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1. Introduction

In his paper [7], Suetake constructed a class of translation planes of cubic
order ¢* and he improved his results for each prime power ¢ such that 2 is a
nonsquare element of GF(q). Any plane of the class admits a collineation
group G of the linear translation complement such that

(*) G has orbits of length 2 and ¢*—1 on /..

In this paper we construct a new class of translation planes of order ¢
with the property (*) for each prime power ¢ with ¢=1 (mod 2) (§82). If =
is any translation plane of order ¢* with the property (*) and if # is not an
Andre plane, then we have either (i) the linear translation complement LC(r)
is of order 3/(¢—1)(¢—1) with 0<i<2, or (ii) ¢g=3 and LC(z) is isomorphic
to SL(2, 13) (8§3). In §4, we present a certain characterization of the class
of planes with the property (*). Throughout the paper all sets, planes and
groups are finite. Our notation is largely standard and taken from [3] and [5].

2. Description of the class of planes I1

Let F=GF(¢®) be a field order of ¢°, where ¢g=p" and p is an odd prime.
Let K be a subfield of F order g. Throughout the paper we consider the trans-
lation plane z of order ¢* which is a 6 dimensional vector space over K.

To represent spread sets and collineation groups of z, we use a method
111
of [6]; Let weF—K and put a 3X3 matrix Wz(w w ﬁ), where w=un’
wZ —u—)Z ﬁz
and w=w". Let M(3, ¢,) be the set of all matrices over GF(q,) for a prime
power gi.. Set M(3, ¢)*=W M3, o)W (CM(3, ¢*)), GL(3, 9)*=W 'GL(3, W

B

and V*=V(3, Q)W={(v,, vy, v3)W | vy, v,, v3&K}. Then M(3, q)*={<b a
a, b, ceFt, GL(3, ¢)*={P&M(3, q)*|det(P)=*0} and V*={(q, a, a)|ac=F}

Ql ol

c b
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(cf. [6]). Here “der” means the determinant of a matrix. Clearly GL(3, ¢)*

acts naturally on 7* as the general linear group of the vector space over K. The
atTb :

notations (b a f’) and (a, @, @) are abbreviated to [q, b, ¢] and to [a], respectively.
cb

For k€K, we have k[a, b, c]=[ka, kb, kc] and k[a]=[ka]. Set I(x)=[x, 0, 0],

I=1I(1), 0=1(0) and /=[O0, 1, O].

Under these conditions a set ZC GL(3, ¢)* U {O} is defined to be a spread
set if 03, |3 |=¢" and det (M—N)==0 for any two distinct M, NEX.

The translation plane = which corresponds to 3 is defined in the usual
manner ([5]); the set of points of 7 is V*X V* and the set of lines passing
through the origin is L= {L(M)|M&Z} U {L(c0)}, where L(M)={([x], [x]M)|
xEF} and L(c)={([0], [x]) [xEF}.

Throughout the rest of this paper let u be a nonsquare element of K. As
¢+g+1=1 (mod 2), u is also a nonsquare element of F. Let F be the al-
gebraic closure of F and set F=F— {{-1}, Ff{=F— {0}, K*=K— {0}.

We now define Iy a class of translation planes of order ¢°. Let @4 be
the set of all ordered triples (a, b, c)€ K X K X K such that

S = U(x)[a,b, c] I(x)|x€F} U {l(x)u[a, b, ] I(x)| xF}

is a spread set. We denote by =, ;. the translation plane corresponding to
the spread set %, and set Ilx={7@;0l(a b, c)EPg}. Furthermote set
I1= UIlg, where K runs through all finite fields of cdd characteristic.

K

Qll

Clearly the set of matrices I(x) (x&F¥) forms an atelian group of order
¢—1. Hence an ordered triple (a, b, )€K X KX K is contained in ®y if and
only if

() f(x)=det (I(x) [a, b, ] I(x)—|a, b, c])=*0 for any xEF,

(i) g(x)=det (I(x) [4, , k] I(x)—[3, j, k]) =0 for any xEF, where [4, j, k]=
ufa, b, c]™*, and

(iil) A(x)=det (I(x)[a, b, ] I(x)—[i, j, RK])*0 for any x<F.

Using these we can show that ®,=®% U®, where ®%’={(a, b, () Kx Kx K
|a(a®—bc)=0, b*+c—2abc+0} and PP={(a, b, c)€Kx Kx K |a(a*—bc)=*0,
b*+4-c3—2abc=0} (Proposition 1). As a corollary, we have

Theorem 1. Ilx={m(,;|(a, b, ) EDPY UDP}.

