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Abstract
We compute the eigenvalues with multiplicities of the Lichnerowicz Laplacian

acting on the space of symmetric covariant tensor fields on the Euclidian sphereSn.
The spaces of symmetric eigentensors are explicitly given.

1. Introduction

Let (M, g) be a Riemanniann-manifold. For any p 2 N, we shall denote by0�Np T�M
�
, �p(M) andS pM the space of covariantp-tensor fields onM, the space

of differential p-forms onM and the space of symmetric covariantp-tensor fields onM,
respectively. Note that0�N0T�M

�
=�0(M) = S0M = C1(M,R), �(M) =

Pn
p=0�p(M)

andS(M) =
P

p�0 S
p(M).

Let D be the Levi-Civita connection associated tog; its curvature tensor fieldR
is given by

R(X, Y)Z = D[X,Y] Z � (DX DY Z � DY DX Z),

and the Ricci endomorphism fieldr : T M ! T M is given by

g(r (X), Y) =
nX

i =1

g(R(X, Ei )Y, Ei ),

where (E1, : : : , En) is any local orthonormal frame.
For anyp 2 N, the connectionD induces a differential operatorD : 0�Np T�M

�!0�Np+1 T�M
�

given by

DT(X, Y1, : : : , Yp) = DXT(Y1, : : : , Yp)

= X.T(Y1, : : : , Yp)� pX
j =1

T(Y1, : : : , DXYj , : : : , Yp).
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Its formal adjoint D� : 0�Np+1 T�M
�! 0�Np T�M

�
is given by

D�T(Y1, : : : , Yp) = � nX
j =1

DEi T(Ei , Y1, : : : , Yp),

where (E1, : : : , En) is any local orthonormal frame.
Recall that, for any differentialp-form �, we have

(1) d�(X1, : : : , Xp+1) =
p+1X
j =1

(�1) j +1DX j �(X1, : : : , X̂ j , : : : , Xp+1).

We denote byÆ the restriction ofD� to �(M)�S(M) and we defineÆ�: S p(M)!
S p+1(M) by

Æ�T(X1, : : : , Xp+1) =
p+1X
j =1

DX j T(X1, : : : , X̂ j , : : : , Xp+1).

Recall that the operator trace Tr :S p(M) ! S p�2(M) is given by

Tr T(X1, : : : , Xp�2) =
nX

j =1

T(E j , E j , X1, : : : , Xp�2),

where (E1, : : : , En) is any local orthonormal frame.
The Lichnerowicz Laplacian is the second order differential operator

1M : 0
 

pO
T�M

!
! 0

 
pO

T�M

!

given by

1M (T) = D�D(T) + R(T),

where R(T) is the curvature operator given by

R(T)(Y1, : : : , Yp) =
pX

j =1

T(Y1, : : : , r (Yj ), : : : , Yp)

�X
i< j

nX
l=1

fT(Y1, : : : , El , : : : , R(Yi , El )Yj , : : : , Yp)

+ T(Y1, : : : , R(Yj , El )Yi , : : : , El , : : : , Yp)g,
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where (E1, : : : , En) is any local orthonormal frame and, in

T(Y1, : : : , El , : : : , R(Yi , El )Yj , : : : , Yp),

El takes the place ofYi and R(Yi , El )Yj takes the place ofYj .
This differential operator, introduced by Lichnerowicz in[15] pp. 26, is self-adjoint,

elliptic and respects the symmetries of tensor fields. In particular, 1M leaves invariant
S(M) and the restriction of1M to �(M) coincides with the Hodge-de Rham Laplacian,
i.e., for any differentialp-form �,

(2) 1M� = (dÆ + Æd)(�).

We have shown in [6] that, for any symmetric covariant tensorfield T ,

(3) 1M (T) = (Æ Æ Æ� � Æ�Æ)(T) + 2R(T).

Note that if T 2 S(M) and gl denotes the symmetric product ofl copies of the
Riemannian metricg, we have

(Tr Æ1M )T = (1M Æ Tr)T ,(4)

1M (T � gl ) = (1M T)� gl ,(5)

where� is the symmetric product.
The Lichnerowicz Laplacian acting on symmetric covariant tensor fields is of funda-

mental importance in mathematical physics (see for instance [9], [20] and [22]). Note also
that the Lichnerowicz Laplacian acting on symmetric covariant 2-tensor fields appears in
many problems in Riemannian geometry (see [3], [5], [19],: : :).

On a compact Riemannian manifold, the Lichnerowicz Laplacian1M has discrete
eigenvalues with finite multiplicities. For a given compactRiemannian manifold, it
may be an interesting problem to determine explicitly the eigenvalues and the eigen-
tensors of1M on M.

