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 Abstract 

Central olfactory system integrates signals derived from 

numerous types of odorant receptors that are expressed by sensory 

neurons in the olfactory epithelium. Individual  glomeruli  in the 

mammalian main olfactory bulb (MOB) represent a single or, at 

most, a few types of odorant  receptor  (s)  . Signals from different 

types of receptors are sorted out into different glomeruli. How 

does the neuronal circuit in the olfactory bulb contribute to 

the combination and integration of signals received by different 

glomeruli? Here I examined electrophysiologically whether 
there were functional interactions between mitral/tufted cells 

 (M/T cells) associated with different glomeruli in the MOB. 
First, I made simultaneous recordings of extracellular 

single-unit spike responses of M/T cells and oscillatory local 

field potentials  (OLFPs) in the dorsomedial region of the MOB 

in urethane-anesthetized rabbits. Using periodic artificial 

inhalation, the olfactory epithelium was stimulated with a 

homologous series of n-fatty acids or n-aliphatic aldehydes. The 

odor-evoked spike discharges of M/T cells tended to phase-lock 

to the OLFP, suggesting that spike discharges of many cells occur 

synchronously during odor stimulation. Second, I made 

simultaneous recordings of spike discharges from pairs of  MIT 

cells located 300-500  gm apart, and then I performed cross-

correlation analyses of their spike discharges in response to 

odor stimulation. About  27% of cell pairs, which have distinct 
molecular receptive ranges, exhibited synchronized oscillatory 

discharges when olfactory epithelium was stimulated with one or 
a mixture of  odorant  (s) that were effective in activating both 

cells. The results suggest that the neuronal circuit in the 

olfactory bulb causes synchronized spike discharges of specific 

pairs of M/T cells associated with different glomeruli and the 
synchronization of odor-evoked spike discharges may contribute 

to the temporal binding of signals derived from different types 

of odorant receptor. 
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  Chapter  1. 

-General  Introduction-

                 5



       Olfactory system is characteristic in that its sensory 

input is mediated by a variety of odor molecules. It has been 

estimated that more than 400,000 chemical compounds are odorous 

to human nose (Hamauzu  1969)  . Gas-chromatographic studies have 

shown that an object emits a specific combination of odor 

molecules, and that different objects emit different 

combinations of odor molecules. For example, the fruit of peach 

emits a specific combination of dozens of odor molecules 

including benzaldehyde and  T  -decalactone (Fig.  1)  . Each of the 

odor molecules cannot be perceived  as  "peach"  by  itself. However, 

when these odor molecules are mixed in proper concentration, we 

perceive them as "peach odor". Thus, the olfactory nervous 

system needs to integrate information carried in a selective 

combination of odor molecules in order to perceive the "olfactory 

image" of objects. How does the brain recognize various kinds 

of odor molecules? What is the neuronal mechanism for the 

integration of information from various odor molecules? 

       Odor molecules are received by odorant receptors expressed 

on the sensory neurons in the olfactory epithelium of the nasal 

cavity. To cope with a vast variety of odor molecules, the 

mammalian olfactory system has developed up to 1000 types of 

odorant receptors (Buck and Axel 1991; Lancet and Ben-Arie 1993; 

Mombaerts 1999; Sulliavn et al.  1996)  . One odor molecule can bind 

to several different odorant receptors, and one odorant receptor 

can bind to several different odor molecules (Malnic et al. 1999; 

Zhao et al.  1998)  . This suggests that a specific combination of 

odor molecules emitted from an object may activate a specific 

combination of odorant receptors. The olfactory system may 

generate the "olfactory image" of object by integrating and/or 

comparing the information derived from the specific combination 
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Prunus Persica Batsch (Peach)

Fig. 1 Various kind of odor molecules emitted from the peach fluit. A, a picture of peach (Prunus Persica Batsch). 
 B, 8 odorous compounds emitted from the peach fluit. Except the 8 compoundes above, peach fluits emit various 

kinds of odorous compounds such as hydrocarbons (ethylene, limonene, etc.), alcohols (ethanol, benzyl alcohol, etc.), 
acids (acetic acids, hexanoic aicds, etc.), aldehydes (heptanal, turfura, etc.), ketons (2-undecanonde, 2-pyrone, etc.), 

     lactones ( y-octalactone, y-dodecalactone etc.), esters (isopentyl acetate, benzyl acetate, etc.) and so on.



 of odorant receptors. 

       Individual olfactory sensory neurons express only one type 

of odorant receptor gene out of a repertoire of 1,000 types of 

receptor genes (Buck and Axel 1991; Nef et al. 1992; Strotmann 

et al. 1992; Chess et al. 1994;  Malnic et al.  1999). Thus sensory 

neurons are differentiated into functional subtypes based on the 

selection of the odorant receptor genes. Individual olfactory 

sensory neuron projects a single axon to a single glomerulus of 

the main olfactory bulb (MOB), the first relay station of the 

central olfactory system. In the glomerulus, olfactory sensory 

neurons make synaptic connections with the primary dendrites of 

mitral and tufted cells, which are the principal neurons of the 

MOB (Fig. 2). The connectivity pattern of olfactory axons to 

glomeruli is highly organized: individual glomeruli receive 

converging axonal inputs from olfactory sensory neurons 

expressing the same type of odorant receptor gene  (Mombaerts et 

al. 1996;  Mori et al.  1999). Individual glomeruli thus receive 

input derived from a given odorant receptor. Therefore signals 

derived from different odorant receptors are sorted out into 

different glomeruli  (Mori et al. 1999). 

      How the brain integrates or compare signals derived from 

different odorant receptors? An olfactory axon makes excitatory 

synapses to the single primary dendrites of mitral/tufted cells 

(M/T cells) within a given glomerulus (Fig.  2)(Mori et al.  1983). 

