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ON THE JACOBIAN VARIETIES OF THE FIELDS
OF ELLIPTIC MODULAR FUNCTIONS

By

Koj1 Dol

In his essay [9, §16, p. 75], G. Shimura proposed to push further
the problem studied by Hecke [3, p. 731-772] on the decomposition of
the jacobian variety corresponding to a modular function field into simple
factors (in the sense of isogeny). He asked especially to investigate the
property of these simple factors. For instance, do there appear abelian
varieties of dimension greater than 1 among them? As we shall describe
in the following, there do appear such abelian varities ; in fact, there are
examples of elliptic modular function fields (of genus 2) for which we
can prove that the corresponding jacobian varieties are simple. The
result is achieved by calculating the ring of endomorphisms of these
jacobian varieties. (It is well-known that an abelian variety is simple if
and only if the ring of endomorphisms is a division algebra.) Our result
is that the rings of endomorphisms of the jacobian varieties of the elliptic
modular function fields corresponding to the groups 1',(22), I';(23), I',(29)
and 1I',(31) are M,Q), Q(\/5), Q(\/2) and Q(/5) respectively, where
the modular group I'(V) is defined by

I(N) = {(j g) €SL2, Z); c=0 mod N} .

This result shows that the corresponding jacobian varieties J; (4, are simple
for ¢=23, 29, 31. We note that the method employed in the following
is applicable to other cases of higher genus and various modular groups
(other than I'y(N)).

To carry out our calculation of rings of endomorphisms, we have to
make use of the congruence relation due to M. Eichler and G. Shimura :

T,=11,+11,/°R, mod p

for the modular correspondences, and the trace formula due to M. Eichler
and A. Selberg, for the Hecke operators 7,. Namely, we can calculate
from these results the characteristic polynomial of the /-adic represent-
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ation M,(=,) of »,, where =, is the p-th power endomorphism of jPOCN)
(the reduction of J, v, mod p), as indicated in [7, p. 328].

NotaTioN AND CONVENTION. We denote by Z and @ respectively, the
ring of rational integers and the rational number field. 4(A) and A(A)
denote the ring of endomorphisms of an abelian variety A and the algebra
A(A)RQ, respectively, According to Hecke, we denote by I'*(N) the

group generated by I'(N) and <?V - (1)> The genera of the groups I'(N)

and I'*(NV), which we denote by p,(N) and p*(N), are calculated in [3].
In particular, we have (Fricke [2, p. 366]):

*(NYy = L1 1_1
P*(N) 2p°(N)+2 1

'8N°h(4N) ’

where
2 for N=7 mod8
5, — % for N=3 mod8 (N=5)
1 otherwise,

and Z(4N) is the class number of primitive positive quadratic forms with
the discriminant —4N. For the sake of convenience, we recall here
Fricke’s table of p,(N) and p*(N) [2, p. 357 and p. 367].

P(N)=0 : = 2,3,4,5,6,7,8,9, 10, 12, 13, 16, 18, 25.
pN)=1 : = 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49.
PN)=2 : = 22, 23, 26, 28, 29, 31, 37, 50.

p(N)=3 : N= 30,33, 34, 35, 39, 40, 41, 43, 45, 48, 64.
p(N)=4 : — 38, 44, 47, 53, 54, 61.

p(N)=5 : N= 42, 46, 51, 52, 55, 56, 57, 59, 63, 65, 67, 72.
P(N)=6 : = 58, 7L

PN)=T : = 60, 62, 68, 69.

PN)=9 : = 66, 70.

P*(N)=0 for N= 2,3, -, 21, 23, 24, 25, 26, 27, 29, 31, 32, 35, 36,
39, 41, 47, 49, 50, 71.

The author wishes to express his sincere thanks to Prof. G. Shimura,
and also to Prof. M. Sato who encouraged him with many suggestions.

§1. Preliminaries. We deal with the group I'(N) and restrict
ourselves to the case p(N)=2: We remark that in the case of our I'(N)
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the congruence relation takes the simpler form :
(1) T,=1,+II, modp,
or equivalently,

(2) ép:”p'*””p’ )

where £, is the element of /,(Jrn>) corresponding to T, and f,, is the
reduction of &£, mod p. We assume (throughout this note) that p is not
one of those exceptional primes (in finite number) for which either p|N
holds or the validity of the equivalence between (1) and (2) is destroyed,
i.e. exceptional primes are, by the precise result of Igusa [4], and also
by [5], »|2-3-N.