Let us enumerate the cases where the spectra of1M was computed:
1. 1M acting onC1(M, C): M is either flat torus or Klein bottles [4],M is a Hopf
manifolds [1];
2. 1M acting on�(M): M = Sn or Pn(C) [10] and [11], M = CaP2 or G2=SO(4)
[16] and [18], M = SO(n + 1)=SO(2)� SO(n) or M = Sp(n + 1)=Sp(1)� Sp(n) [21];
3. 1M acting onS2(M) and M is the complex projective spaceP2(C) [22];
4. 1M acting onS2(M) and M is either Sn or Pn(C) [6] and [7];
5. Brian and Richard Millman give in [2] a theoretical method for computing the
spectra of Lichnerowicz Laplacian acting on�(G) where G is a compact semisimple
Lie group endowed with the biinvariant metric induced from the negative of the Killing
form;
6. Some partial results where given in [12]–[14].
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In this paper, we compute the eigenvalues and we determine the spaces of eigen-
tensors of1M acting onS(M) in the case whereM is the Euclidian sphereSn.

Let us describe our method briefly. We consider the (n + 1)-Euclidian spaceRn+1

with its canonical coordinates (x1, : : : , xn+1). For anyk, p 2 N, we denote byS pH Æ
k

the space of symmetric covariantp-tensor fieldsT on Rn+1 satisfying:
1. T =

P
1�i1�����i p�n+1 Ti1,:::,i p dxi1 � � � � � dxi p whereTi1,:::,i p are homogeneous poly-

nomials of degreek;
2. Æ(T) = 1Rn+1(T) = 0.

Then-dimensional sphereSn is the space of unitary vectors inRn+1 and the Euclidian
metric onRn+1 induces a Riemannian metric onSn. We denote byi : Sn ,! Rn+1 the
canonical inclusion.

For any tensor fieldT 2 0�Np T�Rn+1
�
, we computei �(1Rn+1T)�1Sn(i �T) and

get a formula (see Theorem 2.1). Inspired by this formula andhaving in mind the fact
that i �: Pk�0S

pH Æ
k ! S pSn is injective and its image is dense inS pSn (see [10]), we

give, for anyk, a direct sum decomposition ofS pH Æ
k composed by eigenspaces of1Sn .

Thus we obtain the eigenvalues and the spaces of eigentensors with its multiplicities of1Sn acting onS(Sn) (see Section 4).
Note that the eigenvalues and the eigenspaces of1Sn acting on�(Sn) was com-

puted in [10] by using the representation theory. In [11], I.Iwasaki and K. Katase
recover the result by a method using the restriction of harmonic tensor fields and a
result in [8]. The formula obtained in Theorem 2.1 combined with the methods de-
veloped in [10] and [11] permit to present those results in a more precise form (see
Section 3).

2. A relation between∆Rn+1 and ∆Sn

We consider the Euclidian spaceRn+1 endowed with its canonical coordinates
(x1, : : : , xn+1) and its canonical Euclidian flat Riemannian metrich , i. We denote by
D be the Levi-Civita covariant derivative associated toh , i. We consider the radial
vector field given by

~r =
n+1X
i =1

xi
��xi

.

For any p-tensor fieldT 2 0�Np T�Rn+1
�

and for any 1� i < j � p, we denote
by i~r , j T the (p� 1)-tensor field given by

i~r , j T(X1, : : : , Xp�1) = T(X1, : : : , X j�1,~r , X j , : : : , Xp�1),
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and by Tri , j T the (p� 2)-tensor field given by

Tri , j T(X1, : : : , Xp�2)

=
n+1X
l=1

T(X1, : : : , Xi�1, El , Xi , : : : , X j�2, El , X j�1, : : : , Xp�2),

where (E1, : : : , En+1) is any orthonormal basis ofRn+1. Note that Tri , j T = 0 if T is
a differential form and Tri , j T = Tr T if T is symmetric.

For any permutation� of f1, : : : , pg, we denote byT� the p-tensor field

T� (X1, : : : , Xp) = T(X� (1), : : : , X� (p)).

For 1� i < j � p, the transposition of (i , j ) is the permutation�i , j of f1, : : : , pg such
that �i , j (i ) = j , �i , j ( j ) = i and �i , j (k) = k for k 6= i , j . Let T denote the set of the
transpositions off1, : : : , pg.

The spherei : Sn ,! Rn+1 is endowed with the Euclidian metric.

Theorem 2.1. Let T be a covariant p-tensor field onRn+1. Then,

i �(1Rn+1T)

= 1Sn i �T + i �
 

p(1� p)T + (2p� n + 1)L~r T � L~r Æ L~r T � 2
X
�2T T� + O(T)

!
,

where O(T) is given by

O(T)(X1, : : : , Xp) = 2
X
i< j

hXi , X j i Tri , j (X1, : : : , X̂i , : : : , X̂ j , : : : , Xp)

� 2
pX

j =1

DX j (i~r , j T)(X1, : : : , X̂ j , : : : , Xp),

where the symbol̂ means that the term is omitted.

