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Abstract
We compute the eigenvalues with multiplicities of the Liehowicz Laplacian
acting on the space of symmetric covariant tensor fields enEticlidian spheres”.
The spaces of symmetric eigentensors are explicitly given.

1. Introduction

Let (M, g) be a Riemanniam-manifold. For anyp € N, we shall denote by
I'(®PT*M), QP(M) andSPM the space of covarian-tensor fields orM, the space
of differential p-forms onM and the space of symmetric covarigntensor fields or,

respectively. Note thdt(®°T*M) = QM) = S°M =C®(M,R), (M) = > p=0R2P(M)
andS(M) = 3., SP(M).

Let D be the Levi-Civita connection associated gpits curvature tensor fiel®R
is given by

R(X, Y)Z = D[ny]z — (Dx Dyz — DnyZ),
and the Ricci endomorphism field TM — T M is given by
n
9 (X), Y) =Y 9(R(X, E))Y, E),
i=1

where Ey, ..., E,) is any local orthonormal frame.
For anyp € N, the connectiorD induces a differential operat@®: F(®" T*M) —

r'(®P* T*M) given by
DT(X, Y1, ..., Yp) = DxT(Ya,. ... Yp)

P
=XT(M1. o Yp) = D> T(Ye, ..., DxYj, ..., Y).
j=1

2000 Mathematics Subject Classification. 53B21, 53B50, §8C4
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236 M. BOUCETTA
Its formal adjointD*: I'(QP** T*M) — I'(QP T*M) is given by
n
D*T(Yy,...,Yp) ==Y DgT(E, Y1,...,Yp),
=1

where Ey, ..., E,) is any local orthonormal frame.
Recall that, for any differentiap-form «, we have

p+l
(1) da(Xg, ..., Xpe1) = Z(—l)HlejOl(Xl, con Xjyeooy Xpaa).
j=1

We denote by the restriction ofD* to Q(M)dS(M) and we defineg*: SP(M) —
SP*H(M) by

p+l
FT(X1, oy Xpr) = D Dy T(Xay ooy Xy Xpea)-
=1
Recall that the operator trace T§P(M) — SP~2(M) is given by
n
TrT(Xy, .o Xp2) = Y T(Ej, Ejy X, .., Xpoo),
=1

where Ey, ..., E,) is any local orthonormal frame.
The Lichnerowicz Laplacian is the second order differdrijgerator

P p
Awm: r(@T*M) — F<®T*M>
given by
Am(T) = D*D(T) + R(T),

where R(T) is the curvature operator given by

p
RT)(Ye .o, Yp) =D T (Va1 (Y)), o, Yy)
j=1

=3 Y (T (M-, B RYG EDY L Y)
i<j 1=1
+T(Y, ..., R(Y], EDYi, ..., E|,...,Yp)},
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where Ey, ..., Ey) is any local orthonormal frame and, in
TY1, ..., B, ..., R, B)Y, o0, Yo),

E takes the place o¥; and R(Y;, E|)Y; takes the place o¥;.

This differential operator, introduced by Lichnerowicz[itb] pp. 26, is self-adjoint,
elliptic and respects the symmetries of tensor fields. Itiqdar, Ay, leaves invariant
S(M) and the restriction oAy, to (M) coincides with the Hodge-de Rham Laplacian,
i.e., for any differentialp-form «,

(2) Ana = (d§ + 8d)(@).
We have shown in [6] that, for any symmetric covariant terfssd T,
©)] Am(T) =B 08" —8*8)(T) + 2R(T).

Note that if T € S(M) and @' denotes the symmetric product bfcopies of the
Riemannian metrig, we have

4) (TroAM)T =(Am o TNT,
(5) An(Tod)=(auT)od,

where ® is the symmetric product.

