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Abstract
We show that a closed connected surface embedded in4 = 5 bounds a

handlebody of dimension3 embedded in 5 if and only if the Euler number of
its normal bundle vanishes. Using this characterization, we show that two closed
connected surfaces embedded in4 are cobordant if and only if they are abstractly
diffeomorphic to each other and the Euler numbers of their normal bundles coincide.
As an application, we show that a given Heegaard decomposition of a 3-manifold
can be realized in 5. We also give a new proof of Rohlin’s theorem on embeddings
of 3-manifolds intoR5.

1. Introduction

L’ensemble des classes de cobordisme orienté des -sph̀eres plonǵees dans +2

forme un groupe avec la somme connexe comme opération. Dans [19] Kervaire a
montŕe que ce groupe est trivial pour pair, c’est-à-dire qu’une telle -sph̀ere borde
toujours une boule de dimension + 1 plongée dans la boule +3 de dimension + 3.
En particulier, toute 2-sphère plonǵee dans 4 borde 3 plonǵee dans 5.

Nous étudions ici le cobordisme des surfaces compactes sans bordplonǵees dans
4. Par analogièa la d́efinition classique du cobordisme des nœuds, nous définissons

DÉFINITION 1.1. Soient 0 et 1 deux surfaces plongées dans 4 qui sont
diff éomorphes̀a la m̂eme surface compacte sans bord abstraitement. On fixe une
orientation de la sph̀ere 4 et la sph̀ere avec l’orientation inverse est notée par 4.
On dit que 0 et 1 sont cobordantess’il existe une sous-variét́e propre de 4

[0 1] telle que

(1) est diff́eomorpheà [0 1],

(2) = ( !
0 0 ) ( 1 1 ),

où !
0 désigne le miroir de 0 et les varíet́es ( 4 [0 1]) = ( 4 0 ) ( 4 1 )

sont orient́ees.

Le second auteur souhaite remercier l’IRMA ainsi que l’Université Louis Pasteur de Strasbourg
pour leur hospitalit́e durant la pŕeparation de cet article.
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Lorsque 0 et 1 sont orient́ees, alors on dit qu’elles sontcobordantes orientées
si elles sont cobordantes avec orientée et = ( !

0 0 ) ( 1 1 ), où !
0

désigne le miroir !
0 de 0 avec l’orientation inverse.

Remarquons que cette relation de« cobordisme» est d́efinie pour les sous-variét́es
de dimension 2 de 4, et non pas pour les plongements. Dans le cas des plongements,
la relation correspondante est appelée « concordance» (voir la Définition 3.4).

Dans cet article nous montrons d’abord qu’une surface compacte sans bord et
connexe (orientable ou non-orientable) plongée dans 4 est le bord d’un« handle-
body» de dimension 3 plonǵe dans 5 si et seulement si le nombre d’Euler du fibré
normal est nul (c.f. Corollaire 2.5). En fait, nous définissons une structure Pin pour
toute surface compacte sans bord plongée dans 4 (voir le §2). Ensuite nous montrons
que si le nombre d’Euler d’une telle surface connexe s’annule, alors pour chaque iden-
tification entre la surface et le bord d’un« handlebody» qui est compatible avec les
structures Pin , il existe un plongement d’un« handlebody» dans 5 dont la restric-
tion sur le bord cöıncide avec cette identification (c.f. Théor̀eme 2.3).

L’id ée de la d́emonstration est essentiellement la même que celle de Kervaire.
Nous consid́erons une sous-variét́e de 4 qui admet la surface pour bord, ensuite
nous faisons des chirurgies plongées sur dans 5. Pour cela, nous montrons qu’il
existe un cobordisme Pin de dimension 4 avec bord qui se décompose en anses uni-
quement d’indice 2, entre la variét́e munie de la structure Pin induite par l’unique
structure Spin de 4, et un « handlebody» de dimension 3 muni d’une structure Pin .

Comme corollaire du Th́eor̀eme 2.3 nous obtenons alors un analogue du résultat
de Kervaire, c’est-̀a-dire que deux surfaces (orientées) compactes sans bord et connexes
sont cobordantes (orientées) si et seulement si elles sont difféomorphes abstraitement
et les nombres d’Euler de leur fibré normal sont́egaux (c.f. Corollaire 3.1). Nous en
déduisons en particulier que le monoı̈de commutatif des classes de cobordisme des sur-
faces orient́ees, compactes sans bord et connexes plongées dans 4, avec la somme
connexe comme opération, est isomorphe au monoı̈de des entiers positifs (c.f. Re-
marque 3.2). Nous avons aussi des résultats correspondants dans le cas non-orientable
et dans le cas non-orienté (c.f. Remarque 3.3). Nouśetudierons aussi la différence
entre cobordisme et concordance des surfaces, où la concordance est une notion de co-
bordisme d́efinie pour les plongements (c.f. Définition 3.4).

