
Title 複合サイクル発電システムの高性能化・最適化に関す
る研究

Author(s) 辻, 正

Citation 大阪大学, 2001, 博士論文

Version Type VoR

URL https://doi.org/10.11501/3184359

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



複合サイクル発電システムの高性能化 ・最適化

に関する研究

平成12年12月

辻 正



複 合 サ イ ク ル 発 電 シ ス テ ム の 高 性 能 化 ・最 適 化 に 関 す る 研 究

目 次

第1章 序 論1

1.1緒 言1

1.2従 来 の技術お よび研究2

1.2.1複 合 サイ クル発電 の発展 システ ム3

1.2.2CO2無 排 出のための閉サイ クル システム4

1.2.3ハ イブ リッ ド型複合発電 システ ム5

1.3研 究の背景 と目的7

1.3.1複 合サイ クル発 電の発展 システ ム7

1.3.2CO2無 排 出のた めの閉サイ クル システ ム8

1.3.3ハ イブ リッ ド型複 合発 電 システ ム9

1.4論 文の構成.11

参考文 献13

第2章 翼冷却 空気削減技術 によるガ スター ビンな らび に複 合サイ クル発電システ ムの

高性能化17

2.1緒 言17

2.2翼 冷却空気のガス ター ビンな らび に複合サイ クル発 電性能特性19

2.2.1性 能改善の基本構想20

2.2.2冷 却空気削減 と性能向上 の関係22

2.2.3ガ スター ビンの冷却空気割合26

2.3発 電 システ ムのモデル化28

2.3。1ガ スター ビンの空気配分28

2.3.2ガ スター ビンモデル28

2.3.2.1モ デル化 の方針 と手順28

2.3.2.2ガ ス ター ビンモデル30

2。4カ スケー ド冷却技術34

2.4.1カ スケー ド冷却技術34

2.4.2翼 冷却 空気 の温度調整37

2.5翼 冷却空気に よるター ビン段 間温度の制御40

2.5.1冷 却空気流 量条件40

2。5.2翼 冷却空気の ヒー トマスバ ランス42

2.5.3タ ー ビン段間温度制御 の判 定43

目一1



2.6翼 冷 却 空気 削減 に よ る性 能 向上44

2.6.1冷 却 空気 削減 量 に対 す る性 能 向 上44

2.6.2冷 却 空気 削減 と回 収熱 の活 用 にお け る性 能 向上45

2.6.3性 能 向 上技 術 に お け る本 技 術 の位 置 付 け46

2.6.4プ ラ ン ト発 電 効 率 の 寄 与 因子48

2.7カ ス ケ ー ド冷 却 技 術 に よ る性 能 改 善 幅 の評 価49

2.8結 言52

参 考 文 献52

第3章CH4/02燃 焼 の 閉サ イ クル ガ ス ター ビ ン とCH4/02燃 焼 蒸 気 タ ー ビンの 複 合 サ イ クル

発 電 シ ス テ ム の最 適 化 お よび 高 性 能化53

3.1緒 言53

3.2循 環 媒 体 の選 定56

3.2.1作 業 流 体 の熱 的 物 性 とガ ス ター ビ ン性 能57

3.2.2GT出 力構 成64

3.2.3GT比 出 力,GT出 力 比70

3.2.4循 環 媒 体 の選 定75

3.3CO2/H20Hybridシ ステ ム80

3.3.1CO2/H20Hybridシ ステ ムの構 成80

3.3.2CO2・CBCシ ステ ム の最 適 化82

3.3.3燃 焼 蒸 気 ター ビン シス テ ム の最 適 化96

3.3.4CO2/H20Hybridシ ステ ム の最 適化101

3.3.4.1CO2/H20Hybridシ ステ ムの 効 率 向 上 技 術102

3.3.4.2CO2・CBCに お け る効 率 向上 技 術 の効 果106

3.3.4.3燃 焼 蒸 気 ター ビン にお け る効 率 向 上 技術 の効 果106

3.3.4.4COZ/HzOHybridシ ス テ ム にお け る効 率 向上 技術 の 効果108

3.3.5複 合 サ イ クル 発 電 シ ステ ム の高 性 能化110

3.3.6CO2/H20Hybridシ ステ ム の性 能 総 括119

3.4結 言124

参 考 文 献125

第4章 燃 料 電 池 とガ ス タ ー ビンの複 合 に よ る複 合 サ イ クル発 電 シ ステ ムの 高 性 能化126

4.1緒 言126

4.2SOFC/GT複 合 サ イ クル 発 電(SOFC/GTHybrid)シ ステ ム128

4.2.1高 性 能 化 の基 本 構 想128

4.2.2燃 料 電 池 の選 定133

4.2.3SOFC/GTHybridシ ステ ムの 構 成136

目 一2



4.3燃 料 電 池 の作 動 特 性138

4.3.1SOFCの 理論 効 率138

4.3.2SOFCの 運用 性 能143

4.3.2.1SOFCの 実用 効 率143

4.3.2。2SOFCの モ デル 化146

4.4SOFC/GTHybridシ ス テ ム基 本性 能151

4.5SOFCとGTの 複 合 化 にお け る性 能 評 価153

4.5.1在 来 のSOFCに よ る再 熱 方 式(SOFC/AFGT/CC)と 非 再熱 方 式(SOFC/NFGT/CC)

のSOFC/GTHybridシ ステ ム性 能 の評 価153

4.5.2ACT(AdvancedCoolingTechnology)に よ るSOFC/GTHybridシ ステ ム の

性 能 向上 効 果156

4.5.3SOFC/GTHybridシ ステ ム の性 能 総括162

4.6結 言171

参 考 文 献172

第5章 結 論173

謝 辞 ・175

目一3



第1章 序 論

1.1緒 言

事業用火力発電所は国のエネルギー政策 ・環境政策と直接的に関係する設備であることから,

歴史的に国と民間の双方の努力によって改善がなされてきた。過去の石油危機を契機にした石

油価格の高騰とそれに連動して設定されているLNG価 格の上昇に対しては,1970年 代の第1次

の高効率発電推進が省エネルギーつまり燃料節約の観点から行われた。その結果ガスタービン

と蒸気タービンの複合サイクル発電システムが開発され,こ の技術は日本な らびに世界に普及

した。もはやガスタービン単独発電は非常用待機電源等特殊用途に限られ,一 方蒸気ター ビン

発電はガスタービンに使えない燃料(石 炭 ・重油等)に 限られてお り,現 在ではLNG新 設火力

発電所は複合サイクル発電とすることが常識になっているといっても過言ではない。

その後,1990年 代に入ると地球規模の環境問題である温暖化防止のために温暖化物質の排出

抑制が世界的に議論されるようになり日本でも指標物質のCO2の 排出量削減においては化石燃

料を多量に消費する火力発電所の改善つまり第2次 の高効率発電推進によって燃料節約が改め
゜
て求められる情勢となっている。 したがって,今 後建設予定の化石燃料を使用 した火力発電所

は 「最大限に高効率化を図ったシステム」でなくてはならない状況になっている。

さらに,こ の数年来IPP(IndependentPowerProducers,自 家発分散型電源)の 低価格電力

を購入 し あるいは電力会社自身の努力によって発電単価つまり電気代を安くするように,ま

た電力事業の規制緩和の施策に沿うように国の指導がなされている。

以上のことから,こ の数年および今後を見通した火力発電分野の技術の動向としては,「CO2

排出抑制ならびに発電単価低減」を実現する対応策として 「火力発電設備の高効率化技術」が

求められますますその重要度を増してくるものと予想される。

そこで本論文は,今 後21世 紀に向けて必要とされる高効率発電技術の候補として,

・複合サイクル発電の発展システム

・CO2無排出のための閉サイクルシステム

・複合発電要素に更に燃料電池(SOFC ,SolidOxideFuelCell,固 体酸化物型燃料電池)

を付加 したハイブリッド型複合発電システム

をとり上げて,そ れ らの効率向上の効果 ・寄与の程度を解析 ・評価した。その結果,従 来か ら

議論され半ば定説 となっている値を越えて更に良好な高効率を得るための指針を得ることが出

来た。
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1.2従 来 の技術 お よび研 究

火 力発 電分野において は先進的技術開発W,老 朽火力対策 な らび に電気料金 削減等 におい て歴

史的 に対 策が進 め られ て きた。 この技術 の範 囲 は大 型発 電(UtilityScale),天 然 ガス燃 料

(NaturalGas)発 電 お よび産 業適 用(lndustrial)中 小型発電等 の多岐に亘 る。 この うちの最新最

大の技術 は1500℃ 級 ガスター ビンを蒸気冷却翼で実現す るもので,GE(2)の7Hと9H,三 菱重 工業

(3)の501Hと701Hが 開発完 了間近 かにあ り
,既 に供 給機 種 として登録(4)され てい る。一方発 電シ

ステム としては燃料 電池一GT複 合のHybridシ ステムやHAT(5)(HumidAirTurbine)サ イ クル その

他の システム も多数研 究開発 され てきてい る。

今後 の21世 紀 の技術 を展 望 してみ ると,現 在 め技術 の朋芽 が成長期 に入 るもの と期待 され る。

現在 でも研究 が盛 んな次 の2技 術 は とくに今後の発展 が期待 され る。

(1)多 様な燃 料 を扱 える発 展型 ター ビン

(2)燃 料電池 一ガス ター ビンのHybridシ ステ ム

技術(1)に ついて は天然ガ ス以外の石炭 ・重 油について石炭 ガス化複合発電,PFBC(加 圧 流動

床ボイ ラ)や 重油熱分解 複合発電が研究 されてお り,技 術(2)の 燃 料電池 につ いては本体そ のも

のが開発途上 にあ るが,そ れ が完成 し経 済性 も向上 した時点 で改 めてシステムの具体化 が進 む

もの と考 え られ るが現在 はHybridシ ステ ムの あ り方 を探 る試み が種 々研 究 され てい る。

今後 の研 究の指標 としてその 目標値 を掲 げ ることは技術 の具体化 にあたって重要であ る。

例 として米国DOE(theU.S.Depart皿entofEnergy)のVision21プ ログラム(6)(2001～2015

年)の 目標値 を参考 までに次に示す。

(1)事 業用発電(Power):石 炭使 用で熱 効率60%HHV以 上(現 状33～35%㎜)

天然 ガス使用 で75%㎜ 以 上

(2)熱 併給発電(CombinedHeat/power):全 体熱 効率85～90%LHV

(3)環 境負荷低減(Environment):大 気汚染物質 の無排出(ZeroE皿issi。n)

(4)温 室効果 ガス:CO2排 出は熱 効率の改良で40～50%減 少

この10年 間 を振 り返 る と従来 よ り行 われ てきたガ スター ビンシステ ム開発 の論点は,

・(1)高温化

(2)燃 料 多様化

(3)複 合化

(4)低 公 害化

で,今 後 もこれ らの重要性 は変 わ らず技術開発努力 は継続 され るものである。

(1)高 温化 は現在標 準的 に使 われ てい る空気 に よる翼冷却 方式 において はター ビン入 口温

度1500℃ が上限で ある。また,冷 却流体 を別途蒸気 に求めて空気 はター ビン作動流体 と

して有効 に出力 転 換す る努力 が,前 記 のH級 蒸 気冷却 ター ビン(タ ー ビン入 口温 度
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1500℃)で 行 われ てい る。一方国家 プロジェク ト(WE-NET計 画お よびそれ 以降)で は将

来技術 として1700℃ の高温化お よび冷却技術 の開発 に取 り組んでいる。

(2)燃 料多様化 は,石 油以 上に推 定埋蔵量 の多い石炭 を清浄な気 体燃料 にしてガスター ビン

に使用す る努力が石炭ガス化複合発 電で進 んでい る。発 電効 率 を高めるために石炭ガス

化 ガスを用いたSOFC(SolidOxideFuelCe11)Hybridシ ステ ム(7)などの システ ムの多

様化 が進 め られてい る。

(3)複 合化 は,ガ スター ビンと蒸気 ター ビンの複 合発 電(Gas-SteamcombinedCycle)が 商

用化 されてお り,火 力発電所の主流 をな している。現在,発 電効率 を更に高めるた めに

燃料電池一ガスター ビン(蒸 気 ター ビン)のHybridシ ステムの研究 が盛んに行 われ てい

る。燃料 電池 そのものが開発 途上技術 とい う制約 はあるが斬 新な新 システムが期待 され

ている。

(4)低 公害化 は,従 来低NOx化 が主流 であった。 最近のCO2排 出量削減 については発電効率

向上(燃 料消費量削減)で 対処す るのが世界的な流れ であ るが,今 後はNOxやCO2を 大

気 中へ放 出 しない排気無排 出プ ラン トが求 め られ る。

本論文で は,ガ スター ビン発電 システ ムで今後求 め られ る技術分野か ら

(1)高 温化 を支援す るために,冷 却空気 その ものを低 温にす ることで冷却空気 の削減 を実現

し,プ ラン トの高効率化 を達成す る新 システ ムを提案す る。

(2)複 合化 におい て,燃 料電池 一ガス ター ビンのHybridシ ステ ムを構成す る際の燃料 ・空

気 のFCへ の投入条件 の最適化 を図 る ことで高効率 を達成す る新システ ムを提案す る。

(3)低 公害化 は,閉 サイ クルガ スター ビンー燃焼蒸気 ター ビンの組 み合 わせでCO2を 大気 に

排 出 しない複合発電 システ ムと し,作 業流体条件 の最適化 によって高効率化 を達成 した

新システ ムを提案す る。

ことを主題 に選び開発技術 を論 じた。

1.2.1複 合 サイ クル発電 の発展 システ ム

LNG気 化ガ スや天然ガス は硫 黄分 を含 まず,石 油燃 料の よ うな高温腐食成分(Na,K,V他)

や 窒素 分を含 まない ことか ら世界的 にガスター ビン燃料 の主流 になっている。 この天然 ガスは

ガ スター ビンの 高温 化 にお い て も材 料 障 害 を起 こ さず 有利 で あ るた め,タ ー ビン入 口温度

1500℃ の最高温度機種 も天然 ガス焚 きを採 用 してい る。 ガスター ビン入 口温度 を高温にす るに

伴い大出力 ・高効率 とな るのは当然 で航 空用ガス ター ビン(ジ ェ ッ トエ ンジン)が 先行 して高

温化 を達成 して きた。陸用 ガスター ビンの高温化 はター ビン翼冷却 技術 の実用化 ・改善 をこの

航 空用ガ スター ビン技術 の移 転で行 って きた。 しか しな が ら翼冷却技術(8)が一通 り出揃 ってい

る現状 では空気冷却翼 の改 善に多 くを期待 できない状 況に ある。 つま り,1500℃ 級 のガ スター
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ビンは,燃 焼用空気 を優先 して確 保す るため燃焼器 自身の冷 却空気および翼の冷却 空気 が十 分

取れ な くなってきてい る。それ を打開す る技術 が蒸気冷却翼(2)(3)で,陸用 ガスター ビンの利 点で

あ る複 合 サイ クル発電 の蒸気 ター ビン系か らの蒸 気 を燃焼器 や翼の冷却媒体 として活 用 しよ う

とい うもので実用化 間近に ある。蒸気以外 の新規 の冷却媒体(9)と しては水(液 体)や 水素,マ

方新 たな要素 として ヒー トパ イプが評価 され てい るがまだ研究段階であ る。

以上述 べた技術動 向 は高温化 のための翼冷 却技術 開発 であ るが,翼 冷却効率 その ものの改 善

はター ビン効率 の改善 を確 実に行 えるがその改善幅は限 られ る。数 十%も の大幅 な冷却 空気 の

削減 を図 るには蒸気 な どの空気以外 の流体適用に挑戦す る必要が ある。

通常冷却 空気 は圧縮機 の所定 の圧力段 か ら対応す る圧力 のター ビン段へ抽気 して投入 してい

る。 その冷却効 果 を高 め る方法 として空気 に加湿す る方式(9)が試算 され てい るが,蒸 気冷 却 の

方 が更 に良好 で ある とい う結果 が示 されてい る。

1.2.2CO2無 排 出のための閉サイ クル システ ム

ガス ター ビン排 気側 を圧縮機 吸 気側 に結合 して構 成す る閉 サイ クル(CBC,ClosedBrayton

Cycle)に は,古 くは空気 あ るい はHeを 作業流体 として燃焼器 は間接熱交換器 で系外か ら加熱す

る方式(1°)が実験 され てお り1939年 にEscherWyssが 世界初 の空気循環型 を完成 した。Heli㎜

ター ビンは1975年 に ドイツで50MWが 完成 している。 しか し,タ ー ビン入 口温度が650～750℃

程度 と低 く特殊発 電の域 を出ていない。 また応用 システム と してLNG冷 熱 を用いて圧 縮機 吸気

温度 を冷 や す 閉 サ イ クル(11)も 研 究 され て い る。 ご く最 近 で は高圧 ガ ス 化 炉HTGR(High

TemperatureGasCooledReactor)のHeliumタ ー ビンHTGR-GT(12)が 報告 されてい る。本格的

な火 力発 電 システ ム と しては,(1)CO2100%を 作業流体 とす る閉サイ クルガ スター ビン(13)(14>,

(2)CO2とH20の 混合流 体 を作業流体 とす るシステ ムでガスター ビンと蒸気 ター ビンを混然一体

に構成す るGrazサ イ クル(15)が研 究 され てい る。

一方
,(3)蒸 気 ター ビンの入 口に燃焼器 を置いて燃 焼蒸 気 ター ビンサイ クル(16)(17>を構成 し本

来の閉サイ クルで ある蒸気 ター ビンプラン ト高効率 に した システ ム も研究 され てい る。 但 し,

このシステ ムは蒸気 を系外 か ら導入 しな けれ ばな らない欠 点 を持 つ。Grazサ イ クル はい わゆ る

Ranking-Brayton複 合サ イクル でH2/02燃 焼 システム(18)として開発 され たものである。類似 シ

ステ ムの発 展型 が他 に も(19)(2°)研究 され てい るが構成機器 とそ の流 体条 件 が複雑 に影響す るた

めそ の最適 化手法 が論 点 とい える。

更 に高効 率 プラン トとす るため に,H2/02燃 焼お よびCH4/02燃 焼 のGrazサ イ クル にMCFC

(MoltenCarbonateFuelCel1)を 組み 入れ たHybridシ ステ ム(21)も試算 されてい る。

水素/酸 素燃 焼 方 式 の閉 サイ クル 発 電 は 目本 の国 家プ ロジ ェク トのWE-NET計 画(22)(23)(24)

(WorldEnergyNetwork,1993～1998)で 研究 され,Grazサ イ クル を発展 させ て1700℃ の高温
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ガス ター ビンを組込む システム(25)(26)(27)(28)が検討 され た。

国家 プ ロジェク トとしてはWE-NETで 開発 したシステ ムを天然ガス/02燃 焼で作動 させ る 「CO2

回収対応 クローズ ド型ガ スター ビン」に形 を変 えて1999年 ～2003年 の5ヶ 年計画が進んでい る。

以上 の とお り,閉 サイ クル システ ムは

(1)CBC(ClosedBraytonCycle)

(2)Rankine-Brayton複 合サイ クル

(3)燃 焼蒸気 ター ビンサイ クル

の3つ に分類が され(2)は(1)と(3)の 複 合 システ ムとい える。

1.2.3ハ イ ブ リッ ド型複合発電 システ ム

複合 サ イ クル発 電の効率 を改善 ・向上す る方 法の一つ としてガス ター ビンに燃 料電池 を付

加 ・統合す る技術 があ り,従 来 よ り多数研 究 され てきて いる。燃料電池そ の ものは単独 で作動

で きず,空 気供給源が必要 でその空気 はプ ロアや ガスター ビンの圧縮機 吐出空気で供給す る。

また,燃 料電池 の排気 は高温 であ るため燃 焼器 の補助 あるい は代替 として利用す ることがで き

るな ど,燃 料電池 とガスター ビンの要素 は密接な相互 関係 にあ る。

燃料電池 には約1000℃ の高温 で作動す るSOFC(固 体酸化物型,SolidOxideFuelCell),約

650℃ の中温 で作動す るMCFC(溶 融炭素塩型,MoltenCarbonateFuelCell),約200℃ の中低

温で作動す るPAFC(リ ン酸型,PhosphoricAcidFuelCe11),約80℃ の低 温で作動す るPEFC

'(高分
子型,PolymerElectrolyteMarbraneFuelCell)が ある。

これ らの燃料電池 の中で最 も高温で作動 す る固体酸化物型(SOFC)は ほぼ1000℃ の排気温度

を持 ち,タ ー ビン入 口温度 に近いた めガス ター ビンとの熱収 支の均衡 が取 りやす い。燃料電池

そ のものはまだ開発途 上品であ るがPAFCは 商用実証段 階,PEFCは 実用化直前,MCFCとSOFCは

性能お よび要素技術の改善中であ る。

SOFC/GT/CCに つ いては多 くの論文 で報告 され ているが現状のSOFCとGTの 単純 な組合せ ・構

成 を扱 ったものが ほとん どであ る。

ハイブ リッ ド型複合発電 システ ムは大別す ると,

(1)再 熱方式(SOFC/AFGT/CC):高 圧 作動SOFCを 燃焼器 の上流 に配置 して ター ビン入 口温

度 を所定値 とす るために燃料 を助燃 す るシステム

(2)非 再熱方式(SOFC/NFGT/CC):燃 焼器 を用いずSOFC排 気 をそ のまま用いてター ビンを

作動 させ るシステム

の2通 りであ るが,両 者 を体系的 に論 じた もの はな く,高 効率 システ ム をら列評価 したもの

が多い。(29)(3°)

燃焼 電池の作動要素 は燃 料利用率,セ ル 電圧,電 流密度,酸 素濃度,圧 力お よび温度 などが

複雑 に絡む がその特性 は解 明 されつつ ある。(3ユ)
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SOFCは 大別 して円筒形(Tubular)と 平板型(FlatPlate)の2つ に分 け られ,そ れ とは別 に

Monolithic型 もある。更 に天然ガス を水蒸気改質 してH2とCOの 燃 料 に転換 して用い るが,燃

料極 の触媒 作用 を利用 した内部 改質型 は装置 の簡素化 に有利 であ る。改質器 を燃料電池 の直前

に別置 きす る外 部改質型 はその出入 りの流体配管や制御 系が必要 とな り装置 は複雑 とな る。

米 国DOEのHybridシ ステ ムの高効率 目標はATSプ ログラム(1992～2001年)に おいて70%LHV

以上(29)であったが,2001年 か ら始 まるNGGTプ ログラム(2001～2015)お よびVision21プ ログ

ラム(6)では75%HHV以 上に引き上 げ られ てお り,シ ステ ム開発のハ ー ドル が1段 と高 くな って

い る。

米 国SiemensWestinghouse社 は円筒型SOFCに 特化 して開発 を進 めてい るが原理上空気 がFC

発 電膜 に到 達す る迄に昇温す る。この点に注 目したター ビン入 口温度900℃ のマイ クロガス ター

ビンのHybridシ ステム(32)(33)(34>(35)が比較的新 しいシステ ムである。 但 し単 なる組み合わせ に過

ぎず システ ム最適化 の議論 はな されていない。

また,1つ のシステム を構成 してその システムに対す る圧力等 の最 適条件 を探 った研 究はあ

るが,再 熱 方式 と非再熱方式 のいつれ が有利 か,設 計条件 においてそれ を ど う使い分 け るかま

た実現 し うる最 大効率(極 限値)は い くらか とい うこ とを体系的に論 じた論 文は見 当た らない。

その理 由 は小型 ター ビン(Microgasturbine,数 百kW)で はター ビン入 口温度が約900℃(32)～

(36)程度 でFC排 気 をその まま ター ビンに導いて これ以 上の高温 とは しないた めであ る
。260kWで

64.9%LHd(31>,SiemensWestinghouse社 は19500kWで70%LHV(37)程 度 であ る。

比較 的シ ステ ム組み合せ を種々評価 した研 究(3°)では,

{
(1)Hybridシ ステム に再熱GT(高 圧Tと 低圧T)を 用 い ると効率 が高 く72%LHVと200MWの

値 が示 され てい る。

(2)再 熱方式 は65%LHVで 非再熱方式68.8%LHVよ り低 い。

燃料電池 の作動条件 を評価 し通常のガスター ビンとの組合せ を行 った研 究(38)では

{
(1)再 熱方式 の効率 は75%LHVで 非再熱方式70%LHVよ り高い。

(2)出 力割合(タ ー ビン出力/FC出 力)は 再熱方式 で37%/63%,非 再熱 方式で12%/82%

で,再 熱 方式であ りなが らター ビン出力 が小 さい。

の とお り研 究者 や システ ム構成 によ り再熱 ・非再熱 の方式へ の判定 が異 なる。
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1.3研 究の背景 と目的

1.3.1複 合 サイ クル発電 の発展 システ ム

複合サイ クルの 二大構成要素 のガスター ビンと蒸 気 ター ビン(お よび排熱 回収 ボイラ)は,

煙突排 気 と復水器循環 水(温 排 水)に 本質的 なシステム損失 を持 っている。複合サイ クル発電

の高性能化 は,現 在の ところ

・ガスター ビンを高温 ター ビンとす る。

・蒸気ター ビンを再熱 ・再生 ター ビンとす る。

の組 み合せ で行 うこ とが常識 とな ってい る。

一番効果 があるの は
,「 ガスター ビンの性能 向上」 で,こ れ はプラ ン ト発電 出力の70～80%

をガス ター ビン出力 が 占めてい るこ と,お よび発電 システ ムへのエネルギー投入 はガス ター ビ

ン燃焼器への燃料 のみ であ るこ とによる。

ガスター ビンの性能向上 はガス ター ビンの本 質にかかわる命題 として

・ター ビン入 口温度(TIT)を1350℃ か ら1500℃ へ上昇

・ター ビン翼冷却の強化 を標 準 ・空気冷却(TIT=1350℃ 及 び1500℃)か ら蒸気冷却(TIT

=1500℃)に 転換

の技術 開発 に期待が寄せ られ てい る。

蒸気冷却翼は,タ ー ビン入 口、1500℃で翼を冷却す る際に冷却空気が多量 とな るために折角の

高温下に よる効 率向上 を 目減 りさせて しま うこ とを解 消 させ るためのアイデ アで,冷 却 空気 を

最小 限に抑 えて主要な冷却熱 を蒸気 に回収ず るこ とで,冷 却空気量の増大を防止 しよ うとす る

もので ある。但 し,空 気冷却 の扱いやす さは重要で あるた め,蒸 気冷却に転換 しな くで も空気

冷却の改善で ター ビンの高温化 に対応 できれ ば,実 績 のある冷却空気系統の設計方針 を適用 で

きる上,

(1)他 系 か ら蒸気 を供給す る場合 に比 べて 自系内部供給 の空気 はガスター ビン運 用 の微 妙

な変化や過渡的 な運用 において応 答性 が良好。

(2)蒸 気系に用 いる供給 ・回収 の複雑 な配管や制御系 が不要。

の利点 を発揮 できる。

従 って これ ら最近 の蒸気冷却 に対 して 本論文 では,従 来 の空気冷却 を改善 して,

(1)翼 冷却空気量 自体 を削減す ることで,ガ ス ター ビンの出力 と効 率を向上す る。

(2)翼 冷却空気量 を削減 す るた めに は,翼 を効率 良 く冷却す る新 しい冷却技術 を採 用 しな

けれ ばな らないが,技 術開発 の限界 にきてお り大幅な削減 は期待できない。

そ こで冷却空気 その ものの温度 を低温 に して供給 し,翼 冷 却に必要な回収熱 を空気顕

熱 に転換す るときの昇温幅 を大 き くとる ことで相対的に冷却 空気量を削減す る。

(3)冷 却空気 は300～400℃ の圧縮機 吐出空気 か ら順次冷却す るが最終的 に15℃ とす るた

めに冷水(7/12℃)を 用い,そ れ は吸収 冷凍機 で供給す る。冷凍機 作動用熱水90°Cの 生
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成 の他,燃 料 の予熱 ・低圧蒸気 の生成 をあわせ て行 うことに よって約400℃ の空気 を15℃

に仕上げ るCASCADE冷 却技術 を採用す る。

について技術 開発 を行 った。

開発 の 目的 は

・LNG燃 料 で作動す る1350℃ 級 ガスター ビンお よび複合サイ クル発電 において1500℃ 級 に

近 い発電効率 を得 るこ と

・そのためのCASCADE冷 却技術 とガスター ビンの熱的バ ランスの最適化 を図 ること

とした。

1.3.2CO2無 排 出の ための閉サイ クル システ ム

前記の とお り,ガ スター ビンには煙突排気損失が,一 方蒸気 ター ビンには復水器損失 が付 随

す るた め,こ れ らの 削減 によって複 合サイクル発電 の高性能化 を図 るこ ととした。

具体的には

・ガスター ビンをCBC(C1。sedBraytonCycle
,閉 サイ クル)と す るこ とで煙突排気 を無 く

す る こと。

・蒸気 ター ビンを燃焼蒸気 ター ビンとす るこ とで燃料入熱 を高めるが復水器損失 はほぼ一

定 とす るこ とで相対的に動力変換割合を高め ること。

を基本仕様 として採用 した。

本論文 では

(1)LNG気 化 ガス/純 酸素 燃 焼:

ガス ター ビン及 び燃焼蒸 気ター ビンの燃焼器 ではLNG気 化 ガス/純 酸素 の燃 焼 を行

い,こ の燃焼排気がガスター ビンでは作業流体 のCO2・H20混 合気体 と,燃 焼蒸 気 ター

ビンでは蒸気 と各々混合 ・稀釈 してター ビンへ供給 され る。

(2)CBC作 業流体:

燃 焼ガ スの組成(CO2,H20)を 総熱量効率 が最大 とな るよ うに とり決 める。

CBCの ター ビン排 気側 に}RSG(排 熱 回収ボイ ラ)を 設 け,そ の回収熱 と発電 出力 の

総エネル ギが最大,つ ま りシステム損失最 小の条件 を採 用 した。

(3>燃 焼蒸 気 ター ビン作業流 体:

燃 焼蒸 気 ター ビンは観 点 を変 えれ ば蒸 気 を作業流体 とす るガス ター ビンか ら圧縮

機 をな くして,そ の代 りに給水ポ ンプで必要圧力 を得 るシステ ム と考 えることができ

る。蒸気 ター ビンの入 口温 度 を1350℃ 以上で設定す る際 ター ビン膨張比 を確保 して熱

バ ランスを とる必要か ら主蒸気圧力の最大条件に超臨界圧(34.3MPa)を 採用 した。
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(4)補 助流体発電:

燃 料のLNG,酸 素のL-02は 液体 で貯留 し,液 相加圧 して必要圧力 に してか ら気化 さ

せ る。この場合 システム としての最大圧 力34MPa迄 加圧す ることとし,ガ スター ビン

や低圧蒸気 ター ビンの作動圧 力迄 の問の圧力 差 を利用 して膨 張仕 事 を取 り出す こと

で効率改善に寄与 させ る。

につ いて技術開発 を行 った。

開発 の 目的 は,

・CBCの 最適作業流体 の組成 を決 め るこ と

・燃焼蒸気 ター ビンは蒸気 の(圧 力
,温 度)を(再 熱方式,単 熱方式)の2種 類 につ

い て と り決 め,タ ー ビン入 口温度 をCBCの ター ビン入 口温度 と同一 とす ることで

1350℃,1500℃ さらに1700℃ での システ ム発 電端効率お よび出力の特性 を明 らかに

す るこ と

・補助流体発電 は膨 張ター ビンの前後 でHRSGと 熱 回収 して燃料 と酸素 を加熱 し
,こ の

補助流体発 電 を採用す るこ とによる性能 の改善の度合いを明 らかにす ること

・閉サイ クル システムの宿命 としてCO
2抽 気圧縮機 動力 と酸素製造力 が必要であるが,

これ らを差 引い た有効発電端 端効 率が 対応 す るター ビン入 口温度 の在来型複合発

電 の発電端効率を上回 り良好 となるた めの最適条件 を明 らかにす るこ と

とした。

1.3.3ハ イ ブ リッ ド型複合発電 システ ム

燃料 電池 をガスター ビンの燃焼器 の上流 に置 くか,も しくは燃焼器 を代替す ることでガスタ

ー ビン と燃料 電池 のハイ ブ リッ ドシステ ムを構成す る
。

燃料 電池 には高温型 で最 も効率の 良いSOFC(固 体酸化物型)を 採用 し,そ の排気 でガ スター

ビン作動 させ るが,燃 料 と空気 を950℃ に加熱 して供給 しSOFC内 で内部改質を行 わせ るために

加熱用 の熱 交換器 をFC排 気側 とGT排 気側 の2箇 所 の高温排気 中に配 置す る。

これ ら熱 交換器 の熱負 荷(回 収熱 量の 分担)を 調整 す るこ とによって高効率 システム の熱 バ

ランスの最 適化 を図 る。

本 論文で は

(1)SOFCの 空気 ・燃料 の最適 ヒー ト・マスバ ラ ンス:

燃料電池冷却 に使用す る空気 はSOFCのFC効 率に対 して一義的に決 まる。空気 は燃

焼用 と冷却用の総量 として投入す るが冷却用 が多 く,結 果 としてFC排 気 中の残 存02

が高 い濃度のまま残留す る。これ は と りもなお さず 空気送給のための圧縮機動 力が大

きい こ とを示 してお り,FCハ イブ リッ ドシステ ムの効率 を 目減 りさせ る最大の要因で
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あるため,FCの ヒー ト・マスバ ランスに占め る冷却 空気 の状況 と性能の関係 を分 析 ・

評価 した。

(2)再 熱 ・非再熱 の高効率へ の有効性:

燃料電 池 とター ビンの間に燃焼器 を設 けター ビン入 口温度 を1350℃ とす る再熱 型

と,FC排 気か ら熱 交換 したあ との排気 をそのままター ビンに投入す る非再熱型 のいず

れ が高効 率 とな るかは一概 に論 じられない。つま り条件次第 であ り,そ れはター ビン

入 口温度 とHRSG入 口温度 をいかに高 く保 って制御す るかそ のシステ ム化 に左右 され

る。

(3)ACT(AdvancedCoolingTechnology)モ デル:

ACTは(1)に 述べ たSOFC冷 却空気解消 のためFCの 冷却熱 で燃料 と空気 を加熱す る熱

収支 を取 り入れ,FCへ の投入温度 は950℃ 以下の低 温に抑制す るこ とを狙 った技 術 で

あ る。

これ は燃料 と空気 を950℃ へ昇温す るときの顕熱 でFCを 冷却 す るもので950℃ の空

気 でFCを 冷却す る現在の使用条件 に比べて空気流量 を低減 でき る能力 がある。

について技術 開発 を行 った。

開発 の 目的は 、

・再熱 ・非再熱 の選択 を行 う際に必要 とな る高効率の ための選定基準 を明 らかにす るこ

と

・ハイブ リッ ドシステ ムの構成のお いて
,ACTモ デル を適用 した場合 の最 高プラン ト効率,

つま り実用FC効 率0.60で もって熱 計画上達成 し うる最大効率値 を確 定す ること

とした。
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1.4論 文の構 成

本論文 は以下の第1章 か ら第5章 で構 成 されてい る。

第1章 では火力発電分野 の従 来の技術 お よび研 究 を概観 し,そ れ らの技術 の発展 と して本研

究 で取 り上 げた3種 類の新 システム(第2章,第3章,第4章)の 位置付 けを示 した。

第2章 ではガス ター ビンの翼冷却空気量 を削減 す る技術 としてCASCADE冷 却技術 を開発 し,

その性能改善効果 を論 じた。 このCASCADE冷 却技術 はガ スター ビン自系 内に組み込まれ てい る

ため設 計 ・計画や運用 ・制御 が行 いやす い。約400℃ の空気 を約15℃ 迄冷却 してその顕熱冷却

幅 を拡 大 して翼冷却に必要 な熱量(回 収熱)は 確保 しなが ら翼投入 空気 量を減 らす こ とを基本

コ ンセプ トとしている。400℃ を15℃ に冷却 す る過程 で回収す る熱 を燃料 予熱,低 圧蒸気生成,

吸収冷凍機作動用 高温水の生成に段階的(CASCADE的 に高温 か ら低温)に 活用 してプラ ン ト性能

向上のための条件 を明 らか に した。

第3章 ではCH4/02燃 焼 の閉サイ クルガ スター ビン(CO2・CBC)とCH4/02燃 焼蒸 気ター ビン

を組 み合 わせ た複合発電システ ム ・CO2/H20Hybridシ ステ ムを開発 し,そ の高効率化 のための

最適 条件 を求 めた。CO2・CBCに つい ては最適な作業流体組 成 を決 定 し,燃 焼蒸気ター ビンにつ

いては最大効率 のための温度 ・圧力お よび システ ム構成 を評価 した。 その結果,閉 サイ クル発

電であ りなが ら在来 の複合発 電 システム を上まわ る高効率 を実現で きる可能性 を明 らかに した。

第4章 では燃料電池をガスター ビンの圧縮機 とター ビンの間に配置す るHybridシ ステムにつ

いて,高 性 能 を得 るた めの論点 を明確 に した。 また燃料 電池 とター ビンの間に燃焼器 を配置す

るか ど うかで性能 が全 く異な るこ とか ら燃焼器 を配 してター ビン入 口温度 を通常ター ビンと同

じ1350℃ とす る再熱方式 と,燃 焼器 を用いず燃 料電池排気 で直接 ター ビンか ら出力 を取 り出す

非再熱 方式の二方式 の性能上 の相違点 を明 らかに した。 さらに,燃 料電池性 能 を阻害す る因子

はその冷却空気 の多量消費 にあ ることを究明 し,そ の最適化 によって達成 しうる最 高のシステ

ム効率(極 限値)を 導 き出す ことがで きた。

第5章 では,第2章 か ら第4章 までの総括 を述べた。

以上の要点 を さらにま とめる と,

第2章:空 気冷却 翼を持つ ガスター ビンお よび複合サイ クル発電プ ラン トの性能向

上 にお いて 「大幅に冷 却 した空気」を生成 しその回収熱 自体 も同時 に活用

した点。

第3章:閉 サイ クル システ ム構成 にお いて,「CO2・CBCのHRSG(排 熱回収 ボイ ラ)