The Lichnerowicz Laplacian acting on symmetric covariamtsor fields is of funda-
mental importance in mathematical physics (see for ingt@ic [20] and [22]). Note also
that the Lichnerowicz Laplacian acting on symmetric camatri2-tensor fields appears in
many problems in Riemannian geometry (see [3], [5], [19]).

On a compact Riemannian manifold, the Lichnerowicz Laplad y has discrete
eigenvalues with finite multiplicities. For a given compaiemannian manifold, it
may be an interesting problem to determine explicitly thgeevalues and the eigen-
tensors ofAy on M.

Let us enumerate the cases where the spectrapfwas computed:

1. Ay acting onC>®(M, C): M is either flat torus or Klein bottles [4]M is a Hopf
manifolds [1];

2. Ay acting onQ(M): M =S or P"(C) [10] and [11], M = CaP? or G,/SQ4)
[16] and [18], M =SQn + 1)/SO2) x SQn) or M = SH(n + 1)/SH1) x Spn) [21];

3. Ay acting onS?(M) and M is the complex projective spade?(C) [22];

4. Ay acting onS?(M) and M is either S" or P"(C) [6] and [7];

5. Brian and Richard Millman give in [2] a theoretical methaat ftomputing the
spectra of Lichnerowicz Laplacian acting &(G) where G is a compact semisimple
Lie group endowed with the biinvariant metric induced frame hegative of the Killing
form;

6. Some partial results where given in [12]-[14].
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In this paper, we compute the eigenvalues and we determmapghces of eigen-
tensors ofAy acting onS(M) in the case wheré is the Euclidian spher&".

Let us describe our method briefly. We consider the- (1)-Euclidian spacé&"*!
with its canonical coordinates, . .., Xn+1). For anyk, p € N, we denote bySPH}
the space of symmetric covariapttensor fieldsT on R™! satisfying:
nomials of degre;

2. §(T)= Apm(T)=0.

Then-dimensional spher8" is the space of unitary vectors R"** and the Euclidian
metric onR™? induces a Riemannian metric &'. We denote byi: S" < R the
canonical inclusion.

For any tensor fieldl € I'(®P" T*R™!), we computei*(Agn1T) — Ag(i*T) and
get a formula (see Theorem 2.1). Inspired by this formula ladng in mind the fact
thati*: ZKZOSF’HQS — SPS is injective and its image is dense &#PS" (see [10]), we
give, for anyk, a direct sum decomposition 6f’H’ composed by eigenspaces &f.
Thus we obtain the eigenvalues and the spaces of eigensewitbrits multiplicities of
Ag acting onS(S") (see Section 4).

Note that the eigenvalues and the eigenspacea sfacting on(S") was com-
puted in [10] by using the representation theory. In [11])wasaki and K. Katase
recover the result by a method using the restriction of haimtensor fields and a
result in [8]. The formula obtained in Theorem 2.1 combineithvihe methods de-
veloped in [10] and [11] permit to present those results in @amprecise form (see
Section 3).

2. A relation between Agrn1 and Ag

We consider the Euclidian spad@™! endowed with its canonical coordinates
(X1, ..., Xn+1) and its canonical Euclidian flat Riemannian mettic ). We denote by
D be the Levi-Civita covariant derivative associated(tgp ). We consider the radial
vector field given by

n+1

0
r= Xj —.

For any p-tensor fieldT € I'(®P T*R™?) and for any 1<i < j < p, we denote
by ir ;T the (p — 1)-tensor field given by

ir’jT(Xl, ey Xp—l) = T(X]_, ey Xj_]_, ?, Xj, ey Xp_l),
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and by Tr; T the (p — 2)-tensor field given by

Tri,j T(Xl, ey Xp,Q)

n+l

= ZT(XL e Xicn B X, X, B Xog, L Xpo2),
I=1
where €y, ..., Ens) is any orthonormal basis &"™!. Note that Tr; T =0 if T is
a differential form and Tr; T =TrT if T is symmetric.
For any permutationr of {1,..., p}, we denote byT“ the p-tensor field

TO(X1y -y Xp) = T Ko@) - - -+ Xo(p)-

For 1<i < j < p, the transposition ofi( j) is the permutatior; j of {1,..., p} such
thatoi j(i) = j, 0i,j(j) =i andojj(k) =k for k Zi, j. Let 7 denote the set of the
transpositions of1,..., p}.