Dans le§4, des ŕesultats relatifs aux d́ecompositions de Heegaard sont démontŕes,
et nous donnons une nouvelle démonstration du th́eor̀eme de Rohlin [29] sur le plon-
gement des variét́es de dimension 3, orientables ou non-orientables, dansR5 (c.f. Co-
rollaires 4.1, 4.2 et 4.3). Plus préciśement, nous montrons que toute décomposition
de Heegaard d’une variét́e de dimension 3 peut̂etre ŕealiśee par un plongement dans

5 = 5
4

5 ayant une intersection transverse avec l’équateur 4 = 5 tel que 4

rencontre la varíet́e plonǵee exactement le long de la surface de Heegaard. Nous mon-
trons aussi que la surface plongée dans 4 obtenue comme section de ce découpage



COBORDISME DESSURFACES PLONGÉES DANS 4 753

peut être choisieà l’avance.
Les auteurs souhaitent remercier Susumu Hirose, Seiichi Kamada et Masamichi

Takase pour des remarques utiles.

2. Surfaces dansS4 qui bordent un « handlebody» dans B5

Dans ce paragraphe nous donnons une caractérisation des surfaces compactes sans
bord et connexes plongées dans 4 = 5 qui bordent un« handlebody» de dimen-
sion 3 plonǵe dans 5.

Soit une surface compacte sans bord plongée dans 4. D’abord nous d́efinissons
une structure Pin sur . Une structure Pin sur une variét́e est la classe d’homo-
topie d’une trivialisation de det au-dessus du 2-squelette, où est
le fibré tangent de , det est le fibré (en droite) d’orientation de et est le
fibré vectoriel trivial de dimension suffisamment grande. Remarquons qu’une telle
structure est́equivalenteà une structure Spin si est orientable.

Comme est caractéristique, i.e. vue comme sous-variét́e de 4 repŕesente
la classe d’homologièa coefficientZ2 duale à la seconde classe de Stiefel-Whitney
de 4, il existe une structure Spin sur4 et donc une trivialisation du fibré tan-
gent stabiliśe de 4 au-dessus du 2-squelette de4 qui ne s’́etendà aucun 2-disque
transversèa . Puisque 1( 4; Z2) = 0, une telle structure Spin est unique (c.f. [12,
p.115] ou [22, Theorem 2.4]). Alors cette structure Spin sur4 induit une unique
structure Pin sur (c.f. [6, Proposition 2] ou [22, Lemma 6.2]).

Pour 0, d́esignons par le« handlebody» orientable de dimension 3 de
genre ; c’est-̀a-dire que se d́ecompose en une boule de dimension 3à laquelle
on a attach́e anses d’indice 1 orientables simultanément sur le bord de cette boule.
De même nous d́esignons par le« handlebody» non-orientable de dimension 3 avec

anses d’indice 1 non-orientables. Remarquons que le bord deest la surface com-
pacte sans bord orientable de genre , notée par , tandis que le bord de est une
surface compacte sans bord non-orientable de genre non-orientable 2 , not́ee par 2 .
Dans ce qui suit, nous désignerons par le« handlebody» dans le cas orientable
et dans le cas non-orientable.

DÉFINITION 2.1. Soit une surface compacte sans bord et connexe plongée dans
4. On suppose que la surface plongée dans 4 est connexe de genre si elle

est orientable, ou bien de genre non-orientable 2 si elle estnon-orientable. Soit
: un difféomorphisme. On dit que est Pincompatiblesi la struc-

ture Pin sur induite par s’étend sur .

Dans ce qui suit, on suppose que la sphère 4 est orient́ee. Pour une surface com-
pacte sans bord et connexe plongée dans 4, désignons par ( ) Z le nombre
d’Euler du fibŕe normalà dans 4. Remarquons que ( ) est toujours nul si est
orientable, par contre si est non-orientable alors ( ) peutêtre non-nul. D’apr̀es la
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congruence de Whitney [36] nous avons ( ) 2 ( ) (mod 4), où ( ) désigne le
genre non-orientable de . Donc en particulier, si ( ) = 0, alors = ( ) est pair
et borde abstraitement le« handlebody» non-orientable 2.

REMARQUE 2.2. En fait, si est une surface non-orientable, compacte sans bord
et connexe de genre non-orientable plongée dans 4, alors on a

( ) 2 4 2 8 2 2

(c.f. [25, 18, 36]). Ŕeciproquement, tout entier dans l’ensemble ci-dessus peutêtre
réaliśe comme le nombre d’Euler du fibré normal d’une telle surface plongée dans 4

(voir la construction dans la Remarque 3.3 du§3).