を介 して燃焼蒸気 ター ビン と複合 」 してCO2/H20Hybridシ ステム とす る

ことで従来 の閉サイ クル システム よ り高効率 を達成 した点。

-11一



第4章:Hybridシ ステム にお いて,「 燃 料電池 を作動 流体の空気 と燃料 で冷却 す

る際,燃 料電池 か らの冷却 回収熱 で低温 の空気 と燃料 を作動温度 迄高 め

る」 とい うFC冷 却投入 の考 え方 に基 づき極 限の高効 率値 を確認 した点。

で,こ れ らの点について各 々独 自性 を発揮 した。

以上,本 研究 では従 来議 論が不十分で あった技術テーマ に着 目し新技術 を考案 してそ の最 適

化 を図る ことでいずれ も高効率への改 善技術 として有効 であるこ とを明 らかに した。

第2章 のCASCADE技 術 は実設計への実現可能性 を示 した点,第3章 のCO2/H20Hybridシ ステ

ムは閉サイ クル システ ム としてGrazサ イ クル(Rankine-Brayton複 合サイ クル)に 対す るも う

1つ の典型 システ ムを提案 した点,第4章 のHybridシ ステムでは現在 のSOFC(効 率0.60)に

対 してシステムを工夫す るこ とで約68%Dの 高効率 の可能性 を示 した点 は各々が火力発 電技

術の発展 ・高効率化 にお いてその技術 開発 の方向性 を示 したこ とで価値 がある。

各々の技術成果 は今後 火力発 電分野 の高性能化において大いに寄与 し得 るもの と考 える。
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第2章 翼冷却空気削減技術によるガスタービンならびに複合サイクル発電システムの

高性能化

2。1緒 言

高温部品として最も過酷な条件にさらされるタービン翼(静 翼,動 翼)は もちろん回転応力

を受けるタービン側ロータに対しても従来から空気冷却が採用されている。この冷却空気流量

はタービンの高温化に伴って増加してきてお り,1350℃ 級 の実績機では圧縮機吸気流量の約

20%も の空気が投入 されてい る。但 し,こ の冷却空気はター ビンの各段落に入って主流ガス流

の温度を下げるため,そ れ 自身は十分タービン動力に変換されない上にタービンの動力回収の

条件を悪化させてしまうことになる。空気圧縮機で昇圧 した空気を全量タービン作動流体にす

ることができれば出力 ・効率を共に最大に出来て理想的なガスタービンを得ることができるが,

実際は最新の蒸気冷却式の1500℃ 級ガスター ビン(1)(2)であっても1・2段 目は蒸気冷却だが後

段を空冷翼 としたりシール保持のために空気を併用せざるを得ないのが実情である。

本章では,ま ず冷却空気流量がガスタービンおよび複合サイクル発電の性能に及ぼす影響を

評価し,冷 却空気流量削減が性能向上に有効であることを示した。次にCASCADE冷 却技術 を開

発 しそれを翼冷却空気系に適用した場合の空気冷却系の設計と,空 気量削減が性能向上に及ぼ

す効果 を論じた。

第2章 で論 じるテーマは

1.翼 冷劫空気のガスター ビン性能への影響

2.冷 却空気系統の熱回収 ・熱利用

3.複 合発電プラン トの高性能化

の3点 である。

各テーマにおける論点は主として以下のとおり設定している。

1.翼 冷却空気のガスター ビン性能への影響

・冷却空気使用割合

・ガスタービンモデル

2.冷 却空気系統の熱回収 ・熱利用

・CASCADE冷 却技術

・燃料予熱/LP・ST蒸 気/吸 収冷凍機熱源水

3.複 合発電プラン トの高性能化

・プラント発電効率の寄与(因 子 ・効果)

・増分値発電効率
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システ ム研究 にお ける主な仕様 は次の とお りで ある。

(1)複 合発電 システム

・多軸 方式(ガ ス ター ビン×3+蒸 気ター ビン×1)

(2)燃 料

・LNG気 化 ガス

(3)タ ー ビン入 口温度

・1350℃ 級

(4)冷 却空気温度制御

・対 象:1段 静翼お よび動翼(ロ ー タ系)

・仕上 り温度:15℃

(5)冷 却空気回収熱の利用

・燃料予熱

・LP・ST蒸 気の生成

・吸収冷凍機熱源水の生成
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2.2翼 冷却空気 のガスター ビンな らびに複合サイ クル発電性能特性

翼冷却空気 を削減 してター ビン作動流体 を増加す るこ とはガ スター ビンお よび複合サイ クル

発電 の性能 向上 に必須 の要件 といえる。

その対処方法 としては,す でに

(1)翼 冷却効率 の向上 による冷却空気量の削減。

(2)蒸 気な どの別 途冷却媒体 の導入 による冷却 空気量削減。

が種 々試み られ てい る。

本研 究 では,冷 却 空気 その ものの温度 を最大限 に冷却 し,翼 内での温度 上昇幅 を高 め ること

で空気 量 を削減 し得 るこ とに注 目してその効果 を評価 した。冷却 にて回収 した熱 は高温 か ら低

温 に順 次カスケー ド的 にガ スター ビン系内で使用 す ることに よ り,単 な る翼冷却空気削減 での

改善効 率 よ り以上 の高効率 を得 るこ とができた。

つま り,吸 気流量の約20%も の空気 が空冷翼に使用 され ター ビンでの出力変換 に十分 寄与 し

ていない点に着 目し,翼 冷却空気温度(通 常200℃ ～400℃)を 一気 に15℃ 程度 まで冷却 して消

費空気 量その もの を低減 しそ の結 果ター ビン通過 空気量を増大 させて出力 ・効率 の向上 を 目指

した ものであ る。本研究 の冷却方法 は,(1)200～400°Cの 空気 か ら90℃ の熱水 を発生 させ,(2)

そ の熱水 を熱源 として吸収冷凍機 を作動 させて冷水(7℃/12℃ 程度)を 生成 し,(3)(1)で 減温

した空 気 をこの冷水 で最終的 に15℃ 程度まで順次冷やす方法であ る。

以上 の技術 を適用す ると15万kW級 のガスター ビンにおいて翼冷却空気 が40～90t/h程 度削

減 できその削減分 が全 てター ビン作動 空気 の増加 とな るこ とか ら,表2.2-1に 示す とお り約1

～2万kWの 増 出力 と相対値+3～8%の 効率 向上が得 られ るこ とを確 認 した
。ガスター ビンと蒸

気 ター ビンを組 み合 わせ た複合サイ クル発電では70万kW級 において約4万 ～8万kWの 増 出力

と相対値+2～5%の 効 率向上 が見込 まれ る。以下 に本論文の論点 を示す 。

(1)空 気 を高温 か ら低温 に順次冷却す るカスケー ド冷却の熱回収において,燃 料予熱 の他蒸

気生成 ・熱水生成 を行いその後冷凍機 の冷水に よって冷却。

(2)翼 冷却 空気 を15°C程 度に冷却す ることで削減 し,タ ー ビン作動流体 を増加。

(3)タ ー ビン作動流体 の増加に よ りガスター ビンな らび に複合サイ クル発電の性能(出 力 ・

効率)を 向上。
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Table2.2‐1 PlantPerformanceEstimates

BaseCase ModificationIQ ModificationQ

CoolingAir

Reduction
Base 一40 .3t/h 一86 .2t/h

GT

Power

Output 145.9MW 156.OMW 167.1MYO

Gross

Thermal

Eff.(HHV)
30.896 31.996 33.3°r6

CC

(3GT+1ST)

Power

Output
692.4柵 733.4剛 770.2MNf

Gross

Thermal

Eff.(H勵

48.7% ,..,, 51.1°rb

GT

Power

Output
Base 十10.1欄 十21.2MW

Gross

Thermal

Eff.(HHV)
Base

十1.196

(relatively

十3.5°r6)

x-2.5%

(relatively
-F8 .10i6)

CC

(3GT+1ST)

Power

Output
Base 十41MW

一F77
.8MVY

Gross

丁hermal

Eff.(HHV)

Base

十1.2%

(relatively
-1-2 .4%)

一F2 .4%

(relatively

十4.9%)

2.2.1性 能 改善 の基本構想

ガ スター ビン冷却空気 は下記(1)の 現状 にあ るこ とを認識 して(2)の 改善 を行 うこ とを基本構

想 とした。'

(1)現 状認識

①圧縮機抽気 にて翼冷却 空気 を吸気 の約20呪 使 用。

②動翼(ロ ー タ)冷 却 空気 は大気放熱 によって約200℃ に冷却 しているが熱 は回収活用 し

ていない。

③静翼冷却 空気 は高温の抽気(200～400℃)を 使用。

(2)改 善技術 事項

①翼冷却 空気 の温度 を低 下 してその流量 を削減。

②翼冷却 空気 か らの回収熱 は蒸気 ・熱水 の生成お よび燃料 予熱 に活用。

ガスター ビンお よび複合サイ クルプ ラン トでの要素の配列 状況 を図2.2-1に 示す。通常 のガ

スター ビンは圧 縮機(C)で 昇圧 した空気 を燃焼器(CC)で 燃料 と燃焼 させ て所 定のター ビン入 口

温度 に制御 してター ビン(T)で 出力 を取 り出す。Tの 出力 とCの 動力 の差 引きが発 電機(GEN)

か ら電力 として取 り出 され る。複 合サイ クル発電 ではTの 排 気 か ら熱 回収 して蒸気 を生成す る

排熱回収ボイ ラ(HRSG)を 併設 して蒸気 ター ビン(ST)を 作動 させ る。ST排 気(蒸 気)は 復水

器(COIVI))で 復水 しそれ を再びボイ ラ給水 として用 い る。HRSG排 気 は煙 突か ら大気 へ放 出す る。

冷却空気削減 のた めに追加 した要素は,熱 交換器 であ り,蒸 気生成(C1)・ 熱 水生成(C2)・

冷水冷却(C3)・ 燃料予熱(C4)を 各 々設置 した。
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GEN

C

CC

T

且RSG

ST

COND

C1～C4

:GeneratorC己_____」

Compressor

Combustor

Turbine

:且eatRecoverySteamGenerator

SteamTurbine

Condenser

HeatExchanger

Fig.2.2‐1 _ProposedPlantBasicConfiguration

具体的 な冷却媒体 は表2.2-2の とお り冷却段階毎 に使 い分 け,回 収熱 と利用熱 の過不足をな

くした。最終の冷却(C3)に 用 い る冷水 は中温7h重 効用 の吸収冷凍機 を用いて生成す ることと

し,シ ステム内の基本熱源 水(90℃)'で 作動 させてい る。

Table2.2-2CoolantofHeatExchangers

HeatExchanger
AirTemp.
(lnlet->Outlet)

TypeofCoolant

C1 Compressor

DischargeTemp.

→150℃

HotWater(toSteam)

C4 Fuel

CZ 150°C→40℃ FeedWaterfromCondenser

C3 40°C-;15°C ChilledWaterfromAbsorptionChiller

吸収 冷凍機 の基本仕様 は表2.2-3の とお りで,シ ステ ム内で使用可能な熱源流体 に対 して取

り決 め る。 二重効用 が成績係数(COP:CoefficientofPerformance)が 最良であるが,CASCADE

冷却 システ ムは熱源水(90℃/85℃)を 仲介 媒体 として熱 バ ランス を取 る関係 か ら中温水4)一

重効用 を採 用 した。
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Table2.2-3MajorSpecificationofRefrigerator

HeatSource COP

Typeof

Refrigerator

SingleEffect

Absorption

Chiller

196kPaSteam(120°C) 0.67

MiddleTemp.Water(90°C)

HighTemp.Water(140°C)
0.6

DoubleEffect

Absorption

Chiller

883kPaSteam(174.7°C) 1.2

HighTemp.Water(175°C) 1.0

ChilledWater

Usage
AsaCoolantofGTCoolingAir(suppliedtoRotor,BladesandVanes)

2.2.2冷 却 空気削減 と性能向上 の関係

前記2.2.1の 基本構想 の技術 が発 揮す る性 能改善効果 は密 接 に関連 し合 うためそ の関係 を図

2.2-2に 論 じた。説 明のため図2.2-1に 更 に現象(A1・A2)お よび効果1・1・ 皿(AA1～AA4)

を追加 してい る。

翼冷却 空気削減 は性能 改善に寄与す る重要 な現象 と して,A1・ ター ビン作動空気量の増大 と

A2・ 段 間ガ ス温度 と排 気温度 の上昇 をもた らす。 この2現 象 は共 に出力増大(GT・ST)を もた

らす。 出力増大 によって複合サイ クル(CC)の 効 率が向上す るがそれ を さらに助長す るために

Cぺ 燃料予熱 を併用 してい る。

これ らの効果 を具体的 に示す ため,冷 却空気比(冷 却 空気量/圧 縮機吸気量)に 対 してガス

ター ビンお よび複合 サイ クル の性能 の関係 を求めた。

図2.2-3に ガスター ビン比出力,図2.2-4に ガスター ビン排気温度,図2.2-5に ガ スター ビ

ン効率(LHV基 準),図2.2-6に 複合サイ クル効率(㎜ 基準)を 各 々冷却空気比に対 して示す。

これ ら諸値 は冷却 空気 比の削減 に伴 って ほぼ直線的 に変化す る。但 し1段 目ター ビンの通過 ガ

ス量 が増 えて正味 ター ビン出力 が比例 的 に増加す るこ とに対 して,ほ ぼ一定 の圧縮機動力 を差

引いた発電 出力 による比 出力 の変化 はター ビン通過 ガス(つ ま り空気量相 当)の 変化率 よ りも

大 き く改善 され るこ とになる。

以上述べ た とお り翼冷却空気量 を削減 す る と,吸 気流 量お よびター ビン入 口温度の仕様 を変

更す ることな く,

(1)タ ー ビン作業流体(空 気お よび燃料)の 増大

(2)タ ー ビン段 間温度 の上昇

のター ビン出力増加 に有効 に作用す る因子 をいずれ も改善す ることができ る。

つま り,翼 冷却空気 削減 は本質 的 に,

(1)既 納 のガ スター ビンに冷却 系統 を追設す る若干 の改 造工事で性能 向上 が図れ る。
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(2)ガ ス ター ビン高温化 に伴 う空気 不足は深刻 で1500℃ 級 では蒸気 な どの別 途冷却媒 体 を

導入せ ざるを得 ないが,必 要冷却 の多 くを空気冷却 で実現 し蒸気の消費 を節約 できる可

能性 が出て くる。

の利点 を持 ってい る。

従って,実 際のガスター ビンプラン トにお いて は,

(1)1ラ ンク上 の性能が同一の ター ビン入 口温度のまま で確保 でき,高 温部品の寿命 は現状

の とお りで変 更がない。

(2)蒸 気 回収 翼 と空気冷 却翼 を併用す る場合,空 気冷却 の能力 向上 に より蒸気 の送給 ・ 回

収 系を簡素化 できる。

等 の実質的 な利得 を発揮す ることができ る。

2.2.3ガ スター ビンの冷却 空気割合

空気冷却翼 を採 用 したガス ター ビンでは,タ ー ビン入 口温度 を高めて高性 能化 しよ うとす る

と冷却空気 量 も増加 させて翼表面温度 を約700～800℃ 以下に保持 しなけれ ばな らない。

図2。2-7に 世界のガスター ビン仕様(4)か ら推定 した翼冷却 空気割合(翼 冷却空気流量/圧 縮機

吸気流量)と ガ スター ビン比 出力(発 電端 出力/圧 縮機 吸気流量)の 関係 を示す。1350℃ 級 ガ

ス ター ビンの6メ ーカ ・.r種の公称仕様 によれ ば圧縮機 吸気 のほぼ20%(18%～22%)も の

空気 を動 ・静翼 の冷却 に使用 してお り,こ の空気 は圧縮機 で昇圧 してい るにもかかわ らず ター

ビンでの出力転換 の割合 が小 さい(つ ま り高圧段 ター ビンをバイパ スす る)状 況にあ る。

参考 までに,引 用 した機種 を表2.2-4に 示す。

TabIe2.2-4ReferredGasTurbines(Fclass,TIT:1300～1400℃)(4)

NameofManufacturer TypeofGasTurbine

ABBAIstom Cyclone

BharatHeavyElectricals PG6101(FA)

GEEnergyProducts・Europe PG9351(FA)

Hitachi PG7241(FA)

MitsubishiHeavyIndustries
M501F

M701F

NuovoPignone-Turbotechnica MS9001FA

OrendaAerospace GT25000

Toshiba
PG7231FA

PG9351FA
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2.3発 電 システ ムのモデル化

ガスター ビンは,圧 縮機 で昇 圧 した空気 に燃料 を投入 して昇温 し,所 定の ター ビン入 口温度

に制御 して ター ビンで膨張仕事 を取 り出す機械で ある。 しか しなが ら2.2.3節 で述べた とお り

圧縮機吸気流量 の約20%も の翼冷却空気 を使用す るた め,ガ スター ビンシステ ムにおいて もこ

の冷却 空気 をモデル化す る必要 があ る。簡易的に はこの冷却空気 を無視す ることが多 いが,こ

れ は

(1)タ ー ビンに無冷却翼 を採用す る とき

(2)絶 対値 は誤 差を含む こ とを予 め認識 して基本条件 での性能 を求 めてお き,そ の相対値 で

性 能 を論 じる とき(つ ま り絶対値 でな く傾 向の大小 を論 じるとき)

においてのみ正 しい。但 し,(1)の 場合で も回転体であるため,静 止 側(車 室)と の間にシール

を設 け,大 気 との差圧 でシール 空気 を流す ため実際 には数%の 無効空気 を考慮す る必要 がある。

ガスター ビンモ デル化 の要点 を以下に述べ る。

2.3.1ガ ス ター ビンの空気配 分

ガス ター ビンの翼冷却ルー トは模 式的に示 して も,図2.3-1の とお り複雑 である。送気 の基

本 はター ビン側 投入部 点の圧力 に見合 って圧縮機 の段落 か ら空気 を抽気 す るこ とで ある。 この

方 法を用い てい るのは静翼側 で,ゴ ー タ(お よび動 翼)側 は回転 してい るた め冷却空気 は圧縮

機 吐出か ら一括抽気 して供給 す る。ガ スター ビンの吸気 か ら排 気迄 の問 に作業流体(空 気 お よ

び燃料)の 条件(温 度,圧 力,流 量)は 大き く変化 す る。圧 縮機 お よびガスダー ビンが この変

化 して流れ る作業流体 に対 して作用 し,ガ ス ター ビン全 体 として所 定の平衡点性能 を示す。

但 し,静 翼側 空気(g、,g2,g3)お よび動翼側空気(A,B,C,D)は 供給点 での取合状況

を示す が,翼 での冷却空気 とシール 空気 は翼直前通路 に合流 ・分岐 があ るため翼個 々の空気量

を示す ものではない。

2.3.2ガ スター ビンモデル

2.3.2.1モ デル化 の方針 と手順

ガスター ビン基本 モデル を図2.3-2に 示す。 「ター ビン作業流体 は(GE's'GF)で あ り,冷 却空

気総量(Gc-GE)は ター ビン出 口で混合す る」 ことをモデル化 の基本 とした。 この場合以 下の条

件 を設定 した。

(1)圧 縮機 の通過空気流量はGc一 定 とす る

圧縮機 中間段抽気g1とg2は 全冷却 空気 の10%と 小 さく,又 抽気g3は 最終段に近い こと

か ら圧縮機 の通過 空気量 は吸気流量 のまま昇圧 され る と考 えた。その場合 の誤差 は1%程

度で あ り性能 評価 上問題 はない。
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(Note)Flow

Gc Suctionair

GF Fuel

GH ExhaustGas

GD CompressorDischazgedAir

Gg CombustionAir

gi Comp.Bleed(1)

82 Comp.Bleed(2)

Ss Comp.Bleed(3)

翫 Comp.SealAir

gs RotorCoolingAir

Ss
#1StatorVaneCooling

&SealAir

A
#1RotatingBlade

Cooling&SealAir

B
#2RotatingBlade

Cooling&SealAir

C
#3RotatingSlade

C・ ・1血9&SealAir

D
#4RotatingBlade

Cooling&SealAir

Fig.2.3-1GasTurbineCoolingAirFlowRoute&MassBalance
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Fig.2.3-2GasTurbineModel

(2)翼 冷却 空気 はター ビンをバイパ ス し,タ ー ビン排気 で合流す る。

(3)タ ー ビン出力 は,燃 焼器排気(GE+GF)に 対 して求 め,補 正係数(k、)を かけ る。

ター ビンの翼 か らガ ス流 に合流す る空気 に よってター ビン作業流体 が増 え るためそ の

増 出力分 を経験 的に補 正す る。

(4)タ ー ビン排気温度TEを 設 計値 とす るために冷却空気総量の混合温度tEを 熱平衡値 か ら

指定す る。

このモ デルで得 られ る圧縮機 動力(LよW),タ ー ビン出力(PTkW)か ら最終的には次式 を用い

てガス ター ビン発電端 出力(PkW)を 得 る。

モデル化 の諸値の修 正 にはこのPが 設計値 どお りにな るよ うに とり決めた。

P・{(PザL。)-2m}・ η。,N

〔
2m:機 械損失(例0.5%対 発 電出力)

η㏄N:発 電機効 率(例0.989)

2.3.2.2ガ スター ビンモ デル

以上述 べたモデル に対 して,一 般 に用 い られ てい るモデル は冷却空気系統 を考慮 しない 「簡

易モデル」 と呼ぶべ きものであ る。簡易モデル で は,発 電 出力 あ るいは発電効率 のいずれか一

方 しか基準性能 に合 わせ るこ とができない。

本研 究の基本モデル と簡易モデル の性能 比較 を表2.3-1に 示す。基本モデル では全性能項 目

を基準性能(1350℃ 級 ガスター ビンお よび複 合 サイ クル発電)に 合 わせ ることがで きるのに対

して簡易モ デルでは全 く異な る性 能 にな って しま う。
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Table2.3‐1 PerformanceofTurbineModel

Referred

Performance
Model

SimpleModel

0 0

1.AmbientAir

Temperature

Pressure

Component(Rt%)

15°C

101.3kPa

NZ:75.04,02:23.05,Ar:1.28,H20:0.63

2.PowerOutput

GT

ST

145.9MW

.,..

63%

37%

145.9MVY

84.9MW

63%

37%

53%

47%

116.8MW

175.4MW

60%

40%

145.9M{9

127.7MW

CC 230.8MW 100% 230.8MW 100% 273.6MW 100% 292.2MW 100%

3.Fuel 31,160kg/h 31,160kg/h 39,440kg/h 39,440kg/h

4.CompressorDischarge

Temperature
374°C 374°C 374°C 374°C

5.TurbinelnletTemperature

(TIT) 135Q°C 1350°C 1350°C

「
6.TurbineExhaustTemperature .. 圈 囮 國 ・

7.ExhaustGas

Component(wt%)

H20

NZ

COZ

O2

Ar

4.9

73.5

5.6

14.7

1.3

4.9

73.5

5.6

14.7

1.3

6.0

73.2
1匿尸

7.0

12.6

1.2

8.GasTurbineGrossThermal

Efficiency
34.1%LHV 34.1%LHV 26.9%LHV 32.4%LHV

9.CombinedCyclePlantGross

ThermalEfficiency
48.7%HHV 48.7%HHV 45.7°hHHV 48.7%HHV

1d.Component

Efficiency

Compressor :.一 0.865 0.865 o.ss5

Turbine Base

0.91Q

厂Power'

Coefficient

k,=1.08
㌧一 ●」

0.776 o.s51

11.MechanicalLoss 780kW 780kW 780kW

12.GeneratorEfficiency i・:・ i・:・ 1・:・
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(注)そ の他仕様条件

Table2.3-2 FuelSpecificationofLNG(LiquefiedNaturalGas)

一
口
o
ε喟
冨
8
U

Methane(CH4) 88.99mole% 79.58wt%

Ethane(CZH`) 8.92mole% 14.95wt%

Propane(C3H8) 1.60mole% 3.93wt%

i-Butane(CaHio) 0.27mole% 0.87wt%

n-Butane(CaHio) 0.19mole% 0.62wt

Pentane(CsH12) Omole% Owt%

Nitrogen(N) 0.03mole% 0.05wt%

AverageMolecularWeight 17.940

§pecj血cDensity(kglm3N) t:11

HeatingValue

(kca1/kg)

HigherHeatingValue(HIIV) 13,070

LowerHeafingValue(LHV) 11,820

HeatingValue

(kcallm3N)

HigherHeatingValue(HHV} 10,456

LowerHeatingValue(LHV) 9,456

簡易モデルでは一項目を選びそれを基準性能に一致させた。

{
簡易 モデル①:GT発 電 出力

簡易 モデル②:プ ラン ト効 率

性能解析 に用いた燃 料仕様 は表2.3-2の とお りで ある。

まず簡易 モデルで はGT/ST出 力割 合が実機 と全 く異な り,ST出 力 の割合 が大 きくなる。
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簡易 モデル①では,タ ー ビン通過流量 は吸気流量 と燃料 の合 計で基準性能 よ りも多 く評価 さ

れ る。その分を反映 してGT出 力 が基準値 よ りも大 き くな って しま うた め,タ ー ビン効率 を低 め

に とってGT出 力 を145.9MWに お さえることにな る。その結果 ター ビン排気 が高温 となってHRSG

での蒸気発生量が増 え,ST出 力が基準84.9MWに 対 して127.7MWと 増 えて しま う。この場 合復水

器 損失が増 えることか らプラン ト効率 は45.7%田yと 低 い。

次 に簡易モデル②では,プ ラン ト効率が基 準の48.7%HHVと な るよ うにター ビン効率 を0.851

とす るが,そ の結果GT出 力/ST出 力 の割合 とCC出 力その もの は基準性 能 と全 く異 なる ことに

な る。

つ ま り簡易 モデル では,実 際 のガス ター ビンお よび複合サイ クル発電 のモデル化 は不可能で

あ り,も し簡易モデル的発想 で システ ムを組 む ときは,咄 力 ・効 率の性能 の絶 対値 は実機 と

全 く異な る」 と認識 し,「 性能 の相対的 な比較 にのみ限定使用す る」 とい う配慮が必要であ る。

本研究 では,2章,3章,4章 のいずれ にお いても基本モデル(図2.3-2)を 適用 して評価 し

てい る。
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2.4カ スケー ド冷却技術

翼冷却空気削減で得られる性能向上に加え,冷 却回収熱を有効利用 して更に性能を改善する

ために採用したカスケー ド冷却技術について述べる。

2.4.1カ スケー ド冷却技術

約400℃ の翼冷却 空気 を15°C迄 減 温す る冷却設 計 は,表2.2-2に 示 した段階冷却 を順 次行 うこ

とを基本 とした。その空気系統計画 を図2.4-1に 示す 。

熱 交換 の方針 は,次 の4点 とした。

(1)翼 冷却 空 気 に圧 縮 機 吐 出 空気 を使 用 してい る1段 静翼 と動 翼の冷却空気 を削減対象

とした。(2段 以降の静翼 は圧縮機 中間段の抽気 を用 いるため本技術対象か ら除外 した。)

(2)90℃ 熱 水 を中核 として これ を吸収 冷凍機,蒸 気 生成,燃 料予熱 の熱源 とす る。

(3)燃 料予熱 と蒸気生成 は仕 上 げ温度 を高温 とす るた めに圧縮機 吐出空気(約400℃)か ら

熱回収す る。

(4)150°Cか ら40℃ に冷却す る際 の回収熱 で90℃ 熱 水 を保持す る。

Fig.2.4‐1CascadeCoolingConfiguration

熱利用状況 につい て回収熱(高 熱側)は10,542Mcal/h,冷 却熱(冷 熱側)は988Mca1/hで 合

計11,530Mca1/hに て翼冷却 空気 を減温 した。

圧縮機吐 出空気 の高温(約400℃)か ら熱回収す る際,高 温流体(蒸 気)お よび燃料へ の熱 回

収 を優 先 してい るが,そ の状況 を表2.4-1と 表2.4-2に 示す。

表2.4-1の 熱利用状況 の うち,性 能 向上へ の寄与 は表2.4-2の とお り各 々異な る。表2.4-2

において高 出力 が必 要な ときは①,高 効 率 が必要 な ときは②(お よび①)を 実施 す る。
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この うち③の熱 水 を①の給水お よび② の前段加熱 に利用 したあと,そ の残余 は

③ 、冷却空気の更な る減 温:40℃ 以下(例 えば15℃ ～10℃)

[
この場合,熱 水は吸収冷凍機作動用の熱源水とする。

③2ボ イラの給水予熱:蒸 気量の増加

の2通 りの使用形態があるが③ 、の方を採用している。

Table2:4-1BalanceofRecoveredHeat

FactorofHeatUtilization Specification
Recovered

Heat

OLowPressureSteam
706kPaX253°C

(7.Zata)
50.0%

②Fuelpreheating 200°C 35.4%

③HotWater 91°C 14.6%

TotalofRecoveredHeat 100%

Table2.4-2EffectofFactorsonPerformanceEnhancement

FactorofHeat

Utilization

GTPower

Output

STPower

Output

CCThermal

Eff.

0 一 0 O

0 ▼ ▼ 0

3QAdditional

Heatingto

OO

(influencesQIand2Q)

●1HotWater

toChillier

Q3aFeedWater

Heating

0 0 0

一 △ △ .

(Note:◎Excellent,OGood,△/▼SlightlyIncrease/Decrease)

熱利用においては,熱 源水 を基準としている,そ の理由は,

(1)一 重効用吸収冷凍機の作動流体

(2)燃 料予熱の第1段 階加熱

(3)低 圧蒸気の第1段 階給水加熱

のように多様に活用でき熱バランスにおいて熱量の最終微調整に使用しやすいためである。
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表2.4-3に 熱 源流体(熱 源 水,圧 縮機 吐出空気)の 使 用状 況お よび熱 回収状況 を示す。

(1)熱 源 水:

燃 料予熱 の第1段 階加熱 では90℃ →33.13℃(給 水)の 熱回収(於C4',図2.4-1)に よって

減 温 した給 水は複 合発 電プラン トへそ のま ま再循環 でき るよ うに しているのが特徴で ある。

つま り,複 合発 電 プラン トへ は熱的影響 を残 さず熱バ ラ ンス を構成す ることがで きる。

(2)圧 縮機 吐出空気:

吐出温度(374℃)を15℃ まで冷却す る。

まず,燃 料予熱(200℃)とLP・ST蒸 気(706kPa,253℃)を 得 るための加熱 を374℃/150℃

の熱 回収 で行 う。

次 に,熱 源水 生成 を150℃/40℃ の熱回収 で行い,最 終の40℃/15℃ の仕上 げ冷却は吸収 冷凍

機 で生成す る冷水(7℃/12℃)で 行 う。

Table2.4‐3 BalanceofHeatRecoveryandHeatUtilization

HeatUtilization

HeatSource

HotWaterUtilization

(Note1)

HeatRecovery

Hot

Water

Comp.

Dis

.一_〉.

Air

Comp.Discharged

Air

(闢。te2)

Fuel

Preheating

15.60x

106kJ/h
"3
,727'

(Mcal/h)

35.44'0 0 0

C4'

5.63x106KJ/h

(1,345McaI/h)

←

C4

9.972x106kJ/h

(2,382Mcal/h)

374°C/

isa°c

(1)

Absorption

ChillerHot

Water

6.46x

106kJ/h

〔(1調

14.696 0 一
6.46×106KJ/h

(1,543Mcal/h).

一
广
aC2

114.776x106kJ/h

t3,530Mca1/h)

150°C/

40°C
E

一

Low

Pressure

Steam

Generation

22.U7x

106kJ/h
,___...