The spheré : S" — R™?! is endowed with the Euclidian metric.

Theorem 2.1. Let T be a covariant p-tensor field dR™*. Then
i *(AgnaT)
= Agi*T +i*(p(1— P)T+(2p—n+1)LT —LroLeT —22T"+O(T)>,
oeT
where ((T) is given by
O(T)(Xa, -y Xp) =2 (X, X)) Trij(Xa, -, Xiy ooy Xy, Xp)
i<j
p ~
—2) Dy (ir T)(X1, -, X, .., Xp),
j=1

where the symbol means that the term is omitted

Proof. The proof is a massive computation in a local orthoradrframe using the
properties of the Riemannian embedding of the sphere in tididian space.
We choose a local orthonormal frame ®f*! of the form €y, ..., En, N) such

that E; is tangent toS" for 1 <i <n and N = (1/r)F wherer =, /xZ+. .. +x2,,.

For any vector fieldX on R™!, we have
1
(6) DxN =F(X—(X, N)N),

@) DnX =[N, X]+%(X—(X, N)N).
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Let V be the Levi-Civita connexion of the Riemannian metric 8h We have,
for any vector fieldsX, Y tangent toS",

8) DxY = VxY — (X, Y)N.

Let T be a covariantp-tensor field onR™* and Xy, ..., X;) a family of vector
fields onR™?! which are tangent t&". A direct calculation using the definition of the
Lichnerowicz Laplacian gives

ARnﬂ(T)(Xl, ey Xp) = D*D(T)(Xl, ey Xp)

n p
= (—Ei E.T(X1, ..., Xp) +2) Ei.T(Xy,..., Dg Xj,..., Xp)
i=1 j=1

P
+Dg E.T(Xy, .., Xp) = Y T(Xa,..., Dog e X0\ Xp)
i=1

P
— Y T(Xy,..., Dg Dg X}, ..., Xp)
=1

—ZZT(xl,...,DEix.,...,DEixj,...,xp))

I<j

p
— N.NT(Xg, ., Xp) +2) O N.T(Xg, ..., DX, eeo, X))
=1

p
+DNN.T (X1, ..o, Xp) = > T(X1,..., DoynXj,-.., Xp)
=1

P
=Y T(X,..., DNDNXj, .o, Xp) =2 T (X,..., DN Xiy..., DN X, .o, Xp).
j=1

I<j
(6)—(8) make it obvious that

DDEi gXj= VinEin — (Vg Ei, Xj)N — [N, Xj]

9) 1
- F(Xj — (X}, N)N),
DEi DEin = VEiVEi Xj — ((Ei, in Xj) + E;.(E;, Xj))N
(10) 1
_F<Eia Xi)Ei,
DNDWX = [N, [N, XI1+ 2[N, X] + (% - 5>(x — (X, N)N)
(11) r r r

2
— “NLX, N)N.



SPECTRA OFLICHNEROWICZ LAPLACIAN ON SPHERES 241

By (8)—(10), we get easily, in restriction t§",

i=1 j=1

n p
> (ZZEi.T(Xl,..., De Xj, ..., Xp) + D Ei. T(Xq, ..., Xp)

p p
_ZT(X]_,...,DDEiEin,...,Xp)—ZT(Xl,...,DEiDEin,...,Xp))
j=1 =1

n
= 2
i=1 j

M=

E.T(X1,..., V& X}, .., Xp) + VE E.T(Xa,..., Xp)