Therefore, individual M/T cells receive olfactory inputs 

selectively from sensory neurons expressing a same odorant 

receptor. It has been estimated in rabbits that about 10  mitral 

cells and 20 tufted cells associate with one glomerulus (Allison 

and Warwick 1949; Roeyt et al. 1988). Each glomerulus together 

with its association neurons can thus form a functional unit, 

each handling information derived from a single type of odorant 
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Fig. 2 An over view of the basic neuronal circuit of the mammalian main olfactory system. Olfactory sensory neurons which express the san 
odorant receptor gene converge their axons onto a few defined  glomeruli and make synaptic connections on dendrites of  mitral/tufted cells  (1V 
cells) and periglomerular cells. Individual MIT cell project a single primary dendrite to a single  glomerulus.  M/T cells form dendrodendritic 
reciprocal synapses with granule cells win the external plexiform layer (EPL), and with periglomerular cells in the  glomeruli. White arrows 
indicate excitatory synapses whereas black ones indicate inhibitory synapses. Oscillatory local field potentials were recorded  from EPL  (Rec 
and single unit discharges of M/T cells were recorded from deep EPL or MCL (Rec. B and Rec. C). GCL, granule cell layer; GL, glomerular  is 
er; LOT, lateral olfactory tract; MCL, mitral cell layer; OE, olfactory epithelium; OM, odor molecules; ONL, olfactory nerve layer; OR,  odorar 
receptor.



receptor. It has been suggested that local neuronal circuits 

within the MOB mediate interactions among different glomerular 

units. 

      There are two types of GABAergic interneurons in the MOB, 

granule cells and periglomerular cells (Fig. 2,  Ribak  et al.  1977)  . 

Granule cells make dendrodendritic reciprocal synapses with  MIT 

cells, thus forming neuronal circuits that may mediate 

interactions among M/T cells. The dendrodendritic reciprocal 

synapses consist of the M/T-to-granule excitatory synapse and 

the granule-to-M/T inhibitory synapse. Thus activation of a  MIT 

cell may activate granule cells via the dendrodendritic 

excitatory synapses, which then results in inhibition of 

neighboring M/T cells via the dendrodendritic inhibitory 

synapses. This lateral inhibition has been suggested to enhance 

tuning specificity of  M/T cells to molecular features of odorants 

(Yokoi et al.  1995)  . 

      Another possible function of the local neuronal circuit 

might be to meditate the synchronized firing of  M/T cells. It 

has been reported that odor stimulation elicits robust 

oscillatory local field potentials  (OLFPs) in the mammalian MOB. 

It has been suggested that M/T cells may be tightly coupled with 

the mechanisms for generating the OLFPs (Adrian 1950; Bressler 

1987; Bressler and Freeman 1980;  Mori et al. 1992;  Mori and Takagi 

 1977)  .  M/T cells project their axons to olfactory cortical 

neurons (Shepherd and  Greer  1990)  . If the axons of M/T cells 

representing different odorant receptors converge onto target 

neurons in the cortex, the cortical neurons can function as a 

combination detector whose activity represents the simultaneous 

activation of the several types of odorant receptors. The 

synchronized firing of the  M/T cells during odor stimulation may 

effectively drive the target cortical neuron because of the 
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temporal summation of the excitatory synaptic inputs from the 

M/T cells. 

      Synchronous firing of M/T cells in the MOB in response to 

odor stimulation has already been suggested by the previous 

studies (Baumgarten et al. 1962,  Mori and Takagi 1977, Eeckman 

and Freeman 1990) . However, no systematic study has so far been 

reported regarding the synchronous firing of M/T cells. In the 

present study, to examine whether specific pairs of M/T cells 

representing different odorant receptors show synchronized spike 

responses when they are co-activated by one or a mixture of odor 

molecules, I performed the following two experiments. 

1. Simultaneous recordings of spike discharges of M/T cell 

in response to odor stimulation and the OLFP. Detailed analysis 

was made on the temporal relationship between the time of spike 

discharges of M/T cells and the phase of the OLFPs. 

2. Pair recordings of M/T cells innervating different 

glomeruli (thus representing different odorant  receptors)  . 

Cross-correlation analysis was done to test whether the pairs 

of M/T cells showed synchronized spike responses during specific 

odor stimulation. 
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  Chapter  2. 

-MATERIALS  AND METHODS-
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2-1. Animal Preparation 

      Experiments were performed on 17 young adult male rabbits 

weighing  1.  8-2.  5 kg (Japanese white, Nihon  SLC)  . Each animal was 

anesthetized with an intravenous injection (from caudal 

auricular vein) of  30% urethane (1.3 g/kg). Tracheotomy was 

performed for double cannulation (Onoda and  Mori  1980). A glass 

canula was inserted caudally into the trachea for animal's 

spontaneous respiration. A flexible polyethylene tube was 

inserted rostrally into the postnasal cavity through the larynx 

for controlling the nasal airflow. Animals were then mounted on 

a stereotaxic instrument (Narishige, SN-3). 

      To minimize the pulsation of the brain, a drainage of the 

cerebrospinal fluid was routinely performed at the atlanto-

occipital membrane as followed: after the exposure of the 

atlanto-occipital membrane, a small hole was opened and a twisted 

cotton string was inserted through the hole to touch the 

cerebrospinal fluid. The bone overlying the dorsal surface of 

the olfactory bulb was widely removed with a dental drill, and 

the dura was cut and reflected to expose the olfactory  bulb. The 

surface of the olfactory bulb was covered with a mixture of 

vaseline and mineral oil to reduce drying and cooling. 

      A small hall was opened in the bone and dura overlying the 

anterolateral part of the frontal neocortex for inserting a 

bipolar stimulating electrode into the lateral olfactory tract 

(LOT) running at the surface of the anterior  piriform cortex. 