5,272

(McaI/h)

50.096 O 0
2.69xlQskJ/h

(642McaI/h)
臼

Cl

19.3824x106kJ/h

(4,630Mca1/h)

374°C/

150°C

(II)

TotalHeat

Utilization

44.13x

106kJ/h

1°,542

(Mcal/h)

10096

SubTotal

14.78x106kJ/h

(3530McaI/h)

・・)

Chilled

脚2t●r

C3

4.1346x106KJ/h

(988Mcal/h)

40°C/

15°C

TotalHeatExchange
48.265x106kJ/h

(11,530Mcal/h)=10542-988

(Note1) HotWaterCondition91°C

(Note2)Gomp.DischargedAircondition:374℃ →15℃

124,686kg/h

(11,530McaI/h)
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図2.4-2に 各熱交換器 での熱 回収 状況 を示す。

熱の回収 ・活用 におい て皿の加熱水生成 が ① 吸収冷凍機 熱源水(混 合加熱),② 蒸気 の給水

予熱,③ 燃料予熱(第1段 階)に 使用 され,こ れ らのバ ランスに よって圧縮機吐 出空気(374℃)

か ら15℃ の翼冷却空気 に仕 上げてい る。

2.4.2翼 冷却空気 の温度調整

冷却空気 の減温 には循環流体 として蒸 気 ター ビン復水器 か ら送水 され るボイ ラ給 水を使用す

ることを基本 とした。

熱 回収 と熱 利用 の収 支に不均衡 があ ると熱 水が余剰 とな る。 この熱 水はボイ ラ給水 の予熱 に

使用 できるが量的 には少量のため,蒸 気 ター ビン系へ の寄与 は無視 した。

翼冷 却空気 温度 の仕上 り値 を減 温す ることで空気量 を削減 す る状況 を図2.4-3に 示す。

熱収 支調整 の結果,系 か ら熱 水 を排 出 しない以下の最適 条件 を得 ることができた。

(1)150℃ 仕上 り温度迄は回収熱 で蒸気(こ の例 では706kPa(7.2ata),253℃)を 生成 して

熱収支 の過不足 は存在 しない。

(2)150°Cか ら40℃ 仕上 り迄 は90℃ の熱水 が排 出 され,そ の量が増加す る。

(3)40℃ 以下15℃ までの間は冷水 で冷却す るため,90℃ 熱水 を熱源 として吸収冷凍機 を作動

させ る。 この場合余剰熱水 は約20T/hに 減少す る。

(4)こ の余剰熱水 を燃料 予熱 に用い,ボ イ ラへ は復水 と同 じ温度で戻す。更に燃料 を仕上 り

の200°Cを 得 るために圧縮機吐 出空気 を熱源 とす るのでそ の分蒸気生成量 は減少する。
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BladeCoolingAirFlowRatio(%)

Fig.2.4-3Te血peratureControlofBladeCoolj皿gAirbytheCascadeCooling
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2.5翼 冷却空気 に よるター ビン段間温度 の制御

翼冷却空気 を削減 した ときに,「 ター ビン作業流 体量の増加 」 「ター ビン段間の ガス温度 の

上昇 」 とい う2つ の効果 が発 揮でき,こ の2効 果で ター ビン出力が増加 す る。

ここでは模式的 に1枚 の翼について この2効 果 を得 るための条件 を評価 し,次 の2条 件 を得

た。

冷却 空気流量 く0.73X基 準冷却 空気流量

{冷却空気温度<229℃

2.5.1冷 却空気 流量条件

翼冷却空気 は翼 を冷却 したあ とター ビン主流ガスに混入す る。その状 況を図2.5-1に 示す。

高温(T1)の 主流ガス(Gl)か らは常 に低 温の翼平均 メタル温度(T鬮)に 対 してQ2の 熱移動 があ

る。 翼冷却空気(G2)はQ2の 加熱 を受けなが ら昇温す るこ とで翼 を冷却 しTMに 保持す る。 冷却

空気 は翼 の冷却孔か ら主流ガ ス流 に排出 され混合 し,そ の結果 翼後流 でT、 のガ ス温度 をもた ら

す。翼冷却空気 をgだ け削減 した ときの流体の条件 を図2.5-2に 示す。混合後 の主流ガス保有

熱 は(Q、 ・+Q。)か ら(Q1+q+Qb)に 変化す る。 これ らの熱バ ランスを表2.5-1に 示す。

翼冷却空気削減 量gで ター ビン段間のガス温度 を上昇 させ るためには,
一.t_-t

9>(QX)G2T -T
x

で な くて は な らな い。

T,=1350℃,t。=370℃,t.=15℃ の条 件 で はg>0.27G2

つ ま り,新 冷 却 空気 量 は,(G2-g)<0.73G2を 満 足 しな けれ ば な らな い。
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G1:タ ー ビン主流ガス流量

Q1:タ ー ビン主流ガス保有熱量

T1:タ ー ビン主流ガス温度

G2:翼 冷却空気流量

Q、:翼 冷却空気保 有熱 量

t、:翼 冷却空気温度

C。:空 気定圧比熱

TM:翼 平均 メタル温度

Q2:翼 冷却 に伴 う回収熱 量

T、:翼 後流 ガス温度

g:翼 冷却 空気削減 量

q:主 流 ガス保有熱 量増分

G1+g:タ ー ビン主流ガス流量

Q、+q:タ ー ビン主流ガス保有熱 量

Qb:翼 冷却 空気保有熱 量

Fig.2.5-1基 準 条 件 Fig.2.5-2冷 却 空 気 削減 条 件
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Table2.5-1主 流 ガ ス温 度

基準条件 冷却空気削減条件

ガ
ス
流
れ
熱収

支

混合前 Q1 QI+q

混合後 Qi+Qa Q1+q+Qb

冷却空気
放出熱

Qz+Qa Qa+Qb

混合後ガス温度
(Q、+Q。)=(G1+G、)・C,×T、

Qi+Qg
-一 → レT

a=(G
l+Gz)CP

(Q1+q÷Q、)=(G1+G,)・C,×T、

Q,+(q+Gb)一一一→T
xe(G

i+GZ)Cp

混合後昇温の
ための条件

T8<Tx

-一 → レQ
1+Q、<Q1+(q+Qb)凵 　一卩一 」

G2×taX(る 〈(g×T1×g>十(G2-g)× 銭×Cp

(ち一 般〉∴G

2×も<G2× 院十g(T1一 桜)→g>G2(T
厂 般)

例.T1=1350℃,亀=370℃,tx=15℃ で は 9>4.27G、 ⇒1新 冷却空鰻(G、-g)<0.73G2

2.5.2翼 冷却 空気の ヒー ト ・マスバ ランス

圧 縮機 吐出空気(約370℃)で ター ビン翼 を冷却す る場合 は翼平均 メタル 温度750℃ を基準に

とると空気昇温輻 が380℃(図2.5-3),15℃ で翼 を冷却す る ときは空気昇温幅 は735°C(図2.5-4)

であ る。 この昇 温幅の差を利用 して翼冷却空気流量 を削減す る。

Fig。2.5-3基 準条件 での翼冷却 空気温度Fig.2.5-4翼 冷却空気削減 での冷却空気 温度

いず れの条件 において も翼がガス主流か ら受 け る熱 量Q2は 共通 であるため次の関係 が成 り立

つ。

・改 善 前:Q2=(750℃-370℃)×G2×9

・改 善 後:Q2=(750℃-15℃)×(GZ-g)×C
p
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つ ま り380G2=735(GZ-g)

で,g=0.48Gzと な る。

別 の 表 記 で は,

∴區 玉 ヨ={翻 ×G2=0.483G2

となる。

つま り,15℃ の翼冷却 空気 を用い ると約 半分の流量に削減す るこ とが可能である
。

2.5.3タ ー ビン段間温度制御 の判 定

CASCADE冷 却 の空気仕上 り温度15℃ は限界温度229℃ を下 まわ るこ とか らター ビン段間温度 が

上昇す る。

(1)新 冷却空気量e(G2-g)=0.52G2<0.73G2

(2)段 間温度 を上昇 させ るための翼冷却 空気 限界温度:229℃ 以 下であれ ば良い。

下記の条件1と 条 件2を 満 足す る値 として この229℃ が求 まる。

条 件1(G、_g)<0・73G、

条 件2GZ-g=(TM‐rrtx)‐(tal‐tx)GZ

¥TM-tx)

(TM-t。)一(t。-tx)<0.73(TM-tx)

、<°.73TM-(TM‐to)
x

x

0.73

.・.t_<to‐(1‐0.73)TM

0.73

こ こ で,t、=370℃,T閉=750℃ よ り

で あ る 。

tx<229°C
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2.6翼 冷却空気削減による性能向上

基本技術に二次技術を加味してプラント性能を向上した。

(1)基 本技術:「 翼冷却空気を減温す ることによりその量を削減」

通常は圧縮機庄出空気(350℃ ～400℃)を そのまま,あ るいは200℃ 程度迄冷却して翼へ

送給 しているが徹底的(例 えば15℃ 程度)に 冷やす ことで送気量を削減す る。

(2)二 次技術:「 冷却に伴って回収 した熱の活用」

回収 した熱を種々に変換して性能を向上させる。

2.6.1冷 却空気削減量に対する性能向上

まず冷却空気削減のみでの効率と出力の改善状況を図2.6-1お よび図2.6-2に 示す。

冷却空気の削減は次の2効 果を同時に実現でき,性 能向上策 としては理想的であるといえる。

① タービン作動空気量の増大

② タービン段間温度の上昇

タービン段間の温度が上昇すると動力回収幅(タ ー ビン段落でのエンタル ピー差)が 大きくな

り,そ れに作動空気増大が相乗 されるため,出 力 ・効率が向上する。

GTとCCで の性能改善状況は表2.6-1の とお りとなる。

翼冷却空気を減温して送気するときは翼内での空気の昇温幅が大きくとれ,結 果 として送気

量を低減す ることが可能となる。新しい条件で新設計した翼を用いることを基本とするが,元

の送気量め翼をそのまま用いる場合は冷却効率が低下することを折り込んで送気の条件を決め

る。

一方タービン排気温度が約10～20℃ 上昇するため,後 流のボイ ラでの熱回収量 と蒸気タービ

ン出力も増大する。その結果蒸気タービン出力が約3%相 対的に向上した。
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Fig.2.6-2PowerOutputofCCwithBladeCoolingAirReduction

Table2.6‐1PerformanceEnhancementbyCoolingAirReduction(60t/h)

PlantPerformanceIncrement

toexisting1350°CGT

GT GrossPowerOutput

GrossThermalEff.

+14.3MWx3(+9.8%}
+1.7%(relatively+5.6%)

GT・CC

{3GT+1ST)

GrossPowerOutput

GrossThermalEff.

+49.8MW(+7.2%)
+1.2%(relatively+2.5%)

診

2.6.2冷 却 空気 削減 と回 収熱 の活 用 にお け る性 能 向上

翼冷 却空気 の送気温度 を圧縮機 吐出温度約400°Cか ら順 次低 温 とす ることで冷却空気量 を削

減 してゆ く。

翼冷却 空気150℃ では56t/hの 削減 が可能 で,回 収熱 で低圧蒸気 を生成 して蒸気 ター ビン出力

増 強 を行 うので,CC発 電端効率 は49.9%か ら50.4%に 向上,発 電出力 は742MWか ら748MWに

増加す る。 一

次 に150℃ 供給か ら15℃ 供給 に改 善す ると図2.6-3の とお り冷却 空気 を56t/h以 上86t/h迄 削'

減 でき る。 この場合 プ ラン ト効率 は更 に+0.9%(相 対),プ ラン ト出力 は+3%向 上す る。
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15℃ 供給 の場合,90℃ 熱水 が約20t/h(ガ スター ビン1台 当 り)余 剰 となるが,余 剰 分全量 を

燃料(LNG気 化ガス)の 予熱 に用いた。 この熱水 と圧縮機 吐 出空気 で燃料 を約200℃ に加熱 す る

と燃料消費量が節 約 され,プ ラン ト効 率は+0.7%(相 対)更 に向上す る。ただ し,こ の場合 タ

ー ビン通過 ガス量が燃料 の節約 分だけ少 くな るためプラン ト出力 は△0.3%減 少す るこ とになる。
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Talbe2.6‐3 PowerGenerationEfficiencywithReduced

CoolingAirandIncreasedLPSteam

2.6.3性 能向上技術における本技術の位置付け

ガスタービンおよび複合サイクル発電の性能向上技術のうち,高 温化技術 と対比 して本技術

の優劣を評価した。

(1)最 高効率の確保1350℃ 級複合発電プラン トに本技術(翼 冷却空気量削減,燃 料予熱)

を用いた場合,約51%の 高効率が得 られる。

これは1500°C級の空気冷却ガスター ビン複合発電プラントに匹敵する値である。

(2)翼 冷却空気削減においては削減量の増加に従ってタービン作動空気が増加し出力が増

加するが,燃焼器に投入 される空気増加分はタービン入口温度を1350℃ に保って燃料増加

させ る。それ らは一定の燃空比にあるため,効 率は出力 と同 じく直線的に増加する。

(3)こ の均衡を破 って更に高性能 とす るために,冷 却で回収 した熱量を系内で利用した。

複合サイクル発電の蒸気タービン低圧蒸気と同じ条件の蒸気を生成し,そ の分増出力す

ることで50.8%へ,更 に燃料予熱を併用することで51.1%に 発電効率を高めることがで

きる。
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このプラン ト出力,効 率 の改善状況 を図2.6-4に 示す。ハ ッチ ング部で性能 の向上状況 を示

してい る。つ ま り,「 空気 冷却 ガ スター ビンを1500℃ の高 温 にす るこ とな く1350°Cの 作動温

度 で同様 の高効率 を得 るには,翼 冷却空気量 を減 温によって削減 しその際の回収熱 を有効 に利

用す ることで可能 とな る」 ことが確認 できた。
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2.6.4プ ラン ト発電効率の寄与因子

前記図2.6-3の 発電端効率が冷却空気削減に伴って鈍化傾向を持っているが,こ れは図2.4-

3の システム損失(90°C熱 水)の 増加 によるものである。

プラン ト発電効率への寄与因子の扱いは,基 本因子(1,1工)に 熱活用(凪IV)を 加味し,シ

ステムロス(V)を 低減することを設計方針 とした。

各因子の傾向は図2.6-5の とお りで,翼 冷却空気の削減に伴い各因子がほぼ直線傾向をもっ

て増加する。更に特徴的な傾向は次のとおりである。

(1)ガ スター ビン排気流量:翼 冷却空気を40℃ およびそれ以下に減温す るときは冷却熱交

換器で生ずる凝縮水の分だけ余分に冷却空気を確保するのでタービン通過ガス量および

排気流量が減少する。

高性能化のために燃料予熱を行 うと,燃 料節約分だけ排気流量がさらに下がる。但しこ

れらは,ガ スター ビンと蒸気ター ビンの出力増加を若干目減りさせる程度である。

(2)シ ステム排熱損失(熱 水流量):低 圧蒸気生成の残余が余剰熱 として熱水となる。こ

の熱水は吸収冷凍機熱源水として利用すると共に,圧 縮機吐出の高温空気 と燃料の熱交換

および蒸気生成を行 う際の予熱に用いることでその残余量を抑制し,シ ステム排熱損失を

抑制す ることが可能である。

Factor Specification

Basic[1 BladeCoolingAirReduction
GTExhaustTemp.(STPower)Increase

(HRSG-ST}

HeatIII

UtilizationIV

LowPressureSteamGeneration

FuelPreheating

SystemLossV ExcessHotWater

Fig.2.6-5EffectofFactorsonPlantEfficiency
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2.7カ スケー ド冷 却技術 による性 能改善幅 の評価

プラン ト出力 と効 率の 向上 につい ては既 に述べ た。 この節 ではプ ラン ト高性能化のた めに行

われてい る技術 の うち

(1)1500°C級 複 合発電

(2)吸 気冷却ガ スター ビン

の2技 術 と本技術 の対比 を行 った。図2.7-1の カ スケー ド冷却技術性能 の延長上に1500°C性 能

を併記 した。評価 は 「1350℃基準複合発電 システ ム性能 に対す る燃 料増 分 と出力増分の両値」

を求 め,そ れか ら得た増分値発電効率 を用 いて行 った。結果 を図2.7-2に 示す。 その結果 「本

研究 のカスケー ド冷却技術 の増分値発 電効率 は1350℃ 級 であ りなが ら1500℃ 級 の値 よ りも大 き

く性能改善効果が顕 著」 であることが分 る。

(1)1350℃ 級GT・CCで は冷却空気削減 のみで7496(㎜)が 得 られ る。 この74%は 基本性

能 のTurbine部 の総熱 量効 率の74%に 同一 であ り,翼 冷却空気 の削減 はこのター ビン部高

効率 を引き出す技術 であるとい える。

(2)1500℃ 級GT・CCと の対 比:

1350℃ 基準性能 か らター ビン入 口温度 を1500℃ 級 に引き上 げた ときの増分値発電 端効

率 は87%HHVで あ る。

これ は1500℃ 級 が大幅 に翼冷却空気 を削減 しているため高温化 に加 えてその分 の出力

増加 幅が大 き くなってい るためである。

但 し,こ れ は1500℃GT・CCの 「蒸気冷却 の併用で翼冷却 空気 を削減す る」 ことの効果

だが,蒸 気 の昇 温利用 は性能 に加味 していない。

(3>吸 気冷却 との対比:

① 吸気冷却 で は吸気流量 が増加す る ことに よる増 出力 のため増分値発 電効率 は複合発電

システム効率 なみの約50%で 本技術の約74%よ り小 さい。

また,せ いぜ い7℃ の冷却 のため出力増加幅 は約20MWに とどま り,本 技術の約80MW

よ り小 さい。吸気 冷却 を水噴霧(5)で行 うときは増分値発 電効率 は55%で あるがや は り低

い。

② 吸気冷却 のための冷凍機 は約2500USRtで 本技術の約1000USRtの2.5倍 で ある。

これ は,吸 気 冷却 では吸気全量 を冷却す るのに対 して,本 技術 はその約20%を 冷却す

ることに よる。但 し,冷 却温度 は40°C→15°Cと25℃ 冷却す る都合上冷凍機能力 は40%に

とどま る。

(4)低 圧蒸気生成 ・燃料予熱:

回収熱 を有効利用 し,低 圧蒸気 ター ビン出力の増加で74%Dを 約80%(㎜)ま で向

上す ることができ る。本技術 で開発 したカス ケー ド冷却技術 は冷却空気削減に この低圧蒸

気 によ る増 出力 と更 に燃料予熱 に よる燃料 増分緩 和の両方 の効果 で増分値発 電効 率 を約

90%㎜ まで向上す ることができる。
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2.8結 言

本研究では,翼 冷却空気の削減 とその冷却回収熱の活用による性能向上を提案し,そ の可能

性について論 じてきた。提案技術の評価から得られた知見のうち主要なものを以下に述べる。

(1)1350℃ 級 ガスター ビンにおいて約40～90t/h(吸 気 流量の約3～6%に 相 当)の 翼冷却

空気 を削減す る場合,プ ラン ト効率 は約48.7%(HHV)か ら50.4%(D)へ 向上でき る。

(2)回 収 した熱 量をカスケー ド的 に系 内で活用 した場合,効 率 を更に51.1%(D)へ 向上

でき る。 これ は1500℃ 級 空気冷却 ガスター ビンの発電端効率並み の値 であ る。

(3)(1)お よび(2)に おいて は,プ ラン ト発電 出力 は約110%に 増強で きる。

(4)本 技術 の最大の利 点 は1350QC級 の実績 あるガスター ビンお よび複合サイクル発電(既 存,

新設)プ ラン トの改良技術 として高温部 品(翼 ・燃焼器)の 寿命 を消耗す ることな く1500℃

級 に迫 る高性能 を発 揮 し うる点にあ る。具体的には1500℃ 級蒸気冷却式ガスター ビンでの

増 分値発電効率以上 の値 を1350℃ 級 ガスター ビンで発 揮できてい る。

(5)本 技術 のカスケー ド冷 却 はガスター ビン単独 で成 り立つ よ うに,熱 源 を複合発電 の蒸気

系 に求めないのが特徴 であ る。その結果,設 計お よび制御 が容易で既存 の複合発電 プラン

トの改良技術 として も大変扱 い易い システ ムにま とめることが できた。
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第3章CH4/02燃 焼の閉サイ クルガス ター ビンとCH4/02燃 焼蒸気 ター ビンの複合サイ クル発

電 システ ムの最適化お よび高性能化

3.1緒 言

大気環境排気無排出つま りCO2無 排 出プラン トを基本仕様 に,現 在火力発 電システ ムの主力で

あるガスター ビン ・蒸気ター ビン複合 サイ クル発 電 を発展 させ た新発 電システムを開発 した。

CO2無 排出 とは 「大気へ のCO2放 出を行 わない」 とい う意味で,発 電システムか ら密閉状態で

回収 された高濃度 のCO2を 大気 か ら隔離 された状況で固定化処理す るもの としてい る。発 電所か

ら回収す る100%濃 度 のCO2は 多量 であ るこ とか ら地球環境 に配慮 した形 での固定(安 定的貯留)

が必要で ある。固定化技術に はCO2ク ラス レー トとして深海底 の加圧域 に投入す る技術や,涸 渇

した油 田の跡 に封入す ることが考 え られ てお り,最 近 では炭化 物糸の鉱 石(MineralCarbonate)

に安定化 ωす る技術 も論 じられてい る。但 し,こ れ ら固定化 技術 は論点 お よび議論 が多岐 に亘

るため本論文 の対象 か ら除外 してい る。

複合サイ クル発電 を基本 としたのは,ガ スター ビンと蒸気 ター ビンの各々 に対 して

・CO
Z・CB.0(ClosedBraytonCycle)

・燃焼蒸気 ター ビン(CombustionSteamTurbine)

の新技術 を適用 し,両 者 をCO2・CBC側 の排熱回収 ボイ ラ(HRSG,HeatRecoverySteamGenerator)

で生成す る蒸気 で結合 して複合 システ ム(CO2/H20'HybridSystem)を 構成す るた めであ る。

CO2・CBCは,通 常 ガスター ビンカ§煙突 か ら大気 に放 出 してい る排気 を再び圧縮機 入 口に再循

環 させ るシステ ムである。CO2・CBCはCH4/02燃 焼 の閉サイ クルガ スター ビンであ り再循 環ガス

はCO2主 体の(CO2,H20)混 合ガス とな る。但 し,高 性能化 の論点 は

・CO
2・CBCの 再循環ガス組成 の最適化

・燃焼蒸気 ター ビンの蒸気高圧化
,タ ー ビン入 口高温化お よびシステム構 成(単 熱 方式/

再熱方式)

・補助流体 ター ビン(メ タン
,酸 素 を作業流 体 とす るター ビン)の 併用

で あ り,こ れ らを解決 す るこ とで,ま た酸素製造動力 とCO2抽 気圧縮機 の主要動力 を差 し引いた

条件において も空気作動の開サイクル ガスター ビンよ りも高効率 とす るこ とができた。

燃焼蒸気 ター ビンでは,通 常の蒸 気 ター ビン自体 がすでに閉サイ クル(RankineCycle)で あ

るので,CH4/02燃 焼蒸気 ター ビンとす ることでター ビン入 口温度 を高めて性能(出 力,効 率)

を向上 させた。補助流体ター ビンも併 用 して更に性能 を改善 してい る。

別 の見方 をすれ ば,燃 焼蒸 気 ター ビンは 「圧縮機動力 を不要 と した状況 での蒸気作動 のガス

ター ビン」 と理解 す ることが できる。圧縮機 を持 たない分 は高圧 の蒸気 生成 のための給水 ポ ン

プ動力 を考慮すれ ば良 く,空 気圧縮機 よ り大幅に小 さな動力 で済む利 点があ る。

CH4/02燃 焼 で生ず るCO2とH20の 系外 への抽 出は,

(1)CO2・CBC:単 純抽気(於HRSG～ 圧 縮機 の接 続ダク ト)
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(2)燃 焼蒸気 ター ビン:復 水器か らのCO2抽 気(不 凝縮ガ ス抽気)と 復水 の一部排 出で行

ってお り,共 に現用技術 で可能で ある。

本研究 で開発 したシステ ムの最大 の利点 は,Brayt。nCycleとRankineCycleを 独立構成(実

際 は蒸気で運用上連結 され てい る)し てい る点 である。っ ま り本 システ ムは,既 存 の複合発電

システムのGTあ るい はSTの 一方 を開発技術 として取 り替 え,

(1)CO2・CBC/在 来のST

(2)在 来のGT/燃 焼蒸気 ター ビン

の組 合せ でRepoweringSystemを 構成 できる融通性 を持 ってい る。最終構想 のCO2/H20Hybrid

System(CO2・CBC/燃 焼蒸気 ター ビン)に 至 るまで に段 階的 に実用化 を進 めることが可能 である

点 は非常 に現実的 で有利 であ る。 また,シ ステ ム運用 は通常の複合 サイクル のGT・ST操 作 と何

ら変 わ らない ため本 システ ムは大変運用 しやすい。

CO2無 排出システムにはGRAZサ イ クル(2)がありH2/02燃 焼お よびCH4/02燃 焼にっいて報告がなさ

れている。 このGrazサ イ クル は閉サイ クル発 電の一つの典型 としてす でに研究 され ているが,

ガ スター ビン と蒸 気 ター ビンが不可分で混然 一体に構成 されてい るた め上述 のよ うな設 計上,

建設上,運 用上の利点や融通性 は全 くない。

一方蒸気 ター ビンの入 口に燃焼器 を置いてCH
4/02燃 焼 を行 う燃焼蒸気 ター ビンサイ クル(3)もあ

るが,こ のサイ クルは何 らかの形で系外か ら蒸気を導入 しなければな らない欠点を持っ。 これに対

して本研究で提案 したシステムは,CO2・CBC系 と燃焼蒸気 ター ビン系の2シ ステムを排熱回収 ボイ

ラ(HRSG)を 介 して結合 して熱計画お よび運転 ・制御の し易い システム としている。

またCO2・CBCに つ いては,単 純 に100%CO2を 循環 させ るシステ ム(4)(5)が研 究 されてい るが,

抽出系を含 めた全 体 システ ムまで は論 じられ ていない。

第3章 で論 じるテーマ は

1.作 動流体 のガ スター ビン性能へ の影響

2.閉 サイ クル発電 の要素 システ ムの特徴

3.CO2/H20HybridSystemの 高性能化

の3点 で ある。

各テーマ にお ける論点 は主 として以下 の とお り設定 してい る。

1.作 動流体のガ スター ビン性能へ の影 響

・空気/CO
2/H20

・作動温度域 での熱的物性値

・圧 縮機 動力/タ ー ビン出カ
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・ター ビンの 比 出 力 ・総熱 量効 率

2.閉 サ イ クル 発 電 の要 素 シス テ ム の 特 徴

・CO
Z・CBC(ClosedBraytonCycle)

・燃 焼蒸 気 ター ビン

3.CO2/H20HybridSystemの 高性 能 化

・シス テ ム効 率(定 義 ・要 因 〉

・要 素 シ ステ ム の組 合 せ

・高性 能化 因子

シ ステ ム研 究 にお け る主 な仕 様 は次 の とお りで あ る。

(1)閉 サ イ クル 発 電

・ガ ス ター ビンの 閉 サイ クル シ ス テ ム(CO
2・CBC)

・蒸 気 ター ビンの 高効 率 シ ステ ム(燃 焼 蒸 気 ター ビ ン)

・両 閉サ イ クル の複 合(CO
2/H20HybridSystem)

(2)燃 料

・LNG気 化 ガ ス(表2 .3-2に 性 状 を示 す)

(3)酸 イ匕 斉璽 、

・0
2(液 体 酸 素 を気化 して使 用)

酸 素製 造 動 力 原 単位:0.319kWh/Nm3-OZ

(4)タ ー ビ ン入 口温度

・13500C級

・1500℃ 級

・1700°C級
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3.2循 環媒体の選定

通常の複 合 サイ クル発電 は空気を作業流体 とす るガスター ビンと蒸気 ター ビンの組 み合せ で

ある。空気以外 の作業流体 でガスター ビン(圧 縮機,タ ー ビン)を 作動 させ るにあたって,LNG

気化ガス を純02と 燃 焼す る開サイ クルガ スター ビンを想 定 し 空気/CO2/H20の3種 類 の作業

流体 を中心 に,ガ スター ビン性能お よび複合 サイ クル発電性能の特徴 を分析 した。

これ らの分析結果 を元 に循環媒体(作 業流体)の 選定 を行 った。

「どの種類 の流 体を何℃ で再循環 させ る と高性 能 の閉 サイ クル を得 ることができ るか」 とい

うことを論点 に解析 を行 った。

以降 の作業流 体分析 において採 用 した システム を基本 システ ム(図3.2-A)と 対比 して以下

にま とめて示 してお く。図3.2-Aの 詳細構成 は3.3に 後述 した。分析 のため図3.2-Bは 間接

熱 交換器 を,図3.2-CとDは 燃焼器(LNG気 化ガ ス/02)を 各々構成 してい る。

Fue童

一`.

GEN

C
CC

大気

HRSG

C

T

H-2SG

CC

GEN

T

E J1亟)(

圧縮機

タービン

排熱回収ボイラ

燃焼器

発電機

Fuel

Oz

Fuel

Oz

GEN

～ c
cc
T

HRSG

一IE… × … 一一一一一

一. _,

GEN

CC

ST

HRSG

(1)通 常複合発電

Fig.3.2-A

Fig.3.2-B

C°z
__

+HaO
-l

x20

盛 cot

》COND

H20E

lC(n・CBC 燃焼蒸気 タービン[

ST:蒸 気 ター ビ ン

COND:復 水 器

HX:冷 却 器

(2)COZ/HZOHybridSystem

BasicSystemconfiguration

Fuel

ComponentPerformanceModel

(Sect.3.2.1)

Fig.3.2-CGTPerformanceModel

(Sect.3.2.2,3.2.3)
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GE

Fig.3.2‐DCombinedCyclePerformanceModel(Sect.3.2.4)

3.2.1作 業流 体の熱 的物性 とガス ター ビン性能

燃焼排気であ るCO2,H20お よび本 来の作動流体で ある空気の3種 類 の作業流体の熱的物性 に

ついて,温 度 が250Kか ら1700Kに 上 昇す る際の比熱 比(κ)と 定圧比熱(Cp)の 変化 の様子

を図3.2-1に 示す。

これ らの熱 物性値 はJANAF(6)の 数値 に基づいてい る。表3.2-1に 各値 を示す とともに 日本機械

学会(T)の熱物性値 と照合 し,ほ ぼ一致 してい るこ とを確認 した。温度に対す る定圧比熱 と比熱

比の変化の様子 を図3.2-2,図3.2-3に 示す。

Fig.32‐1Thermalcharacteristicsofworkingfluid
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i

cn
Q◎

i

Table3.2-1作 業流体 の低圧比熱(絶 対圧力 ・1barに お けるモル 定圧 比熱 に よる)お よび比熱 比(κ)

単 位
J/(mol・K)kJ! ・K

温度 流体 CH4 CQ2 HxO Nx o: 愈 空気
(κ) (℃) 分子量 16.043 aa.oio is.ois 28.013 31.999 39.947 28.850

」ノ(mo監・K) W/(産8・K) (K) J/(mol・K) kJ/(kg・K (x) J/(mol'K)kJ/(kg'K) (K) 1/(moレK) W/(kg°K) (K) Jノ(m。レK 瞰kg・K) (K) Jノ(m。i'K.リノ(kg'K) (k) Jノ(mo1'K) Mノ(kg'K) ㈹
200 一73.15 32.359

.

33.349

250 一23.15 34.216 2.133 1.321 34.789 0.790
■

1.314 33.472 issa 1.331 29.111 1.039 1.400 29.201 0.913 1.398 20.786
.

o.sao 1.667 1.009 1.400

298.15 25 35.639 2.221 1.304 37.129 o.aaa
■

1.289 33.590 1.665 1.329 29.124 i.oao i.aoo 29.376 0.918 1.395 20.786
.

o.szo 1.667 1.010 1.399

300 26.85 35.708 2.226 1.304 37.221 o.aae
■

1.288 33.596 1.865 1.329 29.125 i.oao 1.400 29.385 0.918 1.395 20.786
.

0.520 1.667 1.010 1399

400 126.85 40.500 2.SIA i.ass 41.325 0.939 1.252 34.262 1.902 1.320 29.249 i.oaa 1.397 30.106 0.941 1.382 20.786 o.sao 1.667 1.019 1.394

500 226.85 46.342 2.889 1.219 44.627 1.014 1.229 35.226 1.955 1.309 29.580 1.056 1.391 31.091 0.972 1.365 20.786 o.sao 1.667 1.035 1.386

600 326.85 52.227 3.255 1.189 47.321 i.075 1.213 36.325 2.016 1.297 30.110 1.075 1.382 32.090 1.003 1.350 20.786 o.s20 1.667 1.057 1.375

goo 426.85 57.794 3.602 1.168 49.564 i.iab i.aoa 37.495 2.081 1.285 30.754 1.098 1.371 32.981 1.031 1.337 20.786 o.sao 1.667 i.osi 1.363

800 526.85 62.932 3.923 1.152 51.434 1.169 1.193 38.721 2.149 1.273 31.433 1.122 1.360 33.733 1.054 1.327 20.786 o.sao 1.667 1.105 1.353

900 626.85 67.601 4.214 1.140 52.999 1.204 1.186 39.987 2.220 1.263 32.090 1.146 1.350 34.355 1.074 1.319 20.786 o.szo 1.667 1.128 1.343

iOOO 726.85 71.795 4.475 1.131 54.306 1.234 1.181 41.268 2.291 i.asz 32.697 1.167 1.341 34.870 1.090 1.313 20.786 o.sao 1.667 1.148 1.335

iioo 826.85 75.529 4.708 1.124 55.409 1.259 1.177 42.536 2.361 1.?A3 33.?Al 1,187 1.334 35.300 1.103 1.308 20.786 o.sao 1.667 1.166 1.328

izoo 926.85 78.833 4.914 1.11B 56.342 1.280 1.173 43.768 2.430 1.235 33.723 1.204 1.327 35.667 1.115 1.304 20.786 o.sao 1.667 i.isa 1.322

1300 1026.85 81.744 5.095 1.113 57,正37 1.298 1.170 44.945 2.495 L227 34.147 1.219 1.322 35.988 i.ias i.soo 20.786 o.s20 1.667 1.196 1.317

1400 1126.65 84.305 5.255 1.109 57.802 1.313 1.168 46.054 2.556 1.220 34.518 1.232 1.317 36.277 1.134 1.297 20.766 0,520 1.667 1.209 1.313

1500 1226.85 86.556 5.395 1.106 58.379 1.326 1.166 47.090 2.614 1.214 34.843 1.?A4 1.313 36.544 1.142 1.295 20.786 0.520 1.667 1.220 1.309

1600 1326.85 88.537 5.519 i.ioa 58.886 1.338 1.164 48.050 2.667 1.209 35.126 i.zsa 1.310 36.796 1.150 1.292 20.786 o.sao 1.667 1.230 1.306

1700 1426.85 90.283 5.628 i.ioi 59.317 1.348 1.163 48.935 2.716 i.aos 35.378 1.263 1.307 37.040 1.156 1.289 20.786 0,520 1.667 1.238 1.303

(注1)

(注2)

定 圧 比 熱(Jノ(mol・K))お よび分 子 量 はCH4・CO2・HZO・N2.OZ・Arに つ いて 下記 を参 照 。

(出 典:JANAFThertnochemicalTables,ThudEdition(1985))

空 気 組 成:
(mot%) (Wl%)

Nx 77.28 75.03

o: 20.78 23.06

舟 0.93 1.28

HzO i.oi 0.63

計 100 ioo

(注3)定 圧比熱の照合
C日4 COx H20 N2 02 Ar 空気

上値(lbaz,298.15K) 2.221 o.saa 1.865 i.oao 0.918 o.szo i.oio

照合 値(1aGn,25℃ 〉 2.232 o.sso 1.870 i.oao 0.919 o.szz 1.006

照霪鉾壅甕麺晟査!幾鰲審鰲∫鼕≡霹霧橇 畑 鼕義ゴ

(注4)鰻 飆 訟 翻 騾 ゜/86°°/C(
847.Bkiぎ!躍 譲 觴 搬 砿9°K)・R"(kca且MB°K)・1kg°m=(1〃)kcal,J=426・8

CHa

52.845

CO2

19.264

HxO

47.061

Nx

30.265

02

26.495

舟

21.223

空気

29.386

(注5)比 熱比(K)の 照合
CHa CO2 HzO N2 o: Ar 空気

上値(lbaz,298.15K) 1.304 1.289 1.329 i.aoo 1.395 1.667 1.399

照合値(1atm,25℃) 1.303 1.301 i.aoo 1.399 t.ao2

照合値出典:日 本機械学会 「技術資料流体の熱物性値集」
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ガ ス ター ビン作 動 流 量 を基本 の 「空気 」 か らCO2,H20に 変 更 した場 合

・圧 縮 機 動 力

・ター ビ ン出力

の受 け る影 響 は物性(κ ・比熱 比)に よ る。

こ こで 重 要 な の は 「κの値 の 大 小 」 「κの 温度 特 性 」 の2点 で あ る。

250°K㌧1700°K(-23.15～1426.85°C)の 温 度 帯 に お い て,κ の値 は 図3.2-3に 示 した 変化 を

す る。

250°K～1700°K 変化幅 特 徴

空気 1.400^-1.303

1.331^-1.205

1.314^-1.163

0.097
、

'

ほぼ一様な変化

H20 0.126

COZ 0.151
200～600°Kの κ変 化

(1.314～1.213)と く に 大 き い

この うち,CO2の 特性 として は 「圧 縮機 の温度領域 での κの値 の変化 が大 きい」 といえ る。

これ は 「同 じ吸気温度帯にお いてはCO2の 方 が空気 よ りも圧縮機動 力の変化幅 が大 きい」こ と

を示 してい る。

15°C(288.15°C)^-300°C(573.15°C)

空気

GOZ

295kW/(kg/s)^-548kW/(kg/s)"'

199kW/(kg/s)^-387kW/(kg/s)"'

186%

194%

(注)kW/(kg/s):吸 気流 量基準 の比動力

つ ま り,CO2は 空気 に比 べ て

隴 鬻蠶 ヨの変化醂 き、、
ことが特徴 とい える。
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ガスタービン性能の圧縮機動力とタービン出力は簡易的に次式で求めた。

圧 縮 機 動 力 ・畉 睾

La、一(KK -1)R-TS・G102・{(`1'IK1_i}

正 味 ター ビン出力:PtニP。 ゴ ηT

瑞一債)R°黠重α禰 者}

ηc:圧 縮機 効率 ηT:タ ー ビ ン効 率

φ:圧 縮 比 π:膨 張 比

Ts:吸 気 温度(K)T1:入 口温度(K)