M- E

p
T(xl,...,vVEiEix,-,...,xp)—ZT(xl,...,ininx,-,...,xp))
j =1

1
iy

P __
— 23 X T(Xaren N, Xp) + P+ DT (X, Xp) = NLNT (X, ., Xp).
=1

On other hand, also by using (8), we have

n
> T(X,-.., Dg X1y, DE X, ., Xp)

I<j i=1

n —_—
=Y 3 T(X1,- DE X1y, VE X, Xp) = Y T(X,o0, Dy Xieoy Ny, Xp)
I<j i=1 I<j

n —_—
=YY T(Xareo s VE X VE X, Xp) = Y T (Xayo, N, VX, X))
I<j i=1 I<j

=Y T(X1,-, Dy X1y, N, X))

I<j

n —_
=Y Y T(Xareo, VE X1y, VE X, Xp) = D T(Xa,eo, D Xy, N, Xp)
I<j i=1 I<j
|
——
=Y T(X1iees N oo, D, X, Xp)
I<j
! j
—— ——
=Y XL XPT X NN LX)

I<j
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So we get, in restriction t&", sinceDyN =0

Apmi(Xa, ..., Xp) = VEVT(Xq,..., Xp)

p
:p(n+1)T(X1,...,Xp)—nLNT(Xl,...,Xp)—ZZij(iN,,—T)(Xl,...,Xj,...,Xp)
=1
I j
—— —~—
#2370 XD T Xaroo, N o, N, Xp) = NNCT (X, X)

I<j

p p
+2% "N.T(Xy,..., DnXj,..., Xp) = D T(Xa,..., DNDn X, ..., Xp)
- =

j=1
—2Y T(X1,..., DN Xi,..., DN X, Xp).

i<]j

Remark that, in restriction t&", the following equality holds

p p
> Dx, (N T X Koo Xp) = Y D (i )X+ Koy Xp).
j:]_ j:l

Now by using (7) and (11) and by taking the restriction3y we have

p
2% "N.T(Xy,..., DnXj,..., Xp)

j=1
p p 1
:212:1:N.T(x1,...,[N,xj],...,xp)+2j2:1:N(F)T(x1,...,xj,...,xp)
p _ p
—2) ON(X), NDT(Xg,ooor N Xp) #2) ONLT (X, Xy, Xp)
j=1 j=1

p
=2) INT(Xaro o, [N, X1,y Xp) = 2pT(Xa, -0, Xp) + 2PN.T (Xa -, Xj oy Xp)

j=1
P -
—2) ON(X), N)T(Xg,..., N Lo, Xp).
i=1
P
ZT(XlI IDNDNXJI lxp)
j=1
o j

P —_—
= T(Xl,...,[N,[N,Xj],...,Xp)—ZZN((X,-,N))T(Xl,..., N ..., Xp).
j=1 j=1
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D T(Xy,..., DuXiyooo, DN X,y Xp)
i<]j
-1
:ZT(Xl,...,[N,Xi],...,[N,Xj],...,Xp)+p(pT)T(Xl,...,Xp)
i<j
D T Xy Xy INGXG L Xp) + ) T (X, [N Xl X, Xp).
i<j i<j
So we get, in restriction t&"
p
—NNT(Xy, .0, Xp) #2)  N.T(Xg,..., DN X, .o, X))
j=1
p
=Y T(Xy,..., DNDNXj, .oy Xp) =2 " T(Xg,..., DnXiy..., DN Xj,.oy X))
j=1

i<]j

=—LnoLnT(Xy, ..., Xp) +2pLNT (X1, ..., Xp) — pA + P)T(Xy, ..., Xp).
The curvature ofS” is given by

R(X,Y)Z=(X,Y)Z - (Y, Z)X
and
r(xX)=(n-21)X.
Hence, a direct computation gives that the curvature operatgiven by

R(T)(X1, ..., Xp) = p(n = DT (X, ..., Xp) +2 ) T(Xq, .
oeT

LX)

—222(xi, X)T(X1, -y Elyee oy Eryey Xp).

i<j I=1
Finally, we get

i*(ARnﬂT) = A91| *T

oeT

+i*<p(1— PT+@p—nLNT —LyoLyT—2) T° +O(T)>,

One can conclude the proof by remarking that

iI*(LNT) =i"(LeT)
and

i*(Ly o LNT) = —i*(Ly T) +i*(Lr o L¢ T).