Si est orientable il existe toujours une sous-variét́e orientable, compacte et
connexe de dimension 3 de4 telle que = (voir, par exemple, [7, 8], [5,
Lemma 2.2], [2]). On appelle une telle variét́e hypersurface de Seifertde . Dans
le cas òu est non-orientable, une hypersurface de Seifert (non-orientable) existe
si et seulement si ( ) = 0 (c.f. [9, p.67] ou [18]).

Pour une hypersurface de Seifert , l’unique structure Spin sur 4 induit une
structure Pin sur (c.f. [6, Proposition 1]). Remarquons quecette structure induit
sur le bord la structure Pin sur définie pŕećedemment au d́ebut de ce paragraphe
(c.f. [6, §2]).

Théorème 2.3. Soit une surface compacte sans bord et connexe plongée dans
4 = 5 et soit : un diff́eomorphisme, où est le« handlebody» de

dimension3 avec anses d’indice1. Alors il existe un plongement : 5

dont la restriction sur le bord cöıncide avec si et seulement si( ) = 0 et est
Pin compatible.

Démonstration. D’abord supposons qu’il existe un plongement comme dans le
théor̀eme et soit son image. On peut supposer que est transverseà 5.

Si est orientable, on a ( ) = 0. Si est non-orientable, le fibré normalà
dans 5 a pour classe d’orientation celle de . Donc la classe d’Eulerdu fibŕe

normal à dans 4 est la restrictioǹa de la classe d’Euler de , où les classes
d’Euler sont consid́eŕees comméeléments des cohomologiesà coefficients tordus. D’òu
les égalit́es

( ) = [ ] = [ ] = 0

où [ ] est la classe fondamentale de et : est l’inclusion.
Comme ( ) s’annule, une hypersurface de Seifert pour existe.Consid́erons

la varíet́e compacte sans bord̂ = de dimension 3 plonǵee dans 5. Alors
comme pour 4, on peut munir ˆ d’une structure Pin , celle-ci induit la struc-
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ture Pin sur d́efinie ci-dessus (c.f. [6,§2]). Ainsi la structure Pin sur s’étend
sur , et le diff́eomorphisme est Pin compatible.

Réciproquement supposons ( ) = 0 et que le difféomorphisme est Pin com-
patible. Consid́erons la varíet́e (abstraite) = obtenue en collant et
le long de leur bord par ; cette variét́e est compacte sans bord et connexe de di-
mension 3, et elle est orientable si l’est. De plus comme est Pin compatible,

admet une structure Pin dont la restriction sur coı̈ncide avec la structure Pin
définie ci-dessus.

Lemme 2.4. Il existe une varíet́e Pin compacte de dimension4 obtenueà
partir de [0 1] en lui attachant des anses d’indice2 le long de 1 telle que

= en tant que varíet́es Pin , où 0 est identifíee avec .

Remarquons que est orientable si l’est.

Démonstration. Rappelons que le groupe de cobordismeSpin
3 des varíet́es Spin

de dimension 3 est nul (voir, par exemple, [28], [19, Lemme III.7, p.265], [12, p.91],
[27] ou [21]). Donc dans le cas orientable, il existe une variét́e compacte orientable
Spin de dimension 4 telle que = en tant que variét́es Spin.

Le groupe de cobordisme Pin
3 des varíet́es Pin de dimension 3 est lui aussi

nul (c.f. [1, 22, 23]). Donc dans le cas non-orientable, il existe une varíet́e compacte
Pin de dimension 4 telle que = en tant que variét́es Pin .

Soit = [0 1] le voisinage collier de dans , où est identifíe
avec 0 . Posons = . Soit 2 : = ( 0 ) ( [0 1])
( 1 ) [0 1] la projection sur le deuxième facteur. Alors il existe une fonction
de Morse : [0 1] prolongeant 2 sans point critique d’indices 0 ou 4 telle
que ses valeurs critiques soient dans ] 1 [ pour un certain 0 suffisamment petit.
On consid̀ere une d́ecomposition en anses associée à cette fonction de Morse dont les
anses d’indice 1 sont attachéesà [0 ] et les co-anses des anses d’indice 3 sont
attach́eesà [1 1].

On consid̀ere les cercles unions desâmes (resp. co-âmes) des anses d’indice 1
(resp. 3) et d’arcs propres de [0 ] (resp. [1 1]). Dans le cas
non-orientable, on choisit les arcs de telle manière que ces cercles conservent l’orien-
tation de . Ceci est possible car et = sont non-orientables. Donc les voi-
sinages de ces cercles sont munis des structures Spin induites par la structure Pin de

. De plus on peut supposer que les cercles sont disjoints.
Maintenant on modifie , en faisant des« chirurgies Spin» sur les cercles.