Gs:吸 込 重量流 量(kg/s)G1:入 口重量 流量(kg/s)

定 眦 熱 ・C,(k」/kg・K)一(Kx -1>÷

ガス定 数:R=kg・m!kg・K

J=4z6.g

ηc,ηTに は前 記 表2.3-1の 値0.865,0.910(出 力 補 正1.08に て0.98相 等)を 使 用 した。

表2.3-1の 簡 易モ デ ル に て求 め た圧 縮 機 動 力 ・正 味 ター ビン 出力 を表3.2-2に 示す 。

GS=G1=424kg/s(1,526t/h)

φ=13.548

π=12.109

の他 の設 置 条 件 は表3.2-2の とお りで あ る。

但 し,検 討 目的 が 空 気 との 相 対 比 較 で あ る こ とか ら燃 焼器 の 排 ガ ス混 入 を無視 で き る よ うに

間接 熱 交 換器 を想 定 し,非 燃 焼 で の 純粋 流 体 の 特 性 を求 め た。(図3.2-B,ComponentPerformance

Model)

実 際 のGT出 力(絶 対 値)を 求 め る とき は,

(1)GT出 力=(正 味 タ ー ビン出力(kW)を 燃 焼 ガ ス の物性 で修 正)× ター ビ ンガ ス流 量

一圧 縮機 動 力(kW)× 吸 気流 量 一各 種 ロ ス(機 械 損 失
,発 電 損失 他)

(2)タ ー ビ ンガ ス流 量=(吸 気 流 量 ×0.79)+(燃 料流 量+酸 素流 量)

こ こに0.79は 翼 冷 却 空 気割 合 を0.21と した とき の修 正 係 数 で あ る。

の修 正 を伴 う。 これ らを反 映 した実 際 のGT出 力 は図3.2-4と 図3.2-5に 示 した。(図3.2-C,

GTPerformanceModel)
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Table3.2-2Comparisonofturbinepowerandcompressorload

流 体 種 類 空 気 COZ HZO

ガス定数R(kg・m/kg・k) 29.386 19.264 47.061

ター ビン

出力
入口温度

1350°C

(1623.15K)

1350°C

(1623.15K)

1350°C

(1623.15K)

圧力比
(π)

12.109 12.109 12.109

K 1.305 1.163 1.208

出力(kW)/

入口流体量

(k齢)

884kW/(kg/s) 645kWノ(kg/s) 1518kW/(kg/s)

1。0(ベ ー ス) 0.73 1.72

圧縮機

動力

入口温度

(K)

is°c

(288.15)

ioo°c

(373.15)

Zook

(413.1

300

(573.15)

15℃

(288.15)

100℃

(313.15)

Zoo°c

(413.15)

300°C

(573.15}

15°C

(288.15)

loo℃

(313.15}

200

(413.15)

300℃

(573.15)

圧力比

(φ)
13.548 13.548 13.548

K
1.399

1.390

::

1.378

1.299

1.262

1.235

1.217

1.329

1.322

1.312

1.300

出力(kW)/

入口流体量

(ICS)

321

413

523

628

iga

244

302

359

一

627

788

945

1.0

(ベース 1.0

(べ一ス

i.o

(ベース 1.0

(ベース

0.604

Q.591

0.577

0.572

一

1.518

1.507

1.505

表3.2-2に おいて,空 気作動 に対す るCO2とHZO各 流体の ター ビン出力 と圧縮機 動力 の比率 は

詳細解 析の後述 の図3.2-4,図3.2-5の 傾 向 とほぼ一致 してお り,相 対比較 においては,本 検討

は妥 当であ ることが分 る。

次 に通常 のター ビン入 口条件(A)(1350℃,1.3MPa(13.33ata))と 超 臨界圧STの 入 口条件(B)

(700℃,34.3MPa(350ata))の よ うに大き く作動温度が相違 した ときのター ビン出力の対比 を

比出力 を用いて表3.2-3に 示す。

非燃焼 の純粋流体 において,条 件(A)1350℃ と(B)700℃ の比 出力比:(B)/(A)は ほぼ0.6で あ

る。 但 し,H20は 最小の比 出力比0.590を 持つ。

比 出力 そのものの大小 関係 は,

CO,<0,<空 気 く團 くCH4

の順位 で,作 業流 体の重量流 量 あた りのター ビン出力はH20が 大 き く良好であ る。

このよ うに各流体 で比出力が異 なるのは1350℃ と700°Cで の 「κの温度特性 」に差があ るた

めで ある。

実際 に条件(A)と(B)を 使 用す るシステ ムは燃焼蒸気 ター ビンで あ り,作 業流体H20の 比出力比

0.590の 関係 にお いて超 臨界圧ST(B)/低 圧ST(A)を 構 成す ることにな る。
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Table3.2-3タ ー ビン出力 の対 比(於1350°C(A),700℃(B))

作 業 流 体 空 気 COZ H20 CH4 02

ガス定 数

R(kg・m/kg・K)
29.386 19.264 47.061 52.845 26.495

比熱比

(x)

{A)

1.3053 1.1638 1.2080 1.1033 廴2913

於1350℃(1623.15K)

(B>

1.3371 1.1823 i.asso 1.1454 1.3146

於700℃(973.15K)

膨張比

(π)

1350°C

(A)

PST13.333ata .12
.109p

zr-1.10106ata680.6mmHZO

700°C

(B)

12.925(P‐'T_35°ata1`

¥Pzr‐27.08atal

比 出力

㈹ 力/入 口流体量)

kW/(kg/s)

(注1)

1350°C

{p)

884 645 1518 1870 804

goo°c

(B)

529 389 896 1147 491

(g}
1・: 4.603 a.sga 0.613 O.bll

(A)

(一出力圜 綱 緋 酬

タービン出力:Pi-p
ad・ηT

xR・T,・GIP
ad‐
x-1102{1ぜ}

従 って,購 力padG

1

ηT=1.0で の上値 は,相 対 比較 においては共通 のηTを考慮 したこ とに相 当。
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3.2.2GT出 力構成

GT出 力 に対 して(圧 縮機動力,正 味 ター ビン出力)は 次式の関係 にある。

GT出 力=(正 味 ター ビン出カ ー圧 縮機 動カ ー780kW)×0.9886

*1*2

*1:メ カ ニカル ロス(780kW)

*2;発 電 機効率(0.9886)

正 味 ター ビン 出力=圧 縮機動 力 ×GT出 力 比

(表3.2-4)(表3.2-5)*3

正味タービン出力*3
:GT出 力比=

圧縮機動力

GTPerfomanceMode1(図3.2-c)に お いて,作 業 流 体 を空 気→H20,空 気 →CO2に 変 更 した と

き の 出力/動 力 の 温 度 特性 の 変化 状 況 を 図3.2-4,図3.2-5に 示 す 。

各 図 の傾 向 か ら表3.2-4～ 表3.2-6の 特性 が 抽 出 で き る。

一般的特性

圧縮機動力
入 口流 体温度 の影響 が大 きく,ほ ぼ相対値

+30%/100℃ の割合で増加す る。

正味ター ビン出力

圧縮機吐出温度が高いと燃料投入は少くて

すむためタービン入口流量が減り,ほ ぼ相対

値△3%/100℃ の低下割合 となる。

(1)圧 縮機動 力の温度変化 割合(表3.2-4)

・流体 に よ らず ほぼ共通 の変化割合 である
。

・圧 縮機動力 の流体 間の比率 は各温度で ほぼ同 じで ある
。

(2)GT出 力 比の温度変化 割合(表3.2-5)

・流 体に よ らず ほぼ共通の変化割合 である。

・GT出 力比 の流体間 の比率 は各温度 でほぼ同 じで ある
。

(3)正 味ター ビン出力 の温度変化割合(表3.2-6)

・流 体に よ らずほぼ共通 の変化 割合であ る
。

・正味 ター ビン出力 の流体間の比率 は各 温度でほぼ同 じで ある。
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(4)三 原子分子(CO2・H20)の 空気(15～300℃ 内範囲)に 対す る割合 はター ビン出力 の方 が

圧縮機動力 よ り高 く求まる傾 向にある。圧縮機 入 口温度100℃ でのCO2とH20の 空気 に対す

る割合 を次に示す。

CO2 HzO

圧縮機動力 約0.58倍 約1.49倍

正味ター ビン出力 約0.80倍 約1.77倍

その結果,GT出 力 比は空気 よ り向上す る。

cot HZO

GT出 力比
約1.38倍

(o.sa/o.5s>

約1.19倍

(1.77/1.49)
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作動流体 空気 作動流体 H20

Fig.32-4作 動流 体:空 気H20の(出 力/動 力)変 化

..



Fig.3.2-5作 動 流 体:空 気 →CO2の(出 力/動 力)変 化
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Table3.2-4圧 縮機動 力 の温度変化割合

吸気温度

流体
15-100-300°C 100-300°C

cot 10(}-128-191 100-149%

HZO 一
100-151

空気 100-129-194% 100-151

吸気温度

流体
15°C 100°C 300°C

CO2 91.8MW 0.583 117.2MW 1:1 175.OMW 0.574

H20 一 一 301.4MW 1.491 455.6MW 1.497

空気 157.2MW
1.0

(べ 一 ス)
2Q2.2MW

1.4

(ベ ー ス)
304.4MW

1.0

(ベ ー ス)

Table3.2‐5GT出 力比 の温度変化割合

吸気温度流体
15°C 100°C 300°C

CO2

2.947 2.259 1.430

10(}% 76.7 48.5

100% 63.3

H20

一 1.945 1.215

一 100% 62.5%

空気

2.156 1.635 1.021

10(?% 75.8 47.4%

100% 62.5

吸気温度流体 15°C 100°C 3QO°C

cot 2.947 1.367 2.259 1.382 1.430 X11

H20 一 一 1.945 1.190 1.215 1.190

空気 2.156
1.0

(ベース)
1.635

1.0

(ベース)
1.021

1.0

(ベース)
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Table3'.2-6正 味 タ ー ビン出 力 の 温 度 変化 割 合

吸気温度

流体
15-100-300°C 100-300°C

CO2 100-98-93% 100-95

H20 一 100-94%

空気 100-98-92% 100-94%

吸気温度

流体
15°C 100°C 300°C

CO2 270.SNIW 1': 264.7MW 1:11 250.3MW 1:1

HZO 一 一 586.1MW 1.773 553.6MW 1.781

空気 338.9MW
1.0

(ベ ー ス)
330.SMW

1.0

(ベ ー ス)
310.8MW

1.0

(ベ ー ス)
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3.2.3GT比 出力,GT出 力 比

GT出 力構成(3.2.2に 既述)に つい て,更 にGT比 出力 とGT出 力比 を以下の定義で求め,作

業流 体の相 違点 を評価 した。

.GT比 出力(重 量鼇 基準)eGT勘(kW)

吸気流量(kglh)

・GT比出力(鰈 量基準)一
吸気黜 諾 認!1h)

正味ター ビン出力・GT出 力比=

圧縮機動力

但 し,各 定義 は以下 の特徴 を持つ。

GT比 出力:

(1)吸 気重量流量 を基準 としたGT比 出力 は,分 子量の小(大)の 流体 では容積 流量が多

(少)と な り,GTサ イズが大(小)と なる。

(2)吸 気容積 流量 を基準 としたGT比 出力 は,同 サイ ズのGTを もって作動 させ た値 を示す。

GT出 力比:

(1)無 次元 のためGTの サイズ とは無関係 の表示 である。

(2)流 体 の種類 が異な ると圧 縮機 動力,正 味ター ビン出力が共に変化す る。

圧縮域(15～600℃)と 膨 張域(600°C～1350℃)の 物性 の関係 を分析で きる。

(3)正 味 ター ビ ン出 力 〉、。圧 縮 機 動 力

においてGT出 力 が取 り出せ る(自 立す る)。

このGT出 力 比の大きい流体程,出 力取出 し量 が大 きい。

(1)容 積 流量基準GT比 出力の特性 を図3.2-6に 示す。

この 図 よ り以下の傾 向が評価 できる。

① 比 出力 の順位:CH4>CO2>H20>空 気>Ar・He,

つ ま り5原 子分子>3原 子 分子>2原 子分子 〉単原子 分子 の順位 でGT出 力の取 出割

合はCH4が 一番 大 きい。

②15～1° °℃ で の 比 出 力 変 化 幅cx4
0.a<C°ZO.9<昌 ゜)<1.0<Ar・He1.2

つま り5原 子分子 く3原 子分子 く2原 子 分子 く単原子分子 の1頂位で吸気温度 に対す

る影響 はCH4が 一番小 さい。

③ 単原子分子(Ar・He)は ほぼ 同値 ・同傾 向であ る。
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④ 圧縮機入 口温度 に対 して比出力は直線 傾向 を持つ。

(2)重 量流量基準GT比 出力の特性 を図3.2-7に 示す。 この図 よ り以 下の傾 向が評価 できる。

但 し,統 一性の観点か らは図3.2-6を もって判 定す るのが好 ま しい。

① 流 体種類 に よって温度特性 の傾向 はまちまちで統一性 が出 ない。

② 単原子 分子(Ar・He)は 分子 量(39,948,4.003)の 違いによって全 く異 なる特性(約10

倍 の差)と な る。

③ 圧 縮機 入 口温度 に対 して比 出力 は直線傾 向 を持つ。

(3)朏 力比⊂鷺 纛 誹 力〕の特性を図3.2-8に示凱 この図より以下の傾向黼

で き る。

① 比 出力 の順 位:cx、>CO2>HZO>空 気>Ar・He,つ ま りGT出 力 はCH4が 最 も大 きい 。

一方
,圧 縮機動力:cx4>H20>空 気>Ar>[COZコ,つ ま り圧縮機動力 はCO,が 順位 を移

動 して最小 となる。

② ター ビン出力:1正 味 ター ビン出力=GT出 力比 ×圧縮機動力i

つ ま りcx4が 最 も大 きい ター ビン出力(圧 縮機 入 口流体1,526,000kg/h共 通)を 取 り出

せ る。

③15～100℃ で のGT出 力 比変 化 幅:CH4=CO2(>H20)〉 空気>Ar・He
O.70.7(一)0 .50.4

つ ま り吸 気 温 度 に対 す る影 響 はCH4が 一番 大 きい。

但 しそ の変 化 率 は0.21〈0.234(<_)<0.240<0.28でCH4が 一番 小 さい 。

TTTT

⊂鋤 ⊂°.6912.95)⊂ 辮 ㈹

④ 単原子分子(Ar・He)は 出力 比が1に 近 くター ビン出力 が圧縮機 動力 に近 い。

⑤ 空気 は300℃ 以上で は出力 比が1を 下 まわ り自立で きない。Ar・Heは150℃ 以上で は自立

でき ない。

⑥ 圧縮機入 口温度 に対 してGT出 力比は曲線傾 向 を持 つ。

以上 よ りCH4,CO2,H20は15℃ での出力比大 きいた め,高 温の300℃ になって もGTは 自立でき

る。但 し空気 は300°Cで は 自立限界 にあ り,発 電設備 として の出力発生 はほ とん どない。単原子

分子 の(Ar,He)は100℃ の段 階です でに 自立限界 に到達 して しま う。
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比出力(、轟謝
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5

4

3

z.izz

2

i.i3a

1

0

015 ioo zoo

0.1〔b

300

圧縮機入口温度(℃)

Fig.3.2-6GT比 出力 の圧縮機入 口温度特性(容 積流量基準)
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比 出 力

d.4

(kW/kg/h)

0.3

a.2

0.1

0.063

0.048

0
015 100 200

111・

300

圧縮機入口温度(℃)

Fig.3.2-7GT比 出力の圧 縮機 入 口温度特性(重 量流量基準)
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出力比(タ ービン出力/圧 縮機動力)

4.0

3.0

■

2.0

1.0

1.430

1.215

1.021

0

015 100200300

圧縮 機 入 口温 度(℃)

Fig.3.2-8GT出 力 比の圧縮機入 口温度特性
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3.2.4循 環媒 体の選定

CH4/02燃 焼ガス ター ビンではCH4・02・CO2・H20の4種 類 の流体が関係 してい るが この うち燃

焼排気 であ るCO2・H20を 本 来の作業流体 の空気 と比較 し,性 能への寄与 の度合い を評価 した。

前述 の図3.2-1に250K～1700Kの 温度範囲での比熱 比(κ)と 定圧 比熱(kJ/kg・K)の 関係 を示

し,両 者が関係 して出力 ・動力 が求ま る条件 を表3.2-2に 既述 してい る。 さ らに図3.2-4,図

3.2-5の 圧縮機動力,タ ー ビン出力な らびにガスター ビン出力 に基づいて以下の知見 を得 ている。

(1)圧 縮機動力(Lc)と ター ビン出力(Pt)に ついてはH20は 空気 より大,CO2は 空気 より

小で ある。

(2)両 者 の差で ある発電 出力 はそ の絶対値 と吸気温度特性 に物性 の違いが現れ る。

①H20:発 電出力(100℃)は 空気 の約2倍 で あるが温度 による出力の減少割合 は小 さい。

②CO2:発 電出力(15℃)は 空気 とほぼ 同 じであ るが温度に よる出力 の減少割 合は小 さ

く,発 電出力(100℃)で は空気 の約1.2倍 である。

次に,図3.2-DのCombinedCyclePerformanceModelに よってオー プンサイクル での複合サ

イ クル発電 を想 定 し,各 作業流体 の性能 を求めた。

図3.2-9の 出力特性お よび図3.2-10の 出力比 か ら次の知 見を得た。

(3)容 積 流量 を同一,つ ま り同 じ体格のガス ター ビンを使用す る条件で は分子量 と比熱の

関係 か らCO2>H20>空 気 の順位 で高出力 とな る。

1.タ ー ビン部性 能に及 ぼす作業流体の影響

ガ スター ビン発電 出力 につ いて,圧 縮機 動力 を削除せず に正 味ター ビン出力 のみ を評価

した。

ター ビン入 口温度 ・1350℃ 級 のガスター ビンにおいては(出 力,効 率)の いずれ を優先

させ るかで選 定すべ き流体の種類 が異な る。

エネル ギー変換状況 を,

(1)タ ー ビン入 口熱量e圧 縮機 動力 エネル ギー+燃 料入熱(LHV)

(2)タ_ビ ン総熱量効率=タ ー ビン出力 エネルギーター ビン入 口熱量

これ は,エ ネル ギー 変換効率(ETR,EnergyTransferRatio,参 照4.4)と も呼称す

る。

(3)タ ー ビン比出力の対 空気 比

で各 々定義 した。

(1)タ ー ビン総熱 量効率

図3。2-12に ター ビン熱 量構成割合お よびター ビン総熱量効率(ETR)を 示す。

単原子分子のArを 例 外 として,2原 子分 子(02),3原 子分子(H20,CO2)お よび5原

子分子(CH4)の ター ビン総熱 量効率 は空気 よ り低 くな る。
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A・〉[空 気]>0、>H20>C・,>CH、

0.630.510.500480.390.34

ター ビン出力 は1350℃ での比熱 比(κ)と ガス定数(R)に 対応 して求ま るため,各

作業流体 の物性 値差(κ,R)がETRの 相違 を もた らしてい る。

(2)タ ー ビン比 出力

図3.2-11の ター ビン出力エネル ギ量 を対比 して表3.2-7の 値 を得た。 ター ビン比出

力 の大小 関係 は,圧 縮機 吸気条件(重 量流量一定,容 積流量一定)で 若干異な る。つ ま

り,重 量流 量基準 のター ビン比出力 の大小 関係 を作 業流体 の分子量で修正す る容積流量

基準 ではCO2と02の 順位 が下記 の とお り移動 し,CO2の ター ビン比出力 が大 きくな る。

量流 量基準:CH、>H20>[:壅 壅≡コ>0,>CO,>Ar

繹
108kJ/h,1526t/h)29.821.111 .911.09.56.7

馨酷 鷺 藩 〉総 襲1激 零>Ar9 .3
16.5

Table3.2‐7EffectofWorkingFluidonTurbineSectionPerformance

作業流体

タービン比出力割合
タービン総熱量効率(ETR)

(図3.2-12)

排気熱量(滋)

(黔 ・ター1350°C温度)
重量流量基準

(図3.2-11)
容積流量基準

CH,

H20

COZ

空 気

02

Ar

2.50倍 ※

1.77倍

0.80倍

ベ ース

0.92倍

0.56倍

1.39倍 ※ ※

1.11倍

.1.22倍

ベ ー ス

1.02倍

0.78倍

33.9%

47.8%

39.1

51.1

49.7%

63.1

相 対0.78倍

0.94倍

0.77倍

(ベ ー ス)

0.97倍

1.23倍

66.1%(64.9)

52.2%(52.1)

60.9%(57.0)

48.9%(46.1}

50.3%(47.4)

36.9%(34の

(注1)※2.50=29.8/11.g(於 図3.2-11)

XX1.39=2.SOX(16.(?43/28.85)

GT同 サ イズ として圧縮機入 口容積流量 を基準 にとるときは下記の分子量の比で修正 する。

CH4:16.043,H20:18.Ol5,COZ:44.010,空 気:28.850,02:31.999,Ar:39 .947

(注2)排 気 熱 量;Cp=一 定 を想 定 す る と()内 の羆 合値 が 対応 す る。

定 圧 比 熱 は高 温 の方 が低 温 よ り も大 きい た め実 際 の排 気 熱 量 は

照 合 値 よ り2～3%大 き く排 出 され る。

(但 し,H20は ほ ぼ 同値)

(注3)共 通仕様;
圧縮機流量

タービン入口温度

圧縮機入口温度

1,526t/h

1350°C

10°C

7s



図3.2-11の ター ビン入 口総熱 量は各純粋流体の1350℃ での定圧比熱(kJ/(kg・k))

におおむね対応する。

CH4:5.543,H20:2.678,

(4.50)(2.17)

CO2:1.340,空 気:1。232,02:1.152,Ar:0.520

(1.09)(1ベ 一ス)(0.94)(o.42)

但 し,実 際 は燃 焼 ガ ス(CH4/02燃 焼)が 混 合 す るた め ター ビン作動 流 体 の組 成 お よび 定

圧 比熱 が若 干 異 な り空気 との 比 率 は下 記 の とお りで低 目(CH4,H20,CO2)あ るい は高 目

(02,Ar)と な る。

CH4:3.77,H20:1。90,CO2:1.04,空 気:1.0,02:0.95,Ar:0.46

2.循 環 流体の選定

CO2・CBCの 作業流体(循 環流体)は,「CO2を 主体 とした(CO2+H20)の 混合流体」お よ

び 「0～100℃ の再循環温度領 域で使用す るこ と」を基本仕様 として決 定 した。

.

作業流体は表3.2-7よ り

・出力重視で はCO
2主 体

・効率重視で はH
20主 体

を選択す べきであるこ とが分 る。

但 し,本 研究 では後述 の3.3.2に おいて作業流体組成(CO2,H20)の 最適混合割合 を詳細

に評価す ることとした。

この評価 において はCO2/H20Hybridシ ステ ムを構 成 した上で システムの総熱 量効率 を最

大 とす る組成 を選 定 してい る。このシステ ム総熱 量効率(表3.3-2)の 定義 は前述 のター ビ

ン総熱 量効率 とは異な る。
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3.3CO2/H20Hybridシ ステム

本研究 のCO2/H20Hybridシ ステ ムは,CO2・CBC系 と燃焼蒸気 ター ビン系の2シ ステム をHRSG

(排熱 回収 ボイ ラ)を 介 して結合 した もので,熱 計画お よび運転 ・制御 の し易い システ ムであ

る。別 の観点 に立 てば,こ のシステ ムはCO2・CBCか ら蒸気 の供給 を受 ける燃 焼ター ビンサイ クル

として とらえることができる。作業流体 はCO2・CBCで はCO2,燃 焼蒸気 ター ビンではH20を 各 々

主体 としてい る。

3.3.1CO2/H20Hybridシ ステ ム の構 成

図3.3-1に 本 提 案 の発 電 シ ステ ム の構 成 を示 す 。

C

T

HRSG

CC

圧縮機
タービン

排熱回収ボイラ
燃焼器

(1)通 常複合発電

Fig.3.3-1SystemConfiguration

通 常の複 合発 電では図(1)の 煙突排気 が存在す るが これ を圧縮機(C)入 口に再循環 させ てCO2・

CBCと してい る。CO2/H20Hybridシ ステ ムでは図(2)の 左 半分がCO2・CBCで 右半分 は燃 焼蒸気

ター ビンシステ ムで構成す る。

CO2・CBCの ター ビン(T)か らの排気 は排熱 回収 ボイラ(HRSG)で 熱 回収 され たあ と圧縮機(C)

の吸気側へ 再循環 され る。燃 料 はCH4を 主成分 とす る天然 ガス(LNG気 化ガス)と し,酸 化剤 は

純酸素(02)で ある。燃焼量に相 当す る燃焼 排ガスH20・CO2はHRSGを 経 たあ とシステ ム外へ排 出

す る。

CH4/02燃 焼ガ スター ビン(T)を1350°Cで 作動 させ閉サイ クル を構成す るために,約100°Cの 排

熱回収 ボイ ラ(HRSG)排 気 を圧縮機入 口に導 く。LNG気 化ガス(CH4・ 約80wt%)を 燃 焼器で純02

と 当 量 燃 焼 させ て,そ の 排 気CO2,H20を 再 循 環 流 体 と 混 合 す る。 再 循 環 流 体 組 成 が
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(CO2,H20)ニ(56.5wt%,43.5wt%)の 当量燃焼排気 に対 してCO2が 多い のかH20が 多い のかに よって

システ ム機 器構 成が異な る。

つま り,図3.3-1の 構成のCO2・CBCを 作動 させ るときCO2(又 はH20)濃 度 の違 いは冷やす べ

き再循環流体 の温度つ ま り熱交換 器(HX)の 仕様 に影響 を与 える。 再循環流 体を燃焼排気 と同

じCO2,H20組 成 とす るこ とによって熱交換器(HX)を 省略 し,単 純抽気 での排 出が可能 とな る。

燃焼蒸気 ター ビンシステムではCO2・CBC系 のHRSGと 自系のHRSGの 両方 か らの総蒸気 を主蒸 気

として使用す る。蒸気 ター ビン(ST)の 入 口温度 を高 めるために燃 焼器(CC)で 燃料(LNG気 化

ガ ス)と 純酸素 を燃 焼 させ る。STの 高温排気 は排熱回収ボイ ラ(田 ミSG)で 熱 回収 された あと復

水 ター ビン(CT)作 動条件 に調整 され る。CTの 排気 は復水器(COND)で 真 空に保 たれてお り,

燃焼量 に相 当す る燃焼排ガス(H20,CO2)は 復水 の一部 と不凝縮 ガス(CO2他)と してシステム

外へ排出す る。

蒸気 ター ビンの作動条件 を高性能化す るため にCH4/02燃 焼器 を併 設 した。 この場合,作 業流

体 は蒸気 と燃焼ガ スの混合気 であ り,タ ー ビン入 口温度1350℃ ～1700°Cの 蒸気 ター ビン(ST)

とした。後続の低圧側 ター ビン(CT)は 直前に 自系のHRSGを 併設 して蒸気 を冷却 し,入 口蒸気

条件 を確保 してい る。CO2・CBC系 のHRSGと 自系のHRSGの 両方か らの蒸気で システ ムを構成 した。

順次蒸気圧 力 を高 めた場合や,燃 焼器 を単熱方式(1個)と 再熱方 式(2個)の2通 りとした

場合 につい て効率 向上 を評価 した。図3.3-1で は この単熱方式 を示 してい る。蒸気圧力 を高 め

る場合,超 臨界圧(34.3MPa,350ata)で 作動す る超 臨界圧 ター ビン(USC・T)と そ の後流の1.3～

9
4.3MPaで 作動す る低圧 ター ビン(LP・T)に 大別 できる。ここでUSC・Tを 膨張 ター ビン としLP・Tを

燃焼器付 きの燃焼 ター ビンとす るもの を単熱方 式(SingleCombustion,SC),USC・TとLP・Tを 共

に燃焼 ター ビン とす るもの を再熱方式(DoubleCombustion,DC)と 呼称す る。

COZ/H20Hybridシ ステムの主 な仕様 を以下にま とめて示す。

(1)通 常のガスター ビンでは煙 突へ放 出す るHRSG排 気 を圧縮機(C)吸 気側 に結合 してCO2・

CBCサ イ クル を構成す る。燃焼 はLNG気 化 ガ ス/02で 行 う。

(2)HRSGで 生成す る蒸気 を更 に燃焼器(CC)で 昇温す る燃 焼蒸 気 ター ビンを採用す る。

H20・CBC(H20循 環の閉サイ クルガスター ビン)で の圧縮機 を削除 し,作 動蒸気圧力 は給水

ポ ンプ(P)で 必 要な値 を得 るシステムで ある。

(3)燃 焼で生 じるH20とCO2は システム外へ排 出す る。CO2・CBCで は冷却器(HX)で の排水

と下流抽 気 によって燃焼生成物 のH20とCO2を 排 出す る。燃 焼蒸気 ター ビンでは復 水器 .

(COND)でH20とCO2を 排 出す る。

(4)CO2/H20HybridSystemで の作業流体選定:

①CBCは 圧縮機 を持つガス ター ビンであ るため,発 電出力 の大きいCO2(図3.2-9)を 用

いてCO2・CBCと した。

CO2・CBCに おい ては(発 電出力+HRSG回 収熱)を 燃 料入熱 で割 る総熱量効率(ETR,Energy
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TransferRatio)(表3.3-2)が96%LHV(表3.3-3に 後述)と 通常のGTの88%LHVよ

り高いため発 電効率の若干 の低 さは緩和 され る。

② 燃 焼蒸 気ター ビンは,本 来H20が 作動流体 であ り,(HRSG回 収熱+燃 料入熱)の 総熱

量 に対す る発電効率(表3.3-2)が 高い とい う特徴 を持つ。

燃焼蒸気 ター ビンでは蒸気圧力 を給水 ポ ンプ(P)で 自由に設定で き,ガ スター ビンでの圧

縮機(C)を 持たない分,超 臨界圧 迄の燃焼STを 構成す るこ とができる。 また燃 焼蒸気 タ

ー ビンの排気 がほぼ大気圧 ・約700℃ であるた め 自系 でもHRSGを 持つ こ とと してい る。

但 しこの}盈SGか らの吸収熱 のみでは蒸気生成 のための必要熱量 の約1/2に とどま るた め

系外(CO2・CBC)か ら残 りの1/2の 蒸気 を補 う。

③ 燃 焼排 ガスのシステ ム外への排出 についてはCO2・CBCの 循環流体を圧縮機入 口で(CO2・

H20)と(95wt%,5wt%)の 混合流体 とす ることで冷却器(HX)で の除湿 を しやす くした。

更 な る高性能化検討 の結果 最終的 には(56.5wt%,43.5wt%)を 採用 し,冷 却器 を用 い

ないで,燃 焼生成物 のCO2とH20を 系外へ排 出す るこ ととした。燃焼蒸気 ター ビンの復水

器(CONI))か ら抽気す る不凝縮 ガス は通常の給水 に溶存す る気体 の他 に燃焼排 気のCO2が

加 わ り多量 とな る。蒸 気 と不凝縮 ガスの分離能 力改善が必要 とな り,ま たシステ ム系へ

の不凝縮ガスの排 出動力 の増大 を伴 う。

3.3.2CO2・CBCシ ステ ムの最適イビ

作動流体 であるCO2とH20の 混合流体 の うちCO2濃 度 を100wt%か らOwt%へ 変化 させた場合 の

性能 を図3.3-2に 示す。図中のa,b,c,d,e,f点 は表3.3-iに 述 べた典型的 なCO2(ま たはH20)

濃度点で ある。図中の総熱量効率(EnergyTransferRatio,ETR,LHV基 準)お よび発 電端 効率

(GrossThermalEfficiency,GTE,HHV基 準)は 表3.3-2の 定義 に よっている。表 中の記号②～⑥

は図3.3-3に 記載のエネル ギー入力/出 力 を示す。総熱 量効率 は蒸 気保有熱 と同 じく物理現象 と

して熱 の移動 を扱 うため燃料 の低位発 熱量(LHV)を,発 電端 効率 は燃料の取引き単価表示 とし

て公 に用 い られ ている高位発熱量(HHV)を 用 いて各 々表示 した。

但 し,容 量 は圧縮機 入 口流 体流量1526t/h当 りで考 え,以 下 も同様 で ある。再循環流体が(CO2,

H20)=(56.5wt%,43.5wt%)の 濃度 のd点 の場合,そ の濃度 は量論燃 焼ガスの濃度 そのままであ

るので,そ の系外排 出は単純抽気 で良い。この値 よ りもCO2が 高濃度 の場合 はHZO排 出のために再

循環流体 を冷やす必要が あ り,そ の結果圧縮機へ の再循環温度 が低 下(表3.3-1,a～f:0～
'

100℃)し て燃料投入量が増 え総熱 量効率が低 くな る。一方H20が 高濃度 にな ると復水器 での復 水

とCO2抽 気 が必要 とな り,H20が100wt%近 くで は系外か らの熱 を確保 しない と再循 環で きな くな

り,非 現実的で ある。(CO2,H20)=(56.5wt%,43.5wt%)のd点 の総熱量効率 は最大値96.3%LHV

で従来のガスター ビンの総熱量効率 は88%LHV程 度 でそれ よ り大幅 に高 く,ま た循環流体平衡排

出のた めの熱 交換器 は不 要で,設 備 ・性能 ともに最 良の条件 であ る。 この条件 ではHRSGか ら系

外へ供給 できる熱量 は最大値1.6905×109kJ/hと な り,燃 焼STと の組み合せ にとって も最良の

CO2・CBC条件 とい える。
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Table3.3‐1 SpecificationofCO2・CBCSystem

FiringTemperature

1350°C

Fuel Gas而edLNG(Liquified

NaturalGas)

Component(wt%)
CH4:79.6i-CaHio:0.9

C2H6:15.On-C4H雪o:0.6

C3H8:3.9

HigherHeatingValue

LowerHeatingValue

54,712kJ/kg

49,479k」/kg

Oxygen OZ:100wt%

WorkingFluidComponent(wt%)

〔dequCombu:砦.1°,Stxh:1:hi°mett「喧

a b C d e f

m

H20

100

0

ss

5

70

so

ss.s

43.5

10.1

89.9

0

100

HRSGOutletTemperature
106°C

CompressorInletTemperature

Cdepends°nthew°rkingfluidcomponent

a b C d e f

o°c W°C 82°C 100℃ 100℃ 100℃
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Q2:RecoveredHeatfromCO2・CBC
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O:PowerOutputofCO2・CBC

Fig.3.3-3COz/H20HybridSystemConfiguration

Table3.3-2PerformanceCoefficient

Performance
Coefficient CO2・CBC CombustionST CO21H20Hybrid

GrossThermal
Efficiency

(GTE)

.η、。=.璽L
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④η
2寓o
+o

η=④ ÷⑥O
+OO

EnergyTransferRatio
(ETR)
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(1)CO2・CBCシ ステ ムの 高 温性 能 お よびGT性 能 との対 比

CO2・CBCの ター ビン入 口温度 を1350℃ か ら1500℃ に昇 温 す る ときGT効 率 が 向 上 し同 時

に(電 ・熱)比 率 が 向 上す る。(CO2,H20)ニ(56.5,43.5)wt%で の 向 上 の様 子 を表3.3-3

に示 す。

Table3.3‐3CO2・CBCPerformanceEnhancementbyTITIcreasing

ター ビン入口温度 1350°C 1500°C

発電端出力 192.4MW(°.6926×109k .T/h> 262.3MW(°.9443×109k」/h)

発電端効率(GTE) 29.30°loLHV 33.51%LHV

HRSG回 収熱量 1.5842×109kJ/h 1.7536×109kJ/h

燃料流量 :It/h 56,800kg/h

(電 ・熱)比 率 0.304 0.350

総熱量効率(ETR) 96.31°lo 96.04%

①競 端藤 鸞 留(こ こで①一②×③)

②(電 ・熱)脾 讒 電端出饕 欝 回収熱量

③ 総熱量効率=発 電端出力+HRSG回 収熱量
燃料入熱

通常GTとCO2・CBCの 両システ ムの1350℃ と1500℃ 性能の対比を表3.3-4に 示 す。CO2・

CBCは システ ムか らの排 出流体流 量がGTの 約20%以 下 とな り,そ の結果総熱量効 率がGT

の88%か ら96%へ 向上す る。さらに詳細のデータを表3.3-5に 示す。ター ビン出 口温度 が

GTの588℃/605℃(TIT:1350℃/1500℃)が729℃/770℃ となる他,排 出流体保有熱量

(相対値 〉がター ビン入 口熱量基準で54%/50%か ら9.8%/9.3%に 大幅 に改善 され てい

ることがわか る。
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Table3.3-4作 動 条 件 対 比(通 常GT,CO2・CBC)

構成

タービン入口温度

作動流体

排出流体流量

発驪

流量比

出力

効率

GT

煙突

1350°C 1500°C

空 気

1,557,000kg/h

ベ ース(*)

145.9MW

30.8%HHV,34.1%LHV

1,561,000kg/h

ベ ース(**)

183.7MW

34.5%HHV,38.2%LHV

COa・CBC

.

