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Abstract

Maximum penalized likelihood estimation is applied in non(semi)-parametric
regression problems, and enables us exploratory identification and diagnostics
of nonlinear regression relationships. The smoothing parameter A controls the
trade-off between the smoothness and the goodness-of-fit of a function. The
method of cross-validation is used for selecting A, but the generalized cross-
validation based on the squared error criterion shows bad behavior in non-
normal case and often can not select reasonable A\. The main purpose of this
thesis is to propose a method which gives more suitable A and to evaluate the
performance of it.

This thesis consists of three parts below. Firstly the method of maximum
penalized likelihood estimation in non(semi)-parametric regression problems is
summarized. It is described as an extension of penalized least squares and gen-
eralized linear models, and is applied to logistic regression, Poisson regression
and density smoothing for classified data. Secondly the likelihood-based cross-
validation score is described as a tool to select A adaptively, and a method of
simple calculation for the delete-one estimate is proposed. A score of similar
form to the Akaike information criterion (AIC) is also derived. The scores by
the simple calculation are compared with the one by the exact calculation and
the performance of the approximation is evaluated. Thirdly the proposed scores
are compared with the ones of standard procedures. A variety of data in lit-
erature are examined. Simulations are performed to compare the patterns of
selecting A and overall goodness-of-fit and to evaluate the effects of factors.

The simple calculation of the delete-one estimate coincides with the one-step
approximation based on the Newton—Raphson method in the case of canoni-
cal link, and the cross-validation scores by the simple calculation provide good
approximations to the one by the exact one if A is not extremely small. Fur-
thermore the cross-validation scores by the simple calculation have little risk of
choosing extremely small A and make it possible to select A adaptively. They
have the effect of reducing the bias of estimates and provide better performance
in the sense of overall goodness-of-fit. These scores are useful especially in the

case of small sample size and in the case of binary logistic regression.
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Notations

E(") Expectation

var(-) Variance

P(-) Probability

N(u,0%) Normal distribution with mean p and variance o2

B(m, p) Binomial distribution with m trials and probability of success p

Po(u) Poisson distribution with mean p
Ga(a, ) Gamma distribution with shape parameter a and scale §
® Cumulative distribution function of the standard normal distribution

trA Trace of a matrix A
diag(---) Diagonal matrix
. Estimates (least squares, or maximum likelihood)

(-9) Estimate when the ith observation is deleted
() Vector or matrix from which the ith component is removed
¢ Observation number (¢ =1,...,n)
J Variable number (j = 1,...,p) (sometimes used in place of %)
k Basis number (k =1,... ,q)
Yi Response variable
ti, ti; Explanatory variables (nonparametric term)
x; Vector of explanatory variables (parametric term)
@i = (Tiy. .o, Tip) T
o Constant in a regression model
B Vector of regression coeflicient to be estimated
ﬁ = (/817 7ﬂq)T
£ Regression functions to be estimated
0, Natural parameter of the exponential family
i Expectation of y;, pi = b'(6:)
¢ Scale (nuisance) parameter
s Predictor or predicted value

a;, b, c Functions employed in the density (probability) function
of some distribution belonging to the exponential family

m; Prior weight, a;(¢) = ¢/m;
(especially, the number of trials in the binomial distribution)
Vip) Variance function of the exponential family
S Penalized (weighted) sum of squares
l Log-likelihood
IT Penalized log-likelihood
J(f) Roughness penalty for f
A A Smoothing parameters (positive number)
w; Weight in weighted least squares, or working weight
Z Working response
Pk Basis function for the functional space of f (e.g., B-spline basis)
&k Coefficient associated with f,  f(t;) =) 5—; &ker(t:)
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Coefficient vector, £ = (¢1,...,&)7

Predictor vector, 1= (n1,...,7,)7

Working response vector, z = (z1,...,2,)7

Design matrix (n x p), X =[@1,..., 2,7 = {2}

Weight matrix (n x n), W = diag(w,...,w,)

Basis matrix (n X ¢), B =[b1,...,b,]T = {@r(t;)}
Penalty matrix (¢ X g, non-negative definite), J(f) = ¢7 K¢

Smoother matrix (n x n), Sy= B(BTWB + AK)~"'BTW

Hat matrix and its component (A;; : Leverage value)
Equivalent degrees of freedom for a model, v =1tr4
Error variance