D’après [34, §5], la varíet́e Pin ainsi construite a le m̂eme bord que , et de
plus se d́ecompose uniquement avec des anses d’indice 2.

Revenonsà la d́emonstration du Th́eor̀eme 2.3. Comme les cercles où les anses
d’indice 2 sont attach́ees pŕeservent l’orientation de , il existe un champ normalà
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dans 4 le long des cercles. Donc par l’argument de Kervaire [19, Chapitre III,
§3] (voir aussi [20]), on peut attacher les anses d’indice 2 dela décomposition de

ci-dessus dans 5. Cela prouve que se plonge dans5 de telle manìere que
0 correspondèa 4, et donc = est le bord du« handlebody»

plonǵe dans 5. De plus l’identification entre et est donnée par
le difféomorphisme .

Corollaire 2.5. Soit une surface compacte sans bord et connexe plongée dans
4 = 5. Alors il existe un« handlebody» de dimension3 plonǵe dans 5 dont le

bord cöıncide avec si et seulement si( ) = 0.

Démonstration. D’apr̀es le Th́eor̀eme 2.3, la nullit́e du nombre d’Euler du fibré
normal est ńecessaire. Ŕeciproquement, supposons ( ) = 0. Dans le cas où est
non-orientable, par la congruence de Whitney [36], le genrenon-orientable de est
pair, notons le 2 . Dans le cas orientable, désignons par le genre de . Alors,
par le Th́eor̀eme 2.3, il suffit de montrer qu’il existe au moins un difféomorphisme

: qui est Pin compatible.
Pour cela, rappelons que l’ensemble des structures Pin sur la surface est

en bijection avec les formes quadratiques1( ; Z2) Z4 assocíees à la forme
d’intersection modulo 2 de la surface (c.f. [22, Theorem 3.2] ou [4])1. D’après [22,
Lemma 3.6], l’invariant de Brown, uńelément deZ8, de cette forme quadratique2

s’annule si et seulement si la surface Pin correspondante borde une varíet́e Pin com-
pacte de dimension 3. Donc l’invariant de Brown de la surfacemunie de la struc-
ture Pin d́efinie ci-dessus s’annule, puisque sa structure Pin est induite par celle
d’une hypersurface de Seifert.

D’une part, on munit d’une structure Pin quelconque, et alors la structure
Pin induite sur le bord est aussi d’invariant de Brown nul.

D’autre part, une forme quadratique modulo 4 sur1( ; Z2) assocíee à la forme
d’intersection de modulo 2 est détermińee par l’invariant de Browǹa un automor-
phisme pr̀es (c.f. [12, pp.99–101]).

Le lemme suivant regroupe les résultats connus pour les surfaces orientables et
non-orientables.

Lemme 2.6. Soit une surface compacte sans bord et connexe. Alors tout au-
tomorphisme de 1( ; Z2) qui préserve la forme d’intersection modulo2 est ŕealiśe
par un diff́eomorphisme. En outre, si est orient́ee, alors tout automorphisme est
réaliśe par un diff́eomorphisme qui préserve l’orientation.

1Dans le cas orientable, ces formes se reduisentà des formes modulo2.
2Dans le cas orientable, l’invariant de Brown se réduit à l’invariant de Arf et est consid́eŕe comme

un élément deZ2.
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Dans le cas orientable, le groupe des tels automorphismes est engendŕe par des
transvections (c.f. [10, Chapter 3]). Comme chaque transvection est induite par un
twist de Dehn, nous avons le lemme. Le cas non-orientable estdémontŕe dans [26]
(voir aussi [24]).

Avec ce lemme il existe toujours au moins un difféomorphisme :
qui est compatible avec les structures Pin , et ceci complète la d́emonstration du Co-
rollaire 2.5.

REMARQUE 2.7. Pour illustrer la condition de compatibilité par rapport aux struc-
tures Pin dans le Th́eor̀eme 2.3, consid́erons par exemple le tore trivialement
plonǵe dans 4, i.e. est le bord du voisinage tubulaire =1 2 d’un nœud
trivial dans 3 4. Remarquons que 3 est diff́eomorpheà 2 1. Posons

= 2 et = 1 . Alors le tore ne borde dans 5 au-
cune varíet́e compacte de dimension 3 telle que le géńerateur du noyau de l’homo-
morphisme 1( ; Z2) 1( ; Z2) induit par l’inclusion soit engendré par la somme
des classes representées par et , d’après [11, Lemme 1].