243
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Corollary 2.1. Let « be a differential p-form orR™?!. Then
i*(Apmia) = Agi*a +i*((2p—n+ 1)L — Ly o Ly — 2dira)
Corollary 2.2. Let T be a symmetric p-tensor field ®&'*. Then

i*(ApmiT) = Agi*T +i*2p(A — p)T+(2p —n+ 1)L T — Ly o LT
—2"([FT)+2Tr(M) o (, ),

where ® is the symmetric product

3. Eigenvalues and eigenforms ofAg acting on Q(S")

In this section, we will use Corollary 2.1 and the resultsadeped in [10] to de-
duce the eigenvalues and the spaces of eigenform&pfacting onQ*(S"). We re-
cover the results of [10] and [11] in a more precise form.

Let AP Hy be the space of all coclosed harmonic homogengetmms of degree
k on R™, A differential form o belongs to/\ Hy if (o) =0 anda can be written

a= Z iy, A%y Ao A X,

I<ip<--<ip<n+l

where «;,..;, are harmonic polynomial functions OR™?! of degreek. For anya €
AP H¢, we have

(12) Lra =dira +ir da = (K + p)a.

We have (see [10])

P
i*: >\ He > QF(S")
k>0
is injective and its image is dense.
For anya € AP Hy, we put

(13) w(a) =a — p% dira.
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Lemma 3.1. We get a linear mam: AP Hx — /AP Hk which is a projectari.e.,
wow =w. Moreover

p-1 p
Kerw:d</\ Hk+1>, Ima):/\ He N Kerir,

and hence

p p p-1
A\ He= A\ HkﬂKerir@d</\ Hk+1>.

The following lemma is an immediate consequence of Corplad and (12).
Lemma 3.2. 1. For anya € AP HyNKerir, we have
Agi*a =K+ p)k+n—p—1)i*a.
2. For anya € d(A\P~* Hiu1), we have
Agi*a =(k+p)k+n— p+1)i*a.
REMARK 3.1. We have
k+pk+n—p-1)=K+p)K+n—p+1) e k=k+1
and
n=2p.

The following table gives explicitly the spectra dfs, and the spaces of eigen-
forms with its multiplicities. The multiplicity was comped in [11].

Table 1.

p The eigenvalues The space of eigenforms | Multiplicity
p=0 kk+n—1),keN [A"H (2l i)

k+p)(k+n-p-1), p (n+k—1)! (n+2k—1)
l1<p=<n,|keN* a)(/\ Hk) p! (k—1)! (n—p—1)! (n+k—p—1)(k+p)
n#2p (k+p)(k+n—p+1) p-1 (0+K)! (n+2k+1)

KeN (A" Hea) (b~ 2IK (n-p)! (n+k- p+ D)
l1<pzn|k+pk+p+1l), p p-1 202p+K)! (2p+2k+1)
n=2p keN @(A" Her) ® d(A"™ Hea) | 55 i tepriitem
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4. Eigenvalues and eigentensors cA g acting on S(S")

This section is devoted to the determination of the eigersland the spaces of
eigentensors ofAs acting onS(S").
Let SPP, be the space of € SP(R™Y) of the form

T= Y Tdx,0---0dx,

1<ij<-<ip=n+l
whereT;,..;, are homogeneous polynomials of degkeeWe put
SPH = SPP N Ker Agni N Ker§
and
SPH = SPH? NKer Tr.

In a similar manner as in [10] Lemma 6.4 and Corollary 6.6, vageh
(14) SPP = SPH @ (1’ SPP 2 +dr2 0 SP1R_y),
and

i*: > SPHY — 8PS

k>0

is injective and its image is dense &PS".