鹽

篤

1350℃ 1500°C

COa:56.5wt%
HaO:43.5wt%

251,000kg/h

0.161(対*)

192.4MW

26.4%HHV,293%LHV

298,000kg/h

0.196(対**)

279.9MW

30.4%HHV,33.6%LHV

:.



Table3.3-5作 動 条件 対 比(通 常GT,CO2・CBC)

構成

タービン入口温度

作動流体

圧
縮
機

タ
T
ビ
ン

入口流量

入口温度

出口温度

排気流量

入口温度

出口温度

HRSG出 口温度

排出流体流量

攤流体

鮪鱸

発電端

流量比

絶対値
対15℃
相対値

(注1)

出力

効率

燃料量

GT CO2・CBC

煙突

1350 1500 1350 1500℃ 鳳

空 気 CO2:56.5wt%
HzO:43.5wt%

1,526,000kg/h 1,526,00(1kg/h

15℃ 15℃ 100 100

374

1,557,000kg/h

1350

..

106.4℃(注2)

1,557,000kg/h

ベ ース(*)

1.1374×109kJ/h

54.0°10

145.9MW

30.8%HHV,34.1%LHV

31,200kg/h

434 427

1,561,000kg/h 1,777,000kg/h

1500 1350

605°C 729

102℃(注2) 1(}6.4℃(100℃ でCへ)

1,561,000kg/h 251,000kg/h

ベース(**) 0.161(対*)

1.1968×109kJ/h 0.2997XIOgkJ/h

50.2%

183.7MW

9.8%

192.4MW

34.5%HHV,38.2%LHV 26.4%HHV,29.3%LHV

35,000kg/h 47,800kg,/h

475

1,825,000kg/h

1500

770℃

102℃(100℃ でCへ)

299,000kg/h

0.196(対**)

0.3543×109kl/h

9.3%

279.9MW

30.4%HHV,33.6%LHV

・1.11

(注1) 相対値= 排気流体保有熱量

タービン入口熱量(燃 料入熱+圧 縮機動力)

において,圧 縮機動力は157.2MW/180.8MW/196.8MW/222.7MW
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(2)CO2・CBCシ ステ ムの構成

①CO2:100wt%(H20:0wt%)の 作業 流体CASEaの システムは図3.3-4の とお り構成 し

た。微量の燃 焼排 出ガスであ るH20を 凝 縮す るためには深冷熱源 を用いて冷却す る必要

が あ り,燃 料のLNGの 気化潜熱 を利用 した。熱 交換器(HX)とLNG蒸 発器(VAP1)の2

箇所 か ら排水 を行い,H20:0wt%の 出 口再循環流体 か ら燃焼 生成 によるCO2を 排出す る。

②CO2:95wt%(H20:5wt%)の 作 業流 体CASEbの システムは図3.3-5の とお り熱 交換

器(Hx)で の凝 縮水 を予め排水 し,残 りのH20と 燃 焼生成 のCO2は 再循環 ライ ンか らの

一括抽気 によ り排出す る
。CO2:70wt%(H20:30wt%)のCASEcも 同様 のシステム を構

成 した。

③CO2:56.5wt%(H20:43.5wt%)の 作業流 体CASEdの システムは図3.3-6の とお り燃

焼器(CC)で のLNG気 化 ガス と純02の 当量燃焼 の排気組 成に合わせ てい るため,排 熱回

収 ボイ ラ(HRSG)～ 圧縮機(C)の 間の接続 ダク トか ら単純 に抽気す るだけで燃焼生成

物 を排出 できる。

④CO2:10wt%(H20:90wt%)の 作業流 体CASEeの システムは図3.3-7の とお り排 出す

べ きCO2量 を復水器(COIVI))に 導 くことで設計 してい る。

従 って余分のH20も 伴 って蒸気 ター ビン(ST)を 作動 させ,復 水器 では余分 の復水 が

出 るためそれ を後置ボイ ラ'(HRSG#1B)で 再び水蒸 気に して再循環流体に参入 させ る。

燃 焼生成 のH20とCO2は 復水器 か ら排 出す る。

⑤CO2:0wt%(H20:100wt%)の 作業流体CASEfの システ ムは図3.3-8の とお りシス

テ ム全流体 をST発 電 に利用 し復水す る。復水 を再 び水蒸気 にす るには系内の熱量(HRSG

#1)で は不足のた め約1/2の 熱 量 を系外(正RSG#2)に 求 め る。

LNG気 化ガス
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∠
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弾
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彡
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Fig.3.3-4
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排水(#2)排 水㈲)

COa-CBC(CASEa)
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LNG気 化ガス

↓
抽気C°Z+H2°

u)

v'

排 水(#1)

:

韋

†

抽気(COZ+HZO)

Fig.3.3‐5CO2・CBC(CASEb&c)

LNG気 化 ガス

Fig.3.3‐6CO2・CBC(CASEd)'

LNG気 化 ガス

Fig.3.3‐7CO2・CBC(CASEe) Fig.3.3‐8COa・CBC(CASEf)

..



(3)CO2・CBCシ ステ ムの総熱量効率 と循環流体の関係

前述の(CO2,H20)排 出の際 のシステム損失の状況 を表3。3-6に 示す。

再循環流体の圧 縮機 入 口温度 は冷却 との関係 で決ま り,a-0℃,b‐50℃,c-82℃,

d・e・f-100°Cで あ る。

また総熱 量効率(ETR)は,a-90%LHV,b‐93%LHV,c-95%LHV,・ ・%LHVと

d条 件 まで は順調 に増加す るが復水器 を作動 させ るとe-53%LHVに 低 下 し,他 系か ら蒸

気 を導入す るfで は32%LHVに 大幅に低 下す る。

再循環流体(タ ー ビン作業流 体)に 燃料/02の 燃 焼排 気が合算 されたのち系外へ排 出す

るた めの流体処理 の状況 を表3.3-7に 詳 しく述べてお く。

(4)CO2・CBCと 通 常STと の複合発電 プラ ン ト

CO2濃 度 の変化 に対応 して在来STと の複 合発電 プラン トの効率 を試算 した。

圧 縮機 入 口吸気流量 が1526t/h一 定の重量流 量基準 での性能 を表3.3-8に,容 量流 量

1,261,000m3/hを 基準 とした ときの性 能 を表3.3-9に 示す。

CO2濃 度 に対す る容積 流量基準で の性能変化 を図3.3-9に 示す。CC効 率は条件d(CO2

56.5wt%)で 最大値 とな る。図3,3-10は 空気サイ クル のGTお よびCCの 性能 に対 してCO2

濃度a～dで 改善 され る性能 を対比 して示 した。条件dのCO2・CBCと 在 来STと の複合発

電プ ラン トは,効 率 を条件Aの 通常の複合発電 プラン ト(空 気開サイ クルGTと 在来ST)

とほぼ同 じ値 まで上昇改善 でき るこ とが分かる。

これ はCO2・CBCそ の ものの効率 はGTよ り低 いものの排熱回収 ボイ ラ(HRSG)で の回収

熱量 が多 くST出 力 が増加 し,そ の結果通常の複合発電 プラン トなみ の効率に改善 したもの

である。

t
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Table3.3-6CBCシ ス テ ム構 成

システムNo,

条件No,

圧
縮機

入
口

組成
COZ

H20

温度

シ
ろ

三

蔑

シ

ろ
ア
ム
損失

抽気損失

冷却損失

復水損失

総熱量効率

CASE1

a

100wt%

Owt%

0℃

減温量:大

(排水潜熱)

大

90.2°kL}IV

CASE2

b

95wt°k

Swt%

50°C

C

70wt°k

30wt°h

82°C

(黝 鰤)

減温量:中

(排水潜熱)

中

93.0°kL}IV

減温量:小

(排水潜熱)

小

95.0°kLH9

CASE3

d

56.Sw6°k

43.Swt%

ioo°c

:

r(
co,十x=o)

減温量:小 小

(H20は 気体のままで排出)

(な し)

96.3%L}IV

CASE4

e

10,iwt°,fo

89.9wt%

1000

CASE5

f

Owt°k

IOOwt%

100

COZ排 出圧縮機動力(対 応:燃 料流罍)

小

(小)

系内

小

中

(中)

系内

中

52.7°kLHV

大

(大)

系内

大

大大

大大

大大

32,3%伍V
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Table3.3-7CO2・CBCの 総熱 量効率 と循 環流体の 関係

シtiANa. CASE1 CASE2

,

CASE3 CASE4 CASE5

条件No. a b a e f

圧
縮
機入

口
循
環流

体

Cdl:100wt%
Cdt:95wt%

HqO:Swt%

COZ:56.Swt%

H20:43.Swt%

COZ:10.lwt%

H20:89.9wt%
HZO:100wt%

0℃ 50°C iooc 100C too°c

100%

AICOZ
95%5%

AI__CO2ra.H2°

56.5wし%43,5wし%

AC・ ・ 彡簿 彭

10.lwt%89.9wし%CO
Z

・㌦繃 舅吻
ioo%

・獗 娩嬲

タ

1

髭
r

器
..,

十 手 十 十 十

Bs6s

,

笏 Bs6s 珍 565B 笏 B563 笏 B1363笏.. .. 卩 F

C 2 c 勿 C 嬲 c 畑 C %//////////////

◎

響

タ
ー
ビ
ン
排
気処

理

凝艪水を再び蒸気へ 水を再び蒸気へ、

彪 ・ 鑞
」

i脇
騨;° 彡彡%

彡畑.黝
途中排気 」

丁
冒 一 一.

1.

復水を再び蒸気へ

f

DI
'

匝 ▲

1

後流で抽気

i 途中排気
ど 二.

D
甲

■ ● ■

i

i

1全排気冷却1
「 一1

色:.

YD}・
冷却後の気帽 凝給水
のまま欄(凝 縮損失》

尸

冷却後の気相
のまま抽田

1・ 一
17「 」

による
水分凝縮{全量)
及び水分抽出

D・ 『1・

5

._一 」 全量排気 、嘲一

↓

ISTI

↓

排気全量 、
を復水..

(復水器損失}復水器から ・

抽気 復水から

分岐抽出

↓

後流で抽気
個 一組成)

`4

1

分騨Ll

幽 暴 誌
抽気 分岐抽出(復水損失)

シ
ス
テ
ム
損失

冷却損失
全排気冷却(低 温)
→水分凝縮(全量)(水分少) 冷却損失

会排気冷却(中 温)
→水分凝縮(一 部) 冷却損失 : 冷却損失

一部排気の復水

→水分凝縮全量(水分少) 冷却損失
全排気の復水
→水分凝縮全量(水分多)

纏あ黷
への損失 (

低温CO2

凝縮水(少)
轡あ黷
への損失

中温排気

(凝縮水(少 少)
纏ム黷
への損失

高温排気 彎 ム葉蛮
への損失

復水器からのCOZ抽 気
と排水(少) 驪 森

復水器からのCO2抽 気
と排水(多)

覊
量

90.2%LHV 93.0%LHV ・96 .3%LHV 52.7%LHV 32.3%LHV



Table3.3‐8複 合発電プ ラン ト性能(重 量流量基準吸気)

重量流量 1,526t/h

仕様
条件

No.

発電部分基準(注2) 総熱量基準

効率(LHV)

供給可能熱量

(X109k」/h)重量流量基輩出力
(GT+復 永錣)※ 効率(HHV)

co2・cBc a 181.3MW 27.52% 90.24% 1.2825

b 171.6MW 26.58% 92.98% 1.3368

C 196.5MW 26.74% 94.97% 1.5643

d 205.3MW 26.49% 96.31% 1.6905

f X357.4MW

=267 .2+90.2

36.51%

(GT27.29%a}

52.69% 0.3927

h (※459.6MW)

=280.5+179.1

(44.91%)

(GT27.41%)

(32.71%} (△1!7274)

空気

開サイクル
A 145.9MW 30.81% 88.04% 0.83208

(注1)h点 は他系 か らの入熱 によって数値変化幅 を持つ。

(注2)発 電部分基準出力=GT出 力+復 水ST出力。(HRSGは 熱量評価)

Table3.3-9複 合発電 プラン ト性能(容 積流量基準吸気)

容積流量
1,261,000

m3/h

(注1)

仕様
条 件

No.

容 積 流 量基 準(1,260,78Q1113n1)

CC出 力 CC効 率(HHV) GT出 力 GT効 率(LHV) GT効 率(HHV)

CO2・CBC a 476.2MW 47.40% 276.6MW 30.43% 27.52%

b 438.2MW 47.70% 244.1MW 29.39% 26.58%

C 379.1MW 48.74% 209.2MW 29.57% 26.74

d 353.9MW 48.74% 192.4MW 29.30% 26.49

f 204.OMW

襭 水ST59.9MW
(
31.38%

40.59%

(復 水ST含)

177.4MW

鋤ST599MW
1
30.18%

40.37%

(復 水ST含)

(
27.29%

36.51%

(復 水ST含)

h

(175.1MW1+iST111.8MWJ(
27.41 _%

44.91%

(復 水ST含)
儼躑 (

30.31%

49.65%

(復 水ST含)

(
27.41%
....,

(復水ST含)

(注1)h点 は系外 か らの入熱 を必要 とす る。
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Fig.3.3-9(CO2,H20)濃 度 と容 積 流 量 基 準 のCO2・CBC性 能 の 関係
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Fig.3.3-10CO2・CBcと 在 来sTと の複 合発 電 フ ラ゚ ン ト性 能
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3.3.3燃 焼蒸気 ター ビンシステ ムの最適化

HRSGで 生成 した蒸気 で通常の複合 サイ クル発電の蒸気ター ビンを作動 させ る と,蒸 気 入熱 に

対す るその発 電 出力 で示 す発 電効率 は小 さく約37%で ある。 これ はター ビン入 口蒸 気 が(約

・540℃,15.2MPa)と 低い ためで,蒸 気 ター ビンの高性能化のために本研究では図3.3-1に 示 した

よ うに燃 焼器(CC)でLNG気 化 ガス と02の 燃焼 を行 わせ,そ のために入 口温度 を通常のガスター ビ

ン並み(1350°C,1500℃)に 高 める他,圧 力 も高めて最高は超 臨界圧34.3MPaと2倍 程度 に昇圧

す る。 この場合蒸気 ター ビンは高圧 ター ビン(HP・T)・ 低圧 ター ビン(LP・T)・ 復水 ター ビン

(CT)の3種 の組 み合 せ を基本 とし,適 宜中圧 ター ビン(IP・T)を 用い るこ ととした。蒸気 タ

ー ビンの仕 様 は表3 .3-10の とお りで燃料 と酸素 は表3.3-1と 同条件 としてい る。

燃 焼蒸 気 ター ビンの燃 焼 において はガ スター ビン と同様 にター ビン翼 の冷却 が必要 とな るた

め,上 流 の蒸気 の約20%を ター ビン入 口で分岐 して冷却にあて ることで評価 してい る。

表3.3-2の 燃焼 蒸気 ター ビン性能分析指数 の発 電端効 率(GTE,GrossThemalEfficiency)

を用いて効率改善 の状況 を図3.3-11に ま とめた。この図は主蒸気流量が1526t/hの 場合の発 電端

出力 と発電 端効 率の関係 を示 した もので あ る。 図中併記 のター ビン構成 は表3.3-10の 各 呼称 に

よってい る。

蒸気圧力 はA点1.3MPa,B点2.1MPa,C点4.4齟aに 順次高めD点 以降 は34.r.の 超臨界圧 と

した。A点 ～E点 は単熱 方式(SC,SingleCombustion)で,高 効率 を得 るためにG・H点 は再

熱方式(DC,DoubleCombustion)と してい る。 その結果H点 で約62%LHVの 高性能 が得 られ た。

Table3.3-10SpecificationofCombustionSteamTurbineSystem

TurbineInletTemperature 1350°C,1500°C,1700°C

SteamPressure 34.3MPa(max)

CombustorLocation SingleCombustion(SC)

・LowPressureTurbine(L ,P・T)

DoubleCombustion(DC)

(:i71tra-supercriticalPrLowPressureTurbin:s濫聖b血e(USC'D

TurbineType ConventionalSteamTurbine

・Ultra-supercriticalPressureTurbine{USC-T)

・HighPressureTurbine(HP・T)

・IntermediatePressureTurbine{IP・T)

・CondensingTurbine(C・T)

ConbustionSteamTurbine

Ultra-supercriticalPressureTurbine(USC・T)

・LowPressureTurbine(LP・T}

CondenserVacuum 11ti'.
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Fig.3.3-11CombustionSteamTurbinePerformance

作動流体条件および蒸気タービンの構成(改 善の順序)は 以下のとお りとした。

(1)蒸 気条件 流 量:1526t/h

圧力/温 度:最 大(34.3MPa,593℃)の 超 臨界 圧

復 水 器真 空:0.005MPa(722mmHgv)

燃 焼STの ター ビン入 口温 度:1350,1500℃

(2)蒸 気 タービンの構成

A点B点

条件No.A点 ～H点 で示 す。

〈単 熱方 式>

C点D点 ・E点

〈再熱方式>

G点 ・H点

燃焼ST(1350℃) 高圧ST 高圧ST 超臨界圧ST 超臨界圧燃焼ST(1350℃)

復水ST
》
燃焼ST(1350℃)

〉

中圧ST
シ
中圧ST

》

中圧ST

復水ST 燃焼ST(1350℃) 燃焼ST(1350℃),(1500℃) 燃焼ST(1350℃)(1500℃)

復水ST 復水ST 復水ST

蒸 気 ター ビン構成 の詳細 を表3.3-11に 示す。
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Table3.3-11燃 焼STシ ステ ム構 成

システムNQ

条 件NQ

タービン入口温度

S
T
構成

高圧ST

低圧ST

シ

ろ
ア
ム

構成

CASE1

A

1350°C

燃 焼ST13.333ata(1308kPa)

復 水ST(1.°332ata101.322kPa)

LNG気 化ガス

CASE2

B

1350°C

高 圧ST(21.65ata2123kPa)

燃 焼ST13.333ata(1308kPa)

1.0332ata
鮴ST(101.322kPa)

CASE3

C

1350°C

高圧ST磁 論 、)

中圧ST'45.Sata(4462kPa)

轍ST13.333ata(1308kPa)

復 水ST(1.°332ata101.322kPa)

CASE4

D

1350°C

E

1500°C

鸛 界 圧ST(35°ata34323kPa)

中 圧ST45.6ata(4462kPa)

燃 焼ST13.333ata(1308kPa)

復 水ST(1,°332ata101.322kPa)

CASES

G

1350°C/1350°C

H

1350°C/1500°C

超臨界圧燃焼ST 350ats(34323kPa)

燃 焼ST13.333ata(1308kPa)

復 水ST(1.°332ats101.322kPs)



次に超 臨界圧 蒸気 を用 い る ときの燃 焼蒸 気 ター ビンにつ いて単熱 と再熱 の発 電端効 率(GTE)

の改善状 況を表3.3-12に 示す。単熱 方式(SC-ST)で はD点 とE点,再 熱方式(DC-ST)で はG点 と

H点 の性能 を示 している。

GTEの 絶 対値 は単熱方 式の方 が小 さい が,タ ー ビン入 口温度(TIT,TurbineInletTemperature)

の向上 に よる効 率改善幅 は単熱方式 の方が大きい ことが分 る。

次 にCO2・CBCと 燃 焼 蒸 気 ター ビ ンの複 合 に よ るCO2/H20Hybridシ ステ ム の性 能 詳 細 を表

3.3-13,表3.3-14,表3.3-15に 示 す 。

ま た,プ ラ ン ト発 電 端 効 率 と発 電 端 出力 へ の 改善 効 果 を図3.3-12に 示 す 。

G点 対 応 シ ス テ ム性 能 が表3.3-13と 表3.3-14,H点 対応 シス テ ム性 能 が 表3.3-15で あ る。

G点 に お い て は共 通 の燃 焼 蒸 気 ター ビンサ イ クル ・再 熱 方 式(1350℃/1350℃)に 対 してCO2・

CBCが 作 動 流 体 組 成(CO2,H20)=(95wt%,5wt%)の 場 合57.3%㎜ で あ る が組 成 の 最 適 値

(56.5wt%,43.5wt%)に お い て57.8%HHVに 向 上す る。

Table3.3‐12GrossThermalEfficiencyofCombustionSteam .Turbine

システム型式
タゼ ン入口漲 単熱方式(SC-ST) 再熱方式(DC-ST)

1350 53.8%LHV(D) 60!ア%LHV(G)

1500°C 55.9%LHV(E) 62.3%LHV(H)

効率改善幅
+2.1%(絶 対 値)

+3.9%(相 対 値)

+1.6%(絶 対 値)

+2.6%(相 対 値)

但 し・伍 ・SSTh・renalEffi・i…y(GTE)=鯀 か らの導 入熱 量+燃 料 入熱(LHV灘)

(参 照:表3.3-2丿

ST出 力

Table3.3‐13COz/H20HybridSystemPerformancewithCOz・CBCWorking

Fluid(CO2,HzO):(95wt%,5wt%)andSystemTITof1350°C

システム

COZ・CBC 燃焼蒸気 タービンサイクル

1350`
超臨界圧燃焼
ST(1350`0

燃焼ST

(玉350℃)
低圧ST

発電端出力 281.SMW 589.OMW 639.7MW 198.9MW

燃 料

(天然ガス)
69,700kg/h 68,100kg/h 58,600kg/h 一

発電端効率

(各タービン〉
26.6%HHV 56.9%HHV 71.8%HHV 一

総熱量効率 93.0%LHV 60.7%LHV(移 動 熱 量:21.9×IOBkJ/h)

総 出 力

総 燃 料

総合効率

1709.1MW

196,400kg/h

57.3%HHV

..



Table3.3‐14CO2/H20HybridSystemPerformancewithCO2・CBCWorking

Fluid(CO2,H20):(56.5wt%,43.5wt%)andSystemTITof1350°C

システム

COz・CBC 燃焼蒸気タービンサイクル

1350
超臨界圧燃焼
ST(1350)

燃焼ST

(1350`0
低圧ST

発電端出力 266.3MW 589.OMW 639.7MW 19S.9MW

燃 料

(天然ガス)
66,100kg/h 68,100kg/h 58,600kg/h 一

発電端効率

(各タービン)
26.5%HHV 56.9%HHV 71.8%HHV 一

総熱量効率 96.3%LHV 60.7%LHV(移 動 熱量:21.9×108kJ/h)

総 出 力

総 燃 料

総合効率

1693.9MW

192,800kg/h

57.8%HHV

Table3.3‐15COz/H20HybridSystemPerformancewithCOz・CBCWorking

Fluid(CO2,H20):(56.5wt%,43.5wt%)andSystemTITof1500°C

システム

caz・cBc 燃焼蒸気タービンサイクル

1500`
超 臨界圧燃焼

ST(1350`C)

燃 焼ST

(1500℃)
低圧ST

発電端出力 286.SMW 540.4MW 805,9MW 204.1MW

燃 料

(天然ガス)
62,㎜kg!h 68,130kg/h 74,140kg/h 一

発電端効率

(各タービン)
30.4%HHV 52.2%HHV 71.5%HHV 一

総熱量効率 96.0%LHV 62.3%LHV(移 動 熱 量':19.2×108k7/h)'

総 出 力

総 燃 料

総合効率

1836.9MW

204,270kg/h

59.2%HHV

(i(3

発
電
端

効50
率

(%)

HHV40

30

燃焼蒸気タービン蒸気流量 1,526t/h

タービン入口温度 1,350,15QO'C

COZ・CBC

(CCz>N:O)

(56.5wi%,43.5wi%)

(95.Owt%,5.OwM/o)
(e点)

1(?Oq 15()0 20()0

発電端出力(MW)

Fig.3.3‐12GrossThermalEfficiencyofCO2/H20HybridSystem

一100



3.3.4CO2/H20Hybridシ ステ ムの最適化

以上 では構成 システムのCO2・CBCシ ステ ムと燃焼蒸気 ター ビンシステ ムを個別 に論 じた が,

両者 を複合 したCO2/H20Hybridシ ステ ムにつ いて以 下に述べ る。

CO2・CBC側 の駅SGを 介 して両システ ムが結合 してい るため,そ の交換熱量 の大小 がシステム効率

に関係 す る。図3.3-3に おいて交換熱量② を加味 したCO2・CBCの 総熱 量効率(ETR)(⑥+②)/

⑤ は本来の発 電端効率(GTE)⑥/⑤ に回収熱の値 ②/⑤ を上のせ した値 である。

通常の空気作動の開サイ クルガスター ビンのE'IRは88.0%LHV程 度 で,こ れに対 してCO2・CBC

システ ムは90%を 超 える高い値 を持 つ。一方燃焼蒸気 ター ビンはCO2・CBCか ら導入す る熱量② と

燃料投入熱量③に対 して発電端効率(GTE)④/(②+③)が 定義で きる。通常の複合サイ クル

発 電の蒸気 ター ビンは燃料 を投入 しないため,④/② が一般 に用 い られ てい る蒸気 ター ビン効

率で約37%で ある。燃焼蒸気 ター ビンは燃料投入 によって約62%LHVま で この効率 を高めるこ と

ができる。つま り従来 の複合サイ クル発電 ではガスター ビン側88%LHVと 蒸気 ター ビン側37%の

組 み合せ であるのに対 して本研 究の方式で はCO2・CBC側90%LHV以 上 と燃焼蒸気 ター ビン62%LHV

の組み 合せ を実現 してい る。

主要機器 の作動条件 は表3.3-16の とお りで,CO2・CBCシ ステ ムのター ビン入 口温度 な らびに

燃 焼蒸 気ター ビンシステ ムの低圧 ター ビン(LP・T)入 口温度 を高 める ときは圧力 も高めて膨 張

比 を増 加 し,タ ー ビン排気 を700～800℃ 程度 の値 としてい る。

CO2/H20Hybridシ ステ ムにお いてはCO2・CBCシ ステ ムの ター ビン入 口温度 と燃焼蒸気 ター ビン

システ ムの低圧 ター ビン入 口温度は協調 をとって同 じ温度 としてい る。

なお再熱方 式(DoubleCombustion)で は超臨界圧 ター ビン(USC・T)と 低圧 ター ビン(LP・

T)の 入 口温度 を組み合せ表示 してお り,USC・T入 口は常 に1350℃ 一定値 にて1350/1350℃,1350

/1500℃,1350/1700℃ の3通 りの条件で評価 した。

CO2・CBCシ ステ ム と燃焼蒸気 ター ビンシステム を単純 に複合 した場合,各 システ ム内のHRSG

での回収熱 は全て蒸気 に転換 して運用 す るこ とになる。 システ ムの最適化 にお いては単純複合

よ り高効率 をえることを 目標 に,HRSGの 回収熱 をまず燃料 ・酸素 の予熱 に使 うこ とでこれ らの

消費量 を節減 し,次 に燃料 ・酸素に回収 した熱 を膨 張ター ビンで動力転換す ることでシステ ム

の出力 ・効率の向上に寄与 させた。

残 りのHRSG回 収熱 で燃 焼蒸 気ター ビン作動用 の蒸気生成 のた めの熱バ ランスを とってい る。

101



Table3.3-160peratingConditionofCO2/H20HybridSystemComponents

CO2M20

HybridSystem
OperatingCondition

CO2・CBC

System

Compresses

Inlet

Ou制et

Temp.

Press.

1QO°C

O.1MPa

Press. 1.4MPa 2.OMPa 4.3MPa

Turbine
Inlet

Ou制et

Temp.

Press.

1350°C

1.3MPa

1500°C

1.9MPa

1700°C

4.2MPa

Press. O.iMPa

Combustion

Steam

Turbine

System

SystemNameofSC-ST 1350°C 1500°C 1700°C

SystemNameofDC-ST 1350/1350°C 13501150Q°C 恰50/1700°C

USC・T

Iwith/with°utl

lcombustionJ

Inlet

Ou冠et

Temp.

Press.

590°C{withoutcombustion)

1350°C(withcombustion)

34.3MPa

1.3MPa 1.9MPa 4.2MPa

LP・T

(、。withmbusti。,)

Inlet

Outlet

Temp.

Press.

1350°C

1.3MPa

1yM'C

1.9MPa

1700°C

4.2MPa

Press. 0.1MPa

Condensing

Turbine
Inlet
Temp.

Press.

cos°C

O.1MPa

Condenser Press. 0.005MPa

3.3.4.1CO2/H20Hybridシ ステムの効率向上技術

システ ム効率 向上は,ま ず ター ビン入 口温度の上昇(お よびそれ に伴 う圧力増加)が 第1義

であ り,CO2・CBCは3.3.2節 に,燃 焼蒸気 ター ビンは3.3.3節 にその効果 を説明 した。本研究 では

更に

技 術(1)燃 料 ・酸素の予熱

技 術(2)補 助流動体 ター ビン(AT)(メ タ ンター ビン(M-T)/酸 素ター ビン(0-T))

技術(3)回 収型翼 の採用

の改善技術 を併用 して効 率向上 を図 った。図3.3-13に 単熱 システ ム,図3.3-14に 再熱 システ ム

でのCO2/H20Hybridシ ステムの構成お よび改善技術 を示す。'

技術(1):約450℃ 迄燃料お よび酸素 を予熱す ることで燃料節約 を図 る。 この方式 はCO2・CBCと

燃 焼蒸 気 ター ビンの両 システムに採用す るが,超 臨界圧燃 焼蒸気 ター ビンでは400℃ として

若 干低温供給 と している。(図 中 技術(1))ま ず技術(2)の ためにCO2・CBC/燃 焼蒸気 ター

ビンの両 システ ムの酸素 と燃 料 を熱 交換器E1・E3/E5・E6・E8で 昇温 したのち補助流体 ター

ビン(AT)を 作動 させ その排気 をE2・E4/E7・E10で 加熱 して所定の温度 に仕上 げる。
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技術(2):LNG気 化 ガス(LNG)と 酸素(L-OZ)は 共にポ ンプ(P1,P2)で36.1'.に 昇圧 したのち

CO2・CBC/燃 焼蒸 気ター ビンの両システムの酸 素 と燃料 を熱交換機E1・E3/E5・E6・E8・E9

で蒸発 し,加 熱 して所定の温度約400℃ ま で昇温 した後 メタンター ビン(M-T)と 酸素ター ビ

ン(0-T)を 作動 させ その排気 を再 びE2・E4/E7・E10で 加熱 して所定の温度450℃ に仕上 げ

る。

M-Tと0-Tで は入 口圧力34.5MPaか ら4.5MPaの 低圧 ター ビン圧力迄膨張 させ て動力 を回収す

る。 ここに燃料 ・酸素はいずれ も液相でポ ンプ昇圧 す るためその動力 は5～10kWと 極 めて小

さい。(図 中 技術(2))

技術(3):通 常のター ビン冷却では翼 を冷却 した流体 はター ビン通路に流入 させ るが,こ の回収

型翼で は流体 をター ビン通路 に開放せず超臨界圧 ター ビン(USC・T)や 低圧 ター ビン(LP・T)

の燃 焼器(CC)入 口に再循環 している。

復水器(COND)の 復水 を給 水ポ ンプ(P3)で 昇圧 し,熱 交換器(E11,E12)で 得た蒸気 を,燃

焼器 を持つUSC・TやLP・Tの 翼で600～700℃ 程度迄昇温 したのちCC入 口に投入す る。 これ

によ り中圧 ター ビン(IP・T)排 気540℃ を混合加熱す ることで燃料投入量 を節減す ることが

でき る。(図 中 技術(3>)

以上の熱利用 の結果,燃 焼蒸 気 ター ビンで は低圧ター ビン(LP・T)の 排気か らHRSG#1で 蒸 気

を生成 し,ま たCO2・CBCで はター ビン(T)の 排気 か らHRSG#2で も蒸気 を生成 しその合計を超 臨界

圧 ター ビン(USC・T)の 作動蒸気 と9してい る。
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3.3.4.2CO2・CBCに お け る効 率 向上 技 術 の効 果

通 常 の 空気 作 動 の 開 サ イ クル ガ ス ター ビン に対 す るCO2・CBCの 性 能 の 改 善状 況 を図3 .3-15に

示 す 。点(1,2,3)ほ 通 常 ガ ス ター ビン で,タ ー ビン入 口温 度 が 各 々1350℃,1500°C ,1700℃ の性

能 を 示す 。 再循 環 流 体 の(CO2,H20)組 成 に つ い てCO2・CBCの 性 能 を示 した のがa・b・c・d

でCO2を100wt%か ら95,70,56.5wt%へ 変化 させ た も の で あ る。dの 組 成 は,(56.5wt%,43.5wt%)

の採 用値 で ター ビ ン入 口温 度 が1350℃ の場 合,d'とd"は 各 々1500℃ ,1700℃ の 高温 性 能 で あ る。

前 述 した効 率 向上 技 術 を用 い る と① ・② ・③ の効 率 とな る。

① ・② ・③ の総 熱 量 効 率 がd,d',d"よ り低 下 す る の は ター ビン排 気 熱 の一部 を技 術(1)(2)

で 用 い る た めHRSGで の利 用熱 量 が減 少 す る こ とに よ る。 こ こ に,圧 縮 機 吸 気 流 量 は1526t/hと し
,

総 熱 量 効 率 と発 電 端 効 率 は 表3.3-2に 基 づ いて い る。CO2・CBCの 発 電 端 効 率 は35～45%LHV ,総 熱

量 効 率 は95%LHV前 後 で あ る。燃 料 ・酸 素 の予熱 と補 助 流 体 ター ビン の2技 術 をCO2・CBCに 採 用 し

た 場 合,通 常 の 空気 作 動 の 開 サイ クル ガ スター ビ ン以 上 の効 率 を各 々 達 成 で き,こ れ ら2技 術 の

有 効 性 が確 認 で き た。

3.3.4.3燃 焼蒸 気 ター ビンにお ける効 率向上技術の効果

前述 の3技 術(1)(2)(3)を 採用 した燃焼蒸気 ター ビンでは,出 力 と効率 の大幅な上昇 を図 るこ

とができた。 再熱(1350℃/1700℃)で は66.5%LHV,単 熱(1700℃)で は60.7%LHVが 得 られ

た。

その状況 を図3.3-16の ⑪,⑧,⑪,◎,⑪,① 点 で示す。最 大効率 は,① 点 の再熱(1350℃

/1700℃ 〉 では66.5%LHV,E点 の単熱(1700°C)で は60。7%LHVが 得 られた。

図3.3-11に 比べ るとST発 電出力お よび効率が増加 し,そ の傾 向は再熱方式で顕著 である。 同

じター ビン入 口温度 に対 してはD,E,G,H点 お よび◎,⑤,◎,⑪ 点 にて改善状況 を表 した。

ここに主蒸 気流量,つ ま り給水流 量 は図3.3-11お よび図3.3-16と もに共通 の1526t/hと してい る。
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Fig.3.3-15 EffectofAdditionalTechnologieson

COz・CBCPerformanceEnhancement

Fig.3.3-16EffectofAdditionalTechnologiesonCombustionSteamTurbine

PerformanceEnhancement
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3.3.4.4CO2/H20Hybridシ ステ ムにお ける効率向上技術 の効果

CO2・CBCシ ステムのター ビン(T)な らび に燃焼蒸 気ター ビンシステ ムの低圧 ター ビン(LP・T)

のター ビン入 口温度 は同一値 で運 用す る。図3.3-17に これ らのター ビン入 口温度 によるシステ

ム効率の改善の状況を示す。

技術(3)は 共通条件 として適用 し,技 術(1)・(2)お よび単熱 方式(SC)・ 再熱方 式(DC)の 効

果 を表 している。CO2・CBC700℃ 点③(図3.3-15)と 再熱方 式(1350℃/1700℃)図3.3-16の 点①

の組合せ③+① 点が63.9%㎜ の最 高効 率 を示す。これは,③ と単熱(1700℃)図3.3-16の 点⑪

の組合せ③+⑪ 点61.9%㎜ に対 して絶 対値 で+2%の 大 輻な改善 である。前述の技術(1)・(2)

を用いない ときの単熱(1700°C)シ ステ ム点Sは60.2%Dで あるがこれ は図3.3-15の ① と低

温 の再熱方式(1350℃/1350℃)に(1)～(3)の 技術 を採用 した図3.3-16の ◎点の組合せ①+◎ 点

の60.1%㎜ に匹敵す る。 これ はター ビンが低 温作動 で も再熱方式 と技術(1)～(3)に よって高

温 での無対策システ ム(単 熱方式)な み の高効率 を発揮 できる ことを示 してい る。

さらに特徴 を示せ ばCO2/H20Hybridシ ステムの効 率はター ビン入 口温度 に対 して1次 関数的

に増加 してお り,高 温化 が効率 向上 に有効 である ことが分 る。 閉サイ クルプ ラン トの場合,CO2

抽気圧 縮機 動力 と酸素製造動力 を差 引いた効率 を評価 しなけれ ばな らない。表3.3-17お よび表

3.3-18に 単熱方式 と再熱方式 の有効発電効 率 と比 出力 を示す。有効発電効率 は発電端 出力 か ら

CO2抽 気圧縮機 動力 と酸素製 造動力 く0.319kWh/Nm3-OZ)を 差 引いた有効 出力の投入燃料発熱量 に

対す る比率で表 わす。有効比 出力 は圧縮機吸気流量 に対す るプラン ト有効出力で示す。

空気作動の開サイ クル ガスター ビンを用 いた通 常の複合サイ クル発電の性能を表3.3-19に 示

す。表3.3-17,表3.3-18のHybridシ ステ ムの有効比 出力 と有効発電端効率 はいずれ も表3.3-19

よ りも良好であ る。

構 成機器仕様 を表3.3-20に,CO2/H20Hybridシ ステムの条件 を表3.3-21に 示す。

プ ラン ト発 電端効率 の改善傾 向は燃焼蒸気 ター ビンの再熱方式 と単熱方式で異な るた め,

各々 について図3.3-18,図3.3-19に 示す。但 し,こ れ らの図はプラン ト比 出力(プ ラン ト発電

端出力/CO2・CBC圧 縮機 吸気流量)で 示 してお り,追 加技術 も供記 した。

また点A(1350℃),点B(1500℃),点C(1700℃)で 空気作動 の開サイ クルGTと 三圧蒸

気 ター ビンの通常の複合 サイ クル発 電性能 を併記 してい る。

図3.3-20は 両方式 を合併表示 した ものであ る。

参考まで に図3.3-18と 図3.3-20の 中に3.3.2節 で述べた(CO2,H20)組 成改善 による性能 向上

a→b→c→dを 併記 した。 この図に よって高効 率のためにd組 成(56.5wt%,43.5wt%)を

選択 した こ とは最適 であ ることが改 めて確認 でき る。
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Fig.3.3‐17EffectofAdditionalTechnologieson

PowerGenerationEfficiencyEnhancementofCO2/H20HybridSystem
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Table3.3‐17 PerformanceofCO2/H20HybridSystem

withSingleCombustionSteamTurbine

TurbineInlet丁emp. 1350°C 1500°C 1700°C

GrossThermalEfficiency
56.996HHV 59.196HHV 61,996HHV

EffectiveGross

ThermalEfficiency
'MajorUtilityLoad'

istakeninto
account ,

49.796HHV 51.896HHV 54.596HHV

EffectiveGross

SpecificPower

0.372

MW/(Uh)
0.483

MWノ(ガh)

0.619

MW1(ガh)

Table3.3‐18 PerformanceofCO2/H20HybridSystem

withDoubleCombustionSteamTurbine

TurbineInletTemp. 1350°C/1350°C 1350°C/1500°C 1350°C/1700°C

GrossThermalEfficiency
60.1%HHV 61.8%HHV 63.9%HHV

EffectiveGross

ThermalEfficiency

'MajorUtilityLoad'

istakeninto

account㌧ ♂

52.2%HHV 53.996HHV 55.996HHV

EffectiveGross

.SpecificPower

0.560
.