REMARQUE 2.8. Dans le Th́eor̀eme 2.3, on peut remplacer le« handlebody» par
n’importe quelle varíet́e à bord de dimension 3 de la manière suivante.

Soit une surface orientable (resp. non-orientable), compacte sans bord et
connexe plonǵee dans 4 avec ( ) = 0. Soit une variét́e orientable (resp.
non-orientable) compacte et connexe de dimension 3 quelconque telle que soit
diff éomorpheà abstraitement. On dit qu’un difféomorphisme : est
Pin compatiblesi la structure Pin sur induite par s’étend sur . Alors en uti-
lisant le m̂eme argument que dans la démonstration du Th́eor̀eme 2.3, on peut montrer
que pour un diff́eomorphisme : , il existe un plongement 5 dont la
restriction sur le bord coı̈ncide avec si et seulement si est Pin compatible.

REMARQUE 2.9. Nous pouvons comparer le Corollaire 2.5 dans le cas non-
orientable avec le résultat de [15] suivant : une surface non-orientable, compacte
sans bord et connexe plongée dans 4 borde un« handlebody» non-orientable plonǵe
dans 4 si et seulement si est triviale (au sens de [15]) et ( ) = 0.

3. Cobordisme des surfaces plonǵees

Comme conśequence importante du Théor̀eme 2.3 nous avons

Corollaire 3.1. Soient 0 et 1 deux surfaces compactes sans bord et connexes
plonǵees dans 4. Alors elles sont cobordantes si et seulement si elles sont difféo-
morphes abstraitement et( 0) = ( 1). Dans le cas òu elles sont orient́ees, elles
sont cobordantes orientées si et seulement si elles ont même genre.
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Démonstration. Supposons que0 et 1 sont cobordantes. Comme dans la
démonstration du Th́eor̀eme 2.3, on peut montrer (0) = ( 1) et donc la ńecessit́e
est évidente. Pour montrer la suffisance, d’abord supposons que0 et 1 sont
orient́ees et de m̂eme genre .

Soit une petite boule de dimension 4 dans4 et notons la boule 4 par
. À isotopies pr̀es, on peut supposer que0 = 1 = est un 2-disque

et que ( ) est diff́eomorpheà la paire ( 4 2) standard. On peut aussi supposer
que 0 et 1 induisent la m̂eme orientation sur .

Dans ce qui suit, on considère plonǵee dans 4 , = 0 1. On note
4 par , = 0 1. Notons

(3.1) = 0 0 ( [0 1]) 1 1

On munit de l’orientation qui est compatible avec celles de0 et 1. La varíet́e
est une surface orientée, compacte sans bord et connexe de genre 2 plongée dans

( [0 1]) = 4. En fait, correspond̀a la somme connexe de !
0 et 1. Re-

marquons que la structure Pin sur est compatible avec cellesde !
0 et 1.

Soit la surface orientable, compacte sans bord et connexe degenre et posons
0 = Int 2. Remarquons que = 0 [0 1] est diff́eomorpheà 2 et que

= 0 0 0 [0 1] 0 1

Comme le groupe des difféomorphismes (qui préservent l’orientation) d’une sur-
face orientable agit transitivement sur les structures Pind’invariant de Brown nul
(voir la démonstration du Corollaire 2.5)3, il existe un diff́eomorphisme : 0 1

qui est compatible avec les orientations et les structures Pin , et tel que ( 0) = 1.
En particulier, il existe un diff́eomorphisme 2 = Pin compatible tel que

0 correspondèa , = 0 1. Ainsi par le Th́eor̀eme 2.3, il existe un plon-

gement de dans [0 1] tel que0 correspondèa ,
= 0 1, et tel que 0 correspondèa pour tout [0 1].

Finalement l’union de l’image du plongement de dans [0 1] et [0 1]
donne le cobordisme orienté d́esiŕe entre 0 et 1.

Maintenant, consid́erons le cas non-orientable. Supposons que (0) = ( 1)
et que 0 et 1 ont même genre non-orientable . Comme dans le cas orien-
table, consid́erons la surface d́efinie par (3.1). La variét́e est une surface non-
orientable, compacte sans bord et connexe de genre non-orientable 2 plonǵee dans
( [0 1]) = 4 qui correspondà la somme connexe de !

0 et 1. Ainsi on a
( ) = ( 0) + ( 1) = 0.