Now, for anyk > 0, we proceed to give a direct sum decompositionSéH,
consisting of eigenspaces &fs, and, hence, we determine completely the eigenvalues
of Ag acting onSP(S"). This will be done in several steps.

At first, we have the following direct sum decomposition:

[p/2]
(15) SPHY =SPH e P SP2H o (, ),
1=1

where ( , ) is the symmetric product df copies of( , ).
The task is now to decomposg#’H° as a sum of eigenspaces afs: and get,
according to (5), all the eigenvalues. This decompositieads some preparation.

Lemma 4.1. Let T € SPP¢ and he N*, Then we have the following formulas
§*(irT) —ird*(T) = (p = K)T;

§M i T) — ips* ™ (T) = h(p — k + h — 1)5*O=(T);

3. (i T) —ignd™(T) =h(p—k—h+ 1)izrT,

NP
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h h
. -/_/_.\ e ——
where jr =ipo---oir and 8*M =§* o ... 0 §*.

Proof. The first formula is easily verified and the othersdwllby induction onh.
O

Note that the spaceSPHZ° are invariant bys* andir; this is a consequence of
the following formulas which one can check easily. For angnsyetric tensor fieldl
on R"™! we have

(16) Apa(ir T) = ir Agona(T) + 26T,
17 8(irT) =ir8(T) — Tr(T),
(18) Tr(8*(T)) = —28(T) + 8*(Tr(T)),
(19) Tr(ir T) = ir Tr(T).

Now the desired decomposition 8P HZ° is based on the following algebraic lemma.

Lemma 4.2. Let V be a finite dimensional vectorial spac¢ and y are two
endomorphisms of V al'(d\f)k, peNui—1 @ family of vectorial subspaces of V such that

1. forany pkeN, A’ =A*1=0;

2. forany pkeN, ¢(AD) c AT and ¢(AD) c APh

3. for any p ke N and for any ae A,f,

pov(@—yop@=(p—ka
Then

(i) forany k<p, v: AY — AP is injective
(iiy for k < p, we have

AL = (AL NKer ) ® v (AL))

and
k
AL =P v (ALY NKerg).
1=0

Proof. Note that one can deduce easily, by induction, thatfiy| € N* and for
anyae Al

(20) ¢'oy(@—yog@=1(p—k+l—1)'a),
(21) Y og@ —goy'(@=Ik-p+l—1y' ).
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(i) Let a e AP such thaty(a) = 0. From (20) and since — k > 0, for any
| >0, if ¢'(a) =0 theng'~1(a) = 0. Now, sinceg'(a) € AP* and sinceA”; =0, we
have, for anyl > k + 1, ¢'(a) = 0 which implies, by induction, thaa = 0 and hence
v AP — AP is injective.

(i) Suppose thak < p. We defineP” : A? — AP as follows

k
R(@) =) asy®o¢(a)
s=0
ap=1andas—(s+1)k—p—5S—2uss1=0 for 1<s=<k-1.
P? satisfies
PSoP =P, KerRd= w(Aifj)
and

Im PP = A? NKer¢.

Indeed, leta € AP'Y. We have

k
PRIW@) = D asy®od’(¥(a)

s=0
k k
DY sy togi(a) + Y s(p - k+s+ Dasy®c ¢°X(a)
s=0 s=0
K k-1 k
TEEY asuttogi(@) + Y s(p—k+s+ Losy® o 6°X(a)
s=0 s=1
k—1
= Y@+ s+ 1P - k+s+ 2y 0 65@)
s=0
= 0.