Lemma 1. Tne eigenvalues v, ; (i=1, 2) of a Hecke operator T, acting
on the space of cusp-forms of degree 2 with respect to U'(N) satisfies the
quadratic equation :

x—(TrT)X + THLY =TT =2p _
D 2 ’

where T7(T,) is the trace of the operator T,.

Proof. We have a fundamental relation for operators T, acting on
the space of modular forms of degree %k (cf. [3, p. 676]):

T,poT, = Tya+pRyoTrr  (r=1)

in which we can put R,=1 in the present case. Setting r=1 and k=2
and taking the trace, we obtain

THTE) = Tr(T,)+2p .

QOur assertion is an immediate consequeuce of this identity.

We can calculate eigenvalues of T, in the case of higher genus by
the same arguments using elementary relations between symmetric poly-
nomials.

Lemma 2. Notations and assumptions being as in Lemma 1, let =,
be the p-th power endomorphism of the jacobian variety jro(N>' Denoting
with =,; (j=1,2,3,4) the eigenvalues of an l-adic representation M= ,),
they are the solutions of

X—7, X+p=0, i=12

in pairs.

Proof. Let M? be a representation of A( Jrgny) by the differential
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forms of the first kind. Then M, is equivalent to M?@M? where M?
denotes the complex conjugate representation of M?. For a prime /=}=p,
we can choose an /-adic representation M, so that M,(u)=M,() for every
w€ A(Jryn>) and its reduction # mod p. Our assertion follows from the
fact that M"(Ep) can be considered as a representation of 7T, for the
cusp-forms of degree 2 with respect to I',(N) and from the relations

£, = wytm,

VA - ~
o, =P 8]1‘0@0 .

§2. Criterion for J. v, to be simple. The idea of this section is
applicable to the case of higher genus by a slight modification.

Notations and assumptions being as §1, let p be a prime number
satisfying the conditions of §1 and let 7,; be eigenvalues of T,. Then,
for a given I'(N), each 7, ; is either a rational integer or a real quadratic
integer (cf. [6, the remarks to the corollary of Th. 3, p. 3087).

Now we shall state the key theorem for the criterion for J. v, to
be simple.

Shimura’s criterion:
(1) Jrgw ts simple if there exists a prime p (which is not exceptional
in the sense of §1) such that

P  [Qr,.) : @]=2, i=1,2;

(Pii) [Q(=,;): 1=4, j=1,2,3,4;

(Piii))  Q(=, ;)/Q is not a normal extension;

(Piv)  For any positive rational integer m, =3 ; € Q(7, ;).

(ii) If there are two primes p,, p, for which (i) is true and such that
Qr,, ) HQ(m,, ;) then A(Jon)=Q(z,, ;) (=Q(7,,)).
Here we shall add one more lemma which is convenient to know

whether =, ; satisfies the condition (Piv) or not.

Lemma 3. Let p be a prime number which satisfies (Pi) and remains
prime in Q(7,,). If = ;€ Q(7, ;) for some positive integer m, then =, ;=
D & where & is a root of unity.

Proof. Let #,; be the conjugate of =,, over Q(7,;) ie. #,;,==,;
for some j (1=j=4). Then #,; is the complex conjugate of =,;. If
we put =z, ;=7€ Q(r,;), we have

n _m — ”o__ 2
TTp,i*Tp, i = (”p,i‘ﬂ'p,i) =7
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because Q(7,;) is real. On the other hand, by Lemma 2, =,; -7, ;=p,
so that p”=9°. From this and by the assumption that p remains prime
in Q(r,;), y=&-p* where € is a unit in Q(r,;) and &=1, 2k=m. Hence
we have =}'; =+ p% so that =, ;=¢\/p.

For the proof of the above criterion, we need

Proposition [8, Prop. 30, p.407]). Let A be an abelian variety of
dimension n. If AS(A) contains a field F of degree 2n over Q, then A
is isogenous to a product Bx -+ X B with a simple abelian variety B ; the
commutator of F in A(A) coincides with F.

Proof of the criterion. By (Piii), Q(=, ;)/Q is not a normal extension
of degree 4 over @, so that Q(=} ;) must coincide with Q(=, ;) or Q(=, ;)
(cf. [8, p. 74, (c)]. The latter case does not occur by (Piv). Hence

Qr, ;) = Q(zyy), [Qzy;): Q] = 4.

For any element ae A ( frow)), we can choose a positive integer m such
that « is defined over the finite field GF(p»™) and hence qozy=gzpoa.
By the above proposition, we have a € Q(=7 ;). This shows that

L/Zo(jro(z\n) = Q(”p,j) .