D’après [11], [12, p.98] ou [22, Theorem 6.3], le nombre d’Euler dufibré normal
( ) cöıncide avec 2 ( ) modulo 16, où ( ) Z8 est l’invariant de Brown de la

forme quadratique associée à la surface Pin , = 0 1, et 2 :Z8 Z16 est

3Ces structuresPin correspondent exactement aux structuresSpin d’invariant de Arf nul.
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le monomorphisme d́efini par 1 2. Donc comme (0) = ( 1) les invariants de
Brown de 0 et de 1 cöıncident. Comme on a vu dans la démonstration du Corol-
laire 2.5 il existe un diff́eomorphisme entre 0 et 1 qui pŕeserve les structures Pin .
En particulier, il existe un diff́eomorphisme = qui est Pin compatible
tel que 0 correspondèa , = 0 1, òu 0 = Int 2, = 0 [0 1]
et d́esigne la surface compacte sans bord et non-orientable de genre non-orientable

. Donc à l’aide du Th́eor̀eme 2.3, on peut montrer que0 et 1 sont cobordantes
comme dans le cas orientable.

REMARQUE 3.2. Consid́erons l’ensemble de toutes les classes de cobordisme des
surfaces orientées, compactes sans bord et connexes plongées dans 4. Cet ensemble
est muni d’une structure de monoı̈de commutatif avec la somme connexe orientée
comme oṕeration. De plus les résultats ci-dessus montrent que ce monoı̈de est iso-
morphe à celui des entiers positifs, où l’isomorphisme est donné par le genre de la
surface plonǵee. Ce ŕesultat est comparablèa celui de Vogt [31, 32].

REMARQUE 3.3. Soit R 2
+ (ou R 2) le plan projectif trivialement plonǵe dans

4 tel que (R 2
+ ) = 2 (resp. (R 2) = 2). Pour un couple ( ) d’entiers po-

sitifs tels que + 1, soit la surface plongée dans 4 obtenue en faisant
la somme connexe de copies deR 2

+ et copies deR 2. Remarquons d’abord
que les surfaces donnent tous les« nœuds triviaux» au sens usuel (c.f. [15]),
et ensuite que ( ) = 2( ) et que le genre de estégal à + . Les
résultats ci-dessus montrent donc que toute surface non-orientable, compacte sans bord
et connexe plonǵee dans 4 est cobordantèa une et une seule pour certains en-
tiers et . Ainsi les surfaces servent de représentants complets des classes de
cobordisme.

Comme dans la Remarque 3.2 considérons l’ensemble de toutes les classes de
cobordisme des surfaces non-orientables, compactes sans bord et connexes plongées
dans 4, où l’on rajoute la classe de cobordisme des 2-sphères plonǵees dans 4. Cet
ensemble est muni d’une structure de monoı̈de commutatif avec la somme connexe
comme oṕeration (l’ajout de la classe des nœuds sphériques permet d’avoir uńelément
neutre). Les ŕesultats ci-dessus montrent que ce monoı̈de est isomorphèa celui des
couples d’entiers positifs, et l’isomorphisme est donné par

[ ]
2 ( ) + ( )

4

2 ( ) ( )

4

où [ ] désigne la classe de cobordisme de la surface plongée et ( ) le genre
de .

Si l’on consid̀ere l’ensemble de toutes les classes de cobordisme des surfaces
compactes sans bord (orientables ou non-orientables) et connexes plonǵees dans 4,
alors le monöıde correspondant est isomorphe au monoı̈de des classes de triplets
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( ) d’entiers positifs, òu la relation d’́equivalence entre deux triplets est engendrée
par

( ) (0 + + ) pour + 1

Maintenant consid́erons les plongements des surfaces au lieux des sous-variét́es de
dimension 2 plonǵees dans 4.

DÉFINITION 3.4. Soit une surface compacte sans bord et soient : 4,
= 0 1, deux plongements. On dit que0 et 1 sont concordantss’il existe un plon-

gement propre : [0 1] 4 [0 1] tel que = : 4 ,
= 0 1.

Alors, comme corollaire du Th́eor̀eme 2.3 on obtient

Corollaire 3.5. Soit une surface compacte sans bord et connexe. Alors deux
plongements de dans4 sont concordants si et seulement si les structuresPin in-
duites par ces plongements coı̈ncident et les nombres d’Euler du fibré normal sont
égaux.

Démonstration. La d́emonstration du Corollaire 3.1 implique la suffisance. Sup-
posons maintenant que deux plongements : 4, = 0 1, sont concordants. Soit

la structure Pin sur induite par , = 0 1. Alors comme dans la démonstration
du Th́eor̀eme 2.3 on peut montrer que [0 1] est muni d’une structure Pin qui
induit les structures Pin sur , = 0 1. Ainsi0 et 1 cöıncident.