Conversely, sincd(a) =a+Y %, asyo¢S(a), we deduce thaP(a) = 0 implies
thata € ¥ (AP']), so we have shown that KBP = v(AP'1). The relationP”o PP = PP
is a consequence of the definition Bf and P o ¢ = 0.
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Note thatg(a) = 0 implies thatP(a) = a and henceA? NKer¢ c Im B’. Con-
versely, leta € AP, we have

k
¢poP@) = Y apoytos(a)
s=0
k k
BN ayto¢ia) — Y assk — p—s— Ly o ¢%(a)
s=0 s=0
N k—1 k
TEON 0yt o 67 (@) = 3 asstk — p— s — 1)y Lo ¢%(a)
s=0 s=1
k—1
= Y (s — (s+ k- p—5—2es) ¥ 0 p*a)
s=0
= 0.

We conclude thaPy is a projector, KeP = y(A"}) and Af NKerg = Im P? and we

deduce immediately thad{ = v (A7) @ AP NKer¢. The same decomposition holds

for A”7 and, sincey: AT — AP is injective, we get

AL = oy (Al) @ v (AT NKerg) @ AP NKerg.
We proceed by induction and we get the desired decomposition O

According to Lemma 4.1, the hypothesis of Lemma 4.2 arefgadidy the spaces
SF’H,;SO and the operator8* andir. So we get, in a first time,

(22) SPH? = SPH NKer§* @ ir (SPH;), if k< p,
(23) SPH? = SPH NKerir @ 8*(SPTTHY,), if k> p,

and, in a second time, the desired decompositiois 0 °.

Lemma 4.3. We have
1. Ifk<p

k
SPHP = P in (SPHO, NKers*);
1=0

2. Ifk>=p

p
SPH = @B 6™ (SP™ HZ N Keriy);
1=0
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3. Ifk=p, forany0<l <p,

p p
SPH = ) in (SPH, NKers*) = @D " (SPH2 NKerir).
1=0 1=0

Now, we use Corollary 2.2 to show that the decompositionsSBHZ® given in
Lemma 4.3 are composed by eigenspacesa gf.

Theorem 4.1. We have
1. Ifk<p, forany0<qg <k and any Te irxca(SP*IHI N Kers*),

Agi*T =(k+p)(n+p+k—-29—1)+2q(q — 1))i"T;
2. Ifk=p, forany0<q < p and for any Te §*P-D(SIHY _ NKerip),

Agi*T =(k+p)(n+p+k—29—-1)+2q(q —1))i"T.

Proof. 1. LetT =ipwa(To) with To e SPd Hgoﬂ Keré*. We have from Corol-
lary 2.2

Agi*T =i"2p(p T + (N —2p — LT +Lro LT
+25* [ T) =2Tr(M) O (, ).

We have
TrT=0, L:T=(k+pT
and
Lro Ly T = (k + p)°T.
Moreover, by using Lemma 4.1, we have
28%(irT) = 28"(irw-a Tp)

5*(Tg)=0 2k—q+1)(p+k—g—q—k+gq—1+1ircaTo
= 2k-qg+1)(p—-o)T.

Hence
Agi*T =(2p(p— 1)+ (n —2p — 1)(k+ p) + (k+ p)* + 2(p — ) (k — q + 1))i “T.
One can deduce the desired relation by remarking that

2p(p—1)+2(p—qg)k—qg+1)=2k+p)(p—0a)+2q(q—1).
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2. This follows by the same calculation as 1. 0

From the fact that

i*: ) SPHY - SPS
k>0

is injective and its image is dense &°S", from (15), and from Lemma 4.3 and Theo-
rem 4.1, note that we have actually proved that the eigeasadiAs acting onSPS"
belongs to

{(k+p—2|)(n+ p+tk—21—-29g—-1)+29(q — 1),

keN, 0<lI < [g} 0 < g < min(k, p—2|)}.

Our next goal is to sharpen this result by computing 8ifid° N Kers* if k < p and
dim SPH NKerir if k> p.

Lemma 4.4. We have the following formulas

dimSPH? = dimSPP — dim SPP_, — dim SP1p_; +dimSP-1P s,
dimSPH = dimSPH? — dim SP~2H,

dim@SPH N Ker §*) = dimSPH — dim SPTH, (k < p),

dimSPHP N Kerir) = dimSPHP® — dim SP- 1Hff k> p).