The final position of the stimulation electrode was determined 

by monitoring the LOT-evoked field potentials in the MOB 

(Phillips et al. 1963). The stimulation electrode was then 

anchored to the skull with dental cement (Fig. 3). 
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Animal Preparation 

recording from the MOB

nasal turbinate  LOT stimulation

spontaneous 

respiration

odor

artificial inhalation

Fig. 3 Animal preparation. After tracheotomy, double canulation was performed: 

caudal one for respiration and rostral one for artificial inhalation. Orange arrows 

indicate the flow of odor-containing air during artificial inhalation. Right blue indi-

cates the nasal cavity. A mitral/tufted cells in the MOB is  illustrated in red.



2-2.  Odor stimulation 

       A homologous series of normal- (n-) fatty acids (carbon 

chain length: 2-9) and n- aliphatic aldehydes (carbon chain 

length: 3-10) were used for odor stimulation (Fig. 4). Each 

chemical was diluted to  2x10-2 (vol/vol) in odorless mineral oil 

(Aldrich). Two milliliter of each diluted solution was stored 

in a glass test tube sealed with a screw cap. For odor stimulation, 

the test tube was uncapped and then placed in front of the animal' s 

nose. 

      The polyethylene tube inserted rostrally into the 

postnasal cavity was connected to a vacuum pump for artificial 

inhalation; the vacuum pump periodically generated negative 

pressure in the nasal cavity, which caused airflow from the 

nostril into the nasal cavity. To prevent animals from closing 

the nostril, a flexible polyethylene tube was inserted into the 

nostril (Fig.  3). The rate of the artificial inhalation was set 

as once per 1.5 sec and the duration of one inhalation was 500 

msec. By placing the odor-containing test tube in front of the 

nostril tube, odor-contained air was inhaled into the nasal 

cavity. Each odor application lasted at least 5 sec covering 3 

cycles of the artificial inhalation. To remove the odor-

containing air leaked outside the nostril, an air exhauster was 

placed at a distance of 15 cm from the animal's nose. 
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Panel of stimulus odor molecules
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Fig. 4 The panel of odor molecules. normal (n)- Aliphatic acids (number of carbon 
atoms: 2-9) and n-aliphatic aldehydes (number of carbon atoms: 3-10) were used. When 
the olfactory epithelium was stimulated with these odor molecules,  mitralltufted cells 
in the dorsomedial region of the MOB showed burst spike responses.



 2-3. Recording 

       OLFPs and extracellular single-unit discharges were 

recorded from the dorsomedial region of the MOB by glass 

micropipettes filled with 2M  NaCl. DC resistance of the 

micropipettes was 1 - 2  MS2 for the recording of OLFP and 3 - 5 

 MC2 for the recording of single-unit discharge. Electrical 

stimulation of the lateral olfactory tract was performed using 

a rectangular pulse with  100ps duration (Phillips et al. 1963). 

OLFPs were recorded from the external plexiform layer of the MOB. 

Single unit discharges of the M/T cells were recorded from the 

deep portion of the external plexiform layer or the mitral cell 

layer (Fig. 2). For simultaneous recording of OLFPs and 

single-unit discharges of a M/T cell, I used two glass 

micropipettes separated  -100  gm. For simultaneous recording 

 from two M/T cells, the tips of two micropipettes were separated 

300 - 500  gm apart. The action potentials and OLFPs were 

differentially amplified using bandpass filters in the range of 

150 Hz - 3 kHz and 5 - 300 Hz, respectively. The recorded signals 

were stored in the computer (PowerMac 7300, Apple computer) via 

AD converter Micro 1401 with Spike 2 software (Cambridge 

Electronic Design, Cambridge) and further off-line  analyses  were 

performed. 
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2-4. Phase-Frequency histogram analysis 

      To analyze whether spike discharges of M/T cells were 

phase-locked to the OLFP, I made phase-frequency  histograms  : time 

of spike occurrence was plotted against different phases of the 

sinusoidal OLFP (Laurent et al. 1996). 

      OLFP was recorded by a micropipette inserted in the middle 

of the external plexiform  layer. One cycle  (0°-  360°) of the OLFP 

was defined as the period from a positive peak (0°) of the 

sinusoidal OLFP to a next positive peak  (360°). To examine the 

temporal relationship of the spike discharges of M/T cells with 

reference to the phase of the OLFP, I calculated the phase 

representation of a spike  (,spike) which is given by: 

                         t spt.ke —  tlastOLFPpeak         A
'     spike ) x 360 

               s 

            P  t
nextOLFPpeak — tlastOLFPpeak 

where  tvik, is the time of spike discharges of  M/T cell;  tlastOLFPpeak 

is the time of the positive OLFP peak just before the spike 

discharge;  tmxt0/..Fk is the time of the positive OLFP peak just 

after the spike discharge (Fig.  5). To examine whether spike 

discharges of M/T cells tend to occur at a restricted phase of 

the OLFP, a histogram was made by accumulating the occurrence 

of  A.spike in different phases of OLFP (abscissa: phase of the OLFP 

with 30-degree bins). To show the probability of spike 

occurrence in each bin, the number of spikes in each bin was 

divided by the total number of spikes in a histogram. 
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   Phase representation of spike times of M/T cell  

spike discharge of a M/T  cell 

 OLFP in the external 

   plexiform layer 

   time (msec) tlastOLFPpeak  t  pike  tnextOLFPpeak 

   phase (degree) 
 00 1spike 90° 180° 270° 360° 

    Fig, 5 Representation of spike times of  M/T  cells in terms of the phase of the OLFP. 
    The interval between two positive peaks of OLFP was regarded as 1 cycle (360 

    degrees). The time of a spike  (tspike) was compared with the last positive peak 

              and thenextpositivepeak (t     (tlastOLF.Ppeak)anextOLFPpeak) in the simultaneously record-
    ed OLFP and assigned a phase  (./spike) by linear interpolation.