Therefore fFO(N), and hence /i n,, is simple. The second part of the
criterion is obvious by the theory of reduction mod p for the endomor-
phism-algebra of abelian variety.

§3. Numerical examples. Now we shall apply our results to the
cases where N=22, 23, 29, 31, 37, the genera of corresponding I',(N) being
equal to 2. We shall denote, as usual, by A(z) the cusp-form of degree
12 with respect to I'Q)=SL(2, Z):

AR =g A=,  q=e=.
The case N=22 (p*(22)=1). In this case [, is isogenous to a
product of two elliptic curves; this is easily seen by the relations
*(N)DIL(N), p22) =2 and p*22)=1,

and by the general theory for algebraic curves and their jacobian varieties.
Moreover, we can infer more detailed fact as follows. The space of
cusp-forms of degree 2 with respect to 1°(22) is spanned by f(2), f(22),
where
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f(2) = "VA(2) A(112)
=q—2¢—q+2¢"+ ¢ +2¢"—2¢' +0-¢°+ - .

This shows [ ., is isogenous to a product ExE with the elliptic curve
E corresponding to I'(11) which has no complex multiplication (Remark ;
the eigenvalues of T, are multiple and contained in Q).

The case N=23 (p*(23)=0). Eigenvalues of T, are contained in

Q(v/5) (cf. [3, p.903]). For p=7, 17 we have (%)=—1, ie. they

remain prime in Q(v/5). By the trace formula (cf. for the case I'(N),
[1, (30), (30a) and (31), p. 165]) and lemma 1, 2, we have

my =125 (=1,2), m, =T”‘*V2"‘3-*“,28 (i=1,2,3,4),

'7'17'." =3 =+ \/g (i: 1, 2) N Ty,j = 'T”’i:t \/2‘1.%7"._68 (j: 1) 2) 3, 4) .

By simple calculation, we can see that they satisfy the whole conditions
of the criterion, hence J. . is a simple jacobian variety of dimension 2,
whose endomorphism algebra A, /y ) is equal to Q(\/5).

REMARK. By a suggestion of M. Sato, the author calculated values
T,: in a different way as follows.
Put

f(2) = *VA(Z)AEZ3Z) = 3 cud”
&) = f(2)| T,,

where | T, denotes the application of T,. Then the eigenvalues T, are
obtained from

Pi(2) = 8@+ f(2) = R i (=1,2)

in which the constant «; is to be chosen so that the corresponding
Dirichlet series >}, ;#n™° should admit an Euler product. It is easy to

derive that «; satisfies
al—a;—1 =0, whence «,a,= lié@
From @,z) we have
Tyi = Cptiec,, (p==2).

The result is as follows:
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)/ 75, (i=1, 2) b 75, (1=1, 2)
1-2a=+V'5 17 4—2a=3FV'5

5 —2+2a=—-1+V'5 19 -2

7 2a=1+V'5 23 +1

11 —2—2a=-3FV5 29 -3

13 +3 31 —3+6a=+3V5

The case N=29 (p*(29)=0) (cf. [3, p. 904]). The eigenvalues of T,
are in Q(\/2); p=11, 13 remain prime in Q(\/2). By the same pro-
cedure as above, we have

y,: £ \/'7'%1, i 44
2 ’

Ti3,i + \/‘7'%3, i 52
2 .

Ti,i = 1+ \/7 ’ Tu,j =

Tia,i = -1 ﬂ:Z\/—Z—, Tis; =

Hence Jro is simple, A(Jro)=@Q(V 2).

The case N=31(p*(31)=0). The eigenvalues of T, are in Q(\/5)
(an exact form of corresponding Dirichlet series is given in [3, p. 641-
643]. p=7, 13 remain prime in Q(v/5). We have

77_3' + \/'7'-2[' i _28

Tii = -2+ \//g , T = 5 ,
5 Tiai £/ 705, — 52
Tei = —1x+5, Ty = 13, \/2 13,4 .

Hence ]1"0(31) is simple, qu( ]I‘o(31)) =Q (\/g)

The case N=37 (p*(37)=1). The author calculated the eigenvalues
7,: for smaller values of p and found that they are all contained in @
and that they are not multiple for several p. Anyway, by the same
reason as in the case N=22, [, ., is isogenous to a product of two
elliptic curves.

OsaAkA UNIVERSITY

(Received August 23, 1963)
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