MW/(Uh)
0.737

MW/(Uh)

0.929

MW/(t/h}

(Note1)

(Note2)

FirstCombustionisachievedat1350°CandSecondary

Combustionisat1350°C,1500°Cand1700°C

EffectiveGrossSpecificPower=

EffectiveGrossPowerOutput(MVln

CompressorAirFlow(t/h)

Table3.3-19PerformanceofConventionalCombinedCyclePowerPlant

PointNo. 1 II 皿

TurbinelnletTemp. 1354°C 1500°C 1700°C

GrossThermalEfficiency
48.796HHV 51.7°.bHHV 53.7°.bHHV

GrossSpecificPower
0.151

MW/(t/h)
0.182

MW/(Uh)
0.192

MW1(ゼh)
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Table3.3-20構 成 機 器 仕 様

システム組合せ:
1350°C

COZ-CBC 1350°C

燃焼蒸気 タービン 再熱(1350℃/1350℃)

1500°C
COZ-CBC isoa°c

燃焼蒸気 タービン 再熱(1350℃/1500℃ 〉

17(}0°C
COプCBC 1700℃

燃焼蒸気 タービン 再熱(1350℃/1700℃ 〉

作動条件 要素効率 発電機効率

COゴCBC

圧縮機
入口

出口

温度

庄力

100°C

100.344kPa
圧縮機

効率
0.865

1・:'

圧力 1356.58kPa 1969.168kPa 4292.467kPa

タ ー ビ ン

入口

出口

温度

圧力

1350°C

1307.54kPa

1500°C

1852.960kPa

1700°C

4176.259kPa
タービン

効率

0.910

鬮
圧力 107.699kPa

HZO-CBC

高圧タービン

(超臨界圧

燃焼ST)

入口

出口

温度

圧力

1350°C

34323:148kPa
タービン

効率
0.837

圧力 1454.615kPa 2067.234kPa 4390.519kPa

低圧タービン

(燃焼ST)

入口

出口

温度

圧力

1350°C

1307.54kPa

1500°C

1852.960kPa

1700°C

4176.259kPa
タービン

効率

0.910

鬮
圧力 107.996kPa

復水タービン 入口
温度

圧力

106°C

101.322kPa

タービン

効率
0,872

復水器 圧力
722mmHgr

5.07kPa
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Table3.3-21CO2/HzOHybridシ ス テ ム 条 件

システム システム条件

識別記号 ST方 式 蒸気圧力 タービン温度 流体組成

(CQガH20)

ST

翼冷却
燃料慍度 AT

蒸気タービン

系統試算

A'

B

c

D

単熱方式
亜臨界圧

1350℃ 系
95wt%

/Swt%

上流分岐 15℃
(無)

超臨界圧

COz・CBC/

燃焼ST

(再熱方式)

G b

C

d

再熱方式

1350`/

1350℃ 系

70wt%

/30wt%

56.Swt%

/43.Swt%

H *

**

**

1350`x/.

1500℃ 系

回収型翼
449`C

(400℃ 〉'

O
M-T

O-T0

⑥

1350`/

1700℃ 系

1350`C/

1350℃ 系

COz・CBC/

燃焼ST

(単熱方式)

E 0

**

単熱方式
超臨界圧

1500℃ 系

一

56.Swt%

/43.Swt%

上流分岐

15`C 無

回収型翼
⑤

449`C

(400℃)

M-T

O-T
㊦ 1700℃ 系

0 1350℃ 系

空気GT・CC

(開サ イクル)

1

在来ST

1350`

螢 一 15`C

一

II 1500` 一

m 1700℃ 一

空気GT/

燃焼ST

(単熱方式)

O
単熱方式 超臨界圧

1350`C

鐐 回収型翼

GT

15℃

ST

449`C

GT

(無)

ST

M-Tl

tO-TJ

II 1500

⑪ 1700℃

COz・CBC/

在 来ST

燃

料
02

予
熱

0

在来ST

1350`

56.Swt%

/43.Swt%

一 449`
M-T

O-T
11 1500`

㊥ 1700℃

嚀
15℃

1

在来ST

1350`

56.5wt%

/43.Sw[%
一 449`

M-T

O-T
ii 1500℃

iii 1700`C
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Fig3.3-18CBC・CCプ ラ ン ト比 出力 と効 率 向上 の 関係(再 熱 方 式)
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Fig3.3-19CBC・CCプ ラ ン ト比 出力 と効 率 向 上 の 関係(単 熱 方 式)
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Fig3.3-20CBC・CCプ ラ ン ト比 出 力 と効 率 向上 の 関係(再 熱 方 式/単 熱 方 式)
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3.3.5複 合サイ クル発電 システ ムの高性 能化

従 来方 式の複合サイ クルプ ラン トはGT・HRSGとSTが 複合 され てい るが,こ の うちの一方 に開

発 技術 を用い て(1)燃 焼ST(お よび回収型翼,燃 料 ・酸素の予熱,補 助流 体ター ビン)をSTと 代

替す る場 合 と,(2)COZ・CBC(お よび燃料 ・酸素の予熱,補 助流 体 ター ビン)をGTと 代替す る場

合 について性能改善の効果 を評価 した。

図3.3-21に 性能改善状況 を比 出力 と発 電端効率 で示す。

(1)(在 来GT+燃 焼ST)シ ステム:燃 焼蒸気 ター ビンは単熱方式 を採用 した。在来GT・CCの タ

ー ビ ン入 口温 度1350℃
,1500℃,1700℃ の性 能 点1・1・ 皿 は ① ・⑪ ・⑪ に改 善 され そ の

効 率 向 上 は絶 対値 で約+6%で あ る。

(2)(CO2・CBC+在 来ST)シ ス テ ム:技 術(1)・(2)を 適 用 しな い 条件 で のCO2・CBCと 在 来ST

の複 合 性 能 の タ ー ビ ン入 口温度1350℃,1500℃,1700℃ で の性 能 点 をi・ 五 ・丗に示 す 。1350℃

お よび1500℃ で は在 来GT・CCな み の効 率 で あ るが1700℃ の 高 温型 丗は在 来GT・CC皿 よ り高 効 率

とな る。CO2・CBCに 技 術(1)燃 料 ・酸 素 予 熱 と技 術(2)補 助 流 体 ター ビン(AT,メ タ ンタ ー ビ ン

M-Tお よび酸素 ター ビン0-T)を 付加す ると① ・㊥ ・⑪ に大幅に効 率が向上す るが,予 熱 に

伴って燃料と02の消費量が節減 されその結果ター ビン通過の作動流体力沙 なくなる。つまり

図3.3-21の ① ・⑪ ・⑪ は ター ビ ン出力 お よび服SGで の回 収 熱 量 が 低 下す るた めi・11・iii

に対 して比出力が若干小 さくな る。

(1)(2)を 総合 的に判断す る と,(1)の 方式が(出 力,効 率)の 両面 におい て性能向上 が発揮 され

てい る。 以上 の とお り開発技 術(燃 焼ST,CO2・cBc)の 一方 を在 来のGT又 はSTと 組み合 わせ る

こ とは性能改 善に有効 である ことが分 る。

(1)(2)の プラ ン ト性能値 か ら閉サイ クル に固有の主要補機 動力(CO2抽 気圧縮機動力 と酸素製造

動力)を 差引いた有効出力 を用い て在来GT・CCと 比較 した。評価結果 を表3。3-22・ 表3.3-23に

示 し,表3.3-19の 従来方式 の複合サイ クル プラン トとの比較 を以下 に述べ る。

(1)(在 来GT+燃 焼ST)シ ステム:比 出力お よび効 率がいず れ も在 来GT・CCよ りも向上す る。

(2)(CO2・CBC+在 来ST)シ ステ ム:比 出力は在来のGT・CCよ りも向上す るが効率は約3%低

下す る。この システムはCO2全 量回収の環境 対応 プ ラン トであ ることお よび出力増大の2点 で

価値 が ある。

ここで比 出力は,発 電出力(MW)/圧 縮機 吸気流量(t/h)で 定義 してい る。発電出力は表3.3-19

で は発 電端出力 を,表3.3-22・ 表3.3-23で は発 電端 出力 か ら閉サイ クル に固有の主要補機動

力 を引い た有効 出力 を各々用いてい る。
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Fig.3.3-21 PerformanceEnhancementof

CombinedCycle
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Table3.3‐22 PerformanceofConventionalGTand

CombustionSTCombinedPlant

PointNo. 0 ① @
TurbineInletTemp.

■

1350°C 1500°C 1700°C

GrossThermalEfficiency
55.196HHV 57.696HHV 60.3%HHV

EffectiveGross

ThermalEfficiency
广 、

MajorUtilityLoad

istakeninto

account
㌧ ♂

51.696HHV 53.896HHV 56.096HHV

EffectiveGross

SpecificPower

Q.252
MW/(t/h)

0.310
MW/(t/h)

0.366
MW/(t/h)

Table3.3-23 PerformanceofCO2・CBCand

ConventionalSTCombinedPlant

PointNo. 0 ii iii

丁urbineInletTemp. 1350°C 1500°C 1700°C

GrossThermalEfFciency
51.696HHV 54.296HHV 57.0%HHV

EffectiveGross

ThermalEfficiency厂 、

MajorUtilityLoad

istakeninto

account㌧6

45.996HHV 48.496HHV 51.396HHV

EffectiveGross

SpecificPower

0.216
MW/(t/h)

0.271
MW1(t/h)

0.323
MW/(t/h)
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3.3.6CO2/H20Hybridシ ステ ム の性 能 総括

CO2/H20Hybridシ ス テ ム と在 来複 合 サイ クル 発 電 シ ステ ム との併 用 シス テ ム の性 能 の 相 互 関

係 を図3.3-22に 示 す 。

主要 補 機 動 力 を削 除 した 有効 発 電 効 率 を図3.3-23に 示 す 。 こ の うちCO2/H20Hybridシ ステ ム

につ い て は1350°C/1500℃/1700°Cの 各 々 につ い て 主 要 性 能値 を下 記 に述 べ る。

(1)1350℃CO2/H20Hybridシ ス テ ム作 動 性 能:

単熱(1350°C)再 熱(1350℃/1350℃)

'°

0

`o 発 電 端効 率56.9%㎜60.1%㎜CO2抽気 圧 縮機 動力 を差 引55.4%㎜58,0%㎜酸 素 製 造動 力(省 エ ネ 型)を 差 引 … …49.7%㎜52.2%㎜

1350℃ の空気 開 サ イ クル の通 常 のGT・CCは48.7%㎜ で,③ の値49～52%㎜ はいず れ も

高効 率発 電 とな っ てい る。

(2)1500℃CO2/H20Hybridシ ス テ ム作 動 性 能:

単熱(1500℃)再 熱(1350℃/1500°C)

騰 靉_;1鑞61.8%HHV59.6%HHV53.9%HHV

1500℃ の 空気 開 サイ クル の 予想 のGT・CCは51.7%田Vで,③ の値52～54%は い ずれ も高 効

率 発 電 とな って い る。

(3)1700°CCO2/H20Hybridシ ス テ ム 作動性 能:

単熱(1700℃)再 熱(1350°C/1700℃)

'°

0

`o 発 電 端 効 率61.9%田V63.9%D

CO2抽 気圧縮機 動力を差 引160.3%㎜li61.6%DI

酸素製造動力(省 エネ型)を 差 引 … …54.5%HHV55.9%㎜

但 し,rco4/02燃 焼の閉サイ クル発電技術 としては,② の値で60%HHVを 凌駕 でき る」

点が本技術の特長 である。
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(4)CO2/H20Hybridシ ステムにおいてCO2・CBCの 占める割合

Hybridシ ステ ム の上位 機器(Topping)の 出力お よび燃 料流 出の割 合 につ い て図

3.3-24に 示す。

高性能化 にお いては蒸 気 ター ビンサイ クル の改善 に従 って トッピングの 占め る割合

が小 さくな る。

Table3.3-24プ ラン ト性 能 にお ける トッピング機 器 の割合

領 域 トツピング機器 蒸気タービンサイクル トッピング出力割合 トツピング燃料割合

A COZ・CBC 在 来ST 0.6.0.7 1.0

B

CO2・CBC

単熱方式
燃焼ST

約0.35 0.550.65
GT

(空気 ・開サイクル)

c CO2・CBC
再熱方式

燃焼ST
約0.22 0.350.45

蒸気 ター ビンの最 高効率 は再熱方式 ・燃焼STで 得 られ るがこの場合ST出 力 が大 きいため トッ

ピング出力割合 は約0.22と な り,プ ラン ト性能 は蒸気 ター ビンサイ クル(出 力割合0.78)が 支

配す ることにな る。

つ ま り,ト ソピングの種類 の違 い(CO2・CBCと 空気 開サイ クルGT)が プラン ト性能 に及 ぼす

影響 は小 さい とい うことであ る。

この こ とは具 体的 には,単 熱方 式 ・燃焼ST(ト ッピング出力割合0.35)に おいてCO2・CBCの

o,o,⑪ 点 と空気開サイ クルGTの ① ・⑪ ・⑪ 点がほぼ同じ領域Bに 混在す ることからも容易

に理 解 で き る。
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Fig.3.3-22プ ラ ン ト発 電 端 効 率 の比 出 力特 性
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発電端比 出力/有 効発電端 出力

(MW/(t/h))

(3)空 気GT+燃 焼ST(単 熱)(4)COz・CBC+在 来ST

Fig.3.3-23各 シ ス テ ム 特 性 対 比
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T

0 d.5

ト・ピング出力割合:ゆ 謝

Fig.3.3-24CO2/H20Hybridシ ス テ ム の 出 力 割 合 ・燃 料 割 合
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3.4結 言

閉サイ クル発電 は大気環境 にCO2を 排出せず,CO2濃 度 を高 めた排 気 を簡単な操 作で回収す るこ

とが基本仕様 であ る。しか しなが ら純02を 必要 とす るた めその製 造動力 を含 めた発電端効 率は従

来の空気方式GT・CCよ り大幅 に小 さくな らざるを得 ない。

本研 究 はこの制約 を克服す る技術 としてCO2/H20Hybridシ ステ ムを提案す るもので,閉 サイ

クル 発電 に付随す るCO2抽 気圧縮機動力 と酸素製造動力 の増加 を考慮 した実用条件 におい て在 来

の複 合サイ クル発 電 システ ム(GT・CC)よ りも発電 出力お よび発電効率 を ともに向上で き るこ と

を示 した。結論 を以 下に述べ る。

(1)CO2・CBCの 循 環 流 体組 成 は 当量 燃 焼排 気 の(CO2/H20)ニ(56.5wt%,43.5wt%)で

最 大 の総 熱 量 効X96%LHVが 得 られ,従 来 ガ ス タ ー ビン の88%よ り向 上 した。 この場

合 機 器 構 成 ・制御 が最 も単純 とな る。

(2)燃 焼蒸 気 ター ビンは蒸 気圧 力 を超 臨界 圧34.3MPa(350ata)迄,作 動 温度 を1700℃ 迄

高 め,さ らに 単熱 方 式 を再 熱 方 式 とす る こ とで 高効 率 が得 られ る。

(3)CO2/H20Hybridシ ステ ム の主要補機(CO2抽 気圧縮機,酸 素製 造)動 力 を差 引 い た有

効発 電 効率 は,1350℃ ～1700℃ お よび単熱方 式 ・再熱 方式 のいず れ にお いて も在 来 のGT・

CC以 上 の 高効 率 が得 られ た。

但 しこの場 合流 体 予熱(燃 料 ・02),補 助流体 ター ビン設 置 に加 えて燃焼蒸 気 ター ビンに

は さ らに蒸 気冷 却 の回収型 翼 を併用 して効 率 を改 善 ・増進 して い る。将 来の 高温 ター ビン

と してター ビン入 口1700℃ の最 高温度 での性 能 を再熱方 式 で推 定す る とCO2抽 気 圧縮 機動

力 を差 引い た発 電 プ ラ ン トとして は約60%HHV,さ らに酸 素製 造動 力 を差 引 く と約55%HHV

(表3.3-17,表3.3-18)で 空気 開サ イ クルGT・CC(1700℃)の 約54%HHV(表3.3-19)よ

りも高 効 率 が期 待 され る。

(4)在 来GT・CCのGTをCO2・CBCと 置 換 す るシ ステ ム は出力 が 向上 す るが効 率 は低 下 す る。

在 来CCのSTを 燃 焼 蒸 気 ター ビ ン と置 換 す るシ ステ ム は効 率 と出 力 を各 々在 来 のGT・CC

よ りも 向上 す るこ とがで き る。

(5)CO2/H20Hybridシ ス テ ム の発 電 端効 率 は ター ビン入 口温度 の 上昇 に対 して一 次関数

的 に上昇す る。これ は空気式開サイクル のGTお よびCCと 同様 の傾 向で今後の高温化技術 をCO2

/H20Hybridシ ステ ムに も反 映す る こ と に よっ て高 性 能化 を更 に進 め る こ とが可 能 で

あ る。
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第4章 燃料電池 とガス ター ビンの複合 による複合サイ クル発電 システ ムの高性能化

4.1緒 言

複合サイ クル発 電の効 率向上技術 の1つ として,GT・STに 次 ぐ第3の 要素 として燃料 電池 を

ガ スター ビンの上流 に配置(Topping)す る方式が有効であ る。但 しそのシステ ムは現在開発途

上 にあ り,種 々の ものが試み られてい るω(2)(3)が典型 システ ム と呼べ るものはない。本研 究では

新規 のシステム を開発 し,FC・GTHybridSystemの 上限効率(限 界値)を 見極 めたので以下に

提案す る。燃料電池 には電池効率の最 も良好な高温型の固体酸化 物型(SOFC,SolidOxideFuel

Cell)を 採 用 した。SOFCは 天然ガス/空 気で作動 させ るが排気 は約1000℃,更 に未燃燃料の燃

焼 で約1100℃ とな りター ビン入 口温度 に近 くな るためGTと の熱バ ランス を取 りやすい とい う

特徴 がある。SOFCは 燃料極,空 気極やイ ンター コネ クターの材質 の関係か ら耐熱 ・熱応力 に制

約 があ り入 口950℃ ～ 出 口1050℃ の温度範囲 で運用制御す る必要がある。燃 料 と空気 が当量燃

焼す ると断熱火炎温度が約2400℃,こ こか らエネ ルギー(DC発 電出力)を 取 り出 して も1450℃

程 度であ りこれ を1050℃ 迄に冷却 しなけれ ばな らない。SOFC内 の電気化学反応 は冷却 も含 めて

平衡状態でバ ランス して進行 す るた め実際 にはこの よ うな高温 は存在 しない が,冷 却空気 の不

足等でバ ランスが崩れ る と昇温す る危険 が常に内在 してい る。 そのために燃焼用空気以上 に多

量の空気 を冷却 空気 として投入 し,稀 釈 混合冷却 を行 ってい るのが現状 であ る。

この冷却空気 はSOFC発 電 にとって は無効(出 力 に転換で きない)の ために空気圧縮機 動力 が

無駄 に消費 され,そ の結果FC・GTHybridSyste皿 の効率 ・出力 が低 くな らざるを得 ない。本研

究 ではこの点 を改善 して最 大プラン ト効率(極 限値)を 見極 め るためにACT(AdvancedC。oling

Technology)技 術 を開発 し,そ れ をSOFCに 適用 した場合 の燃料系 ・空気系の設計 とプラン ト効

率 向上 に及ぼす効果 を論 じた。

FC・GTHybridSystemは 大別す るとFCとGTと の間に燃焼器 を持つ再熱方式 とFC排 気 をそ の

ままGTに 投入す る非再熱方式の2つ に分類 でき る。

「いずれの方式が高性能(高 出力 ・高効率)で あるか」とい う点 については研究者ω(2)によっ

て全 く逆の知見が述べ られてい る。本研 究では常 に再熱 方式 と非再熱 方式の特性 を分析 比較す

るこ とによって,「FC・GTHybridSystemの 設計 においていずれ の方式 を選 ぶべ きか」 につい

て の指針お よび統一的な見解 を導 き出す こ とがで きた。

第4章 で論 じるテーマ は,

1.SOFC熱 収支 のFC・GTHybridSystemへ の影響

2.再 熱方式/非 再熱 方式の特性

3.FC・GTHybridSystemの 高性能化

の3点 である。
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各 テ ー マ にお け る論 点 は 主 と して 以 下 の とお り設 定 して い る。

1.SOFC熱 収 支 のFC・GTHybridSystemへ の影 響

・FCエ レメ ン ト効 率

・FCプ ラ ン ト効 率

・エ ネル ギー 変 換 効 率(ETR
,EnergyTransferRatio)

2.再 熱 方 式/非 再 熱 方 式 の 特性

・ター ビン入 口温度(TIT
,TurbineInletTemperature)

・プ ラ ン ト発 電端 出力 とTFPR(TurbineFCPowerR
atio)

・プ ラ ン ト発 電 端 効 率 とFCエ レメ ン ト効 率

3.FC・GTHybridSystemの 高性 能 化

・ACT(AdvancedCoolingTechnology)

・FC冷 却

・FC回 収熱 量

シ ステ ム研 究 にお け る主 な仕 様 は 次 の とお りで あ る。

(1)SOFC発 電

・発 電効 率:0 .60(お よび0.70,0.80)

・燃 料 ・空気 の 供 給 温 度(FCエ レメ ン ト入 口):950℃

(2)燃 料

・LNG気 化 ガ ス(表2 。3-2に 性 状 を示 す)

(3)酸 イ匕 斉g

・空 気

(4)タ ー ビ ン入 口温 度

・再熱 方 式:1350℃ 級

・非 再熱 方 式:約500℃(無 対 策)～ 約1300℃(ACT適 用)
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4.2SOFC/GT複 合 サイ クル発電(SOFC/GTHybrid)シ ステ ム

複合サイ クル発電 の効率 を改善 ・向上す るためにガス ター ビンに燃料 電池 を付加 ・統合す る

際の基本的認識 は,燃 料電池 そ のものは単独 で は作動せず空気供給源が必要で ある とい う点 に

ある。その空気 をガスター ビンの圧縮機 吐出空気で供給す る発電 システムがHybridシ ステ ムで

ある。

燃料電池 の排気 は高温であ るた め燃焼器 の補助 あるい は代替 として利 用す ることがで きるな

ど,燃 料電池 とガスター ビンの要素 は密接 な相互 関係 にある。

燃料電池 の中で最 も高温 で作動す る固体 酸化 物型(SOFC,SolidOxideFuelCeU)は ほ ぼ

1000℃ の排気温度 を持 ちター ビン入 口温度 に近 いためガスター ビンとの熱収支 の平衡が取 りや

す い。

本研 究はSOFCを 燃焼器 の上流 に配置す る高圧作動 のHybridシ ステムについ てSOFC供 給 空気

の最小化 を論点 にプラ ン ト効 率向上の可能性 を分析 ・評価 した ものであ る。 これ まで報告 され

ているHybridシ ステ ムは現状 のSOFCとGTの 単純 な組合せ ・構成 を扱 った ものがほ とん どであ

ることか ら,本 研 究では高圧 作動SOFCを 燃焼器 の上流 に配 置 し,タ ー ビン入 口温度 を所 定値

・(1350℃)と す るために燃料 を助燃す る再熱方式(SOFC/AFGT/CC)と 燃焼器 を用いずsoFc排 気

をそのまま用いて ター ビンを作動 させ る非再熱方式(SOFC/NFGT/CC)の 両システ ムに対 してSOFC

にACT(AdvancedCoolingTechnology)モ デル の概念 を導入 して空気消費量を削減 し,Hybrid

システムの最適化 ・高性能化 を図 った。従来 の よ うにSOFCを そ のまま統合す るHybridシ ステ

ムでは発 電効率 が55%D以 下であ るのに対 して,ACTモ デル にてSOFC供 給空気量 を最小化 す

る提案のシステ ムでは再熱 ・非再熱 の両方式 ともに65%㎜ 以上の高効率 を発揮 できる可能性

が確認できた。

4.2.1高 性能化 の基本構想

燃料電池 とガスター ビンの作動上の相違点 と類似点 を表4.2-1に 示 し,こ の2つ の主要構成

機器 につい て基本認識 をま とめた。

(1)基 本認 識1:FCとGTの 類似 点

・作動 温度:1000℃ 以 上の高温で作動

・装置冷却:作 動 温度保持 のため に多量の稀釈冷却空気 を使用。

更にGTで は翼冷却空気 を使用。

(2)基 本認識2:FCとGTの 相違 点

・発電方式:FCは 一定圧 力下 での電気化 学反応

GTは 高圧 か ら低圧へ流体が膨張す るときの物理エネル ギーの回収

・エネル ギー変換効率(EnergyTransferRatio):

FCの0.16はGTの0.26の1/1.6倍 と小 さい。
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(3)SOFC/GTHybridシ ステ ムの設計理念

後流 に配置す るGT・CCの 性能 を変化 させ るこ とな くSOFCを 追加す るこ とを設計理念

とした。

つ ま り,「 圧縮機 吐出圧 力 下(一 定圧力)でFCを 作動 させて もGT(お よびCC)の 作

動 につい ては基本条件 か ら変更す るこ とな く設定す るこ とがで きる」点がHybridシ ス

テ ムの最大 の特徴 であるが この特徴 を実現できるシステ ムが再熱方 式である。

再熱方式 と非再熱 方式の特性 を以下に対比す る。

再熱方式:GT・CCの 性能 を保持 しやす い。

・GT性 能 は変化な し

(TIT(1350℃)を 一定 に保 持す るた めに燃焼器 を使用)

・HRSG～STは 再生のため回収熱減少 の影響 を受 ける
。

非再熱方 式:GT・CCの 熱バ ランスが崩れ る。

・GTのTITはFC排 気温度(700℃ 程度 に低下)で その ときの熱 バ ラン

ス次第 で一定ではない。

・HRSG-STはGT排 気 温度 が低温 のためHRSGで 熱回収 が行 えず不成 立

(4)高 性能化 の基本構想'

FCがGTの 上流(Topper)に 配置 され る関係 か らFCの 運用性能が下流 のGT(お よびCC)

の性能 を支配す る。

つま り,「FCの 性能 の向上がHybridシ ステ ム性 能 の改善」 につながる。

表4.2-2に 基本構想 の技術 が発揮す る性能改善効 果 の関係 を示す。

複 合発 電システムの共通テーマであ る「空気圧縮機 動力の削減」をFC改 善(B1→C1&C2)

で実現す るための技術開発 お よび効果 の評価 を論 じることとす る。

(5)燃 料電池(SOFC)とGTを 複合 してHybridシ ステ ム とす ることの必然性

Hybridシ ステ ムをFCプ ラン トとGTプ ラン トのいずれ に位置付 けるかに よってシステ

ム構成が異な る。これ は発 電出力構成 にお けるFC出 力 とGT出 力 の割合か ら理解 でき る。

本研究で提 案 したACT(AdvancedCoolingTechnology)技 術 を採用す ると両者 の境界

がな くな り,共 に類似の高性能 を示す よ うにな る。

そ のシステム改善の様子 を以下に述べ る。

1.FCプ ラ ン トではGTを 補機 に位 置付 ける。

2.GTプ ラン トではFCを 追設 トッピング設備 に位置付 け る。
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1.FCプ ラント … 非再熱方式 が基本。空気圧縮機(お よびGT)は

Case1=常 圧FC十HRSG+ST

(Case2=高 圧FC十 膨 張 タービ ン

GT/CC)

従来ボイラの代替

圧縮機動力の軽減

(.SOFC/NF

ま1補機設備 片

発電出力構成`7

oo● ○ ● ● ● FC
..,

T 12%

iir:4yuL

十

GTお よ び覧RSG(～ST)を 積 極 的 に構 成 し,タ ー ビ ン入 口温 度(TIT)を

(AdvancedCase=FCに つ い てACTモ デ ル を適用

(SOFC/NFGT/CC)

再熱方式 並みに高める。

FC 68%

GT 31%

ST 1%

TIT:1280°C

2.GTプ ラント … 再熱方式 が基本。FCは 追設 トッピング設備

Case3=高 圧FC十GT(SOFC/AFGT/CC)

↓ ・

FC

GT

ST

31%

58%

11°lo

Trr:i3so°c

AdvancedCase=FCに つ い てACTモ デ ル を適用

(SOFC/AFGT/CC)

FC 65%

GT 33%

ST 2%

TIT:1350
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Table4.2-1ComparisonofFCandGTforAdvancedTechnology

項 目 FC GT

相 違 点 エネルギー変換効率 低(0.16) 高(α26)

作動圧力 E麺 コ(轜驪'} 医 匡](膨 張タービンで減圧)

排気からの動力
機器回収

再生

GT

HRSG&ST

再生

HRSG&ST

発電効率(対燃料) 0.60(0.80:理 論) タービン出力0.714,

GT出 力0.367(圧 縮機 動力 削 除で の出力)

発電用エネルギー

入力

燃料の電気化学反応。

(燃料の投入が前提)

タービン入口の作動流体が高温(高 圧)の こと。

つまり作動流体の物理力(温度,圧力,流量)
によって出力を得る。

①燃料の投入は2次 的要素。(TIT制 御)

②つま り昇温は燃焼器でな く間接加熱 の

熱交換器で も良い

類 似 点 加圧空気 FC発 電に寄与 しない空気

が約85%～50%存 在す る。

(FCを1050℃ 以下に保つための多量の稀釈冷却空気)

。タービン膨張発電 に寄与 しない空気

(タービン冷却空気)が 約20%存 在する。

。火炎温度をタービン入口温度(1350～1500

℃)と するため に多量の稀釈空気 を

使用。

性能向上策 発電出力 。高圧排気 で膨張 タービン

を作動する際 に高温TIT

とする。

。圧縮機動力の削減

。タービン出力の増強

q翼 冷却空気削減1,第2章)
嬲 騾贓)

i。FC冷 却空気を削i

。FCを 別途媒体で冷却。
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Table4.2-2EffectofSOFCModificationonPlantPerformanceEnhancement

直譲的改善 システム補機の圧縮機(ガ スタービンと一体)の 動力を削減

=(出 力 に対する動力の比率を下げる)

発電出力に寄与しない無効空気量の削減

効果1 プラン ト発電端出力の向上

プラン ト発電端効率の向上

現 象 A1排 気 中の残存02を 小 さ く(又 は零)と す る。

A2つ まり圧縮空気を全量燃焼に使用 して,空 気量

あたりの出力つまり比出力を向上する。

手 殺 BlFC冷 却の稀釈冷却空気の量 を遡減する。

B2GTの 翼冷却空気の量を削減する。(第3章)

効果3

FC出 力の向上

GT出 力の向上

ST出 力の向上

GT効 率の向上

効果2 ClFC排 気温度が上昇することで

GT性 能を改善

C2GT排 気系の熱回収量の増加

(非再熱方式の改善の場合)
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4.2.2燃 料電池の選定

燃 料電池 には低温型 か ら高温型 まで,現 在4種 類 の もの が開発 研究 されてい る。 表4.2-3の

うち リン酸 型(PAFC)は 定置型 として実証段階 にあ り,固 体高分子型(PEFC)は 車載用 として

最近 実用化 が加 速 してい る。 中温型 の溶融炭酸塩型(MCFC)と 高温型 の固体 酸化 物型(SOFC)

は発電 システ ム との複合 用 として開発途上にある。

本研 究で は,最 も高温 ・高効率のSOFCを 採用 した。

SOFCは 構 造に よって3タ イプに分類 できる。図4.2-1の うち円筒型(Tubular)は 多管配置 と

な るため容積 が大 き く,平 板型(FlatPlate)は 積層 のため容積 が小 さい。

イ ンター コネ ク ト材 の形状が これ らの構造 を決定す るが これ は装置化 の際 に分化 した もの で

あ る。 国内外 の代表 的なメー カ とSOFC構 造の関係 は表4.2-4に 示す よ うに円筒型 と平板型が大

勢 を 占めてい る。

Table4.2-3FuelCells

FuelCellType PEFC PAFC MCFC SOFC

Polymer

Electrolyte

Membrane

Phosphoric

Acid
Carbonate

Solid

Oxide

Electrolyte

Ion

Exchange

Membrane

Phosphoric .