Proof. The proof is a massive computation in a local orthonormal frame using the
properties of the Riemannian embedding of the sphere in the Euclidian space.

We choose a local orthonormal frame ofRn+1 of the form (E1, : : : , En, N) such

that Ei is tangent toSn for 1� i � n and N = (1=r )~r where r =
q

x2
1 + � � � + x2

n+1.

For any vector fieldX on Rn+1, we have

DX N =
1

r
(X � hX, NiN),(6)

DN X = [N, X] +
1

r
(X � hX, NiN).(7)
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Let r be the Levi-Civita connexion of the Riemannian metric onSn. We have,
for any vector fieldsX, Y tangent toSn,

(8) DXY = rXY � hX, YiN.

Let T be a covariantp-tensor field onRn+1 and (X1, : : : , Xp) a family of vector
fields onRn+1 which are tangent toSn. A direct calculation using the definition of the
Lichnerowicz Laplacian gives

1Rn+1(T)(X1, : : : , Xp) = D�D(T)(X1, : : : , Xp)

=
nX

i =1

0
��Ei Ei .T(X1, : : : , Xp) + 2

pX
j =1

Ei .T(X1, : : : , DEi X j , : : : , Xp)

+ DEi Ei .T(X1, : : : , Xp)� pX
j =1

T(X1, : : : , DDEi Ei X j , : : : , Xp)

� pX
j =1

T(X1, : : : , DEi DEi X j , : : : , Xp)

� 2
X
l< j

T(X1, : : : , DEi Xl , : : : , DEi X j , : : : , Xp)

1
A

� N.N.T(X1, : : : , Xp) + 2
pX

j =1

N.T(X1, : : : , DN X j , : : : , Xp)

+ DN N.T(X1, : : : , Xp)� pX
j =1

T(X1, : : : , DDN N X j , : : : , Xp)

� pX
j =1

T(X1, : : : , DN DN X j , : : : , Xp)� 2
X
l< j

T(X1, : : : , DN Xl , : : : , DN X j , : : : , Xp).

(6)–(8) make it obvious that

DDEi Ei X j = rrEi Ei X j � hrEi Ei , X j iN � [N, X j ]

� 1

r
(X j � hX j , NiN),

(9)

DEi DEi X j = rEirEi X j � (hEi , rEi X j i + Ei .hEi , X j i)N
� 1

r
hEi , X j iEi ,

(10)

DN DN X = [N, [N, X]] +
2

r
[N, X] +

�
1

r 2
� 1

r

�
(X � hX, NiN)

� 2

r
N.hX, NiN.

(11)
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By (8)–(10), we get easily, in restriction toSn,

nX
i =1

0
�2

pX
j =1

Ei .T(X1, : : : , DEi X j , : : : , Xp) + DEi Ei .T(X1, : : : , Xp)

� pX
j =1

T(X1, : : : , DDEi Ei X j , : : : , Xp)� pX
j =1

T(X1, : : : , DEi DEi X j , : : : , Xp)

1
A

=
nX

i =1

0
�2

pX
j =1

Ei .T(X1, : : : , rEi X j , : : : , Xp) +rEi Ei .T(X1, : : : , Xp)

� pX
j =1

T(X1, : : : , rrEi Ei X j , : : : , Xp)� pX
j =1

T(X1, : : : , rEirEi X j , : : : , Xp)

1
A

� 2
pX

j =1

X j .T(X1, : : : ,
jz}|{

N , : : : , Xp) + p(n + 1)T(X1, : : : , Xp)� nLNT(X1, : : : , Xp).

On other hand, also by using (8), we have

X
l< j

nX
i =1

T(X1,: : : , DEi Xl ,: : : , DEi X j ,: : : , Xp)

=
X
l< j

nX
i =1

T(X1,: : : , DEi Xl ,: : : ,rEi X j ,: : : , Xp)�X
l< j

T(X1,: : : , DX j Xl ,: : : ,
jz}|{

N ,: : : , Xp)

=
X
l< j

nX
i =1

T(X1,: : : ,rEi Xl ,: : : ,rEi X j ,: : : , Xp)�X
l< j

T(X1,: : : ,
lz}|{
N ,: : : ,rXl X j ,: : : , Xp)

�X
l< j

T(X1,: : : , DX j Xl ,: : : ,
jz}|{

N ,: : : , Xp)

=
X
l< j

nX
i =1

T(X1,: : : ,rEi Xl ,: : : ,rEi X j ,: : : , Xp)�X
l< j

T(X1,: : : , DX j Xl ,: : : ,
jz}|{

N ,: : : , Xp)

�X
l< j

T(X1,: : : ,
lz}|{
N ,: : : , DXl X j ,: : : , Xp)

