3 = 3(q-1)_3$ and $|S| = 3^2((q-1)_3)^2$ as $K_1 \times K_2 \leq$

Assume $S \nleq U_1$. Then $S \cap K_1$, $S \cap K_2 \nleq U_1$ since $S = (S \cap K_1)(S \cap K_2)$. Hence, there exist b, $c \in F^*$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ $\in S$. Since $[0, a, 0]^{-1} I(x) [0, a, 0]$ $\bigcup_{(\alpha)} [\alpha, c, 0]$ $\hat{H} = I(x)$ for any *a*, $x \in I^*$, $N_R(S) = C_R(S) = 1$. Therefore either $N_R(S) = 1$ or $S \leq$

If $N_R(S)=1$, then $R\leq K_1K_2$ since $RK_1K_2=N_{RK_1K_2}(S)K_1K_2$. Therefore $(-1) \mid |K_1|^2 = |K_1K_2|$ and $3(q-1)/2 \mid |K_1|$ as $(q^2+q+1, q-1) =$ $(3, q-1)$. Hence $q^3-1=(q-1) (q^2+q+1) | 2|K_1|^2$.

If $S \le U_1$, then $S_P = S \cap K_0$ for any $P \in l_{\infty}$ -{L(O), L(∞)} by Lemma 3.5. $\text{Therefore} \quad |S/S \cap K_0| = |S|/(q-1)_3 \mid q^3 - 1. \quad \text{However,} \quad |S|/(q-1)_2 = 9(q-1)_3.$ and so $9(q-1)_3 \mid (q-1) \, (q^2+q+1),$ a contradiction. Thus the lemma holds.

Using the lemmas above, together with Theorem 1 of [1], we now prove the following.

Theorem 2. *Under Hypothesis* 3.1, *either* (i) *LC(π) is a solvable group of order* $3^i(q^3-1)(q-1)$ with $0 \le i \le 2$ or (ii) $q=3$ and $LC(\pi)$ is isomorphic to *SL(2,* 13).

 $\text{Proof.}\quad \text{Set}\ \ L\text{=}LC(\pi). \quad \text{If}\ \ L\text{=}G\ \ (=\text{$L_{(L(\infty),L(\texttt{0}))}$),\ \ \text{then}\ \ (\text{i})\ \ \text{follows}\ \ \text{from}$ Lemmas 3.2, 3.3 and 3.8.

Suppose $L\neq G$. Then *L* is transitive on l_{∞} . Since *L* contains no Baer involutions, from Theorem 39.3 of [5], L is not 2-transitive on l_{∞} . In particular L_{P} =*H, P=L*(∞), for otherwise $1 + |\Delta|/2$ =($q+1$)*(* q^2-q+1 *)* | $|L_{P}|$, contrary to $(L_P)^{op} \leq GL(3, q)$. Hence $\Gamma = P^G$ is a block of L.

Let Ω be a complete block system of *L* which contains Γ. Since $L_r = G$ and *G* is transitive on Δ , *L* acts doubly transitively on Ω . Since $|\Omega - \{\Gamma\}| =$ $(q^3-1)/2$ and $|G/K_0|=3^i (q^3-1)$ with $0 \le i \le 2$, we have $(L_{\Gamma,\Gamma'})^2$ | 18, $\Gamma^{\pm}\Gamma'$ $\epsilon \in \Omega$. By Theorem 1 of [1], $L^{\Omega} = PSL(2, 13)$ and $|\Omega| = 14$. Therefore $q=3$,

 $K_0 \approx Z_2$ and $L/K_0 \approx PSL(2, 13)$. Thus (ii) holds in this case.

4. A characterization of the class Π

In this section we continue Hypothesis 3.1 and notations used in the pre vious section. Let Λ denote the set of primes dividing $(q^2+q+1)/(3, q-1)$ and X the restriction of $X \leq G$ on the line l_{∞} . Furthermore we assume the following.

Hypothesis 4.1. (0) *G contains K^o , the group of kern homologies.*

(i) There exists a 2-element $\overline{z} \in \overline{G}$ such that $C_{\overline{G}}(\overline{z})$ is a Λ' -group.

(ii) *G contains a nontrivial planar collineation.*

Lemma 4.2. $|G| = 3(q^3-1)(q-1)$ and $|K_1| = |K_2| = (q-1)/2$. More*over* $|G_P/K_0| = 3$ *for any* $P \in \Delta$ *and* $K_1 K_2 \le Z(H)$.