Note that we use the convention th&®P, = SPH? = SPH=0if k <0 or p <O0.

Eal A

Proof. 1. The formula is a consequence of (14), the relation
(r2SPP_2) N(dr2 © SPIP_y) =r2(dr? © SP 1P_3)

and the fact thatr? © .: SPP, — SP* P, is injective.
2. The formula is a consequence of (15).
3. The formula is a consequence of (22) and Lemma 4.2.
4. The formula is a consequence of (23) and Lemma 4.2. ]

A straightforward calculation using Lemma 4.4 and the fdamu

(n+p)! (n+k)!

p
dimS*Rc= = T

gives dimSPH° NKers* if k < p and dimSPH° N Kerir if k > p. We summarize
the results on the following table.
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Table II.
. . Conditions
Space Dimension
onk and p
- Y _
SOHO N Kerir (th2) (0 21 klz(;ffﬁk L k>0
0 +p—2)! (n+2p—1
SPH® N Ker s* e p>0
. k—3)! k(n+2k—1)(n+k—1
STH N Kerir R s o k>1
80 (n+p—3)! p(n+2p—1)(n+p—1)
SPH;” NKer§* 201 (o)) p>1
(k=) (+p=3)! (n+p+k=2)
SPHI N Ker §* K (p+D) (n—1) (1—2)! 2<k<p
(n—2)(n+2k—3)(n+2p—1)(p—k+1)
(n+k—=3)! (n+p—4)! (n+p+k—2) x
SPH NKerir (k1)1 pI (n—1)T (1—2)! k>p=>2
(n—2)(n+2k—1)(n+2p—3)(k— p+1)

REMARK 4.1. Note that, fom =2, we have
dim(SPHP NKers*) =0 for 2<k < p,
dimSPH NKerir) =0 for k> p>2.

For simplicity we introduce the following notations.
90:{('(",0!)61\13. 0<I< [g} O<k<p-2, 0§q§k},

Slz{(k,l,q)eN3, o<l s[g} k>=p—2,0<q< p—2|},

Vg Sipea(SPA™IHO NKers*) o (1, ) for (k1,0) € S,

W) = 8*(P=A= (8K, NKerir) O (, ) for (k1,0)€S.
Let us summarize all the results above.

Theorem 4.2. 1. For n=2, we have
(@) The set of the eigenvalues afy acting onSPS? is

{(k+p—2|)(p+k—2|+1), kKeN, 0<I < [‘—2)“
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(b) The eigenspace associated to the eigenvalikel) = (k+p—2)(k+ p—2 +1)
is given by

min(, [k/2])
B Zevit®) if 0<ksp-2,
a=0

min(, [k/2])
P WsZRewsh?) if k>p-2;

a=0

Vi) =

(c) The multiplicity ofA(k, |) is given by

mQu(k, 1)) = 2<min<| , [g]) + 1)(1 +2p+2k — 4).

For n > 3, we have
(@) The set of the eigenvalues 6fs» acting onSPS" is

{(k+ p—2)n+p+k—2—29—-1)+29(q — 1),
keN, 0<lI| < [g} 0 < q < min(k, p—2|)};

(b) The space

P:ZSDHKBZ( D qu,|>€9( D qu,|)

k>0 kl,9eS kl.a)eS

is dense inSPS" and, for any (k, g, 1) € & (resp (k, g, 1) € S), V& (resp W)
is a subspace of the eigenspace associated to the eigenflatug — 21)(n+ p +
k—2 —29-1)+29(q — 1);
(c) The dimensions of  and W, are given in Table Il since

dim Vg = dim@SP2"*9H0 nKers*) for (k1,0) € S,

dimW¥, = dimSIH 5, o NKerir) for (k1,0) € S.
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