�X
l< j

hXl , X j iT(X1,: : : ,
lz}|{
N ,: : : ,

jz}|{
N ,: : : , Xp).
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So we get, in restriction toSn, since DN N = 0

1Rn+1(X1, : : : , Xp)�r�rT(X1, : : : , Xp)

= p(n + 1)T(X1, : : : , Xp)� nLNT(X1, : : : , Xp)� 2
pX

j =1

DX j (i N, j T)(X1, : : : , X̂ j , : : : , Xp)

+ 2
X
l< j

hXl , X j iT(X1, : : : ,
lz}|{
N , : : : ,

jz}|{
N , : : : , Xp)� N.N.T(X1, : : : , Xp)

+ 2
pX

j =1

N.T(X1, : : : , DN X j , : : : , Xp)� pX
j =1

T(X1, : : : , DN DN X j , : : : , Xp)

� 2
X
i< j

T(X1, : : : , DN Xi , : : : , DN X j , : : : , Xp).

Remark that, in restriction toSn, the following equality holds

pX
j =1

DX j (i N, j T)(X1, : : : , X̂ j , : : : , Xp) =
pX

j =1

DX j (i~r , j T)(X1, : : : , X̂ j , : : : , Xp).

Now by using (7) and (11) and by taking the restriction toSn, we have

2
pX

j =1

N.T(X1, : : : , DN X j , : : : , Xp)

= 2
pX

j =1

N.T(X1, : : : , [N, X j ], : : : , Xp) + 2
pX

j =1

N

�
1

r

�
T(X1, : : : , X j , : : : , Xp)

� 2
pX

j =1

N(hX j , Ni)T(X1, : : : ,
jz}|{

N , : : : , Xp) + 2
pX

j =1

N.T(X1, : : : , X j , : : : , Xp)

= 2
pX

j =1

N.T(X1, : : : , [N, X j ], : : : , Xp)� 2pT(X1, : : : , Xp) + 2pN.T(X1, : : : , X j , : : : , Xp)

� 2
pX

j =1

N(hX j , Ni)T(X1, : : : ,
jz}|{

N , : : : , Xp).

pX
j =1

T(X1, : : : , DN DN X j , : : : , Xp)

=
pX

j =1

T(X1, : : : , [N, [N, X j ], : : : , Xp)� 2
pX

j =1

N(hX j , Ni)T(X1, : : : ,
jz}|{

N , : : : , Xp).
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X
i< j

T(X1, : : : , DN Xi , : : : , DN X j , : : : , Xp)

=
X
i< j

T(X1, : : : , [N, Xi ], : : : , [N, X j ], : : : , Xp) +
p(p� 1)

2
T(X1, : : : , Xp)

+
X
i< j

T(X1, : : : , Xi , : : : , [N, X j ], : : : , Xp) +
X
i< j

T(X1, : : : , [N, Xi ], : : : , X j , : : : , Xp).

So we get, in restriction toSn

�N.N.T(X1, : : : , Xp) + 2
pX

j =1

N.T(X1, : : : , DN X j , : : : , Xp)

� pX
j =1

T(X1, : : : , DN DN X j , : : : , Xp)� 2
X
i< j

T(X1, : : : , DN Xi , : : : , DN X j , : : : , Xp)

= �L N Æ L N T(X1, : : : , Xp) + 2pLN T(X1, : : : , Xp)� p(1 + p)T(X1, : : : , Xp).

The curvature ofSn is given by

R(X, Y)Z = hX, YiZ � hY, ZiX
and

r (X) = (n� 1)X.

Hence, a direct computation gives that the curvature operator is given by

R(T)(X1, : : : , Xp) = p(n� 1)T(X1, : : : , Xp) + 2
X
�2T T� (X1, : : : , Xp)

� 2
X
i< j

nX
l=1

hXi , X j iT(X1, : : : , El , : : : , El , : : : , Xp).

Finally, we get

i �(1Rn+1T) = 1Sn i �T
+ i �

 
p(1� p)T + (2p� n)L N T � L N Æ L NT � 2

X
�2T T� + O(T)

!
,

One can conclude the proof by remarking that

i �(L N T) = i �(L~r T)

and

i �(L N Æ L NT) = �i �(L~r T) + i �(L~r Æ L~r T).
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Corollary 2.1. Let � be a differential p-form onRn+1. Then

i �(1Rn+1�) = 1Sn i �� + i �((2p� n + 1)L~r� � L~r Æ L~r� � 2di~r�)

Corollary 2.2. Let T be a symmetric p-tensor field onRn+1. Then

i �(1Rn+1T) = 1Sn i �T + i �(2p(1� p)T + (2p� n + 1)L~r T � L~r Æ L~r T

� 2Æ�(i~r T) + 2 Tr(T)� h , i),
where� is the symmetric product.