Residual

Deviance, scaled deviance and deviance increment
Pearson chi-square statistic

Probability of success in binomial distribution
Person-time, or the population size

Raw data in the context of density estimation (r = 1,...
Class

Density function

Bin width
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MLE
MPLE
GLM
GAM

EDF

oCcv
GCV
UBR
AIC
LCV
LCV,
LCV,
ACV
GACV

AMSE
ASB
AV
KL

Maximum likelihood estimate
Maximum penalized likelihood estimate
Generalized linear model

Generalized additive model

Equivalent degrees of freedom

Ordinary cross-validation score (based on squared-error criterion)
Generalized cross-validation

Unbiased risk estimate

Akaike information criterion

Likelihood-based cross-validation score (by exact calculation)
Likelihood-based cross-validation score by simple calculation
AIC-like form of the likelihood-based cross-validation score
Approximate cross-validation score

Generalized approximate cross-validation

Averaged mean squared error
Averaged squared bias
Averaged variance
Kullback—Leibler distance
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Chapter 1

Introduction

1.1 Penalized Likelihood Approach

Nonparametric regression, which has been recently developed and is also known
as smoothing, is a statistical technique to estimate regression functions without
specifying the functional form of them in a parametric way. In order to esti-
mate them under non-normal distributions such as logistic regression, Poisson
regression and so on, the approach of maximum penalized likelihood is often
useful. Maximizing ordinary likelihood yields a regressidn function that shows
rapid variation, and hence a penalty term for the roughness of the function is
added to the likelihood. The approach enables us exploratory identification and
diagnostics of nonlinear regression relationships.

A simple formulation of the penalized likelihood approach is as follows.
Denote the log-likelihood function by {(8), and let the natural parameter @ be
linked to an unknown function f of some explanatory variable(s). Then we
maximize the penalized log-likelihood

to obtain an estimate of f. The estimate of f is called the mazimum penalized
likelihood estimate (MPLE). Here J(f) is a roughness penalty for f. The pos-
itive number A is called the smoothing parameter, which controls the trade-off
between the smoothness and the goodness-of-fit of f. As A tends to infinity f
becomes smoother and tends to a parametric function (linear, quadratic, and
so on according to the form of the penalty J(f)), while as A tends to zero f
becomes rougher and tends to an interpolating function.

The maximum penalized likelihood estimation is a natural extension of the
penalized least squares. Hence the algorithm of the maximum penalized like-
lihood estimation is easily constructed as the iteration of the penalized least
squares algorithm (Green and Silverman, 1994). Moreover, just as in ordi-
nary maximum likelihood estimation, the Fisher scoring algorithm can be also
applied to the penalized likelihood approach.

The maximum penalized likelihood estimation is originally proposed by
Good and Gaskins (1971) in the context of density estimation. Silverman (1982)

1



2 CHAPTER 1. INTRODUCTION

improved the method of density estimation by the maximum penalized likeli-
hood approach, and O’Sullivan (1988) developed an algorithm of Silverman’s
(1982) method using B-spline approximation. In the context of nonparametric
regression, Anderson and Blair (1982) applied the maximum penalized likeli-
hood estimation to logistic regression models. O’Sullivan, Yandell and Raynor
(1986) considered estimating nonparametric regression functions in generalized
linear models (GLMs) (Nelder and Wedderburn, 1972). Green and Yandell
(1985) proposed semiparametric generalized linear models, in which predictors
were the sum of nonparametric function and parametric functions. Hastie and
Tibshirani (1986) proposed generalized additive models, the combination of ad-
ditive models and GLMs. The idea of maximizing penalized likelihood is also
contained in these models, and it has been extended for various purposes.

1.2 Selecting the Smoothing Parameter

As described in the previous section, the smoothing parameter A controls the
smoothness of the estimated function f. If we have some criterion for selecting
the optimal value of A adaptively from data, diagnostics on nonlinear regression
structure will be possible.

Some criterion for selecting the smoothing parameter have been proposed,
mainly from the viewpoint of prediction. By analogy with the selection of A
in penalized least squares problem, the method of cross-validation has been
most commonly used. O’Sullivan, Yandell and Raynor (1986) suggested that
each iteration of maximum penalized likelihood algorithm should be equivalent
to penalized weighted least squares algorithm, and that the generalized cross-
validation (GCV) score (Wahba, 1977; Craven and Wahba, 1979) could be
evaluated on the final iteration.