REMARQUE 3.6. Pour chaque 1, on peut construire deux plongements
: 4, = 0 1, qui ne sont pas concordants, où désigne la surface

compacte sans bord orientable de genre . En fait, pour n’importe quel plongement

0 : 4, on peut trouver un diff́eomorphisme : qui préserve l’orien-
tation mais qui ne préserve pas la structure Pin induite par0. Alors 0 et 1 = 0

fournissent un tel exemple.
Rappelons que le groupe des difféomorphismes (qui préservent l’orientation) d’une

surface orient́ee compacte sans bord agit transitivement sur les structures Pin d’in-
variant de Brown nul (voir la d́emonstration du Corollaire 2.5). Ceci implique que
le nombre des classes de concordance des plongements d’une surface orient́ee com-
pacte sans bord de genre est donné par le nombre des structures Pin d’invariant
de Brown nul sur cette surface4. Ce nombre, noté par , est donńe par =
2 1(2 + 1) (c.f. [17, p.373]).

Ceci implique que les deux notions, cobordisme et concordance, sont essentielle-

4Ce nombre est́egal au nombre des structuresSpin d’invariant de Arf nul sur la surface.
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: impair : pair

0 0 2( 2) 2(2( 2) 2 + 1)

1 2( 3) 2(2( 1) 2 + 1) 0

2 0 2 2

3 2( 3) 2(2( 1) 2 1) 0

4 0 2( 2) 2(2( 2) 2 1)

5 2( 3) 2(2( 1) 2 1) 0

6 0 2 2

7 2( 3) 2(2( 1) 2 + 1) 0

Table 1. Le nombre des structures Pin sur avec les invariantsde Brown Z8.

ment diff́erentes pour les surfaces orientables de genre 1. Remarquons que pour
= 0, ces deux notions coı̈ncident, puisque tout difféomorphisme de 2 qui pŕeserve

l’orientation est isotopèa l’identité (c.f. [30]).

REMARQUE 3.7. Comme dans la Remarque 3.6, on peut déterminer le nombre
des classes de concordance des plongements de dans4, où désigne la surface
compacte sans bord et non-orientable de genre non-orientable . En effet d’apr̀es la
Remarque 2.2 on a

=
=0

2 +4

où désigne le nombre des classes de concordance des plongementsde dans 4

tels que les nombres d’Euler de leur fibré normal sont́egauxà . De plus d’apr̀es le
Corollaire 3.5 et [22, Theorem 6.3], 2 +4 est égal au nombre des structures Pin
sur dont les invariants de Brown sontégaux à + 2 modulo 8. D’autre part,
d’apr̀es [3] le nombre des structures Pin sur dont les invariants deBrown sont
égauxà est donńe par la Table 1. Ceci peut se résumer par la formule

=
2 2( + 1) si est impair
2 2( + 1) + 2( 2) 2 si est pair

REMARQUE 3.8. Soit la surface orientée, compacte sans bord et connexe de
genre 0. L’image ( ) d’un plongement : 4 est triviale si ( )
borde un « handlebody» de dimension 3 de genre plongé dans 4 (c.f. [15]).
En combinant notre résultat avec celui de Hirose [14], on obtient l’équivalence
entre concordance et isotopie pour les plongements dont lesimages sont triviales.
Plus pŕeciśement, pour un plongement0 : 4 dont l’image est triviale et
un difféomorphisme : qui préserve l’orientation, les trois conditions
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ci-dessous sont́equivalentes.

(1) Les plongements0 et 1 = 0 sont isotopes.

(2) Les plongements0 et 1 = 0 sont concordants.

(3) Le difféomorphisme pŕeserve la structure Pin induite par0.

Remarquons que si l’image du plongement0 n’est pas triviale, alors le m̂eme
résultat n’est plus valable en géńeral. En fait, pour certains tores plongés dans 4, il
existe des diff́eomorphismes du tore qui ne se prolongent pasà ceux de 4 mais qui
préservent la structure Pin , d’après [16, 13].

4. Applications

Nous pŕesentons maintenant quelques applications du Théor̀eme 2.3 au scindement
de Heegaard des variét́es de dimension 3.

Tout d’abord nous donnons un résultat qui permet une nouvelle démonstration du
théor̀eme de Rohlin [29] sur le plongement des variét́es de dimension 3 dansR5 (voir
aussi [12, p.90], [33] et [35]). Rappelons que pour toute variét́e de dimension 3 com-
pacte sans bord , il existe une décomposition de la forme = 0 1, où
sont des copies du« handlebody» de dimension 3 avec anses d’indice 1, = 0 1,
et 0 1 = 0 = 1. Ce type de d́ecomposition est applé une décomposition
de Heegaard de genre de , et la surface = 0 1 est appĺee la surface de
Heegaard associée. Remarquons que est difféomorpheà si est orientable, tan-
dis que est diff́eomorpheà 2 si est non-orientable.