3. Eigenvalues and eigenforms of∆Sn acting on Ω(Sn)

In this section, we will use Corollary 2.1 and the results developed in [10] to de-
duce the eigenvalues and the spaces of eigenforms of1Sn acting on��(Sn). We re-
cover the results of [10] and [11] in a more precise form.

Let
Vp Hk be the space of all coclosed harmonic homogeneousp-forms of degree

k on Rn+1. A differential form � belongs to
Vp Hk if Æ(�) = 0 and� can be written

� =
X

1�i1<���<i p�n+1

�i1���i p dxi1 ^ � � � ^ dxi p ,

where �i1���i p are harmonic polynomial functions onRn+1 of degreek. For any � 2Vp Hk, we have

(12) L~r� = di~r� + i~r d� = (k + p)�.

We have (see [10])

i � :
X
k�0

p̂

Hk ! �p(Sn)

is injective and its image is dense.
For any� 2Vp Hk, we put

(13) !(�) = � � 1

p + k
di~r�.
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Lemma 3.1. We get a linear map!:
Vp Hk !Vp Hk which is a projector, i.e.,! Æ ! = !. Moreover,

Ker! = d

 
p�1̂

Hk+1

!
, Im! =

p̂

Hk \ Ker i~r ,

and hence

p̂

Hk =
p̂

Hk \ Ker i~r � d

 
p�1̂

Hk+1

!
.

The following lemma is an immediate consequence of Corollary 2.1 and (12).

Lemma 3.2. 1. For any � 2Vp Hk \ Ker i~r , we have

1Sn i �� = (k + p)(k + n� p� 1)i ��.

2. For any � 2 d
�Vp�1 Hk+1

�
, we have

1Sn i �� = (k + p)(k + n� p + 1)i ��.

REMARK 3.1. We have

(k + p)(k + n� p� 1) = (k0 + p)(k0 + n� p + 1), k = k0 + 1

and

n = 2p.

The following table gives explicitly the spectra of1Sn and the spaces of eigen-
forms with its multiplicities. The multiplicity was computed in [11].

Table I.

p The eigenvalues The space of eigenforms Multiplicity

p = 0 k(k + n� 1), k 2 N
V0 Hk

(n+k�2)! (n+2k�1)
k! (n�1)!

1� p � n,
(k + p)(k + n� p� 1), !�Vp Hk

� (n+k�1)! (n+2k�1)
p! (k�1)! (n�p�1)! (n+k�p�1)(k+p)

n 6= 2p
k 2 N�
(k + p)(k + n� p + 1),

d
�Vp�1 Hk+1

� (n+k)! (n+2k+1)
(p�1)! k! (n�p)! (n+k�p+1)(k+p)k 2 N

1� p � n, (k + p)(k + p + 1),
n = 2p k 2 N

!�Vp Hk+1

�� d
�Vp�1 Hk+1

� 2(2p+k)! (2p+2k+1)
p! ( p�1)! k! (k+p+1)(k+p)
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4. Eigenvalues and eigentensors of∆Sn acting on S(Sn)

This section is devoted to the determination of the eigenvalues and the spaces of
eigentensors of1Sn acting onS(Sn).

Let S p Pk be the space ofT 2 S p(Rn+1) of the form

T =
X

1�i1�����i p�n+1

Ti1���i p dxi1 � � � � � dxi p ,

where Ti1���i p are homogeneous polynomials of degreek. We put

S pH Æ
k = S p Pk \ Ker1Rn+1 \ Ker Æ

and

S pH Æ0
k = S pH Æ

k \ Ker Tr .

In a similar manner as in [10] Lemma 6.4 and Corollary 6.6, we have

(14) S p Pk = S pH Æ
k � (r 2S p Pk�2 + dr2 � S p�1Pk�1),

and

i � :
X
k�0

S pH Æ
k ! S pSn

is injective and its image is dense inS pSn.
Now, for any k � 0, we proceed to give a direct sum decomposition ofS pH Æ

k

consisting of eigenspaces of1Sn and, hence, we determine completely the eigenvalues
of 1Sn acting onS p(Sn). This will be done in several steps.

At first, we have the following direct sum decomposition:

(15) S pH Æ
k = S pH Æ0

k � [ p=2]M
l=1

S p�2l H Æ0
k � h , il ,

where h , il is the symmetric product ofl copies ofh , i.
The task is now to decomposeS pH Æ0

k as a sum of eigenspaces of1Sn and get,
according to (5), all the eigenvalues. This decomposition needs some preparation.