2-5. Cross-correlation analysis 

      To examine the synchrony of spike discharges of a pair of 

M/T cells, cross-correlation histograms were computed using a 

standard method (Perkel et al. 1967). Briefly, spike times of 

cell B with reference to the spike times of cell A were measured 

and plotted on a histogram. If the two cells show completely 

synchronized firing, the time lag between spikes of cell A and 

those of cell B is 0 msec. Thus, the cross-correlogram computed 

for the completely synchronized spike trains show a clear center 

peak. If the spikes of cell A occur independently to the spikes 

of cell B, the cross-correlogram does not show a central peak 

and is flat. The correlograms were calculated for time shifts 

ranging from -50 msec to +50 msec with a temporal resolution of 

2 msec. I accumulated recordings obtained from at least 3 trials 

of odor application, each trial consisting of at least 3 

artificial  inhalations. 
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2-6. Fitting of Gabor functions 

      As shown in Fig. 9 and 10, the cross-correlograms that were 

computed for spike responses of  M/T cells often showed a clear 

central peak and smaller satellite peaks at regular intervals 

(about 30  msec)  . To quantify the strength of the cross-

correlation, a standard Gabor function (damped sinusoid) was 

therefore fitted to each cross-correlogram  (Konig  1994)  .  A  Gabor 

function is given by: 

 F(t)  = A-exp[(It —91 )2         0. ] 

 

•  cos[2irv(t — 0)]  + C 

where A is the center peak amplitude; C is the offset of the 

correlogram modulation; 0 is the phase shift; a is the decay 

constant;  v is the sinusoid frequency (see Fig.  6)  . Each of the 

five parameters was independently substituted and the Gabor 

function that fit the correlogram with the lowest X2 value is 

selected (Konig  1994)  . 

      The Gabor function that fit to the cross correlograms had 

a variable offset  (C)  . Therefore, the relative modulatory 

amplitude (RMA) defined as the ratio of the center peak amplitude 

(A) over the offset of correlogram modulation (C) was calculated 

for assessing the strength of correlation (RMA=A/C, Engel et al. 

 1990)  . Spike responses were considered synchronous when the RMA 

exceeded 0.3. 
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Parameters of  Gabor  Function

                    s F(t)= A • expE(it -Oil—•co12.7rv(t -  0)]  +  C 

            a

Fig. 6 Fitting a Gabor function (red) to a cross-correlogram (gray). 
Gabor function is the product of the sinusoidal function and the damping 
function. Each five parameters  (C  , A, 0, a, v) were independently substi-
tuted and the fit with the lowest x2 value is selected as optimal. a 
indicate the decay constant of a function, therefore the bigger a is, the 
slower the degree of damping of the function is. A, the center peak 
amplitude; C, the offset of the correlogram modulation;  0, the phase 
shift; v, the sinusoid frequency.
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 3-1. Introduction to experiment 1 

      Odor stimulation elicits sinusoidal (30-80 Hz)  OLFPs in 

the mammalian MOB (Adrian 1950; Bressler 1987; Bressler and 

Freeman 1980;  Mori et al. 1992;  Mori and Takagi 1977) . Each type 

of odor molecules elicits OLFP in specific areas of the MOB. For 

example, short chain n-fatty acids such as propyonic acid elicit 

OLFPs at restricted regions of the dorsomedial area in the MOB 

 (Mori et al.  1992)  . 

      Then, how the odor-induced  OLFPs were generated in the MOB? 

Secondary dendrites of M/T cells make dendrodendritic reciprocal 

synapses with granule cells in the external plexiform layer of 

the MOB  (Fig.  2)  . The reciprocal synapses are thought to mediate 

the OLFP and the synchronized oscillatory activity among many 

M/T cells (Rall and Shepherd 1968;  Rall et al. 1966;  Shephered 

and  Greer  1990)  . It has been proposed the mechanisms eliciting 

OLFP as follows. Odor-induced activation of M/T cells causes 

excitation of many granule cells via M/T-to-granule 

dendrodendritic excitatory synapses. Because the 

 dendrodendritic synapses are located in the external plexiform 

layer (Fig.  2)  , the depolarization of granule cell dendrites 

accompanies the negative extracellular potential in the external 

plexiform layer. Activation of granule cells, in turn, inhibits 

many M/T cells simultaneously via granule-to-M/T dendrodendritic 

inhibitory synapses. When the M/T cells are suppressed, 

excitatory input to the granule cells subsides. This results in 

disfacilitation of granule cells followed by a cessation of the 

inhibition of M/T cells. M/T cells are activated again if 

excitatory input from olfactory sensory neurons is continued 

 (Mori and Takagi 1977;  Rall et al. 1966; Shepherd and Greer  1990)  . 

      Previously it was reported that odor-induced spike 
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responses of mitral cells tended to occur just before the positive 

peak of the odor-induced OLFPs that were recorded in the granule 

cell layer  (Mori and Takagi  1977)  . However, the temporal 

relationship between the spike discharges of mitral cells and 

the phase of the OLFPs has not yet been examined quantitatively. 

To examine whether the spike discharges occur at restricted 

phases of the OLFP during odor stimulation, I performed following 

two experiments: 

1. Simultaneous recordings of OLFP and spike discharges of M/T 

cells in response to odor stimulation. 

2. Quantitative analysis of the temporal relationship between 

the time of spike discharges of M/T cells and the phase of the 

OLFPs. 