Proof. Set $m = (\vert K_1 \vert, (q^2+q+1)/(3, q-1))$ and assume *t* is a prime with $t \mid m$. Then, as $K_1 \cong K_2$, $K_2 \times K_2$ contains a noncyclic subgroup T of order *f*² and $(K_1 \cap T)^z = K_2 \cap T$. Hence $C_T(z) \neq 1$, contrary to Hypothesis 4.1. Thus $m=1$ and $|K_1|$ | 3(q-1). In particular $|G| = 3^{i}(q^3-1) (q-1), i \le 1$. Let $P \in Δ$. By Hypothesis 4.1 (ii), G_P $\neq K_0$ and therefore $|G| = 3(q^3-1) (q-1)$ and $|G_P/K_0|=3$ by Theorem 2.

Since $K_1 \times K_2 \le H$ and $|H|_2 = ((q-1)_2)^2/2$, we have $|K_1|_2 \le (q-1)_2/2$. By | Lemma 3.2, $|H/K_1|$ | 3(q^3-1) and so $(q-1)/2$ | $|K_1|$. On the other hand $|K_1|$ | $q^3 - 1$. Hence, either $|K_1| = (q-1)/2$ or $|K_1| = 3(q-1)/2$ and $q \equiv 1$ (mod 3). Let X be a Hall subgroup of G of order $(q^2+q+1)/(3, q-1)$. Then $[X, K_1K_2] \leq X \cap K_1K_2=1$ by Lemma 3.8. From this $K_1K_2 \leq C_{\tilde{U}}(X) \leq \tilde{U}_1$. If $|K_1K_2|_3 = |G|_3$, then $K_1 \times K_2$ ($\leq \tilde{U}_1$) contains a planar collineation of order 3. This is a contradiction. Therefore $\|K_1 K_2\|_3 < \|G\|_3$ and we have $\|K_1\| =$ $(q-1)/2$. In particular $K_1 \leq Z(H)$. Similarly $K_2 \leq Z(H)$.

Lemma 4.3. Let s_1 be a nontrivial planar element of G. Then a basis *for* π *may be choosen so that* $\langle \xi_1 \rangle = \langle \begin{pmatrix} J & O \\ O & I \end{pmatrix} \rangle$ and $H \leq \tilde{U}$. *j*

Proof. By Lemma 4.2, s_1 is an element of order 3. By Lemma 3.2 $H \leq U$ and since s_1 is not semiregular on the lines $L(\infty)$ and $L(O)$, we may assume $S_1 = \begin{pmatrix} [0, a, 0] & O \\ O & [0, b, 0] \end{pmatrix}$ or (ii) $S_1 = \begin{pmatrix} [0, a, 0] & O \\ O & [0, 0, b] \end{pmatrix}$ for some a, $b \in$ F^* . As $(s_1)^3=1$, $N(\sigma)=N(\sigma)=1$. There exist elements $c, d \in F^*$ such that $\alpha^{-1} = a$ and $d^{\alpha-1} = b$, respectively. Then $\begin{pmatrix} I(c) & O \\ O & V(c) \end{pmatrix}^{-1} \begin{pmatrix} J(a) & O \\ O & V(a) \end{pmatrix} \begin{pmatrix} I(c) & O \\ O & V(a) \end{pmatrix}$ \overline{O} $I(d)$ \overline{O} $J(l)b$ \overline{O} $I(d)$ $=(\begin{pmatrix} J & O \\ O & I \end{pmatrix})$ and $(\begin{pmatrix} I(c) & O \\ O & I(d^{-q}) \end{pmatrix})^{-1}(\begin{pmatrix} J(d) & O \\ O & I^zI(b) \end{pmatrix})(\begin{pmatrix} I(c) & O \\ O & I(d^{-q}) \end{pmatrix})=(\begin{pmatrix} J & O \\ O & I^zI \end{pmatrix})$. Therefore, to prove the lemma it suffices to show that $s_1 \pm \begin{pmatrix} J & O \\ O & I^2 \end{pmatrix}$.