Lemma 4.1. Let T 2 S pPk and h2 N�. Then we have the following formulas:
1. Æ�(i~r T)� i~r Æ�(T) = (p� k)T ;
2. Æ�(h)(i~r T)� i~r Æ�(h)(T) = h(p� k + h� 1)Æ�(h�1)(T);
3. Æ�(i~r h T)� i~r hÆ�(T) = h(p� k� h + 1)i~r h�1T ,
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where i~r h =

hz }| {
i~r Æ � � � Æ i~r and Æ�(h) =

hz }| {Æ� Æ � � � Æ Æ�.
Proof. The first formula is easily verified and the others follow by induction onh.

Note that the spacesS pH Æ0
k are invariant byÆ� and i~r ; this is a consequence of

the following formulas which one can check easily. For any symmetric tensor fieldT
on Rn+1, we have

1Rn+1(i~r T) = i~r1Rn+1(T) + 2ÆT ,(16)

Æ(i~r T) = i~r Æ(T)� Tr(T),(17)

Tr(Æ�(T)) = �2Æ(T) + Æ�(Tr(T)),(18)

Tr(i~r T) = i~r Tr(T).(19)

Now the desired decomposition ofS pH Æ0
k is based on the following algebraic lemma.

Lemma 4.2. Let V be a finite dimensional vectorial space, � and  are two
endomorphisms of V and(Ap

k )k, p2N[f�1g a family of vectorial subspaces of V such that:

1. for any p, k 2 N, Ap�1 = A�1
k = 0;

2. for any p, k 2 N, �(Ap
k ) � Ap+1

k�1 and  (Ap
k ) � Ap�1

k+1 ;
3. for any p, k 2 N and for any a2 Ap

k ,

� Æ  (a)�  Æ �(a) = (p� k)a.

Then:
(i) for any k< p,  : Ap

k ! Ap�1
k+1 is injective;

(ii) for k � p, we have

Ap
k = (Ap

k \ Ker�)�  �Ap+1
k�1

�
and

Ap
k =

kM
l=0

 l
�
Ap+l

k�l \ Ker��.
Proof. Note that one can deduce easily, by induction, that for any l 2 N� and for

any a 2 Ap
k

�l Æ  (a)�  Æ �l (a) = l (p� k + l � 1)�l�1(a),(20)

 l Æ �(a)� � Æ  l (a) = l (k� p + l � 1) l�1(a).(21)
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(i) Let a 2 Ap
k such that (a) = 0. From (20) and sincep � k > 0, for any

l � 0, if �l (a) = 0 then�l�1(a) = 0. Now, since�l (a) 2 Ap+l
k�l and sinceAp+l�1 = 0, we

have, for anyl � k + 1, �l (a) = 0 which implies, by induction, thata = 0 and hence : Ap
k ! Ap�1

k+1 is injective.
(ii) Suppose thatk � p. We definePp

k : Ap
k ! Ap

k as follows

8><
>:

Pp
k (a) =

kX
s=0

�s s Æ �s(a)

�0 = 1 and�s � (s + 1)(k� p� s� 2)�s+1 = 0 for 1� s � k� 1.

Pp
k satisfies

Pp
k Æ Pp

k = Pp
k , Ker Pp

k =  �Ap+1
k�1

�
and

Im Pp
k = Ap

k \ Ker�.

Indeed, leta 2 Ap+1
k�1. We have

Pp
k ( (a)) =

kX
s=0

�s s Æ �s( (a))

(20)
=

kX
s=0

�s s+1 Æ �s(a) +
kX

s=0

s(p� k + s + 1)�s s Æ �s�1(a)

�k(a)=0
=

k�1X
s=0

�s s+1 Æ �s(a) +
kX

s=1

s(p� k + s + 1)�s s Æ �s�1(a)

=
k�1X
s=0

(�s + (s + 1)(p� k + s + 2)�s+1) s+1 Æ �s(a)

= 0.

Conversely, sincePp
k (a) = a+

Pk
s=1�s sÆ�s(a), we deduce thatPp

k (a) = 0 implies

that a 2  (Ap+1
k�1), so we have shown that KerPp

k = (Ap+1
k�1). The relationPp

k ÆPp
k = Pp

k

is a consequence of the definition ofPp
k and Pp

k Æ  = 0.
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Note that�(a) = 0 implies thatPp
k (a) = a and henceAp

k \ Ker� � Im Pp
k . Con-

versely, leta 2 Ap
k , we have

� Æ Pp
k (a) =

kX
s=0

�s� Æ  s Æ �s(a)

(21)
=

kX
s=0

�s s Æ �s+1(a)� kX
s=0

�ss(k� p� s� 1) s�1 Æ �s(a)

�k+1(a)=0
=

k�1X
s=0

�s s Æ �s+1(a)� kX
s=1

�ss(k� p� s� 1) s�1 Æ �s(a)

=
k�1X
s=0

(�s � (s + 1)(k� p� s� 2)�s+1) s Æ �s+1(a)

= 0.