3-2. Spike discharges of MIT cells  phase-lock to the 
OLFPs 

      To record the odor-induced OLFP, a glass micropipette was 

inserted into the external plexiform layer (Fig. 2,3) of the 

dorsomedial fatty-acid responsible region of the MOB  (Mori et 

al.  1992)  . Another glass micropipette was inserted to record the 

spike responses of M/T cells (Fig.  2,3)  . The distance of the two 

electrodes was set  -100 pm. Fig. 7A exemplifies the simultaneous 

recordings of OLFP and M/T cell discharges. Odor stimulation 

(enanthic acid:  C  (7)  COOH) elicited a robust OLFP in the external 

plexiform layer (trace 3 of Fig. 7A) and burst spike responses 

of a M/T cell (trace 2 of Fig.  7A)  . The OLFP and the spike 

discharges occurred during the inhalation of odor-containing air 

(downward displacement of trace 1 of Fig.  7A)  . The spike 

responses of the M/T cell started before the onset of the robust 

OLFPs (arrow in Fig.  7A)  . However, after the onset of the OLFP, 
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Fig. 7 Spike discharges of  M/T cells phase-locked to OLFP. A: Simultaneous recordings  o. 
single-unit spike responses of a M/T cell (trace 2) and OLFP (trace 3) during  odor 
stimulation. In this case, enanthic acid was applied to the nostril. A monitor for  artificia 
inhalation is shown in trace 1; the downward displacement indicates inhalation.  Arrov 
denotes the onset of the OLFP. B and C. Phase-frequency histograms of spike  discharp 
occurrence plotted against different phases of the sinusoidal OLFP. Each cycle of OLFI 
was divided into 12 different phases at 30 degree intervals starting from peak of  positivit, 
as 0 degree. Upper diagrams in B and C indicate one cycle of OLFP. In B, one cycle o 
OLFP lasted about  26.6 msec and thus each time bins corresponded to about 2.22 msec 
Spike discharges of the  M/T cell occurred mostly in the falling phase of the OLFP. C. Aver 
age histogram obtained from 11 cells.



spikes of M/T cells occurred in correlation of oscillatory phases 

of the OLFP. Such a correlation has been observed in all M/T cells 

examined  (n=15)  . 

      Next, I examined in detail the temporal relationship 

between the spikes of M/T cells and the phase of the OLFP (Fig. 

 5)  . One cycle of the sinusoidal OLFP was divided into 12 phases 

and the spike probability of  M/T cells in each phase of the OLFPs 

was examined. Fig. 7B exemplified a phase-frequency histogram. 

About  91% of spike discharges, which were found during the section 

robust OLFPs were elicited, occurred during the phases between 

 0 degree and 180 degree, the falling phase of the  OLFPs. The 

highest spike probability was observed in the phase between 60 

to 90 degrees of the OLFP (Fig.  7B)  . 

      The preferential occurrence of spike responses during the 

falling phase of the OLFPs was observed in 11 (about  73%) out 

of 15 cells examined. In  other  4 cells, spike discharges occurred 

independently to the phase of the  OLFPs. Fig.  7C shows an 

averaged histogram calculated from the data accumulated from the 

11  M/T  cells. Spikes of  M/T cells occurred preferentially during 

the phases between 0 to 180 degrees of the  OLFPs, most frequently 

between 60 to 90 degrees. Above results indicated that spike 

responses of many M/T cells was phase-locked to  OLFPs during odor 

stimulation. Thus, it is suggested that many  M/T cells fire 

synchronously during odor stimulation. 
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4-1. Introduction to experiment 2 

      The results in Experiment  1 together with previous reports 

(e. g. Adrian 1950; Bressler and Freeman 1980; Bressler 1987; 

 Mori and Takagi 1977) suggest that many M/T cells may show 

synchronized spike discharges during odor stimulation. However 

the phase locking of spikes to OLFP does not necessarily indicate 

spike synchronization because M/T cells show diverse temporal 

patterns. To examine the synchronous spike discharges more 

directly and quantitatively,  I  made simultaneous recordings from 

pairs of M/T cells and examined the degree of the synchronization 

using cross-correlation analysis of their spike discharges. 

Specific questions asked here are, 

1. Do pairs of M/T cells exhibit synchronized spike discharges 

in response to odor stimulation? 

2. Do M/T cells representing different types of odorant 

receptors show synchronized spike responses? 

4-2. Simultaneous recordings of MIT cells innervating 

different  glomeruli 

      Using a micropipette, I recorded the spike activity of a 

mitral/tufted cell in the dorsomedial region of the MOB. Then 

another micropipette was inserted at a distance within 300-500 

 pm from the first micropipette and recorded spike activity from 

another M/T cell. Previous studies with horseradish peroxidase 

labeling showed that cell bodies of almost all pairs of M/T cells 

innervating a given glomerulus are separated at a distance less 

than that of an averaged diameter of a glomerulus (Buonviso et 

al. 1991; Royet et al. 1988,  1989)  . In rabbit, the average 

diameter of a glomerulus is about 190 pm (Allison and Warwick 
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 1949)  . Thus, two M/T cells located at a distance more than 300 

pm (about 1.6 times greater than the average diameter) most 

probably innervate different glomeruli. Mitral cells extend 

their secondary dendrites tangentially about  850  pm  (Mori et al. 

1983) so that a pair of mitral cells that are located within 500 

pm apart most probably overlap their dendritic field. Based on 

the above estimation, I aimed to record from two M/T cells located 

between 300-500 pm apart. 

      I first examined the response specificity of the pair of 

M/T cells that was simultaneously recorded and assessed the 

molecular receptive range (MRR)  of  each  cell  (Imamura  et  al. 1992, 

 Mori and Yoshihara  1995)  . MRR of a M/T cell reflects strongly 

the odor-response specificity of the receptor that is represented 

by the glomerulus that the  M/T cell innervates  (Mori and Yoshihara 

 1995)  . Therefore, if the  MRRs of two M/T cells differ, the two 

M/T cells presumably receive olfactory axon input from different 

glomeruli. Figure 8 shows an example of simultaneous recording 

of two M/T cells in the dorsomedial region. When the nasal 

epithelium was stimulated with caproic acid  (C  (6)  -COOH) (trace 

 1 of Fig.  8)  , both cells showed burst spike discharges (trace 

3 and 4 of Fig. 8) during the inhalation of odor-containing air 

(downward displacement of trace 2 of Fig.  8)  . Observation with 

a faster sweep of the traces (Fig. 8B) demonstrated that the two 

cells tended to fire synchronously (indicated by arrows) during 

the late portion of the burst discharges. 
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Fig. 8 Simultaneous recording of spike responses of two  M/T cells (trace 3 and trace 
4). A: Thick bar in trace 1 indicate the period of odor stimulation (caproic acid). 
Monitor for artificial inhalation is shown in trace 2. During the odor-contained air 
was inhaled into the nostril, both cells showed burst spike responses. B: Traces of 
spike discharges during the period indicated by the bracket under trace A4 are 
shown with a faster sweep speed. Spike discharges of these two M/T cells tended to 
synchronized (arrows) during inhalation of the odor-containing air.