Assume
$$
s_1 = \begin{pmatrix} J & O \\ O & J^2 \end{pmatrix}
$$
. Since $\begin{pmatrix} J & O \\ O & J^2 \end{pmatrix}^{-1} \begin{pmatrix} I(x) & O \\ O & I(y) \end{pmatrix} \begin{pmatrix} J & O \\ O & J^2 \end{pmatrix} = \begin{pmatrix} I(x) & O \\ O & I(\overline{y}) \end{pmatrix}$ if

 $\begin{pmatrix} I(x) & O \\ O & I(x) \end{pmatrix} \in H$, then $\begin{pmatrix} I(x^{q-1}) & O \\ O & I(x) \end{pmatrix} \in K_1$, contrary to Lemma 4.2. Thus the *O* $I(y)$ ^{*I*} $\qquad \qquad$ *O II* lemma holds.

Lemma 4.4. There exists a 2-elemeni t_1 of $G-H$ which centralizes s_1 .

Proof. Set $N=N_c(\langle s_1 \rangle K_0)$. By a Witt's theorem, $|N: \langle s_1 \rangle K_0|=q-1$ In particular $N \nleq H$. Hence there is a 2-element $t_1 \in N$ such that $t_1 \notin H$. Then t_1 normalizes $\langle s_1 \rangle \langle kI \rangle$, where $|\langle kI \rangle| = (q-1)_3$. Since $g^{-1} J g = [0, x^{1-q}, 0]$ for any $g \in \{ [x, 0, 0], [0, x, 0], [0, 0, x] | x \in F^* \}, t_1^{-1} s_1 t_1 = s_1 \pmod{\langle kI \rangle}$. From Theorem 5.3.2 of [3], t_1 centralizes $\langle s_1 \rangle \langle kI \rangle$. Therefore t_1 centralies s_1 .

Lemma 4.5. A basis for π can be choosen so that $\begin{pmatrix} 0 & u_1 \\ I & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & I \end{pmatrix}$

Proof. Let t_1 be as in Lemma 4.4 and set $t_1 = \begin{pmatrix} 0 & A \\ B & D \end{pmatrix}$. By Lemma 3.3, *A*, $B \in U$ and as $(t_1)^2$ is a 2-element of G, we have $t_1 = g_1$, g_2 or g_3 , where $g_1 =$ tralizes s_1 . Since $\begin{pmatrix} 0 & J \ I & 0 \end{pmatrix}^{-1} g_2 \begin{pmatrix} 0 & J \ I & 0 \end{pmatrix} = \begin{pmatrix} 0 & I(b) \ I(a) & 0 \end{pmatrix}, \begin{pmatrix} I & O \ O & J \end{pmatrix}^{-1} g_3 \begin{pmatrix} I & O \ O & J \end{pmatrix} = \begin{pmatrix} 0 & I(b) \ I(b) & 0 \end{pmatrix}$
 $I(a)$ and $\begin{pmatrix} I & O \ O & I(b) \end{pmatrix}^{-1} g_1 \begin{pmatrix} I & O \ O & I(b$ *o y* **b** *l*(*b*)^{*/*} *o <i>l***(***b***)^{***/***} ***l l*(*b*)^{*/*} *l l*(*b*)^{*l*} *o l*(*b*)^{*l*} *b j d*(*g*)*l*(*y*))*l*_{*s*} *d d*(*x*)</sub>*l*) we may assume that $t_1 = \begin{pmatrix} 0 & t_1 \\ 0 & 1 \end{pmatrix}$ for some 2-element u_1 of K^{*}. Suppose $u_1 = v^2$ for some $v \in K$. Then $(v^{-1} \begin{pmatrix} I & O \\ O & I \end{pmatrix} \begin{pmatrix} O & I(u_1) \\ I & O \end{pmatrix})^2 = \begin{pmatrix} I & O \\ O & I \end{pmatrix}$. Hence *G* contains an involution which interchanges $L(\infty)$ and $L(O)$ and so it is a homology with axis $L(M)$ for some $M\!\in\!\Sigma-\{O\}$, contrary to Lemma 4.2. Thus u_1 is a nonsquare 2-element of K^* . From Lemma 4.2, $G \geq K_2 = \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \}$

 $|x \in K^*$, so that $\begin{pmatrix} O & uI \\ I & O \end{pmatrix} \in G$. From now on we put $t_1 = \begin{pmatrix} 0 & uI \\ I & O \end{pmatrix}$ and $s_1 = \begin{pmatrix} J & O \\ O & I \end{pmatrix}$.

Lemma 4.6. (i) Let $L(M)$ ($M \in \Sigma$) be a line fixed by s_1 . Then $M=$ $[a, b, c]$ for some a, b, $c \in K$.