In the rest of this section we prove @x=® UD¥. Let (a,b, c)=Kx KX
K and set A=a, B=a’—bc, C=b°+-c*—2abc and D=a*}-b*+c*—3abc. Then
AB+C=D=det [a, b, c].

Lemma 2.1. Assume D=0. Then

(i) f(x)=ABN(x*—1)+CN(x*"*—1) and g(x)=u®*D?f(x). Here N(z)=
20T for zEF.
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(i) A(x)=D" det (([a, b, c] I(x))—ul).

Proof. By direct calculation we have (i) and g(x)=1° det (I(x) [a, b, c]™*
I(x)) det ([a, b, c]—I(x)""[a, b, c] I(x)™") det [a, b, c]"'=u® (det [a, b, c])72f(x),
hence (i) holds. Similarly we have (ii).

Lemma 2.2. Let r(t, x)=det (xI—[a, b, c] I(¢)) be a characteristic poly-
nomial of [a, b, c] I(t) with tEF. Then

() 7@, x)=x*—AT@E)x*+BT (""" x—DN(t). (Here T(z)=z-+z'427 is
the trace map.)

(ii) Let t€F. Then h(t)=0 if and only if u=—BT(t*"") and uAT(z)
=—DN(2).

Proof. By direct calculation we have (i). Suppose u=—BT(t**") and
uAT(t)=—DN(t) for some tF. Then, by (i), r(¢, x)=x—kx*—ux—+uk=
(x—Fk) (x*—u), where k=AT(t)EK. Let v be a root of x¥*—u in the algebraic
closure F. Then v is an eigenvalue of [, b, c] I(f). Hence i(#)=0. Conversely,
assume A(f)=0 for some tEF. Let 2, 2,, 23 be the eigenvalues of [a, b, ¢] I(t).
Then, by Lemma 2.1, 2f=u for some i. As 7(¢, x) is a cubic polynomial over
K and z;€F—F, r(t, x)=(x—k) (¥*—u) for some kK. Hence AT(t)=k, BT
(t**)=—u and —DN(t)=ku. Thus u=—BT(t**") and uAT(t)=—DN(2).

In Lemmas 2.4-2.7, we assume the following.
Hypothesis 2.3. (a, b, ()= Dy and ABC=*0.

Lemma 2.4. Set i=uA|D, j=u/B and w(x)=(x’—jx)/(x*—i). Then,
(1) ¢ is nonsquare in K.
(i1)  w(x) is a bijection from K onto itself.

Proof. Since C=#0, i(i—j)#0 and so (x¥*—jx, x*—i)=((i—)) x, ¥*—i)=1.
Deny (ii) and let e K—{w(t)|tEK, *—i%0}. Then x*—ex’*—jx+ie is an
irreducible polynomial over K. Let ¢ be a root of this polynomial in F. Then
teF—K and so x*—ex*—jx-tie=(x—t) (x—t*) (x—#*). Hence T(t)=e, T(t*")
=—j and N(t)=—ie and so u=—BT(#**") and —DN(t)=uAT(t). This con-
tradicts (ii) of Lemma 2.2. Thus (ii) holds and (i) follows from (ii).

Lemma 2.5. Set k=3:"+6ij—j°. Then, either 9i=j or F(y)=4iy*—ky*+
44% is nonsquare in K for each ye K.

Proof. We have w(x)=w(y) if and only if (x—y) ((y*—i) 8*—(F—j) yx—1
(»—j))=0. By (i) of Lemma 2.4, y*—i=0. Assume F(y) is square in K for
some y and set v=\/F(y)€K. Then w(x)=w(y)=w(x'), where {x, x'}=
{(—) y+2)/2(y*—7i)}. By Lemma 2.4 (ii), y=x=x". Hence v=0 and
¥(2y*—3i4j)=0. As %0, y=*0 and so 0=v"=4i((3i—j)/2)*—(3:*461j—/°)
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(3i—f)[2+4i%=(i—f)%%—j)/2. Therefore 9i=j.
Lemma 2.6 9ij.