4-3. Cross-correlation analysis 

      To quantify the synchrony of spike discharges of M/T cells 

that were simultaneously recorded,  I  performed cross-correlation 

analysis to spike trains of pairs of  M/T. 

      Fig. 9 shows an example of the results obtained from 

simultaneous recordings of two  M/T  cells.  MRR of one cell (S12-2) 

covered  C(3)- and  C(4)-fatty acids  (COOH) (enclosed by a broken 

line), while that of the other cell  (S12-1) covered C(2)- to 

 C(5)-COOH and  C(3)- to  C(5)-aliphatic aldehydes (CHO) (enclosed 

by a solid line) (Fig. 9A). Stimulation of the olfactory 

epithelium with C(3)-COOH or C(4)-COOH elicited burst spike 

responses of both cells. 

      A cross-correlogram calculated for spike trains evoked by 

 C(3)-COOH showed a clear center peak around +3 msec, indicating 

synchronization. The cell  S12-2 fired frequently between 2 msec 

before and 8 msec after the spike of  S12-1. In addition to the 

center peak, the cross-correlogram had two satellite peaks at 

-25 msec and +28 msec , indicating that synchronized firing of 

the two cells occurred periodically (about 36 Hz). It should be 

noted that the synchronized oscillatory spike discharges 

appeared only during the inhalation of odor-containing air. 

There was no apparent correlation in the spontaneous discharges 

of the cells (Fig.  9C). 
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Fig. 9 MRR (A) and cross-correlograms (B and  C) of a pair of simultaneously recorded M/T cells (S12-1 and S12-2). A: 
MRRs of the two cells were overlapped at C(3)- and C(4)-COOH. B: A cross-correlogram computed for spike discharges 
evoked by C(3)-COOH. Abscissa indicates the time lag of spike occurrence of cell S12-2 with reference to S12-1. The central 

peak indicates synchronization. C: A cross-correlogram computed for spike discharges recorded before odor stimulation.



4-4. MRR properties and cross-correlograms 

      In Fig. 9, the MRR of one cell  (S12-1) completely covered 

the MRR of the other cell  (S12-2)  . Therefore, the MRRs of the 

two cells were different in size but show an intensive overlap. 

Next, I recorded the pairs of which  MRRs were only partially 

overlapped or not overlapped. 

      An example obtained from a pair with partially overlapped 

 MRRs is shown in Fig.  10A. In this case, the MRR of  S07-1 covered 

C(2)-,  C(3)-,  C(4)-,  C(5)-,  C(6)-COOHandC(3)-,  C(4)-CHO  whereas 

the  MRR of S07-2 covered  C  (5)  -,  C  (6)  -COOH and  C  (5)  -,  C  (6)  -CHO. 

Thus, when the nasal epithelium was stimulated with  C  (5)  -COOH 

or  C  (6)  -COOH, both cells showed spike responses. The cross-

correlogram for  C  (5) -COOH stimulation had a center peak at about 

-5 msec , indicating synchronization of spikes of both cells with 

a mean time lag of 5 msec (Fig.  10A)  .  C  (6)  -COOH stimulation also 

induced  simultaneous  activation of both cells but the 

synchronization was weaker than that for  C  (5)  -COOH stimulation 

(data not  shown)  . 

      Fig.  10B demonstrates an example obtained from a pair of 

M/T cells whose MRR were not overlapped. Cell  S26-1 was activated 

 by  C  (5)  -CHO  and  cell  S26-2 was activated  by  C  (7)  -CHO  and  C  (8)  -CHO. 

Hence, I could not activate both cells simultaneously with a 

single chemical compound in the panel of n-fatty acid and n-

aliphatic aldehydes. Therefore a mixture of  C  (5)  -CHO and 

 C  (7)  -CHO was applied to the nose to activate both cells 

simultaneously. The top correlogram in Fig.  10B showed a robust 

synchronization of spike discharges with a mean time lag of 2 

msec during the odor stimulation. 

      In this study, I recorded 195 pairs of M/T cells from the 

dorsomedial region of the rabbit MOB. In 37 out of them, both 
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Fig. 10 MRR properties and cross-correlograms of M/T cell pairs. A: A pair of M/T cells  (507-
1 and S07-2) having distinct but partially overlapping MRRs (right column). The cross-
correlogram was computed for  spike discharges elicited by C(5)-COOH (top panel of left 
column). B: Cross-correlogram (left column) computed for spike trains in response to a  mix-
ture of C(5)-CHO and C(7)-CHO in a pair of M/T cells (S26-1 and S26-2) without overlapping 
MRRs (right column). Lower panels of left column in A and B are cross-correlograms comput-
ed for spike trains recorded before odor stimulation.



of the pairs were activated simultaneously with one or mixture 

of odor molecules. A clear synchronization  (RMA>0.3, see 

MATERIALS AND METHODS and Fig. 6) of spike discharges was observed 

in 10 pairs  (270). Cross-correlograms obtained from other 27 

pairs did not show any clear peaks and the RMAs were smaller than 

0.3, indicating that odor stimulation (short carbon chain n-

fatty acids or aldehydes) did not induce the synchronized spike 

discharges of  pairs. In all 10 pairs except for one in which the 

determination of MRR was not completed, the MRR of one cell 

differed significantly from that of the other cell. In 3 pairs 

including the pair shown in Fig. 9A, the MRR of one cell was much 

larger and completely involved that of the other  cell. In 4 pairs 

of M/T cells, the two cells showed distinct but partially 

overlapping  MRRs as exemplified in Fig.  10A. In two pairs of M/T 

cells, there was no overlap of  MRRs  (e.g., cell pair shown in 

Fig.  10B)  . 