 $\int O(x^2) dx$

(ii) Let $L(M)$ ($M \in \Sigma - \{O\}$) be a line fixed by $s₁$. Set $\Omega₁ = \{L(k²M) | k \in$ K^* } and $\Omega_2 = \{L(uK^2M^{-1}) | k \in K^* \}$. Then $\Omega_1 \cup \Omega_2 \cup \{L(O), L(\infty) \}$ is the set of *lines of X fixed by s^x .*

Proof. Assume $L(M)s_1 = L(M)$ and set $M = [a, b, c]$. Then $J^{-1} \left[a, b, c \right] J =$

[a, b, c], so that $[\bar{a}, \bar{b}, \bar{c}] = [a, b, c]$. Thus a, b, $c \in K$ and (i) holds. Moreover, since $H \ge K_1$, K_2 and $L(M)t_1 = L(uM^{-1})$, (ii) holds.

Lemma 4.7. *H contains an abelian normal subgroup X of G of order* $(q^3-1)\,(y-1)/2$ such that $K_0K_1K_2{\leq} X{\leq}\check{U}_1$ and $H{=}X{\langle}s_{1}{\rangle}.$

Proof. By Lemma 4.2, H/K_i contains a unique cyclic subgroup X_i/K_i of order q^3-1 such that $H/K_i{=}(X_i|K_i)$ $(\langle s_i \rangle K_i | K_i)$, $i{\in}\{1, 2\}$. As K_i is contained in the center of H , X_i is an abelian normal subgroup of G of order (q^3-1)

Assume $X_1 \neq X_2$. Then $H = X_1 X_2$ and hence $|H/(X_1 \cap X_2)| = 9$ and X_1 is in the center of *H*. This contradicts the fact that $s₁ \in H$. Therefore $X₁$ X_2 . Set $X = X_1 = X_2$. Then *X* has the desired properties.

Lemma 4.8. X contains a cyclic normal Hall Λ -subgroup Z of order $(q^2+q+1)/(3, q-1).$

Proof. Let Z be a subgroup of X of order $(q^2+q+1)/(3, q-1)$. From Lemma 4.2, $Z \cap K_1 = 1$. Since $ZK_1/K_1 \leq GL(3, q)^*$, Z is cyclic.

Lemma 4.9. Let Y be a Sylow 3-subgroup of X. Then YK_0/K_0 is cyclic.

Proof. Suppose false and set $3^m=(q-1)_3$. Then $|Y|=3^{2m}(3, q-1)$. Since $K_1 \le X$ and $K_1 \cap K_2 = 1$, we have $q \equiv 1 \pmod{3}$ and $YK_0/K_0 \approx Z_{3m} \times Z_3$. As $\tilde{U}_1 \simeq Z_{q^3-1} \times Z_{q^3-1}$, $\{g \in \tilde{U}_1 | g^3 \in K_0\} \leq Y K_0/K_0$. In particular $f = \begin{pmatrix} I(r) & O \\ O & I(r) \end{pmatrix} \in$ Y, where r is an element of F^* of order 3^{m+1} . Let $L(M)$ ($M \in \Sigma - \{O\}$) be a line fixed by s_1 and put $M=[a, b, c]$. Let Ω_1 and Ω_2 be as in Lemma 4.6. Since $L(M) f=L(I(r)^{-1}MI(r))=L(([a, br^{1-q}, cr^{1-q^2}])$ and $3|1-q$, $L([a, br^{1-q}, cr^{1-q}])$ cr^{1-q^2}]) is a line fixed by s_1 . As $f \in H$, $L(a, br^{1-q}, cr^{1-q^2}] \in \Omega_1$. Hence $r^{1-q}=1$, a contradiction. Thus the lemma holds.

Lemma 4.10. H/K_0 contains a cyclic normal subgroup X/K_0 of order $(q^3-1)/2$ which is inverted by t_1 .

Proof. From Lemmas 4.7-4.9, together with the fact that K_1K_0/K_0 is cyclic of order $(q\!-\!1)/2$, H/K_0 contains a cyclic normal subgroup $X\!/\!K_0$ of order $(q^3-1)/2$. Clearly t_1 inverts K_1K_0/K_0 . Since $t_1^2 \in K_0$ and $[Z, X] \equiv 1 \pmod{K_0}$, $\frac{1}{2}$ inverts ZK_0/K_0 . Moreover t_1 inverts a Sylow 3-subgroup of X/K_0 by Lemma 4.9. Therefore t_1 inverts X/K_0 .