Proof. Assume 9i=j. Then 94B=D. As D=0, charK=+3. Lete€K
—R, where R={27(x*—3x*—2)/(3x+1)|xeK, x+—3""}. Since 3x+1,427
(#®—3x*—2)=(3x+1) (94*—30x+10)—64, S(x)=27(x*—3x*—2)—e(3x+1) is ir-
reducible over K. Hence S(x)=27(x—t) (x—1t) (x—1t*) for some t&F—K.
Therefore T(f)=3, T(t**')=—e/9 and N(t)=2+¢/27. In particular T(f)—
T(t*)—3N(t)+3=0. However, by Lemma 2.1(i), f(t)=AB(N(#—1)+8N
(@' —1))=AB(T(t)— T —3N(#)+3) (T(#)+T(**)—3N(t)—3)=0, a con-

tradiction.
Lemma 2.7. ¢<13.

Proof. By Lemmas 2.5 and 2.6, F(y) is nonsquare in K for any yeK.
Applying Lemma of [8], either ¢<13 or k*—4x4ix4i*j=(i—j)*(9i—j)=0.
Again, by Lemma 2.6, 97—j =0 and therefore ¢<13.

Lemma 2.8. Let E(y)=dy*+-ey’+f, d, e, fEK and assume that d is non-
square in K. If ¢<13 and E(y) is nonsquare for each yE K, then ¢—4df=0.

Proof. Let K, be the set of nonzero square elements of K. The E(y)’s
satisfying the conditions above are as follows, which we obtained by using a
computer;

(1) K=GF(13): (d, e, f)=(2m, 2m, Tm), (2m, 5m, 8m), (2m, 6m, 11m),
(2m, Tm, 11m), (2m, 8m, 8m), (2m, 11m, 7m), mE K,.

(2) K=GF(11): (d, e, f)=(2m, m, Tm), (2m, 3m, 8m), (2m, 4m, 2m),
(2m, 5m, 11m), (2m, 9m, 6m), mEK,.

(3) K=GF(9)=<w)GF(3), where w’=—1: (d, ¢, f)=((w+1)m, m, (w-+
2)ym), (w+1)m, 2m, (w—+2)m), (w+1)m, wm, 2w+1)m), (w+1)m, 2wm, 2w+
1m), me K,.

4) K=GF((7): (d,e, f)=(3m, 3m, 6m), (3m, 5m, 5m), (3m, 6m, 3m), mE K,.

(5) K=GF(5): (d, e, f)=(2m, 2m, 3m), (2m, 3m, 3m), mnE K,.

(6) K=GF(3): (d,e, f)=(2m, m, 2m), mEK,.

Using these, we can verify that &#—4df=0 for each case.

Proposition 1. &,=®% U DP.

Proof. Assume D=0 and AB=0. Then C=D=0. Hence, by Lemma
2.1, f(x)=0 and g(x)=+0 for any x&F. By Lemma 2.2, k(t)=0 for any tEPF.
Therefore ®P CPy.

Assume D=0 and C=0. Then AB=D=0 and so, by Lemma 2.1, f(x)=0
and g(x)=0 for any x€F. If h(t)=0 for some tEF, then t=0 and T'(¢) T(t**")
—N(#)=0 by Lemma 2.2 (ii). Since T'(t) T(z**')—N()=N(t+1%), it follows
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that #7'=—1. However, this implies 2|¢*+¢-+1, a contradiction. Therefore
PP CP,.

Assume D=0 and ABC=#0. Then, by Lemmas 2.5-2.8, B*—4 X 4i X 4i*=
0. As we have seen in the proof of Lemma 2.7, this is a contradiction.
Therefore ®z=®% UDP.

REMARK 2.9. We can easily verify that the planes constructed in [7] are
contained in {7 ;| (a, b, c)EPY} (CII).

3. The planes with the orbits of length 2 and ¢°*—1

Throughout this section we assume the following.

Hypothesis 3.1. (i) = is a translation plane of order ¢ with kern K=
GF\(q), where q is a power of an odd prime p.

(i) A subgroup G of the linear translation complement of = has orbits T' and
A of length 2 and ¢*—1, respectively, on ...

(iii) 7 is not an Andre plane.

Let X be a spread set corresponding to z and let C(z) denote the transl-
ation complement of z. The linear translation complement LC(r) of = is defined

by the set of all nonsingular 6 X 6 matrices g= (A B) such that

() 4, B, C, DEM(3, g)*. ¢D

(i) If C is nonsingular, then C? DEX. (In this case L(c0) g=L(C™'D).)