We conclude thatPp
k is a projector, KerPp

k =  �Ap+1
k�1

�
and Ap

k \Ker� = Im Pp
k and we

deduce immediately thatAp
k =  �Ap+1

k�1

�� Ap
k \ Ker�. The same decomposition holds

for Ap+1
k�1 and, since : Ap+1

k�1 ! Ap
k is injective, we get

Ap
k =  Æ  �Ap+2

k�2

��  �Ap+1
k�1 \ Ker��� Ap

k \ Ker�.

We proceed by induction and we get the desired decomposition.

According to Lemma 4.1, the hypothesis of Lemma 4.2 are satisfied by the spaces
S pH Æ0

k and the operatorsÆ� and i~r . So we get, in a first time,

S pH Æ0
k = S pH Æ0

k \ Ker Æ� � i~r
�
S p+1H Æ0

k�1

�
, if k � p,(22)

S pH Æ0
k = S pH Æ0

k \ Ker i~r � Æ��S p�1H Æ0
k+1

�
, if k � p,(23)

and, in a second time, the desired decomposition ofS pH Æ0
k .

Lemma 4.3. We have:
1. If k � p

S pH Æ0
k =

kM
l=0

i~r l

�
S p+l H Æ0

k�l \ Ker Æ��;
2. If k � p

S pH Æ0
k =

pM
l=0

Æ�l �S p�l H Æ0
k+l \ Ker i~r

�
;
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3. If k = p, for any 0� l � p,

S pH Æ0
p =

pM
l=0

i~r l

�
S p+l H Æ0

p�l \ Ker Æ�� =
pM

l=0

Æ�l �S p�l H Æ0
p+l \ Ker i~r

�
.

Now, we use Corollary 2.2 to show that the decompositions ofS pH Æ0
k given in

Lemma 4.3 are composed by eigenspaces of1Sn .

Theorem 4.1. We have:
1. If k � p, for any 0� q � k and any T2 i~r (k�q) (S p+k�q H Æ0

q \ Ker Æ�),
1Sn i �T = ((k + p)(n + p + k� 2q � 1) + 2q(q � 1))i �T ;

2. If k � p, for any 0� q � p and for any T2 Æ�(p�q)(Sq H Æ0
k+p�q \ Ker i~r ),

1Sn i �T = ((k + p)(n + p + k� 2q � 1) + 2q(q � 1))i �T .

Proof. 1. LetT = i~r (k�q) (T0) with T0 2 S p+k�q H Æ0
q \KerÆ�. We have from Corol-

lary 2.2

1Sn i �T = i �(2p(p� 1)T + (n� 2p� 1)L~r T + L~r Æ L~r T

+ 2Æ�(i~r T)� 2 Tr(T)� h , i).
We have

Tr T = 0, L~r T = (k + p)T

and

L~r Æ L~r T = (k + p)2T .

Moreover, by using Lemma 4.1, we have

2Æ�(i~r T) = 2Æ�(i~r (k�q+1)T0)Æ�(T0)=0
= 2(k� q + 1)(p + k� q � q � k + q � 1 + 1)i~r (k�q) T0

= 2(k� q + 1)(p� q)T .

Hence

1Sn i �T = (2p(p� 1) + (n� 2p� 1)(k + p) + (k + p)2 + 2(p� q)(k� q + 1))i �T .

One can deduce the desired relation by remarking that

2p(p� 1) + 2(p� q)(k� q + 1) = 2(k + p)(p� q) + 2q(q � 1).
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2. This follows by the same calculation as 1.

From the fact that

i � :
X
k�0

S pH Æ
k ! S pSn

is injective and its image is dense inS pSn, from (15), and from Lemma 4.3 and Theo-
rem 4.1, note that we have actually proved that the eigenvalues of1Sn acting onS pSn

belongs to �
(k + p� 2l )(n + p + k� 2l � 2q � 1) + 2q(q � 1),

k 2 N, 0� l � � p

2

�
, 0� q � min(k, p� 2l )

�
.

Our next goal is to sharpen this result by computing dimS pH Æ0
k \KerÆ� if k � p and

dimS pH Æ0
k \ Ker i~r if k � p.

Lemma 4.4. We have the following formulas:
1. dimS pH Æ

k = dimS p Pk � dimS p Pk�2 � dimS p�1Pk�1 + dimS p�1Pk�3,
2. dimS pH Æ0

k = dimS pH Æ
k � dimS p�2H Æ

k ,
3. dim(S pH Æ0

k \ Ker Æ�) = dimS pH Æ0
k � dimS p+1H Æ0

k�1 (k � p),

4. dim(S pH Æ0
k \ Ker i~r ) = dimS pH Æ0

k � dimS p�1H Æ0
k+1 (k � p).

Note that we use the convention thatS p Pk = S pH Æ
k = S pH Æ0

k = 0 if k < 0 or p < 0.