Acid

AH⊆ah哂

Cabonates

M三xture

Yttria

Stabilized

Zirconia

Operating

Temperature,°C 80 200 650 i,000

Charge

Carrier
H+ H* COミ= o=

Electrolyte

State
Solid

㎞mob丑 囮

Liquid

Immobilized

Liquid
Solid

Ceil

Hardware

Carbon-or

Metal-

:.一.

Graphite-

Based

Stainless

Steel
Ceramic

Electrode

Catalyst
Platinum Plat血um

※Pemvskites

※※Nickel

*Perovskites
##NickeUl'SZCermet

Cogeneration

Heat
None LowQuality High High

FuelCell

Efficiency,

LHV
<40 40-45 50-60 50-60

(Nom)*LaMnO3(Cathode),LaCrO3(lnterconnector)
**Nickel/YSZCermet(Anode)

XLieMnO3(Cathode)

XXNickel(Anode)

_yQ9_



・TUBULAR

・MONOLITHIC ・FLATPLATE

Fu

Figure4.2-1SolidOxideFuelCellDesigns(4)

Table4.2-4イ ン タ ー コ ネ ク ト材 製 造 技 術 と ス タ ッ ク 開 発 ⑤

スタック開発者 デザイン プロセシング 材 料 備 考

Siemens-Wes血ghouse社

Siemens-Westinghouse社

円筒型縦縞

円筒型縦縞

EVD法

大気圧プラズマ溶射

La(Cr,Mg}03

LaCrO3+

Ca-Al-O

100kW

東陶機器㈱/九 州電力 円筒型縦縞 湿式 ・焼結 (La,Ca)CrO3

三菱重工業・長崎/電源開発

三菱重工業・長崎/電源開発

三菱重工業・神戸/中部電力

円筒型横縞

円筒型横縞

平板型

大気圧プラズマ溶射

湿式 ・焼結

湿式 ・焼結

Al-Ni合 金

Ti系 酸化物

(La,Sr)CrO3

lOkW

lkW

SkW

大阪ガス/村 田製作所 平板型 湿式 ・焼結 (La,Sr)CrO3

Dormer 平板型 湿式 ・焼結 LaCrO3(Sr,Mg) 開発中止



燃 料電池 は電気 化学的反応 に起因す る発電 が主た る機 能で あ り,2次 元的には反応層 と して

の特徴 をもつので平板 型 を積層す る構 造 が最 も適 してい る。SOFC以 外 の燃料 電池 では全て この

積層構 造 を採用 してい る。 しか し,SOFCの 実際の 開発では,平 板型 よ りも円筒型 の方 が先行 し

た。例 えば,Siemens-Westinghouse社 では平板型 か ら出発 した が,円 筒型横縞 を経 て,円 筒型

縦縞 に至 って大 きなブ レー クスルー を達成 した。 また,Dornier社(現DaimlerBenz社)で も,

円筒型 か ら出発 した。 このよ うに円筒型 が先行 した理 由 としては装置化 の際の利点,

1)セ ラ ミックスの熱応力 は円筒型 の方が逃 げやすい こと

2)ガ ス シールが しやすい,あ るい はほ とん どす る必要がない こと

を挙 げ ることができる。

本研究 では,SOFCの 熱的特性 を一般論 として解析 してHybridシ ステムを構成 してい る。従 っ

て,そ の構 造 は特 定 してお らず どの よ うな型 式の もので もシステ ム と組合せて所定の性能 を発

揮す ることがで きる。
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4.2.3SOFC/GTHybridシ ステ ムの構成

Hybridシ ステ ム(SOFC/GT/CC)の 再熱方式(SOFC/AFGT/CC)に つい て機器構成 を図4.2-2に,

代表仕様 を表4.2-5に 示す。 事業用 の複合発電所 を念頭 に置いて検討す るため,燃 料は天然 ガ

ス(LNG気 化 ガス)を ガ スター ビン(GT)の ター ビン(T)入 口温度 は1350℃ を採用 してい る。

作動流体 は,ま ず大気(a)を 圧縮機(C)で 昇圧 して高温 ・高圧 の空気(a1)と す る。aiは 再

生器(RECA)と 空気加熱 器(磁)で 加熱 して燃料 電池(FC)に 作動 用空気 として送給す る。 一

方燃料(f)の うちFC用 燃料(f1)を 燃料再生器(RECF)と 燃料加熱器(HF)で 加熱 してFCに

投入す る。FC撲 気中の残存 燃料は後 置燃 焼器(AB)で 燃焼 させ,HAとHFで 熱交換 した低 温の

排気 は燃焼器(CC)で ター ビン用燃料(f2)に よって所定のター ビン入 口温度 に制御 され る。T

出 口の排気はまずRECA・RECFの 加熱源 に用い,次 に排熱 回収ボイ ラ(HRSG)で 蒸気発 生 を行 っ

たあ と煙 突か ら大気 に排 出 され る。

FCに は高温型 ・高効 率のSOFCを 採用 し,燃 料 のLNG気 化 ガス(天 然ガス)はSOFCで 内部改

質す るた め改質温度950℃ に して供給す る。空気 も同温度 の950℃ で供給 し,SOFCの 熱平衡950

～1050℃ を保つ。システ ムの容量 を支配す るaの 流 量は1500t/h,FCの 出 口温度は1050℃,Tの

入 口温度は1350℃ と してf(flとf2)を バ ランス させてい る。CCお よびf2を 用いない ときはHF

/HAの 排気そ のままでTを 作動 させ る。HRSGで 生成す る蒸気は図示 していないが蒸気ター ビン

(sT)と 復水器(core))を 経 由 して給水 が再びHRSGに 循環す る通常 のボ トミングサイ クル を構

成 してい る。

ガ スター ビンの圧 縮機 効率 は0.86,タ ー ビン効 率は0.91な らびにSOFCの 発電効率は0.60と

してい る。 ここに,SOFCの 発 電効率 はFC投 入燃 料の うち有効 に使 われた燃料の発熱 量(㎜)

による投入熱 量に対す る発 電出力(DC)の 比率 であ る。

プロセス流体の条件設定 は以下 の とお りであ る。

15℃ のf、 と約400℃ のa、 は第1段 階⑩⑬(550℃)ま で昇温す る。熱源 は⑥(約600℃)で あ り,

熱 回収 によ り⑦(400℃)更 に熱 回収 して⑧(106℃)に して大気へ排 出す る。⑩⑬ は②(約1130℃)

を熱源 として⑪⑭(950℃)に 仕上 げる。② は③④(740°C)と な りf2に よって610℃ の昇温 を

行い,⑤(1350℃)を 得 る。SOFCの 燃料利用率 は供給燃料 に対す るSOFCで の有効反応燃料 の割

合 で0.8の た め残存燃 料 は0。2の 比率で存在 し,そ の燃 焼に よってABに おいて①(1050°C)が

②(1130℃)に 昇温す る。
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Fig.4.2-2SOFC/GasTurbineCombinedCycle(SOFC/AFGT/CC)

Table4.2-5MajorSystemSpecification

Units Specification

FuelCell

Type:SOFC(SolidOxideFuelCell)

FuelCellEfficiency(DC):0.60

PowerConduitEfficiency:0.95

0peratingTemperature:950°C(inlet)/

1050°C(outlet)

FuelProcessor:SteaznReforming

((Steam/Carbon)Ratio:S/C=3)
Type:InternalReforming

RawGas:NaturalGas(CH4)

FuelUtilizationRatio:0.8

Gas
Turbine

Wi山Combustor(TurbineInletTemp .:1350℃)

Wi山outCombusめr(T血bineInletTemp .:FCexhaust)

SteamTurbine LowPressureSteam:250°C,598kPa

StackExhaust 106°C
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4.3燃 料電池 の作動特性

4.3.1SOFCの 理論 効率

燃料電池 の高温下 での発 電効 率 について特徴 を以 下に述べ る。

温度T(K)の 電池 内で起 きる化学反応 の 自由エ ンタル ピー 変化 △G(ギ ブズ 自由エネル ギー変

化 ともい う)は 生成 系の 自由エ ンタル ピーか ら原 系の自由エ ンタル ピー を引いた値 で ある。 こ

の △Gが 負号 を とる場合に,そ れ に相 当す る電気 エネルギー を取 り出 して発電 を行 える。

△G=△H-T△S(又 は △H=△G+T△S)

△H:反 応 のエ ンタル ピー変化

△S:反 応 のエ ン トロピー変化

(1)理 論効率

メタン(CH4)の 理論効 率(△G/△H)は 図4.3-1に 示す とお り,作 動温度 が0～1400Kで

ほぼ一定値0.99で ある。特徴 として は水素(H2)は 昇 温 と共 に理論効率 が低下す るが,他

のパ ラフィン系炭化水 素C血Hnは 逆 に上昇す る点があげ られ る。

これ は水素 の反応 は △Sが 正つま りエ ン トロピー増加 にて外部 に熱放 出す るため に冷却

をして電池 を一定温度 に保 つ こ とが必要なためである。一方 メタ ンは熱放 出駕0の ためそ

のままで,C齟n(m≧2)の 反応 では △Sが 負 つま りエ ン トロピー減少 のため外部 か ら

の加熱 によって電池 を一定温度 に保 つ こ とで図4.3-1の 効率を達成で きる。

温 度

Fig.4.3-1各 種燃料 の理論効率 △G/△Hの 温度依存性

参 考 まで に,温 度150℃ で の 各 種燃 料 の理 論熱 効 率(理 想 熱 効率)を 表4.3-1に,温 度

1000K・1250KのCO,CH4お よびCの 理 論 熱 効 率 を表4。3-2に,お よびH2の 理 論 熱 効 率 を表

4.3-3に 各 々示 す 。
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い ず れ も図4.3-1の 特 性 を示す 値 とな っ てい る。 これ らの表 に お い て △G°は標 準 自由エ

ンタル ピー 変 化,DH° は標 準 エ ンタル ピー 変化,△S° は標 準エ ン トロ ピー 変化 を示 す 。

(2)LNG気 化 ガ ス で の理 論 効 率

LNG気 化 ガ ス(表2.3-2)を 燃 料 とす る場 合,CH489.Omol%,C2H68.9mo1%,C3H81.6

mol%,C4H1。0.5mol%の 組 成 でCmHn(m≧2)の 組 成 が約11mo1%存 在 す る こ とか らそ の

理 論 効 率 は 図4.3-1の 純 メ タ ンよ りも若 干 高 く求 ま る。 そ の傾 向 を 図4.3-2に 示 す 。

Table4.3-1各 種 燃 料 の理 論熱 効 率(6)

電 池 反 応
eG°

(kJ1モ ル)

DH°

(kJ1モ ル)

反応
関与

電子数

E°

(V)

EOの

温度係数

(mV/°C)

EOの
圧力係数
∂鴨P

ET

(△G°1△Hら

温 度150℃

.H2+1/202→H20 一221.6 一243.3 2 1.14799 一〇.zs 21 4.911

CH4+202→COZ+2H20 :11・ 一gai .a 8 1.03702 0 0 0.999

CZH6+1!202→2CO2+3H20 一1452 .3 一1425 .8 14 1.07491 11 一3 1.019

C3H8+502→3COZ+4H20 1'1 一2041 ,8 20 1.08324 +o.os 一4 .2 1.424

C4H10+13/202->4CO2+SH20 一2728フ 一2654 .8 26 1.08747 +0.06 一4
.9 1.028

C5H12+802→5CO2+6H20 一3369 .2 一3269 .7 32 1.09099 +0.07 一5 .4 1.030

C8H18+251202→8CO2+9HZO 一5289 .3 一5113 .4 50 1.09614 11: 一5 .9 1.034

C,oHn(g}t-31/202‐>10002+11HZO 一6569 .6 一6342 .6 62 1.09796 11: 一6 .2 1.036

NH3+3/402→112N2+3/2H20 一197 .9 一323 .5 3 0.6835 一〇.96 一7.1 0.612

C+1/202->CO 一151 .1 一110 .1 2 0.782 +Q.47 一21 1.372

C+02->COZ 一394 .9 一393 .8 4 1A2309 0 0 1.003

CO+1/202→CO2 一243 .8 一283 .7 2 1.26335 一〇.46 21 !:.1

Table4.3-2高 温 にお ける燃料電池の理 論熱 効率(6)

電 池 反 応 温度(℃)
OG°

(kJ/モ ル)

OH°

(kJ1モ ル)
E°(v)

ET

(△G°!△H°)

CO+1/202=COZ
727(1,000K}
977(1,254K)

一195
.4

-1'73 .2

一283 .3

-282 .0

1.013

1

1.・

0.61

cx4+zo2=co2+2xZo
727

977

一802 .5

-802 .9

:11

-801 .2

1.039

1.039

1.00

1.oo

C+OZ=COZ
727

977

一396 .6

-396 .6

一396 .2

-396 .6

1.027

1.027

1.00

1.00
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Table4.3-3水 素酸素燃 料電池の各温度にお ける理論熱効率(6)

電 池 反 応 温度(℃)
OG°

(kJ1モ ル)

△H°

(kJ1モ ル)

£T

(△G°ノムH°)

H2+1/202=H20{g} 127 一223 .8 一22 .7 0.922

H2+1/202=H20(g} 227 一219 .2 一243 .5 1'11

H2+1/202=H20(g) 427 一209 .2 一245 .6 0.852

H2+1/202=H20(g} 727 一192 .5 一248 .1 0.776

H2+1/202=H20{g) 1,027 一176 .1 一249 .8 0!705

1.20

1.10

1.OQ

苦 α9・
a

O.80

鬣 α70

0.60

叢 α5・

zo.40
0.30

0.20
0 11 X!1.tl:Ii1111!×11

温度 ℃

Fig.4。3-2LNG気 化ガ スの理 論効率△G/OHの 温度 依存性

SOFCの 燃料極Ni/YSZ(YttriaStabilizedZirconia)の 電気抵抗 は低温では大 き くな

るため理論効率が 目減 りす るが高温 になる と抵抗 が低下 して理 論効 率に近づ く。YSZ5μ

m膜 ～YSZ300μm膜 で は薄膜 の5μmの 方 が低抵抗で ある。 但 し950℃ ～1050℃ の間で

は膜厚5,um～100μmの 影響 はな くな りほぼ理論効率 とな る。 この膜厚 は燃料電池構 造

(図4.2-1)に よって決 ま り,円 筒型 では ほぼ100μm,平 板 型で は300μmで あ る。

(3)燃 料の 内部改質を行 う揚合 の理論効 率

燃料の水蒸 気改質 を加 味 した場合 は図4.3-3の とお りH2とCOの 組成 に基づ く効率 の低

下が生ず る。改質す るとH2とCOの2成 分 が中心 とな るため原料 ガスの種類 と組成 が若干

変わってもほぼ同 じ理論効率 を示す。 実用燃料電池 のYSZ100μm～YSZ300μmの 膜 で

は約1000℃ の作動温度で理論効率が0。80程 度(0.77～0.80)で ある。 またこの傾 向は文

献(5)で示 され ているもの とほぼ同程度 であ ることを確認済みで ある。
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現状で は,メ タンを燃料 として使 う場合,'COとH2に 改質 してか ら燃料電池 で発電す るの が一

般的 であ る。 これ は現在用い られ てい るニ ッケル 電極が炭素析出 に弱 く炭化水素 を排除す る必

要 があるためで あ る。改質 も含 めたSOFCの 反応 は次 の化 学式(1)(2)(3)で 表す。(1)式 は燃 焼生

成物(CO2,H20)のCH4に よ る還元,(2)式 は改質 ガスの酸化(燃 焼)を 示す。

3CH4(g)+CO2(g)+2H20=4CO(g)+8H2(g)(熱 化学反応)…(1)

4CO(g)+8H2(g)+602(g)=4CO2(g)+8H20(g)(電 気化学反応)…(2)

(2>式 で生成す るCO2とH20の1/4を 循環 させてCH4の 改質反応(1)式 に使 うと,ト ー タル とし

て(3)式 に帰着す る。(1)式 は吸熱型熱 化学反応 であ り,(2)は 発熱型電気化 学反応 であるので,

電気化 学反応 の(2)式 が改質反応温度 よ りも高い温度 で行 われれ ば,(2)式 の発生す る熱 を く1)式

の反応 に用 いるこ とができ る。 この意味で,改 質反応 を燃 料電池 内で行 う方が効 率の よい熱 の

使 い方 ができ る。(2)式 はエ ン トロ ピー変化 が正であ るの で,理 論効率は温度が上が るほ ど低 下

す ることにな る。

他方,次 の反応

CH4(g)十202(g)=CO2(g)十2H20(g}…(g}

では,ほ とん どエ ン トロピー変化 ぶゼ ロなので,理 論効率 は100%近 い値 を示 し,温 度 による変

化 はほ とん どない。(図4.3-1を 参 照)

内部改質 と外部改質の得失 を表4.3-4に 示す。

本研 究では上記の基本 的な理由(電 気化学反応 と熱化学反応 の併合)と 表4.3-4の 得失 か ら

内部改質 を採用 し,SOFCの コンパ ク ト性 を保持す る こととした。
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Table4.3-4燃 料改質 の形式 と得失

形 式 内部改質 外部改質

改質触媒形状 燃料極(Ni) 触媒 ペ レツ ト

基本構想 燃料改質 と発電を同時に

行 う。

まず改質器で燃料処理

したあとFCへ供給

1.装 置 コンパ ク ト

FCの みで良い。

一体型

改質器 とFCを 収納

2.触 媒寿命 燃料極を交換 触媒ペレットを交換

3.触 媒形状 ・密度 FCの 構造 によって支 配

される。

任意

4.触 媒作動条件 FCの 条件 に引 きずられ

改質の条件に裕度がない。

改質器の最適作動条件に
制御(熱 収支がとれる)

5.改 質効率 未改質 メタンがFCを 素通

りし,そ のまま未燃燃料
となる。

●

良好

(未改質燃料を減 らせる)

6.水 蒸気投入 燃焼生成 の蒸 気 を用いる場合

は外部か らの投入量 は少な く

なる。

S/C=1.0～1.5(モ ル比)

燃焼生成 の水蒸気

計SIC=3(モ ル比)

SIC=3(モ ル比)で 蒸気

を投入 し,Carbon析 出 を

防止す る。
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4.3.2SOFCの 運用性能

燃料改質 を加 味 した場合,図4.3-3よ りLNG改 質 ガスの理論効率 は1000℃ の作動温度 におい

て約0.8(0.77～0.81)で あ り,さ らに発電 の際の電極抵抗(IR損)の 影響 は極 めて小 さい こ

とが分 る。

これ は常圧(1ata)の 値 であ るのでSOFCを14ataの 加圧下で用い る ときは1000℃ で+8 .6%

(相対)の 改善が見 られ,0.84～ α88の 効率 となる。

この推 定効率0.84に 実装 置の設計裕 度 を約5%見 込んでSOFCの 理論効率 を1:1と 規定 した
。

4.3.2.1SOFCの 実用効率

SOFCは 燃料の持つ 内部エネル ギー(化 学エネル ギー)か ら直接 電気エネル ギー を取 り出す装

置で ある。

SOFCの 実 用 効 率(エ ネ ル ギー 効 率)ηEはSOFCシ ステ ムに投入 した燃料 の発熱量(エ ンタ

ル ピー変化:一 △H)に 対す る電気 出力W(DC)の 比 率 で求 め られ る。

η・辷 濫 τ 一俎 鑰 譲m。1/s)

iAN

m

_(E・ ηv)(Ufl1F)_(EzF)ηvUF
-△H-△H

・(°G
OH)η ・U・

飆 率〔劉 ・舳 エネル無 鑛 講響 驩 鬻 篇)(J/m°')

驤料投入量(2mol/s)
つ ま り ηEは燃 料 の種類で決 まる理論効 率(△G/△H)に 電圧効 率 ηvと 燃料利用率Ufを 掛 け

て求ま る。 この場合 のSOFCか らの放熱 量 は(1-△G/△H)で あ る。

AC出 力 につい ての総合効率 は ηEにA/D変 換器(イ ンバータ)の 直交 変換効率 ηADを掛 けて求 め

る。

電圧蘚 はTl・・ガス繊 で錐騾 跳 纛 圧)(E)で ある.

CH4が 中 心 のLNG気 化 ガ ス の内部 改 質 にお い て1000℃ のEは0 .92V,一 方 操 作 電 圧 は(0.6)～

0.7Vを 選 択 す る こ とが多 い。

この 操 作 電 圧 は加 圧 下 で は図4.3-4の 電 圧 ゲイ ンが あ り,1000℃14ataで は1000℃1ataに

対 して0.06Vつ ま りo.7vに 対 して は+8.6%(相 対)の 上 昇 とな る。
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図4.3-3に 対 して この加 圧 効 果 を加 味す る と14ataの 圧 力 下 で は 図4.3-5の 理 論効 率 とな る。約

1000°Cの 作 動 温度 で は0。84(YSZ300μm)～0.88(YSZ100μm)の 間 の 理 論 効 率 値 とな

る が,本 研 究 で は若 干 の 余 裕 を み て 理 論 効 率 を0.80に 設 定 した 。
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Fig.4.3-5LNG改 質 ガスの加圧 下 にお ける理論効率△G/OHの 温度依存性
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本研 究 で は 下 記 の考 え方 に従 っ て,理 論効 率:0.80,実 用効 率(直 流):0.60,実 用

効 率(交 流):0.58を 採 用 す る こ と とした。

(1)燃糯 池発電効率:η ・舮(劉 ×η・一鯆 エネルギ傭 気変贈 一(蟇鰡 鑞 謝

紐 効 率:η ・・V°bsE,ギ ブズ電 圧:E=0.92V,操 儒 圧:V。bs=0.7V

直流

理論効率 !:1 ギブズ効率(°GOH)

実用効率 1.1
(DGDH)(V°bsE)・o.s×(畿)・ α6・87

交流 実用効率 o.sg 直 流 実用 効 率 ×ηAD=0.6087×0.95

(2)燃 料 電 池 プラ ン ト効 率:ηE=G-N×Uf

燃 料 利用 率:Up=.8で は ηE=0.4626で あ る。

(3)交 流 発 電 端 出力:WA=0.58XHHV×(G×Uf)×1860× ηゆ(kW)

但 し,G:燃 料 量(kg/h)

HHV:燃 料 の高位発熱量(kcal/kg)…13070

Uf:燃 料利用率 …1:1

ηAD:直 交変 換効率 …0・95
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4.3.2。2SOFCの モデル化

FCの 作動条件 は以下の とお り設 定 した。

型 式:SOFC

燃料電池効率:0.60(DC)

作動 温度(入 口/出 口):950℃/1050℃

燃 料:LNG気 化 ガス(組 成:表2.3-2),950°C供 給

酸 化 剤:空 気,950℃ 供給

燃料 処理:水 蒸気改質

内部 改質方式

蒸気混入比:S/C=3(SteamCarbonmoleratio)

燃料利用 率(UF):0.8

直交変換効 率(η ムD):0.95

FC発 電 システ ムの構成 を図4.3-6に,SOFCモ デル を図4.3-7に 示す。

モデル化の主な構想 は以下の とお りである。

(1)LNG気 化 ガスの内部改質での熱授 受

改質反応 での吸熱 量は反応式 に よって若干異 なるが表4.3-5の とお りであ り,こ の熱量

はSOFC本 体 か ら供給 され る。

SOFC本 体 はその熱 量分 だけ冷却 され改質燃料 はカ ロ リーア ップす る。SOFCで の燃焼反

応お よび電力転換 においてはSOFC系 外 か ら投入す る熱量 の絶対量その もの を考 えれば良

い。改 質ガスの組 成 を改質蒸気/燃 料 中炭 素=3(モ ル比,S/C)に て求め ると表4.3-6

の とお りで,高 温下での燃料改 質効率 を100%つ ま り改質ガス中には炭化水素(C画)

は残留 しない こととした。参考 までに外部改質 の例では表4.3-7の とお りの組成 となる。

COを 少 くす る ときはシフ ト反応 も併用 しな けれ ばな らない。

LNG気 化 ガスの改質反応 は760～980℃ の温度域で成立 し,生 成す るH2とCOでSOFCを 作

動 させ る。本研 究の熱計画 におい ては950℃ を採用 し,燃 料 ・空気 ともにこの温度 に仕上

げてSOFCに 投入す ることとした。

(2)燃 料利用率 の扱い

燃料利 用率 は文献 に よれ ば0.80(9)(1°)と0.85(8)(11)の2通 りが見 られ るが,本 研 究で は

0.80を 採用 し,燃 料投入(お よび改質燃料)の80%が 発 電に関与す るとしてそ の当量燃

焼 空気を反応 させ た。従 って残 りの空気 はSOFCの 混合稀釈冷却 に使用 してSOFCを1050℃
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以下 に保持す る。1050℃ の排 気に含 まれ る未燃燃料20%はSOFCの 後流で燃焼 させ ること

とした。

(3)SOFC冷 却空気 の扱 い

SOFCの 冷却 について図4.3-8の モ デルに よって段 階的冷却 を模式的 に考えた。っ ま り

950℃ で供給 され た燃料 と空気 で当量燃焼 を行い断熱火 炎温度(約2400℃)迄 昇温 した燃

焼ガスか らDC発 電でエネル ギー を取出 して冷却 し,そ の後FCを バイパス した空気(空 気

比6.2/1.1:於FC効 率0.60/0.80)で 稀釈混合 して所 定のSOFC排 気1050℃ とす る。

ここで空気利用 率は0.139/0.486(於 燃料電池効率0.60/0.80)で あ る。 空気利用率

は文献 によれば0.17(8)と0.25(9)が 見 られ るがSOFCの 冷却方式次第 のため一率 の値 とはな

らない。

(4)燃 料電池の出力 と効率 の扱 い

図4.3-7のSOFC有 効燃料 量f,=α8f,(f,は 混合燃 料(f,+S:LNG気 化 ガス+改 質用蒸

気)の 成 分であ る)に 対 して,DC発 電 出力 はLNG気 化 ガスの高位発熱量(HHV)を 基準 と

した燃 料電池効 率1・1に 基 づいて

feXHHVX°.6°X860

(kg/h)(13070kcal/kg)

か ら求 め る。

エネル ギー変換効率 は燃料電池効率が高 い程高効率 を示す。

在来SOFC(燃 料 電池効率0.60)で はエネル ギー変換効 率が0.16と 低いが,理 論効率

(0.80)に おいては0.35で 約2倍 に改善 され る。

在 来SOFCのDC発 電 出力 は同一 の作動 空気 量 にお い て理論 効率(0.80)で の出力 の約

1/4.6と 小 さくな る。 これ は空気利用率 比(0.139/0.486)× 燃料 電池効率比(0.6/0.8)の

積で得 られ る値 であ る。
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CH4

(LNG気 化ガス〉

H20

(蒸気)

改質装置
(水蒸気改質)

SIC=3(モ ル比)

(内部改質)

4.2 未燃改質ガス
0.8

Qverall

Cell

Reaction

(H2+1/2°2CO+1/202:H2°CO

反応空気

排気HOCO

0.139 NArCOHO

冷却空気 0.861 空気

Fig.4.3‐6FCGenerationSystem

FCPiant

fe,fP:混 合 燃料 中の

甑 驪 甕ス
但 しSIC(Steam/Carbon)=3(モ ル比)

1.燃 料 電池効 率e発 電 出力(DC)X860=(0.6087)
QE(FC燃 料 ・fe×HHV)

2.繍 電池プラント効率富 発 電 出力(AC)×860=燃 料電池効率 ×交直交換効率×燃料利用率(=46.26%HHV)
Qp(プ ラント燃料 ・や×HHV)(1.1:)(α95)(o .s)

発 電出力(DC,AC)3
.エネルギー変換効 率(ETR,EnergyTransferRatio)=Q

T(送 給流体 の総熱量,LHV)

Fig.4.3‐7SOFCModel
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Table4.3-5ReactionHeatofCH4Reforming

温度
゜^

改質反応吸熱kJlmol

CHa+HzO=3H2+CO CHa+2H20=4H2+CO2

1000 229 197

900 228 195

800 227 194

7.00 226 191

・内部改質:Ni系 触媒(Nio
,担 体Al203)(作 動温度:700℃ 以上)

・高温作動の利点:(1)反 応速度が高速(2)改 質装置 がコンパク ト

Table4.3-6ReformedGasofCH4(100%Conversion)

Mole

Percent

Reformer
Effluent

H2 58.3

CO 8.3

CO2 8.3

CH4 Q

N2 0

H20_ 25.1

Total 100.0

(注)低 温での改質においてはCO2濃 度が増加する。

(参 考)水 蒸 気改質 反応 の代 表的 な組合 せ(高 温 での改質)

CH4+H20→CO+3H2

0.5CO+0.5H20-　 0.5COz+0.5Hz

計CH4+1.5H20→0.5CO+0.5CO2+3.5H2

SIC=3(モ ル比) CHa+3H20‐ 　0.5CO+0.5CO2+3.5H2+1.bH20
一

計6モ ル

Table4.3-7TypicalSteamReformedNaturalGasProduct(4)

Mole

Percent

Reformer

Effluent

Shifted
Reformate

H2 46.3 52.9

CO 7.1 d.5

CO2 6.4 13.1

CH4 2.4 2.4

N2 0.8 0.8

H20 37.0 3d.4

Total 100.0 100.0

(注)H2を 得 る素 反応 は,CH4+H20=CO+3H2,CmH。+mH20=mCO+(n12+m)H2

お よ びCO+HZO=CO2+H2で あ る。
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4.4SOFC/GTHybridシ ステ ムの基本性能

図4.2-2の よ うに各構 成機 器 を最 も簡 単 に組 み合 わせ た場 合 につ い てHybrid'シ ステ ム

(SOFC/AFGT/CC)性 能の特徴 を以下 に分析す る。ただ し,

・SOFC:燃 料電池効率0 .60

・複合サ イクル発 電:TIT1350℃ 級GT・CC

としてい る。

SOFCは 入 口が950℃,出 口が1050°Cの ほぼ一定温度で作動 させ る。投入燃 料の熱 量(HEIV基

準)は 約60%が 発電 出力 に転換す るので残 り40%がSOFC本 体 を昇温 させ るが冷却空気 を送 り

約1000℃ に保持 してい る。この冷却空気 はSOFC出 力 に寄与 しない空気であ り,こ の存在 がSOFC

の熱的性 能 を支配 し特徴付 けている。

主要機器 の相互関係 を図4.4-1の 熱流れ 図に示す。FC投 入燃料熱量(LHV基 準)を 基本値100

として各流体の熱バ ランスを相対的 に表示 している。圧縮機吐 出空気 の保 有熱量73.6はRECA

で38.2,HAで91.5の 加熱 を して950℃,総 熱量203.3に 仕 上げ る。

一方
,燃 料 はRECFで5.4の 加熱 を受 けたあ と改質用蒸気17.2と 混合 したのちHFで8.6の 加

熱 を して950℃,総 熱量31.2に 仕上 げ る。つま りFC投 入燃 料熱量の2.3倍 の熱量234.5が 再循

環 してFCに 供給 され る。

次に機器入 口/出 口の熱 量 に注 目してエネル ギー変換 効率 を新た に定義 し,要 素機 器 であ る

SOFC・ ガス ター ビン ・蒸気 ター ビンの相 互の比較 を行 った。エネル ギー変換効率 は,'「 作業流

体 が持ち込む総熱入力 に対す る発電 出力の比」 として定義 した。

エネル ギー変換効率(ETR,EnergyTransferRatio)

=発 電 出力(交 流又 は直流)/総 熱入力

このETRを 用いれ ば単体で は各々異 なる効率定義 を持つ機 器で あって も相互 に比較す るこ と

が出来 る。

主要機器(SOFC/GT/ST)の エネル ギー 変換効率 を表4.4-1に 示す。GTが3機 器 の中で最大 の

26%を 持つ 。空気圧縮機 動力 をプラン ト補機 に位 置付 けてター ビン部のみの値 として求 める と

53%で あるが,こ の圧 縮機 動力 を引い た有効 ター ビン出力 に対 して は表中の26%と な る。

図4.4-1の 熱流れ図 にお いて各機器 の熱量 の関係 を示す と,FCの エネル ギー変換効率16%は

入 口総熱量334.5に 対す るFC出 力(DC)53.8の 比率 であ る。FC効 率0.6は 燃料利用 率0.8に

よる有効燃料80(LHV)つ ま り88.5(D)に 対す るFC出 力(DC)53.8の 比率 である。GTの エ

ネル ギー変換効 率26%は 入 口総熱量360.3に 対す る有効 ター ビン出力95.4,STの18%はHRSG

入 口総熱量109.3に 対す るST出 力19.6の 比率であ る。
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FCFuetCellPowerOutputOFCElementEffectiveInlet丁herrnalEnergy

GT:GasTurbinePowerOutputOFCEIementExhaust

ST:SteamTurbinePowerOutputOFCPlantExhaust

QDOverallFCPfantExhaust

(AfterBurningofResidualFuel)

Fig.4.4-1HeatFlowDiagramofFC/GT・CC(SOFC/AFGT/CC)

Table4.4‐1EnergyTransferRatioofUnits
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4.5SOFCとGTの 複合化 にお ける性能評価

プ ラン ト性能 に対す る各構成機器 の寄与の度合 をETRで 分析 した結果SOFCは3機 器 の中で最

も低 い値 を持つ こ とが分 った。本論文 はHybridシ ステ ムの性 能向上 で最 も重要な論点 として 「FC

冷却 空気 の削減 」 に焦点 をあて,ACT(AdvancedCoolingTechnology)モ デル を提案 してそれ

を解決 しよ うとす るもので ある。FC冷 却 空気 とは投入 され る空気総量か らSOFCで 反応 す る燃 焼

用 空気 を差 し引いた残 りをい う。ACTモ デル の基本構想 は 「FC投 入空気量の削減 」で,現 在 は

FCを 冷却す るた めに回収すべ き熱 を950℃ の冷却空気 と稀釈混合 してい るが,そ れ を改め燃 焼

用 空気 を低 温供給 して燃料 改質温度へ加熱す る顕熱 回収 とバ ランス させ る技 術で ある。 この技

術 に よってFCの 冷却空気が不要 とな り,燃 焼用空気 と燃料 それ 自体 がFCの 冷却流 体 として使

用 され る。ACTモ デルの最大の効果 は,FC発 電出力に対す る空気流量が少な くて済み結果 と し

て圧縮機動 力が削減 され ることである。別 の観 点に立てば,こ のACTモ デル は同一の空気 流量

にお いてSOFC発 電設備 の発電出力 を増大 させ ることのでき る技術 である とい える。

4.5.1在 来 のSOFCに よる再熱方式(SOFC/AFGT/CC)と 非再熱方式(SOFC/NFGT/CC)のSOFC/GT

・Hybridシ ステ ム性能の評価

標 記の2方 式 で最 も異 なる仕様 はター ビン入 口温度 であ り,再 熱方 式(SOFC/AFGT/CC>で は

従来GTと 同様 の1350℃ とす るが非再熱方 式(SOFC/NFGT/CC)で はFC排 気か ら更に熱回収す る

関係 か ら490℃ と低 くな る。

再熱方式 の機器構成 は前述 の図4.2-2の とお りである。非 再熱方式 では燃焼器(CC)を 省 き,

再生器(RECA/RECF)は ター ビン出 口か らター ビン入 口に場所 を変更 して構成 した。従 って,

再熱方 式で は熱 交換器(HA/田)出 口排気ガ スの740℃ を燃焼器 で燃料 を燃や して1350℃ 迄加

熱す るが,非 再熱 方式では再生器(RECA/RECF)で 冷 却 され るためター ビン入 口で は490℃ の低

温 とな る。

主要機 器 であ るSOFC,GTお よびSTの 発 電出力 とプラン ト総出力 を図4.5-1に 示 し,プ ラ ン

ト効 率(発 電端効率)も 併せ て表示 した。 ここに,プ ラン ト効率はシステ ムの総燃料入熱(㎜

基 準)に 対す る機器(SOFC,GT,ST)の 発電 出力合計 で定義 してい る。性 能詳細値 を表4.5-1

に示す。

再熱方式 の性能 は発電 出力280MWで 発 電端効率54%㎜ で あるのに対 して,非 再熱方式 で は

121MWと52%㎜ で再熱 方式 よ り低 い性能値 となる。この性 能 の相違 は空気 と燃料 の温度バ ラン

スの差に よるものである。

再熱方 式で のガスター ビン(GT)の 発 電 出力 は十分大 きい が,非 再熱 方式での膨張 ター ビン

(T)の 出力 はGTの ほぼ54%に 小 さくな る。 さらに,再 熱方式 ではガスター ビン排 気系に排熱

回収ボイ ラ ・蒸 気 ター ビンを構成 でき るが非再熱方式 では排 気温度が低 くこれ らの機器 を構 成

で きない ため,再 熱方 式の ター ビン総出力(GT+ST)は 非再熱方式 のT出 力の約2倍 とな る(図
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4.5-1の ④/⑬)。 圧縮機(C)の 動力 はプラ ン補機 に位 置付 けて共通の動力値 を発 電出力か ら

差 し引 くこととした。 その結果 プラン ト発電 出力 比(非 再熱方 式/再 熱方式)は 大幅 に小 さく

なる(図4.5-1の ⑪/◎)。 再熱方式 は空冷ター ビン翼 を非再熱方式 は無冷却翼 を用い るため,

同量の圧縮機入 口空気流量で両システ ムを作動 した とき非再熱方式の方がFC空 気量 と発電 出力

が ともに若干多 くな る(図4.5-1の ㊥ 対⑪)。 在来のSOFCの 冷却 空気 は燃焼用 空気 の約6倍(表

4.5-1)が 必要である。

次にター ビンー燃料電池出力比(TFPR,Turbine-FCPowerRatio)は 燃料電池発電出力 に対

す るター ビン発電 出力の比で定義 し,再 熱方 式で は(GT+ST-C)/FC,非 再熱方式では(T-c)

/FCと している。在来 のSOFCとGTの ハイ ブ リッ ドで は再熱方式 のTFPRが2.3,非 再熱方式で

は0.1で ター ビン出力割合 が20倍 異 なる。

プラン ト発電効率を向上 させ るときの ター ビンの寄与効果は,FCプ ラン ト効率0.46の 基本値

に対 して どれだ け上乗せ され るか とい う点 で評価 した。 この0.46はAC発 電効率で,DC発 電効

率の公称FC効 率値0.6にDCをACに 変換す る際 の直交変換効率0.95と 燃料利用率0.8(表

4.2-5)を かけて求め られ る値 である。ター ビンを複合す る とき,こ の基本値46%に 加 え られ る

べ き値 は再熱方式 で約8%非 再熱 方式 で約6%で あ る。 つま り再熱方式 は燃 料投入 で非再熱方

式 は燃料非投入のため,再 熱方式 のター ビン出力 は194MWで 非再熱 方式の14倍 と大きい が,FC

プ ラン ト効率46%に 加 え られ るべき値 は8%で 非再熱 の6%の1.3倍 にとどま る。

以上 の評価か ら,在 来のSOFC(DC発 電効 率は公称 の0.6)と 組み合わせ るHybridシ ステム

SOFCGT/CCは 発 電出力 と効率が ともに高い再熱方式 を選 定すべ きであることが分か った。
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Fig.4.5-1PerformanceEstimatesofSOFC/AFGT/CCandSOFCINFGTICC

Table4.5‐1ConventionalHybridSystemPerformanceEstimates

Items SOFC/AFGT/CC SOFCINFGT/CC

TurbineInletExhaust

Temperature
1350°C 49Q°C

SOFCCoolingAirFlow

EquivalentRati°t°

CombustionAir

6.2 6.2

HeatUtilizationRatio

RecoveredfromSOFC
None None

EnergyTransferRatioof

SOFC
0.16 0ユ6

GrossThermalEfficiency 53.7%HHV 52.4%HHV

SOFCPower(AC}

GasTutbinePower

SteamTurbinePower

86.2MW

161.OMW

33.OMW

31%

57%

12%

106.6MW

14.OMW

一

88%

12%

一

PlantPowerOutput 280.2MW 100% 120.6MW 100%

..