Lemma 4.11. There exists an element $g \in X$ such that $g = \begin{pmatrix} I(x^{-1}) & O \\ O & I(x) \end{pmatrix}$ and $F^*=\langle x \rangle$.

Proof. Let $g_1 = \begin{pmatrix} I(y) & O \\ O & I(x) \end{pmatrix}$ be an element of X such that $g_1 K_0$ is a genera

tor of X/K_0 . Since $\vert X/K_1K_0\vert \equiv 1 \pmod{2}$, we may assume y and z are square elements of F^* . Since t_1 inverts $g_1 \pmod{K_0}$, $\begin{pmatrix} I(y) & O \\ O & I(z) \end{pmatrix} \equiv g_1^{t_1} \equiv \begin{pmatrix} I(z) & O \\ O & I(z) \end{pmatrix}$ (mod K_0). Hence $yz = j^2$ for some $j \in K^*$ and so $g_1 = g_2 \begin{pmatrix} 1 & 0 \\ 0 & I \end{pmatrix}$, where $g_2 =$ $\begin{pmatrix} I(y) & O \\ O & I(y^{-1}) \end{pmatrix}$. On the other hand $g_3 = \begin{pmatrix} I(k) & O \\ O & I(k^{-1}) \end{pmatrix} = \begin{pmatrix} I(k^2) & O \\ O & I \end{pmatrix} \begin{pmatrix} I(k^{-1}) & O \\ O & I(k^{-1}) \end{pmatrix}$ $\epsilon \in K_1K_0 = K_2K_0, \quad |\langle k \rangle| = (q-1)/2.$ Therefore $X = \langle g_1K_0 \rangle K_1K_0 = \langle g_2, g_3 \rangle K_0.$ This, together with $t_1^2 \in K_0$, implies the lemma.

Lemma 4.12.
$$
H = \langle \begin{pmatrix} I(x^{-1}) & O \\ O & I(x) \end{pmatrix} | x \in F^* \rangle K_0 \langle s_1 \rangle
$$
 and $G = H \langle t_1 \rangle$.

Proof. From Lemma 4.11, the lemma holds.

We now present a characterization of the class Π.

Theorem 3. Let π be a translation plane of order q^3 with kern $K = GF(q)$, *where* $q \equiv 1 \pmod{2}$ and assume π is not an Andre plane. Then π is contained in *the class* Π *if and only if the following three conditions are satisfied'.*

(i) A subgroup G of $LC(\pi)$ has orbits of length 2 and q^3-1 on l_{∞} .

(ii) The centralizer of a 2-element $z^l \in G^{l}$ ^o in G^{l} ^o is a Λ' -group, where Λ *is the set of primes dividing* $(q^2+q+1)/(3, q-1)$.

(iii) *G contains a nontrivial planar element.*

Proof. Suppose $\pi \in \Pi_K$, $K=GF(q)$. Then it can be easily verified that $LC(\pi)$ contains the group described in Lemma 4.12. Therefore we have "only if" part of the theorem.

Conversely, let π be a plane with the properties (i)-(iii). By Lemmas 4.6 and 4.12, $\Sigma = \{I(x) \: [a, b, c] \: I(x) \: | \: x \in F\} \cup \{I(x) \: u[a, b, c]^{-1} \: I(x) \: | \: x \in F\}$, where $[a, b, c] \in GL(3, q)$. By definition of Π , π is contained in Π . Thus the theorem holds.

References

- [1] M. Aschbacher: *2-transitive groups whose 2-point stabilizer has 2-rank* 1, J. Al gebra 36 (1975), 98-127.
- [2] D.M. Bloom: *The subgroups of PSL(3, q) for odd q}* Trans. Amer. Math. Soc. **127(1967),** 150-178.
- [3] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
- [4] D.R. Hughes and F.C. Piper: Projective planes, Springer-Verlag, Berlin-Heidel berg-New York, 1973.
- [5] H. Lϋneburg: Translation planes, Springer-Verlag, Berlin-Heidelberg-New

York, 1980.

- [6] T. Oyama: *On quasifields,* Osaka J. Math. 22 (1985), 35-54.
- [7] T. Suetake: A new class of translation planes of order q^3 , Osaka J. Math. 22 (1985), 773-786.
- [8] S.D. Cohen: *Likeable functions in finite fields,* Israel J. Math. 46 (1983), 123- 126.

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560 Japan