(iii) If C is singular, then C=0 and D is nonsingular. (In this case L(o)
g=L(=))

(iv) Given MeZ3, if A+MQC is nonsingular, then (4+MC)™(B+MD)
€3. (In this case L(M)g=L(M,), where My=(A-+MC)™* (B+MD).)

(v) Given MeZ, if A+MC is singular, then A4+MC=0. (In this
case L(M) g=L(o0).)

Set L={L(M)|M&3} U{L(0)}. Then, since the restriction LC(z)L is

isomorphic to LC(z)'=, we often identify £ with I..

By Lemma 2.1 of [5], without loss of generality we may assume I'= {L( ),
L(O)} and G=LC(x)r, the global stabilizer of T" in LC(z). Set H=G\(w),10)

the stabilizer of L(o) and L(O) in G. Then |G: H|=|T'|=2 and {(g g)‘

A, BEGL3, ¢)*t =H=> {a(é 3)|aEK‘}. Moreover |A|=¢*—1]| |G| and so
(=1 (¢+g+1)/2| |HI.
Set U,={I(a)|0acF} and U=ULJ>, J=[0, 1, 0]. Furthermore set

b.— 1 g g>|A, BEU} and ﬁ:{(g Z)l/l, BEU}. Then we have

Lemma 3.2. Let K, or K, be the group of homologies in H with axis L(oo)
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or L(O), respectively. Let f, or f, be a homomorphism from H to GL(3, q)* de-
fined by fl(‘g g) =B or ﬁ(‘; g):A, respectively. Then, a basis may be choosen

for n(=V*XV*)so that HS U and f(H)<U for i=1, 2. In particular, | H/K;|
13(¢°—1).

Proof. Clearly K, and K, are normal subgroups of H and K,NK,=1.
Hence H|K,=f(H)CGL(3, ¢)* and H/K, has a normal subgroup K,K,/K;
(=K;). By Hypothesis 3.1 (ii), K, and K, are G-conjugate and |K;|=|K,|
|¢—1. In particular p | K,]|.

Assume K, is nonsolvable. Then H/K, has a normal subgroup isomor-
phic to SL(2, 5) by Corollary 3.5 of [5] and p A" | SL(2, 5)|. In particular K,
has a characteristic subgroup isomorphic to SL(2, 5) and so O,(H/K;)=1 by
the structure of Aut(PG(2, ¢)), 1<i<2. Let g be a natural homomorphism
from GL(3, ¢)* into PGL(3, ¢). Applying the results of [2], |g(fi(H))| 3
[PSL(2, 5)|(¢g—1). Hence |H| | |K;|Xx(qg—1)*x180. On the other hand
|KK;|=|K;|?| |H| and so |H| | (g—1)*(180)>. However, since (¢*+¢-+1, 2
x5)=1, we have (¢+q¢+1, |H|)<3, contrary to (¢*—1)/2 | |H|. Therefore
K, is solvable.

Assume (||, ¢+q+1)>3. Then (1g(A(K))|, ¢+a+1)>3. By [2]
lg(f(H))| | 3(¢+q+1) (3, ¢—1) and f,(H) is GL(3, g)*-conjugate to a subgroup
of U.

Next assume (| K, |, ¢*+¢+1)<3. Then g(f,(H)) is a subgroup of GL(3, ¢)*
such that (¢*+¢+1)/(3, ¢—1) | |g(/A(H))|. By [2], we have either SL(3, ¢)*<
Si(H) or fi(H) is GL(3, q)*-conjugate to a subgroup of U. Suppose SL(3, ¢)*<

101
fi(H) and let 2 be an element of order p such that Wfl(z)W‘lz(O 1 O). Then
001
z fixes exactly ¢* vectors in L(co). Therefore the fixed structure of z is a
subplane of 7 of order ¢ contrary to Bruck’s Theorem [4]. Thus, choosing a
suitable basis of V¥, we may assume fy(H)C U. By considering the mapping f,,
similarly we may assume f,(H)C U. Thus the lemma holds

Lemma 3.3. G—HC {(g g) |4, BEU}.

Proof. Let z=(g g)EG—H and let k:(‘g IO/,)EH. Then 2z 'he=

B'YB O . - B
( o A_IXA>EH for any heH. Since X, YEU, A~ f(H) A, B~ f,(H)

Bc U. Hence A and B normalize the cyclic subgroup of U of order ¢, where ¢
is a prime with ¢ | (¢®+¢+1)/(3, g—1). As U is a maximal subgroup of GL
(3, 9)* by [2], 4 and B are contained in U.
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Lemma 34. =NU=¢.