Corollaire 4.1. Soit une varíet́e orientable (resp. non-orientable) compacte
sans bord et connexe de dimension3 qui admet une d́ecomposition de Heegaard de
genre , et soit la surface de Heegaard associée. En outre soit une surface
orientable (resp. non-orientable) compacte sans bord et connexe de genre(resp. de
genre non-orientable2 ) plonǵee dans 4 avec ( ) = 0. Alors il existe un plonge-
ment : 5 = 5

4
5 qui est transversèa l’ équateur 4 = 5, et tel que

( ) = ( ) 4 = .

Démonstration. Soit = 0 1 une d́ecomposition de Heegaard de genre
de et : 1 0 un difféomorphisme de recollement. D’après [22,§2] par

exemple, la varíet́e de dimension 3 admet une structure Pin . Fixons une telle struc-
ture sur . Remarquons que la structure Pin induite sur la surface de Heegaard
est d’invariant de Brown nul. Donc il existe un difféomorphisme : = 0

qui est compatible avec leurs structures Pin (voir la démonstration du Corollaire 2.5).
Remarquons aussi que le difféomorphisme est compatible avec les structures Pin
induites sur 0 et 1.

Par le Th́eor̀eme 2.3, il existe deux plongements : 5, = 0 1, tels que
( ) cöıncident avec pour = 0 1,0 0 = 1 et 1 1 = 1 , où 5
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sont des copies de5, = 0 1. Alors la composition 1
0 1 1 cöıncide avec . En

outre nous pouvons supposer que ( ) est transverseà 5 et que ( ) 5 =
( ), = 0 1. Ainsi le plongement obtenu en collant0 et 1 le long du bord est

le plongement d́esiŕe de dans 5
0 4

5
1 = 5.

Comme toute variét́e compacte sans bord de dimension 3 admet au moins une
décomposition de Heegaard, on a

Corollaire 4.2 (Rohlin [29], Wall [33]). Toute varíet́e compacte sans bord de di-
mension3 se plonge dansR5.

On a aussi

Corollaire 4.3. Soit une varíet́e compacte sans bord et connexe de dimen-
sion 3 qui admet une d́ecomposition de Heegaard de genre. Alors on peut plonger

dans 5 = 5
4

5 de telle sorte que 4 = 5 soit un « handlebody» de
dimension3 avec anses de la décomposition de Heegaard.

Démonstration. On modifie la démonstration du Corollaire 4.1 de la manière
suivante. Consid́erons un« handlebody» trivialement plonǵe dans 4 et posons

= . On munit de la structure Pin induite par celle de4. Il existe un
diff éomorphisme : 0 qui est compatible avec les structures Pin , ceci parce
que le groupe des difféomorphismes de agit transitivement sur les structures Pin.
Posons = : 0. Alors le plongement obtenu en collant ( )1 : 0

4 et 1 : 1 5
1 le long du bord est le plongement désiŕe de dans

5
0 4

5
1 = 5, où 1 est le plongement construit comme dans la démonstration du

Corollaire 4.1.

REMARQUE 4.4. En appliquant la Remarque 2.8, on peut montrer l’affirmation sui-
vante. Soit une variét́e compacte sans bord et connexe de dimension 3 et =

0 1 une d́ecomposition en deux sous-variét́es compactes et connexes de codimen-
sion 0 telle que = 0 1 = 0 = 1 soit une surface connexe.

Pour un plongement : 4, les deux conditions ci-dessous sontéquivalentes.

(1) Il existe un plongement : 5 = 5
0 4

5
1 qui est transversèa l’équateur

4 = 5
0

5
1 tel que = et 1( 5) = , = 0 1.

(2) Le difféomorphisme : ( ) = est Pin compatible, i.e. la structure
Pin induite par sur s’étend sur 0 et 1, et le nombre d’Euler du fibré normal
de = ( ) est nul.

De plus, m̂eme si le diff́eomorphisme : n’est pas Pin compatible, on peut
choisir un diff́eomorphisme : tel que soit Pin compatible.
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Après que cet article ait́et́e accept́e pour publication, les auteurs ontét́e informés
que le cas orientable du Corollarie 3.1 avait déjà ét́e d́emontŕe par E. Ogasa (voir
Theorem 5.1 de l’article “E. Ogasa : The intersection of three spheres in a sphere and
a new application of the Sato-Levine invariant, Proc. Amer.Math. Soc.126 (1998),
3109–3116”). La d́emonstration proposée par E. Ogasa est lég̀erement diff́erente de la
notre et quelques détails techniques y sont omis.
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