(Tu由ine-FCPowerRario)
2.25 0.13
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4.5.2ACT(AdvancedCoolingTechnology)に よるSOFC/GTHybridシ ステムの性能向上効果

現在 のSOFC(効 率0.6)は 表4.5-1に 述べた とお り燃焼用空気の約6倍 の冷却空気が必要で

ある。ハイブ リッ ドシステ ム性能向上の最 も重要な打ち手はSOFC冷 却空気量 を最少 にす る新技

術 を考案す ることであ る。

燃料 電池での温度上昇 は燃料電池 内で消費 され る燃料 の内,反 応過程でエ ン トロピー変化 と

して熱 に変換 され る熱 量 と,発 電膜 の電気抵抗等 に よる不可逆損失 によ り発生す る熱 量 によっ

てもた らされ る。従 って,燃 料 電池 内の発熱 は反応 に伴 って発電膜 あるいはインター コネ クタ

等で生 じてお り,こ れ らの部位 で発生す る熱 を除去 しSOFC出 入 口温度 を規 定値以内 とす る冷却

方法 が必要 とな る。

表4.5-2に 各種SOFCの 冷却方 法の比較 を示す。

現在 のSOFCで は稀釈冷却 あるい はガス再循 環が使 用 され てい る。燃料改質用の蒸気 の一部(又

は全部)に 燃焼生成 のH20を 活用す る場合 はこのガ ス再循環 を使用す る。 この場合,FC排 気 を

再循環 温度(600℃ 程度)に 冷却 してか らFCへ 投入す ることになる。 しか しこの場合ガス再循

環 ファンの動力が必要 とな り発電 出力 を 目減 りさせ て しま う欠点が ある。 高効率 を 目指 す とき

は改質用の蒸気 は別 系か ら供給 して内部改質 とし,SOFCを 作動用空気(950℃)で 稀釈冷却す る。

この際,作 動用空気 を低温(500～600°C)で 供給す る冷却投入方式 が熱 計画 上お よび設 備的 に

も最良 であることが分 る。

Table4.5-2各 種SOFC冷 却方式の比較

方式 希釈冷却 ガス再循環 外部冷却 冷却投入

概要 燃料電池へ投入する
空気量を反応に必要
な量の数倍流す事で

温度上昇を抑制

燃料電池からの排ガ
スを再循環させ燃料

電池内を流れるガス
量を増加させる事で
温度上昇を抑制

燃料電池で発生する

熱を外部から冷却す
ることにより温度上

昇を抑制

燃料電池へ送給する
空気 ・燃料の温度を

低温 とし,燃 料電池

と熱交換あるいは分

割した燃料電池の排
ガスと熱交換する事で

電池の温度上昇を抑制

冷却効果 燃料電池内部での冷
却が可能

燃料電池内部での冷
却が可能

燃料電池を周囲から
冷却する

燃料電池内部での冷
却が可能

必要設備 空気圧縮機 ガス再循環ファン

再生熱交換器

外部冷却熱交換器 中問予熱熱交換器

特徴 システムとしてはシ

ンプルであるが必要

以上の空気を流すた

め圧縮機動力の増加

と排ガスからの熱ロ
スが増加するため熱

効率が低下する。

Hybridシステムでの

加圧SOFCが この方

式である。

高温ガスの循環が必

要となる。再循環の

ため補機動力が増加

するためシステム効

率が低下。
システム化が比較的

容易であ り常圧の

SOFCで 採用実績が

ある。

燃料電池から発生し

た熱は冷却媒体に回

収され別途利用が可

能。

冷却により燃料電池

内外 に温度分布が発

生する可能性がある。

燃料電池から発生し
た熱は空気および燃

料の予熱 として回収
・有効利用される。

熱交換要素あるいは

燃料電池周囲の配管

引き回しが若干複雑
となる。

評価 O 0 △ 0
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冷 却投入方式 をSOFCで 実施す る場合,円 筒型SOFCは 構造上空気供 給管が元 々冷却投入能力

を保 有 してい るのに対 して平板型SOFCは 別途冷却通路 を加 えるために新たな改 良が必要で ある。

本研 究で は,実 用化 にあたってのSOFCの 構造議論 は対象外 とし,シ ステ ム計画 ・熱 計画の上

で あるべ き姿 として 「SOFCの 理想的な作動条件」 を明 らかにす るとともに,そ の結果得 られ る

「発 電効率 の上限値」 を把握す るこ とに主眼をおいた。

Hybridシ ス テ ム 性 能 向 上 の 最 も重 要 な 手 段 と して 冷 却 空 気 量 を 最 小 にす る新 技 術

ACT(AdvancedCoolingTechnology)をSOFCに 適用 した。

ACTの 技術内容 は図4.5-2に 示す とお り,FC作 動流 体であ る燃料 と燃焼用 空気 をFC冷 却媒体

と して使用 しよ うとす るもので ある。

図4.5-2の 熱交換器HA/HFか ら送 出 され る空気お よび燃料 は600～700℃ 程度 に調整 す る。

これ らはFC冷 却域(FCC。01ingSection)で 燃料 の改質温度であ る950℃ まで加熱 され,冷 却

媒 体(空 気 と燃 料)の 温度 は約300℃ 加熱 され る。 これ に対 して在 来のFCを 適用す る場合 はFC

冷却 域 を持 たない ためHA/HFで 空気 と燃料 を950℃ に仕上 げてい る。つ ま り,ACT技 術 で はHA

/HFの 送 出温度 を950℃ 以下の低温 とす るこ とで冷却 空気流量を減少 させ るが,こ の加熱 温度

差お よび空気流量の減少の2効 果 によってHA/HFの 交換熱量が減 少 してHA/HF出 口排 気温度

が上昇す る。

この技術 では冷却空気 その ものが別途必要 とな らないた め圧 縮機 で昇圧 され た空気 は全量が

発電 つま りSOFCで の燃焼用空気 として使 うことが でき る。空気 と燃 料 は当量 比でSOFCに 供給

され るた め,結 果的 にACT技 術 においては無効空気が存在せず,空 気 の投入 もSOFCで の過剰空

気 を極 小 とす るよ うに行われ る。 この技術 はHybridシ ステムの発電効 率 と発 電 出力 の最適化 に

有効 な手段 である と考 え られ る。

図4.5-3に 非再熱方式でのター ビン入 口温度(TIT,TurbineInletTe皿perature)の 上昇 と

それ に伴 うプラン ト発電端効率の向上の状況 を示す。

図4.5-3の 領域1に は在来SOFCと のHybridシ ステ ムを領域IIにACT技 術適用 での性能領域 を

示す が,非 再熱方式で のプ ラン ト発電端効率 はTITの 上昇 に従 って向上 してい る。SOFCへ 投入

す る空気 と燃料 を蒸 気改質温度 の950℃ に加熱す る際 の加熱源 はFC冷 却 にお いて回収 した熱 で

あ る。その結果熱交換器HA/HFの 熱負荷 は低減 しHA/HFの 吐出排気 が高温の1280℃ にバ ラン

スす る。

在 来 のSOFCとHybridシ ステ ムを構成 した場合 の性能 を図4.5-3の 領域1に 示す。 図中の値

は前述 の表4.5-1に 述 べた値 であ る。非再熱 システ ムの膨 張ター ビン(T)のTITは 約490°Cで 再

熱 システ ムのガ スター ビン(GT)のTITは1350℃ である。非再熱 システ ムではター ビンに燃料 を

用 いないがACTを 適用すれ ば発 電端効 率は52%か ら67%へ 向上 し,そ の改善幅 が大 きい。ACT

技術 の最大 の注 目点 は,膨 張 ター ビンのTITが490℃ か ら1280℃ に上昇す るこ とに よって非再

熱方 式の発電端効率 が再熱方式(TIT=1350℃ 一定)の 値 を超過 して高効 率 を示す よ うにな る点

であ る。

-157一



Fig。4.5-2ACTConfiguration(SOFC/AFGT/CC)

Fig.4.5-3PerformanceEnhancementbyACT
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図4.5-4は ター ビン ・燃 料電池 出力 比:TFPR(Turbine-FCPowerRatio)を 用いてHybrid

システムの効率 を評価 したもので ある。 この図に よって再熱方式 と非再熱方式の性 能 を分離表

示す ることが可能 となった。

FC効 率0.8,0.7お よび0.6に 対 して在来SOFCでHybridシ ステ ムを構成 した場合,再 熱方式

ではA・B・C,非 再熱方 式で は1・1・ 皿のプラン ト発 電端効率 となる。本論文 の採用FC効

率0.6で の性 能 のC点 と皿点は,ACT技 術の適用 によって67%㎜ 程度 の高効率 とな る。

図4.5-4の 分析 で得 られた も う一つ の重要 な知見 は,再 熱方式 と非再熱 方式の性能領域 がお

互 いに独 立 してい る点であ る。つ ま り,非 再熱方式の存在す るTFPR=0～0.5の 領域 と再熱方

式 の存在す るfiFPR=0.5～2.5の2領 域 であ る。最大のシステ ム発電効 率を得 るにはTFPRを0 .5

付近 に調整す る必要があ るが,再 熱方式 ではFC出 力増強,非 再熱方式では膨 張ター ビン出力の

増強 を各 々行 うこ とで最大効 率 に到達す るこ とができ る。

FC効 率0.60に お いて在来SOFCのHybridシ ステムか ら出発 してACT技 術 で性能向上 を徐 々に

行 う,つ ま り徐 々に冷却空気 流量 を減 らしてゆ くと再熱方 式 と非再熱方 式のプ ラン ト発 電端 効

率の大小 関係 は60%HHV付 近 で逆転す る。 つま り60%㎜ よ りも低い効率 の条件で は非再熱 方

式 は再熱方式 の値 を下 まわ り,そ れ に対 して60%田Vよ りも高い効率 の条件 ではACT技 術 併用

の非再熱方式 がACT技 術併用の再熱方式 よりも良好な効率 を示す よ うになる。

表4.5-3にACT技 術適用 での再熱 方式 と非再熱方式 の最大のプ ラン ト発電端効率での性 能値

をま とめて示す。

Table4.5-3ACTmodelPerformanceEstimates

Items

TurbineInletExhaust

Temperature

SOFCCoolingAirFlow

EquivalentRati°t°

CombustionAir

HeatUtilizationRatio

RecoveredfromSOFC

EnergyTransferRatioof

SOFC

GrossThermalEfficiency

SOFCPower(AC)

GasTurbinePower

SteamTurbinePower

PlantPowerOutput

..

(Turbine-FCPowerRatio)

SOFC/AFGT/CC

1350°C

0.35

92%

0.30

66.1%HHV

459.6MW

238.OMW

i4.61vnv

na.aMw

65%

33%

2%

11',

0.55

SOFC/NFGT/CC

1280°C

o.as

..・,

0.30

67.6%HHV

497.6MW

225.SMW

4.1NIW

727.2MW

68%

31%

1°/o

100%

046
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Fig.4.5-4PromisingPerformanceEstimatesofACT
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在 来SOFC(燃 料電池効率0.60)に 対 してACT技 術 の もた らす効果 は以下 の とお りである
。

(1)非 再熱方 式でのター ビン入 口温度が在 来Hybridシ ステムの490°C(表4 .5-1)か ら1280℃

に上昇す る。

(2)SOFC冷 却 空気 量は在来Hybridシ ステ ムでの燃焼用 空気 の6倍(表4 .5-1)か ら0.3倍

に大幅 に低減す る。

(3)SOFC本 体か ら冷却回収 した熱 はその約90%を 空気 ・燃料 の予熱 に有効利用で きてい る
。

(4)SOFCのETRは 在 来Hybridシ ステムの0.16(表4.5-1)か ら0 .30に 大幅に改善 し,ガ ス

ター ビンの0.26を 上回 りシステ ム内で最 大 とな る。また これ は理論効 率(0 .80)で のETR

値0.35に 迫 る良好な値 であ る。

(5)非 再熱 方式でのプラン ト発 電端効率が約68%HHVと な る。

(6)再 熱方 式のFC出 力比率 は在来Hybridシ ステムの31%(表4 .5-1)か ら65%に 改善 され,

FC中 心のシステ ム とな る。 非再熱方式でのFC出 力 比率は さらに高 く68%で ある
。 再熱

方式 ではGT作 動用 の燃 焼空気(つ ま り酸素)をFC排 気 に残留 させ る必要か ら非再熱方 式

よ りもSOFC出 力 が小 さい。 但 しSOFCのETRがGTのETRを 上 まわるためプラン ト発電端

効率 はSOFC出 力割合の大きな非再熱方 式の方 が大 きい。

(7)TFPRは,再 熱方式では在 来システムの2.3(表4 .5-1)か ら0.55に 約1/4倍 に,非 再熱

方 式では0.13か ら0.46に 約3.5倍 にな りいずれ もほぼ0 .5に 漸近す る。
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4.5。3SOFC/GTHybridシ ステ ムの性 能総括

1.標 準GT・CC,再 生GT・CCお よびSOFC/GT/CCの 性能 を表4.5-4に 対比 して示す。

(1)標 準のGT・CCお よび再生GT・CCで はGT発 電主体で あるためGT性 能がプラ ン ト性能 を

支配す る。

(2)SOFC/GT/CCに ついて はFC/GT出 力割 合が再熱方式(SOFC/AFGT/CC)で31%/58%,非

再熱方式(SOFC/NFGT/CC)で88%/12%で ある。FC主 体の非再熱方式の発電効率が52.4%

㎜ で再熱方式53.7%㎜ よ り低い のは,表4.4-1に 前述 した とお りFCの 総熱 量効率が

0.16でGTの0.26よ りも低いためで ある。

(3)ACT技 術 を適用 した発展型SOFC/GT/CCに つ いてはFC/GT出 力割合 が再熱方式65%/33%

お よび非再熱方式68%/31%で いず れ もFC主 体 とな る。但 し表4.5-3に 前述 した とお り

FCの 総熱 量効 率が0。30に 改 善 され た点 お よび ター ビン入 口温度 が非再熱 方式 でTIT

1280℃ に上昇 した点か らGTに 燃料 投入 しない非再熱方式 の方 が高効率67.8%HHVと なっ

た。

図4.5-5～ 図4.5-8にSOFC/GT/CCと 発 展型SOFC/GT/CCの 各部 の流 体の熱計画温度 を示す。図

中番号 は図4.2-2の 基本構成 と同 じで ある。発展型の再熱方 式では燃焼器(CC)用 に02を 確保

す るが非再熱方式で はFCで 空気 を全 量使 い切 るため,冷 却空気の空気比が0.25(表4.5-3)と

低 く抑制 できた。その分,相 対的 にFC燃 料 とFC出 力お よび冷却 園収すべ き熱 量が増 えるため,

HA/HF出 口は630℃(つ ま り950℃ への回収温度上昇幅は+320℃)と した。その結果AB吐 出温

度が1280°Cと 高 くな り,GT性 能 も良好 とな ってい る。

2.図4.5-9に 在 来型GT・CC,現 用SOFC/GT/CCお よびACT適 用 の発展型SOFC/GT/CCの 出力 ・

効率特性 を示す。

圧縮機 の作動条件(吸 気流 量,圧 縮動力他)が 全 く同一 にもかかわ らず,

(1>現 用SOFC/AFGT/CC:

在来型GT・CCよ りも出力 ・効 率 ともに向上 した。

一方現用SOFC/NFGT/CCの 効 率 はSOFC/AFGT/CCよ り低い ものの在来型GT・CCよ りは

高い。但 し出力 は在来型GT・CCの 約1/2と 低 く性能的 ・経済的 な魅力 はない。

(2)発 展型SOFC/GT/CC:

在 来型GT・CCに 対す る向上幅 は良好 なSOFC/NFGT/CCに おいて,

・発 電 出力:約3倍

・発 電効率:+39%(相 対)

十19%(絶 対)

で ある。
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つま り,

・現用SOFC/GT/CCで は再熱方 式(SOFC/AFGT/CC)

・発展型SOFC/GT/CCで は非再熱方式(SOFC/NFGT/CC)

を各 々選択すべ きである とい う重要な知見を導 き出す ことがで きた。

3.図4.5-10にFC排 気お よびGT入 口での酸素濃度 を示す。

現用SOFC/GT/CCで はFC排 気で18.5wt%,GT入 口で11wt%程 度 でまだ酸素利用の余 地が ある。

ACT(AdvancedCoolingTechnology)で 空気利用 効率を極限 まで高 める場合,再 熱 で はFC

排 気 中の02を1.5wt%ま で残存 させ てGT入 口でOwt%と す るが,一 方 非再熱 ではFC排 気 でO

wt%と してい る。 この1.5wt%とOwt%の 違 いつ ま りFCへ の燃料投入量 の違 いによ り
,SOFC/NF

GT/CC(ACT)の 方 がSOFC/AFGT/CC(ACT)よ りも高効率 ・高出力 のFC作 動 とな る。

また本研 究で試算 したACT性 能 は02を 極限 まで利用 してい るので これ 以上の高性能 は存在

しないこ とが分 かる。

4.図4.5-11にFC効 率 に対す る再熱 ・非再熱 の特性 の違い を評価 した。但 しシステ ムは現用

SOFC/GT/CCと してい る。

実用効 率域(α50～0.60)に おいては再熱方式(SOFC/AFGT/CC)の 方 が高効率 を示す。

この傾 向は効率0.65で 逆転 し,0.65以 上 のFC効 率域 では非再熱方式(SOFC/NFGT/CC)の

方が効率 が良 くなる。これ は元 々FC出 力比率の高い非 再熱方式 においてFCの 総熱 量効 率(ETR)

が向上す るこ とによる。(FC効 奉0.6～0.8で はETRO .16～0.35に 対応 してい る。)

5.図4。5-12に 再熱方式(SOFC/AFGT/CC)の 性能対比,図4 .5-13に 非再熱 方式(SOFC/NFGT/CC)

の性 能対比 を各々示す。

いずれ もACT技 術 を適用す ることに よって0.60の 実用効率で あ りなが ら理論効率0 .80で

の発 電出力お よび効 率を凌駕 できてい るこ とを示 している。 とくにそ の改善幅 は非再熱 方式

にお いて顕著であ る。

6.図4.5-14にFC効 率0.5～0.8に お け る再熱方式(SOFC/AFGT/CC)と 非再熱方式(SOFC/NF

GT/CC)の プラン ト効率 の大小 を比較 した。評価指標 にFC/C出 力比(=FC出 力/圧 縮機 動力)

を用 いた所,再 熱方式 の効率が常に非再熱方 式を上 まわ るこ とが分 った。但 し,図4.5-11で

確認 した とお りFC効 率0.65以 上の0.7と0.8で のプラン ト効率 の絶対値 は非再熱 方式の方が

高い。また0〈FC/C<1の 領域 ではFC単 独 プラン トは不成立で ター ビン出力 によって初 めて

システ ムか ら電力 を取 り出せ る状況 となってい る。 この領域 では,(FC出 カ ー圧縮機動 力)

が負 値 とな るが非再熱方式 ではそれ をまかなって正値 とすべ きター ビン出力 が小 さい ため,

プ ラン ト効率 はター ビン出力 の大 きい再熱方 式 よ りも低下す る。FC/C=0の 再熱方式 の効 率

46.6%㎜ は再生GT・CC(表4.5-4)の プ ラン ト効 率であ りこれ に上乗せす る形 でFCを 複 合

す ることによ りプ ラン ト効率が向上す る。但 し非再熱方式 はTIT=490℃ で ター ビン翼冷却空

気が不要 のため全量空気 をFC発 電 に使用 できる。従 って同一圧縮機 に対 してFC出 力 が大 き

くとれ,再 熱 方式のFC/Cに 対 して一定割合 で大きなFC/Cが 得 られ てい る。
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Table4.5-4SummaryofPerformance

Systems

Items

OGT・CC OSOFC/GT/CC ③AdvancedSOFCIGT/CC(ACT)

Conventional
RecuperatedAir

(PreheatedFuel SOFCIAFGT/CC SOFC!NFGT/CC SOFC/AFGT/CC SOFCINFGT/CC

AirTemp.

FuelTemp.

toGT

:①.

toFC

:23

370°C

15°C

550°C

550°C

■

950°C

950°C

ノ

950°C

950°C

660°C

660°C

630°C

630°C

Tu市inelnlet

Temp.

CombustorInlet

AirTemp.

1350°C 1350°C

■

1350°C
490°C

(HRSGInlet:126°C)

1350°C

1280°C

370°C 550°C

■

740°C 1250°C

GrossThermalEfficiency 48.7%HHV 46.6%HHV

■

53.7%HHV 52.4%HHV 66.1%HHV 67.6%HHV

SOFCPower(AC)

GasTurbinePower

SteamTurbinePower

一

145.9MW

84.9MW

一

63.2%

36.8%

一

142.6MW

34.4MW

一

80.6%

19.4%

■

86.2MW

161.OMW

33.OMW

30.8%

57.5%

11.7%

106.6MW

14.OMW

一

88、4%

11.6%

一

459.6MW

238.OMW

14.6MW

64.5%

33.4%

2.1

497.6MW

225.5MW

4.iMW

.,.

31.0%

0.6%

PlantPowerOutput 230.8MW 100% 177.OMW 100%

.

280.2MW 100% 120.6MW 100% 712.2MW 100% 727.2MW 100%



Fig.4.5-5SOFC/AFGT/CCConfigurationandSpecification(53 .ヴ%HHV)

Fig,4.5-6SOFC/NFGT!CCConfigurationandSpecification(52 .4%HHV)
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Fig.4.5-7ACTConfigurationandSpecification(SOFC!AFGTICC66.1%HHV)

Fig.4.5-8ACTConfigurationandSpecification(SOFC/NFGT/CC67.6%HHV)
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PlantPowerOutput

(MW)

Fig.4.5‐9PerformanceEnhancement

,

Fig.4.5-10UsageofOxygenatPerformanceEnhancement
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Fig.4.5‐12SOFC/AFGT/CCPerformancePromotedbyACT

Fig.4.5‐13SOFC/NFGT/CCPerformancePromotedbyACT
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4.6結 言

本研究ではFCの 作動運用条件な らびにACTモ デル を適用 したHybridシ ステム(SOFC/GT/CC)

の性能 につい て論 じた。非再熱方式(SOFC/NF/CC)と 再熱方式(SOFC/AFGT/CC)の 熱 的性 能 を

分析評価 し,そ の結果 以下の知見 を導 き出す ことができた。 これ らは燃 料電池効率 に実用効 率

0.60(DC)を 用い,シ ステ ムの高効 率化 限界 を評価 した もので ある。

(1)SOFCは 多量の冷却 空気 を必要 とす るため,プ ラン ト発電効率 を改善す る際 の制約 である

と共に最大の改善対象 であ る。

(2)SOFCの エネ ルギー変換効 率(ETR,EnergyTransferRatio)0.16はGTの0 .30よ りも

大幅 に小 さく,STの0.18よ りも若 干低い。 これ は多量 の950℃ のFC冷 却空気が使用 され ,

SOFC入 口総熱量が非常に大 きくな るた めであ る。ACT(AdvancedCoolingTechnology)モ

デル ではSOFCのETRが α3に 向上 しガスター ビンの0.26を 越 えてシステ ム内最大 とな る。

(3)ACTモ デル はSOFC冷 却 空気 を低減す る際 のシステムモデル である。ACTモ デル を用 いた

熱力 学的 解析 に よ り,Hybridシ ステ ム の最大 効率約68%㎜ がTFPR(Turbine-FC

PowerRatio)0.5付 近 で達成 し得 るこ とが分 かった。

(4)シ ステ ムの最大効率 はTITとTFPRに 支配 され る傾 向を持つ。在 来のSOFCを 用いてHybrid

システム を設計す る ときは,'再 熱 方式(TIT=1350℃)の 方 が非 再熱方式 よ りも効 率 ・出

力 ともに高い。

将来的 に高性能 システ ムを計画す る ときは,ACTモ デル を適用す ることに よって66%HHV

(再熱方式)～68%田V(非 再熱方式)の 高効 率を得 るこ とができる。

つ ま り,ACT技 術 を適用す れ ば再熱方式 な らび に非再熱方式 のいず れにおい ても70%

LHV(7)(63%HHV)の 高い効率値 を超過 して達成す るこ とがで きる。(但 し,こ の効率値70%

LHVは 米 国DOE(DepartmentofEnergy)か ら公表 され たHybridシ ステムの 目標値で ある
。)
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第5章 結 論

火力発電 システムの高性能化 ・最適化 を図 るにあた り,LNG気 化ガス(あ るい は天然ガス)を

燃料 とす る複合サイ クル発電 において新 たに開発 した技術 を適用 してその性能 改善効 果 を明 ら

かに した。

第2章 ではCASCADE冷 却技術 を開発 し,1350°C級 の複合サイ クル発 電で発電効率 を4.9%(相

対)改 善 した。ガ スター ビンに不可欠 の翼冷却 空気 は圧縮機吸気量の約20%も 存在 してお りガ

スター ビン部分で十分な 出力変換 に寄 与 していない ことか ら,そ の削減 がガスター ビンお よび

複合サイ クル発電の性 能 向上 に有効で あ ることを示 した。翼冷却空気削減 を実現す るた めに,

(1)冷 却空気温度 を15℃ 迄冷却(2)冷 却過程で回収 した熱 を燃料予熱/低 圧蒸気 ター ビン用蒸

気生成/吸 収冷凍機用熱源 に活用 の2点 を実現す るCASClmE冷 却技術 を提案 した。

この場 合の性能 向上は,翼 冷却空気 の削減 その ものの効果 と燃 料予熱お よび低圧 蒸気 ター ビ

ンの増出力の相乗効果 で発揮 できた ものである。

プ ラン ト性 能を向上す る際通常 は外部 損失 ともい うべ き煙 突排 気損失や復水 器損失 か ら議 論

され るがもっ と直接的 で改善効果 の大 きいガス ター ビンの内部損失 に注 目して,翼 冷却空気 の

削減 ・最適化 を図 った。冷却 空気量 削減 のた めには翼冷却構造改善 によ る冷却効率 向上 が通常

な され る方 法であ るが,空 気 瀘度 その ものを低減 して冷却顕熱 を通 常よ り大 き くとるこ とによ

って冷却能力 を維持 しなが らその空気 量 を下 げる とい う基本構想 を設 定 した。次 に翼冷却空気

を何度 まで下げれ ば良いか,何 度 まで下 げるこ とができるか とい う点を評価 し,吸 収冷凍機 の

冷水 を併用す ることで15℃ 迄 の冷却 を可能 と した。

第3章 では排気無排 出プラン トを高効率で実現す るためにCO2・CBCと 燃焼蒸気ター ビンを提

案 し,そ の両者 を組み合 わせたCO2/H20Hybridシ ステ ムによって,発 電効率を23.2%(相 対,

1350℃),19.6%(相 対,凾1500℃)改 善 した。但 し閉サイ クル構成 のために必要 とな る酸素製

造動力 と復水器か らのCO2抽 気動力 を差 し引 くと7.1%(相 対,1350℃),4.4%(相 対,1500℃)

と改善幅 は小 さくなって しま うが,第2章 のCASCADE冷 却技術 よ りは改善幅が大き くCO2全 量回

収の排気 無排 出プラン トであることの意義が大きい。

CO2・CBCを 最大効率で実現す るために は作業流 体組成(CO2,H20)は(56.5,43.5)wt%が 最

適 であるこ とを明 らか に した。 この場合,シ ステ ム損失 は燃焼生成物 の単純抽気のみ に限 られ

るため,総 熱 量効率(い わゆるコジェネ効率)は 約96%LHVで,煙 突排気 がシステム損失 とな

る通常のGT約88%LHVを 大幅 に改善 できた。但 し酸素製造動力 を差 し引 くと発電出力が 目減 り

して,89%LHV程 度 の若 干の改善 にとどま る。CO2・CBC/CCの 発電効率は在来 のGT・CCに 対 し

て5.9%(相 対,1350°C),4.9%(相 対,1500°C)改 善 した。但 し,閉 サイクル構 成のために

必要 となる酸素製造動力 を差 し引 くと在 来のGT・CCを 一5.7%(相 対,1350℃),-6.4%(相 対,

1500℃)下 ま わ る。燃 焼 蒸 気 タ ー ビン を最 大効 率 で 実現す るた め に主蒸気 圧 力 を超 臨界圧
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(34.3MPa)ま で高めた他,低 圧 ター ビン(1.3～4.r.)と 組み合 わせて,超 臨界圧(1350℃)

/低 圧(1350,1500,1700℃)の 再熱 方式 を採用 し,そ の結果 在来 の蒸気 ター ビンの発電効 率

約37%を62%LHV(1350℃),64%LHV(1500℃)に 改善 できた。在 来のGTと 燃焼蒸気 ター ビ

ンとの複合サイ クル(CC)に よって発 電効率 を13 .1%(相 対,1350℃),11.4%(相 対,1500℃)

改善 した。 但 し酸素製 造動力 と復 水器 か らのCO,抽 気動力 を差 し引 くと改善幅は6.0%〈 相対,

1350℃),4.1%(相 対,1500℃)に 低 下す るがこの値 はCO2/H20Hybridシ ステ ム並み(若 干

低 目)の 性 能改善能力 をもつ ことを明 らかに した。 閉サイ クル ではLNG気 化 ガスを酸素燃 焼す

るた め,LNGとL-Ozの 液相加圧お よび蒸発 が行 え るので これ を利用 して補助 ター ビン(AT)を

構成す ることを提案 した。上述 の諸効率 はLNG気 化ガス はM-T(メ タンター ビン) ,酸 素は0-

T(酸 素ター ビン)を 各 々膨 張ター ビンと して構成 してその出力 を発電 出力 に上 のせ した もの

であ る。CO2/H20Hybridシ ステ ムにおいてTIT(タ ー ビン入 口温度)を 上昇す ると効 率向上が

図れ,将 来技術 の1700℃ 級CO2/H20Hybridシ ステ ムにつ いては再熱方式 で63 .9%Dの 発 電端

効率 となるこ とを示 した。CO2圧 縮機 動力 を差引 くと61.6%皿,更 に酸素構 造動力 を差 し引 く

と55.9%HHVで あ る。

・ 第4章 では冷却投入型SOFCを 提案 し
,FC・GTHybridシ ステ ムを構成す ることで,発 電効率

を1350℃ 級複合 サイ クル発電 に対 して35.6%(相 対,再 熱方 式) ,38.7%(相 対,非 再熱 方式)

改善 した。 在来のSOFCで は燃料改質温度の950℃ 迄昇温 した空気 と燃料(LNG気 化ガ ス+改 質

用蒸気)を 投入 してい たためその低い冷却能力 に よって多量 の空気 が冷却 にあて られ ていた。

これ に対 して冷却投入型SOFCで は600℃ 台の空気 と燃 料 をSOFCに 投入 し,そ れ らが950℃ の反

応温度まで昇温する際の顕熱でSOFC本 体を冷却 しようとす る技術である。汝に高温 ・高効率の

SOFC(固 体 酸化物型燃 料電池)を 用 いその後流 にガ スター ビンの ター ビン部 を配置 したが
,FC

排気そ のままでター ビンを作動 させ る非再熱方式 とFC排 気 を燃 焼器 で昇温 してTIT1350℃ でタ

ー ビンを作動 させ る再熱方式 のいずれ が高性 能で あるか とい う点 につ いて究明 を行
った。そ の

結果在来のFC・GTHybridシ ステ ムでは再熱方式,本 提案 の冷却投 入型SOFCのFC・GTHybrid

システムで は非再熱 方式が高効率 とな ることを示 した。またTFPR(Turbine-FCPowerRatio)

で分類 す る と両者の特性分析が行 いやすい ことを明 らかに した。なぜ在来のFC・GTHybridシ

ステムでは発 電効率が低いのか とい う点について はHybridシ ステ ム全体の熱 的解析 に より量論

空気量の6倍 のFC冷 却空気 を用い てい る点 にあ るこ とをつき とめ,FC冷 却空気 を極 限まで削減

す る技術 と して冷却投 入型SOFCを 提案 した。その結果冷却空気 は量論空気量の0.3倍 まで削減

でき,FC排 気 中の02濃 度は数%ま で空気 を使 い切 ることに よって前述の高効率 を達成す るこ と

に成功 した。
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