Proof. Suppose false. By Lemmas 3.2 and 3.3, together with the transi-
tivity of G on A, Z is contained in UU {O}. Let MeX—{0}. By considering
M™%, we may assume that = contains I. Since I(x)™* [a, b, c] I(x)=[a, bx'"",
cx'™?] for x€F and N(x'~%)=N(x'"")=1, we have (LC(x))uy = {<Ig) I(O)>

x
|[x€F*%. Hence = is an Andre plane by Corollary 12.2 of [5], contrary to
Hypothesis 3.1 (iii).

{ Ig]:)]) |kEK?*}. Let P be a point on A. Then,

)EH —K, fixes a point P, then either A or B is contained

Lemma 3.5. Set K,=

. 4 0
Q) If s= ( g

in U'_‘ Ul'
(i1) Hp/K, is isomorphic to a subgroup of ZyX Z,.

Proof. Assume 4, BEU, and set A=I(a) and B=1(b). Let L(M)eL
be a component corresponding to the line OP. Since s fixes OP, I(a)™ [x, y, 2]
I(b)=[x, y, 2], where M=[x, y, 2]. Then [ax, ay, az]=[bx, by, bz] and so
x(a—b)=y(a—b)=z2(a—b)=0. If x=0, then yz=+0 by Lemma 3.4. From
this a=b=a and hence a=b& K. Similarly, if either y=0 or 2=0, a=b= K.
On the other hand, if xyz=+0, a=a=a=>~, which also implies a=bEK.
Therefore s€ K, and (i) holds.

Set W:{(‘g Z)EHPIA, BEU}. Then H/W,<Zyx Zs and by (i) W=
K,. 'Thus (ii) holds.

Lemma 3.6. (£—1)(¢—1)| |G| and |G| |2-3%(g—1) (¢*—1).

PrOOf. Since lGlz IG: Gpl X IGP: Hp| IHP: Ko' |K0|=(qB___1) (q_l)le
H: H| X |Hp: K,|, the lemma follows from the previous lemma.

We denote by m, the highest power of a prime ¢ dividing a positive integer

Lemma 3.7. |G|,=((¢—1)%),.

Proof. By Lemma 3.6, (3—1)?| |G|. Set 2’=(g—1), and let .S be a Sylow
2-subgroup of G. Then 2%| |S|. Assume 2**'| |S|. Clearly S acts on
the set of points Vo={([a], [6])|a, bEF?*. Since Vy=¢*—2¢+1=(q—1)
(#+g+1)* and 2¥¢*+g+1, S is not semiregular on V,. Therefore some
involution s€S fixes a point Q€V,. As G contains no Baer involutions, s
is a homology with axis OQ by a Baer’s theorem. Applying Lemma 3.3, s=

(/?‘1 g) for some A€U. Set L(M)=00Q, where MX. Then ([x], [x] M)s=
([x], [¥]M) for any x&F. Hence [x]=[x]MA™" for any xEF. Therefore
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M=A. However, this contradicts Lemma 3.4. Thus the lemma holds.

Lemma 3.8. FEither (i) |G|=(¢—1)(¢®—1) or 3(g—1)(*—1) or (ii)
|G|=3(¢g—1)(¢*—1), ¢—1| 2| K,|* and a Sylow 3-subgroup of K\x K, is not
contained in U,. Moreover G contains an abelian normal Hall subgroup cf order

(+9+1)/(3, g—1).

Proof. Deny (i). Then, by Lemmas 3.6 and 3.7, |G|=3%¢—1) (*—1)
and so it suffices to show that ¢—1 | 2| K |2

Let R be a Hall subgroup of G such that |R|=(¢’4-¢+1)/(3, g—1). By
Lemma 3.2, R is an abelian normal subgroup c¢f G. Since K and K, are Fro-
benius complements, a Sylow 3-subgroup S of K;X K, is an abelian subgioup
of rank 2. Therefore Ng(S)=Cg(S) by Theorem 5.2.4 of [3]. Sivce |H/K,|
| 3(®—1), 3(g—1)/2 | |K;|. Hence |K;|;=3(g—1); and |S|=3%(¢g—1)s)* as
K, X K,<H.