      In all 10 pairs analyzed, the temporal nature of 

synchronization was evident: the synchronization was elicited 

only during the inhalation of odor molecules which activate both 

cells and no synchronization was observed during the period 

before the odor stimulation (Fig. 9C and bottom panels of Fig. 

 10A and  10B) . These results indicate that when M/T cells receive 

weak or no sensory inputs, spike discharges of M/T cells do not 

show synchrony, but once strong sensory inputs come into the MOB, 

synchronized spike discharges occur among specific 

 combination  (s) of  M/T cells. 
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-General Discussion-
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      Present study showed that spike discharges of many  M/T 

cells phase-locked to the  OLFP during odor stimulation. This 

suggests that  many  M/T cells fire synchronously. Present results 

also revealed that 10 out of 37 M/T cell pairs located in the 

dorsomedial region of the  MOB, which receive olfactory inputs 

from different glomeruli, fired synchronously when the effective 

odorant for both cells were applied. 

5-1.  Comparison to the previous reports 

      Previous studies described the relationship between the 

spike timing of M/T cells and the phases of odor-induced OLFPs 

(Baumgarten et al. 1962;  Mori and Takagi 1977). The membrane 

potentials of mitral cells oscillated with frequency consisting 

with that of OLFP  (Mori and Takagi 1977). The depolarization of 

mitral cell membrane is followed by a positive peak of the OLFP 

recorded in the granule cell layer. It is suggested that the 

activation of mitral cell leads to the depolarization of granule 

cell dendrites through the dendrodendritic synapses. Present 

study extended the previous study and quantitatively analyzed 

the time lag between mitral cell spike discharges and OLFPs that 

indicate depolarization of granule cell dendrites. 

5-2. Did the pairs of MIT cell recorded innervate 
different glomeruli? 

      Because the tips of the two recording microelectrodes were 

more than 300  gm apart, simultaneously recorded M/T cells 

presumably innervate different glomeruli. This idea is 
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supported by the observation that in all pairs, the MRR of one 

cell differed significantly from that of the other cell. The 

present results thus suggest that in specific pairs of  M/T cells 

associated with different glomeruli, activation of both cells 

induces synchronized oscillatory spike discharges during odor 

stimulation. In view of the evidence that different glomeruli 

represent different odorant receptors, the results described 

above suggest that pairs of M/T cells each receiving different 

odorant receptor inputs show synchronized spike discharges when 

both receptors are activated by one or a mixture of odor  molecules. 

5-3. Possible long range synchronization of  M/T cells 

      Dendrodendritic reciprocal synapses between M/T cells and 

granule cells are thought to be responsible for the synchronized 

firings of M/T cells. According to the previous report, M/T cells 

extend their secondary dendrites tangentially about 850 pm  (Mori 

et al  1983)  , and form extensive dendrodendritic synaptic 

connections with granule cells. Thus two mitral cells located 

within 1.7 mm (850 pm X2) apart, can synchronize their spike 

discharges through synaptic interactions via granule cells. In 

addition to the secondary dendrites bridging mediated by granule 

cells, there is a possible pathway to mediate the synchronized 

activity of M/T cells. Mitral cells have several axon 

collaterals in the MOB and make synaptic connections with granule 

cells (Fig.  2)  . Average length of axon collaterals of mitral 

cells is about 1400 pm (Kishi et al.  1984)  . Therefore, the axon 

collaterals can propagate the rhythmic activities of M/T cells 

to granule cells that are located at long distances. 
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5-4. Synchronous firing of  M/T cells and  olfactory 
cortical neurons 

       I showed that odor stimulation induced the synchronous 

firing of the  M/T cells. Possible function of synchronized spike 

discharges of the M/T cell is not yet clear. Based on the 

observations in other sensory systems (e.g. Murthy and  Fetz  1996; 

Singer 1993, 1999; Singer and Gray 1995; Usrey and Reid  1999)  , 

however, it can be speculated that synchronous spike responses 

of M/T cells may provide a basis for the integration of signals 

derived from different odorant receptors at the level of 

olfactory cortex (Kashiwadani et al. 1999;  Mori et al.  1999)  . 

If axons of two M/T cells converge on the same target neuron in 

the olfactory cortex (Fig.  11)  , the synchronization of spike 

discharges may greatly increase the probability of driving the 

target cortical neuron because of temporal summation of synaptic 

inputs from the two cells.  OLFPs with similar frequencies have 

been reported in the olfactory cortex (Bressler and Freeman 1980; 

Bressler et al.  1987)  , suggesting that synchronized outputs of 

M/T cells may drive the cortical neurons effectively. Therefore, 

synchronization of spike discharges of M/T cells may contribute 

to combining signals derived from different odorant receptors 

at the level of the olfactory cortex. Extension of the present 

study to include analysis of olfactory cortical neurons, thus, 

might provide us with a clue for understanding cellular 

mechanisms for the integration and decoding in the olfactory 

cortex of odor information. 
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Fig. 11 Summary diagrams. About 1/4 of M/T cell pairs showed synchronized oscillatory discharges by odor stimulation.  The syn-
chronized oscillatory spike responses among M/T cells may be mediated by dendrodendritic reciprocal synapses between  M/T cell and 
inhibitory local inter neurons (granule cells and periglomerular cells). If the  M/T cells showing synchronized spike responses project 
their axons onto the same target cortical neurons,  synchronized spikes can drive the target neurons effectively and this cortical neuron 
might play as a combination detector cells.