Proof. 1. The formula is a consequence of (14), the relation

(r 2S pPk�2) \ (dr2 � S p�1Pk�1) = r 2(dr2 � S p�1Pk�3)

and the fact thatdr2 � . : S p Pk ! S p+1Pk+1 is injective.
2. The formula is a consequence of (15).
3. The formula is a consequence of (22) and Lemma 4.2.
4. The formula is a consequence of (23) and Lemma 4.2.

A straightforward calculation using Lemma 4.4 and the formula

dimS pPk =
(n + p)!

n! p!

(n + k)!

n! k!

gives dimS pH Æ0
k \ Ker Æ� if k � p and dimS pH Æ0

k \ Ker i~r if k � p. We summarize
the results on the following table.
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Table II.

Space Dimension
Conditions
on k and p

S0H Æ0
k \ Ker i~r

(n+k�2)! (n+2k�1)
k! (n�1)! k � 0

S pH Æ0
0 \ Ker Æ� (n+p�2)! (n+2p�1)

p! (n�1)! p � 0

S1H Æ0
k \ Ker i~r

(n+k�3)! k(n+2k�1)(n+k�1)
(n�2)! (k+1)! k � 1

S pH Æ0
1 \ Ker Æ� (n+p�3)! p(n+2p�1)(n+p�1)

(n�2)! (p+1)! p � 1

S pH Æ0
k \ Ker Æ� (n+k�4)! (n+p�3)! (n+p+k�2)

k! ( p+1)! (n�1)! (n�2)! �
(n�2)(n+2k�3)(n+2p�1)(p�k+1)

2� k � p

S pH Æ0
k \ Ker i~r

(n+k�3)! (n+p�4)! (n+p+k�2)
(k+1)! p! (n�1)! (n�2)! �

(n�2)(n+2k�1)(n+2p�3)(k� p+1)
k � p � 2

REMARK 4.1. Note that, forn = 2, we have

dim(S pH Æ0
k \ Ker Æ�) = 0 for 2� k � p,

dim(S pH Æ0
k \ Ker i~r ) = 0 for k � p � 2.

For simplicity we introduce the following notations.

S0 =

�
(k, l , q) 2 N3, 0� l � � p

2

�
, 0� k � p� 2l , 0� q � k

�
,

S1 =

�
(k, l , q) 2 N3, 0� l � � p

2

�
, k > p� 2l , 0� q � p� 2l

�
,

Vk
q,l = i~r k�q

�
S p�2l+k�q H Æ0

q \ Ker Æ��� h , il for (k, l , q) 2 S0,

Wk
q,l = Æ�(p�2l�q)�Sq H Æ0

p�2l+k�q \ Ker i~r
�� h , il for (k, l , q) 2 S1.

Let us summarize all the results above.

Theorem 4.2. 1. For n = 2, we have:
(a) The set of the eigenvalues of1S2 acting onS pS2 is

�
(k + p� 2l )(p + k� 2l + 1), k 2 N, 0� l � � p

2

��
;
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(b) The eigenspace associated to the eigenvalue�(k, l ) = (k+ p�2l )(k+ p�2l +1)
is given by

V�(k,l ) =

8>>>>><
>>>>>:

min(l ,[k=2])M
a=0

�
Vk�2a

0,l�a � Vk+1�2a
1,l�a

�
if 0� k � p� 2l ,

min(l ,[k=2])M
a=0

�
Wk�2a

0,l�a � Wk+1�2a
1,l�a

�
if k > p� 2l ;

(c) The multiplicity of�(k, l ) is given by

m(�(k, l )) = 2

�
min

�
l ,

�
k

2

��
+ 1

�
(1 + 2p + 2k� 4l ).

2. For n � 3, we have:
(a) The set of the eigenvalues of1Sn acting onS pSn is�

(k + p� 2l )(n + p + k� 2l � 2q � 1) + 2q(q � 1),

k 2 N, 0� l � � p

2

�
, 0� q � min(k, p� 2l )

�
;

(b) The space

P =
X
k�0

S pH Æ
k =

0
� M

(k,l ,q)2S0

Vk
q,l

1
A�

0
� M

(k,l ,q)2S1

Wk
q,l

1
A

is dense inS pSn and, for any (k, q, l ) 2 S0 (resp. (k, q, l ) 2 S1), Vk
q,l (resp. Wk

q,l )
is a subspace of the eigenspace associated to the eigenvalue(k + p� 2l )(n + p +
k� 2l � 2q � 1) + 2q(q � 1);
(c) The dimensions of Vkq,l and Wk

q,l are given in Table II since

dim Vk
q,l = dim(S p�2l+k�q H Æ0

q \ Ker Æ�) for (k, l , q) 2 S0,

dim Wk
q,l = dim(Sq H Æ0

p�2l+k�q \ Ker i~r ) for (k, l , q) 2 S1.
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