Assume S<U,. Then SNK,; SNK,&£U, since S=(SNK,)(SNK).
Hence, there exist b, c& F, ([% b, 0][0’ c,(())]>ES' Since [0, a, 0]~ I(x) [0, 2, 0]
=1(%®) for any a, xEF*, Np(S)=Cx(S)=1. Therefore either Ng(S)=1 or S<

I

If Ng(S)=1, then R<KK, since RK,K,=Ngkx, (S)K,K;. Therefore
(@+g+1/3, 4—1) | 1KiI*= KK, | and 3(g—1)/2 | | Ky as (¢+g+1, ¢—1)=
(3, ¢—1). Hence ¢—1=(g—1) (¢+q+1) | 2| K"

If S<U, then Sp,=SNK, for any Pl.~{L(0), L(ec)} by Lemma 3.5.
Therefore |S/SNK,|=|S|/(¢g—1)s | #—1. However, |S|/(g—1),=9%(g—1)s
and so 9(g—1); | (¢—1) (#+4¢-+1), a contradiction. Thus the lemma holds.

Using the lemmas above, together with Theorem 1 of [1], we now prove
the following.

Theorem 2. Under Hypothesis 3.1, either (i) LC(x) is a solvable group
of order 3'(¢#—1) (3—1) with 0<i<2 or (ii) ¢=3 and LC(z) is isomorphic to
SL(2, 13).

Proof. Set L=LC(z). If L=G (=L@,.»), then (i) follows from
Lemmas 3.2, 3.3 and 3.8.

Suppose L#G. Then L is transitive on /.. Since L contains no Baer
involutions, from Theorem 39.3 of [5], L is not 2-transitive on /.. In particular
Lp=H, P=L(), for otherwise 14 |A|/2=(¢+1) (¢#—g+1) | |Lp|, contrary
to (Lp)°?’<GL(3, q). Hence I'=P¢ is a block of L.

Let Q be a complete block system of L which contains I'. Since Ly=G
and G is transitive on A, L acts doubly transitively on Q. Since [Q—{T'} |=
(—1)/2 and |G/K,|=3/(¢?—1) with 0<i<2, we have (L)% |18, T'+T"
€Q. By Theorem 1 of [1], L®=PSL(2, 13) and |Q]|=14. Therefore ¢=3,



TRANSLATION PLANES OF ORDER g3 571
Ky=2Z, and L/K,=PSL(2, 13). Thus (ii) holds in this case.

4. A characterization of the class IT

In this section we continue Hypothesis 3.1 and notations used in the pre-
vious section. Let A denote the set of primes dividing (¢’+g¢-+1)/(3, ¢—1)
and X the restriction of X (<G) on the line l.. Furthermore we assume the
following.

Hypothesis 4.1. (0) G contains K, the group of kern homologies.
(i) There exists a 2-element ZE G such that C5(Z) is a A'~group.
(11) G contains a nontrivial planar collineation.

Lemma 4.2. |G|=3(¢—1)(¢g—1) and |K,|=|K,|=(¢g—1)/2. More-
over |Gp|Ky|=3 for any PEA and K, K,<Z(H).

Proof. Set m=(|K,l|, (¢+¢+1)/(3, ¢—1)) and assume ¢ is a prime with
t | m. Then, as K,=K,, K,xK, contains a noncyclic subgroup 7' of order
£ and (K;NT)?=K,NT. Hence Cr(2)=*1, contrary to Hypothesis 4.1. Thus
m=1 and |K,| |3(¢g—1). In particular |G|=3'(¢—1)(¢—1), i<1. Let
PeA. By Hypothesis 4.1 (ii), Gp* K, and therefore |G |=3(¢*—1) (¢—1) and
| Gp/K,y| =3 by Theorem 2.

Since K, X K,<H and |H|,=((¢—1),)%/2, we have |K,|,<(¢—1),/2. By
Lemma 3.2, |H/K,| | 3(¢—1) and so (¢—1)/2 | |K;|. On the other hand
|K,| | ¢—1. Hence, either |K;|=(¢—1)/2 or |K;|=3(¢—1)/2 and ¢=1
(mod 3). Let X be a Hall subgroup of G of order (¢?+¢-+1)/(3, ¢—1). Then
[X, K\ K]<XNK,K,=1 by Lemma 3.8. From this K, KZSCa(X)Sﬁl.
If |K, K,|;=|G|;, then K; X K, (Sﬁl) contains a planar collineation of order
3. This is a contradiction. Therefore |K, K,|;<|G|; and we have |K;|=
(g—1)/2. In particular K;<Z(H). Similarly K,<Z(H).