5-5. Possible mechanisms to control the synchronization 

in the MOB 

      Synchronized spike responses of MIT cells are presumably 

mediated by dendrodendritic reciprocal synapses between M/T 

cells and inhibitory interneurons such as granule cells and/or 

periglomerular cells. Interestingly, most of the modulatory 

centrifugal inputs terminate in the granule cell layer and 

glomerular layer of the MOB (Shepherd and Greer  1990)  . Thus, the 

centrifugal fibers can indirectly affect the local synaptic 

interactions between the inhibitory neurons and  M/T cells. 

      A subset of pyramidal neurons in the olfactory cortex 

 project back mainly to the granule cells. These feedback inputs 

are thought to effect the activity of granule cells (Nicoll  1971)  . 

Therefore, olfactory cortical neuron may control the activity 

of the granule cells and thus influence the synchronized spike 

discharges of  M/T cells. In addition to the modulatory inputs 

from olfactory cortex, other modulatory inputs derived from 

non-olfactory regions to the MOB may be influenced to the 

synchronization of  M/T cells. These inputs arise from three 

sources: locus coeruleus  (noradrenergic)  , raphe nuclei 

 (serotonergic)  , and hind limb of the nucleus of the diagonal band 

(cholinergic and GABAergic) (Shepherd and Greer 1990; Zaborszky 

et al.  1986)  . For example, noradrenergic input from locus 

coeruleus terminates mainly on the granule cells (McLean et al. 

 1989)  . The nature of the physiological actions of noradrenergic 

input in the MOB is still controversy (Jahr and Nicoll 1982; Jiang 

et al. 1993; McLennan 1971; Salmoiraghi et al.  1964)  , however, 

it might also control the activity of granule cells, and thus 

the synchronized firing of the M/T cells. Interestingly, 

noradrenergic inputs are necessary for olfactory memories 

(Pissonnier et al. 1985; Sullivan et al.  1989)  , it is possible 

                         42



that modulation of synchronization of M/T cells by noradrenergic 

inputs might play some important role for formation of olfactory 

memories. 

5-6. Tuning specificity enhancement by lateral 

inhibition 

      In this thesis, I focused on the synchronized oscillatory 

firing as the functional interaction among  M/T cells. Besides 

the synchronous firing, another type of functional interaction 

among M/T cells has been known in the MOB: the tuning specificity 

enhancement by lateral inhibition (Yokoi et al. 1995). 

      Using a panel of odor molecules with systematic variation 

in molecular structure,  Mori and his colleagues reported that 

M/T cells show spike responses to a range of odor molecules with 

similar molecular structure (Imamura et al. 1992; Katoh et al. 

1993;  Mori et al. 1992). They also reported that inhibitory 

responses of M/T cells were elicited by odor molecules that have 

structures similar to those of excitatory odor molecules (Katoh 

et al. 1993,  Yokoi  et  al.  1995).  Because  the  inhibitory  responses 

are suppressed by the GABAA receptor antagonist bicuculline in 

the external plexiform layer, the inhibitory effect seems to be 

 mediated  by the GABAergic granule cells (Yokoi et al. 1995). Thus, 

M/T cells associated with one glomerulus receive lateral 

inhibition from the  M/T cells associating with neighboring 

glomeruli via dendrodendritic reciprocal synapses. These 

results suggest that the synaptic interaction may enhance the 

tuning specificity to odor molecules. 

      If one glomerulus is strongly activated while another 

glomerulus is faintly activated, the contrast of the strength 

of inputs is enhanced by the lateral inhibition. On the contrary, 
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if two glomeruli are strongly and simultaneously activated, M/T 

cells associated with the glomeruli may fire synchronously, as 

shown in the present study. 

5-7. Comparison to insect olfactory system 

      The neuronal circuit in the insect olfactory system 

resembles that of mammal's (Hildebrand and Shepherd 1997). 

Olfactory sensory neurons in the antennae project their axons 

to the glomeruli in the antennal lobe (possible analogue of the 

olfactory bulb). Projection neurons in the antennal lobe receive 

inputs from olfactory sensory neurons in several (10-20) 

glomeruli and project their axons to the mushroom body (possible 

analogue of the olfactory cortex). In the antennal lobe, 

projection neurons receive dendrodendritic synaptic input from 

the local inhibitory GABAergic neurons called local neurons. 

      Laurent and his colleagues have examined the olfactory 

system of locusts and bees (Laurent and Naraghi 1994; Laurent 

and Davidowitz 1994; Laurent et al. 1996; Wehr and Laurent 1996; 

Macleod and Laurent 1996; Stopfer et al. 1997). When the odor 

stimulation is applied to the antennae, robust 20-30 Hz 

oscillatory field potential is induced in the  mushroom  body (but 

not in the antennal lobe) (Laurent and Naraghi 1994; Laurent and 

Davidowitz 1994). The spike responses of the projection neurons 

were synchronized and phase-locked to the OLFP in the mushroom 

body (Laurent et al. 1996; Laurent and Davidowitz 1994; Wehr and 

Laurent 1996). Because the synchronized activity is abolished 

by picrotoxin (an antagonist of the GABAA receptor) injected into 

the antennal lobe, the underlying  mechanism  may involve GABAergic 

inhibitory neurons (Macleod and Laurent 1996; Stopfer et al. 
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1997). Therefore, the mechanisms mediating the synchronized 

activity of the principal neurons might be similar across the 

phyla. 

      Interestingly, applying picrotoxin to the antennal lobe 

impairs the discrimination of odor molecules with similar 

molecular structures (Stopfer et al. 1997), raising the 

possibility that synchronized activity of projection neurons 

might play a key role for the discrimination between odors. In 

this paper, however, they cannot exclude the possibility that 

the change of the tuning specificity of projection neurons by 

picrotoxin injections may be more effective than 

desynchronization. Nevertheless, the ideas that synchronized 

activity of projection neurons may play an important role for 

integration of signals derived from numerous odorant receptors 

and for formation of olfactory image of object are still likely. 

Therefore it is important to further examine whether the 

synchronized spike activities of M/T cells contribute to the 

central integration of signals derived from numerous odorant 

receptors in the mammalian olfactory system. 
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