Lemma 4.3. Let s, be a nontrivial planar element of G. Then a basis

for = may be choosen so that <s1>:<<{) 3)} and H<U.

Proof. By Lemma 4.2, s, is an element of order 3. By Lemma 3.2 H <U
and since s, is not semiregular on the lines L(c0) and L(O), we may assame
either (i) slz([o, g, 0] 0, (b), 01) or (ii) s1=<[0, g, 0] 0, ((i l-]> for some a, be
F%  As (5)°=1, N(e)=N(b)=1. There exist elements ¢, d=F* such that

¢"'=a and d*7'=b, respectively. Then (I(c) 0 >'1<]I(a) % )(I(C) % >

JOV. (10 O VY@ 0 \io 0N (fo O
c a .
=<0 ]) and( (o) I(d“q)> ( 1) ]ZI(b))< 0 I(d“’))z(o ]2). Therefore, to

prove the lemma it suffices to show that s,

@
o i/
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Assume Sl:(é]OZ)' Since (éﬁ>_l<lg)18))) (éjoz Z(I(g)l(%)) if

-1
(I(x) % )EH, then (I(xq ) O)EKD conttary to Lemma 4.2. Thus the
O I(y) 0 1

lemma holds.
Lemma 4.4. There exists a 2-elemeni !, of G— H which centralizes s,.

Proof. Set N=Ny(<{spK,). By a Witt’s theorem, [N: <{spK,|=¢—1.
In particular N<XH. Hence there is a 2-element £, N such that ¢, éH. Then
t, normalizes <{s;>{kI)>, where |<k[>|=(¢—1);. Since g7* Jg=[0, x'7% 0] for
any g€ {[x, 0, 0], [0, x, 0], [0, O, x]|x=F*, ti's t;=s; (mod <kI>). From
Theorem 5.3.2 of [3], ¢, centralizes {s;>){kI>. Therefore ?, centralies s,.

Lemma 4.5. A basis for = can be choosen so that <O ul), (J O) €G and
H<U. rorioj

Proof. Let ¢, be as in Lemma 4.4 and set t1:<g g) By Lemma 3.3,

A, BEU and as (t,)? is a 2-element of G, we have t,=g,, g, or g, where g;=

(18) I(Oa)) 2_(]2%) )]I(a)) and g 03:( 0 ]ZIO(a)) Here a, e K* as 1, con-

tralizes s5;. Since (? O) gz( > I(?z) Iob) ( ]) g (é ?): I(()b)

I(a)) and I O) & (I 0 :<O ](ab)>’ by choosing a suitable basis for
o O I(b) O I(b) I O

m we may assume that 7,= (O 1(18))) for scme 2-element u, of K*.

Suppose %=1 for some vEK. Then (v7* (f) ?) (? I(g‘)) )2=<IO ?)
Hence G contains an involuticn which interchanges L(o0) and L(O) and so it is
a homology with axis L(M) for some M&Z3— {0}, coutrary to Lemma 4.2.
Thus w, is a nonsquare 2-element of K*. From Lemma 4.2, G>K,= {(é x?I)
|x= K*, so that (? ZI eaG.

From now on we put tlz(o uj) and s1—<] 0

I O oJj/

Lemma 4.6. (i) Let L(M) (MEZX) te o line fixed by s,. Then M=
[a, b, c] for some a, b, cEK.

(i) Let L(M) (MeZ—{O}) be a line fixed by s,. Set \,=A{L(K’M)|kE
K*% and Q,={L(uK*M™")|k€K*. Then Q,UQ,U {L(0), L(oo)} is the set of
lines of L fixed by s,.

Proof. Assume L(M)s,=L(M) and set M=[a, b,c]. Then J7'[a;b,c] =
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[a, b, c], so that [a, b, €]=[a, b, c]. Thus a, b, cEK and (i) holds. Moreover,
since H>K,, K, and L(M)t,=L(uM™), (ii) holds.

Lemma 4.7. H contains an abelian normal subgroup X of G of order
(*—1) (y—1)/2 such that K,K,K,<X<U, and H=X{s>.

Proof. By Lemma 4.2, H/K; contains a unique cyclic subgroup X;/K; of
order ¢*—1 such that H/K;=(X;/K;) {s,)K;/K}), i€ {1, 2}. As K, is contained
in the center of H, X; is an abelian normal subgroup of G of order (¢—1)
(¢—1)/2.

Assume X,#+X,. Then H=X X, and hence |H/(X,N X;)|=9 and X, N X,
is in the center of H. This contradicts the fact that sy&H. Therefore X;=
X,. Set X=X,=X,. Then X has the desired properties.

Lemma 4.8. X contains a cyclic normal Hall A-subgroup Z of order
(@+4+1)/G, ¢—1).

Proof. Let Z be a subgroup of X of order (¢+¢+1)/(3, ¢—1). From
Lemma 4.2, ZN K;=1. Since ZK,/K;<GL(3, 9)*, Z is cyclic.

Lemma 4.9. Let Y be a Sylow 3-subgroup of X. Then YK /K, is cyclic.

Proof. Suppose false and set 3"=(¢—1);. Then [Y|=3%(3, ¢—1).
Since K;<X and K;NK,=1, we have ¢=1 (mod 3) and YK,/Ky=Z;, X Z;.
As U=z, x Zs., lgcU|feK} < YK,K, In particular f= I(O’)I?))e

r
Y, where 7 is an element of F* of order 3!, Let L(M) (M€X=—{O}) be a
line fixed by s; and put M=[aq, b, ¢]. Let Q, and Q, be as in Lemma 4.6.
Since L(M) f=L{I(r)™ MI(r))=IL(([a, b9, ¢r*"*]) and 3|1—gq, L([a, br'"9,
cr'~?)) is a line fixed by s;. As f€H, L(a, br'™?, cr*¢])€Q,. Hence 1'"9=1,
a contradiction. Thus the lemma holds.

Lemma 4.10. H|K, contains a cyclic normal subgroup X|K, of order
(—1)/2 which is inverted by t,.

Proof. From Lemmas 4.7-4.9, together with the fact that K,K/K, is
cyclic of order (¢—1)/2, H|K, contains a cyclic normal subgroup X/K, of order
(—1)/2. Clearly ¢, inverts K,K,/K,. Since ti€K, and [Z, X]=1 (mod K,),
t, inverts ZKy/K,. Moreover ¢, inverts a Sylow 3-subgroup of X/K, by Lemma
4.9. Therefore t, inverts X/K,.

I(x™) O )

Lemma 4.11. There exists an element g€ X such that g=
O I(x))

and F*=<{x>.

Proof. Let glz(l(oy) I(O))> be an element of X such that g, K, is a genera-
b3
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tor of X/K,. Since |X/K,K,|=1 (mod 2), we may assume y and z are square

-1
elements of F*. Since #, inverts g, (mod K), I(g )1(3-1)) ‘_—“gltlE<I(Oz) 18)))

(mod K,). Hence yz=j* for some j€K* and so g,=g, <O 1 2)) where g,=
I(y) O (LK) O I(#) O\ (I(k™") O
( o I(y"l))' On the other hand g3—-( A I(k“)> ( )( 0 I(k“l))

€K, Ky—K,Ky, |<k>|=(q—1)/2. Therefore X=<g,K0>K1K0_<g2, oK,
This, together with t} € K,, implies the lemma.

Lemma 4.12. H—( ! g_’) I‘(Jx)) |xE YK (s> and G—H<t.

Proof. From Lemma 4.11, the lemma holds.

We now present a characterization of the class II.

Theorem 3. Let = be a translation plane of order ¢ with kerr K=GF(q),
where g=1 (mod 2) and assume = is not an Andre plane. Then r is contained in
the class 11 if and only if the following three conditions are satisfied:

(1) A subgroup G of LC(x) has orbits of length 2 and ¢*—1 on l...

(ii) The centralizer of a 2-element 2'~=G'= in G'= is a N'-group, where
A is the set of primes dividing (+q+1)/(3, ¢—1).

(iif) G contains a nontrivial planar element.

Proof. Suppose #E€1Ily, K=GF(q). Then it can be easily verified that
LC(z) contains the group described in Lemma 4.12. Therefore we have
“only if”’ part of the theorem.

Conversely, let # be a plane with the properties (i)—(iii). By Lemmas
4.6 and 4.12, Z={I(x) [a, b, c] I(x)|x= F} U {I(x) ua, b, c]"* I(x)|x=F}, where
[a, b, c]=GL(3, q). By definition of II, = is contained in II. Thus the
theorem holds.
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