Green and Yandell (1985) used the GCV method to determine the smooth-
ing parameter in applying semiparametric logistic regression to bicassay data.
They pointed out that the GCV score might be badly behaved, that is, the
score might have no global minimum and tend to zero as A — 0. It has been
shown by many authors that the GCV score in penalized least squares has many
optimality (Craven and Wahba, 1979), but in maximum penalized likelihood
estimation, as Green and Silverman (1994) states, it seems natural to construct
the cross-validation score in terms of likelihood.

The likelihood-based cross-validation (LCV) score requires the delete-one
estimates of the natural parameters, but calculating the exact values of them
is expensive. Sakamoto and Shirahata (1997b) proposed a method for simple
calculation of the delete-one estimates and the approximate LCV score. The
method coincides with the one-step approximation to the delete-one estimates
in Newton-Raphson algorithm.

1.3 Purpose and Composition

The purpose of this thesis is described as follows. The first is to summarize the
subject on maximum penalized likelihood estimation in non(semi)-parametric
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regression problems. Penalized likelihood is formulated in the framework of
GLMs, and the algorithm is constructed using the methods of Fisher scoring.
Semiparametric GLMs and generalized additive models are also stated. It is
illustrated that the approach of penalized likelihood can be applied in various
situations — binary or binomial logistic regression models, Poisson regression
models, density smoothing for classified data and so on.

The second purpose is to describe the likelihood-based cross-validation score
as a tool to select the smoothing parameter adaptively, and to propose a method
of simple calculation for the delete-one estimate. Another score of similar form
to the Akaike information criterion (AIC) is also derived. Some theoretical
grounds on these scores are discussed. The scores by the simple calculation
are compared with the one by the exact calculation and the performance of
approximation is evaluated.

The third purpose is to compare the scores proposed with the ones of stan-
dard procedures (GCV, AIC, etc.) and to show usefulness of them. A variety of
data in literature are examined, and some simulations are performed to compare
the patterns of selecting the smoothing parameter and overall goodness-of-fit
and to evaluate the effects of factors.

This thesis is composed as follows.

Chapter 2 describes maximum penalized likelihood estimation. For prepa-
ration, penalized least squares and generalized linear models are briefly summa-
rized in Section 2.1 and Section 2.2, respectively. Maximum penalized likelihood
estimation is then introduced in Section 2.3 in the framework of GLM, divided
into the case of nonparametric, semiparametric and additive models. Inference
and diagnostics in non(semi)-parametric GLMs are also discussed there. Fit-
ting non(semi)-parametric GLMs is illustrated in some case studies in Section
2.4.

Chapter 3 discusses the methods for adaptive selection of the smoothing
parameter. At first standard procedures are described in Section 3.1. The
likelihood-based cross-validation score by simple calculation and the AIC-like
score are proposed in Section 3.2. The comparison of the simple calculation with
the exact one is performed in Section 3.3. Some of other selection procedures
proposed are taken up and compared with our scores in Section 3.4.

Chapter 4 reports the comparison of our likelihood-based score with the
standard selection procedure. Logistic regression models, Poisson regression
models and density smoothing for classified data are stated. Data sets in lit-
erature are examined in Section 4.1, and simulation is performed in Section
4.2.

In the last chapter our results are summarized and our future prospects
are discussed. In Appendices, the splines often used as the basis of smoothed
functions are briefly described, and data used in this thesis are also listed.



Chapter 2

Maximum Penalized
Likelihood Estimation

2.1 Penalized Least Squares

In this section we briefly discuss penalized least squares, a special case of pe-
nalized likelihood approaches.

2.1.1 Nonparametric Regression Models

Suppose that each of the responses y;, 2 = 1,...,n, is observed at an explana-
tory variable t;. We fit a nonparametric regression model

yz:f(tz)-l'eza i_:la--"na

where f(t) is a smooth function, to be estimated, and ¢; are independent errors
with mean zero.

Applying the ordinary least squares to the nonparametric regression model
yields the estimate of f that interpolates data. So we consider minimizing the
penalized (weighted) sum of squares

S() = 30wl — F)F + A1), eRl

where w; are appropriate weights (we discuss the weighted version because
of the generalization in the later sections), A is the smoothing parameter (a
positive number, specified in this chapter), and J(f) is a roughness penalty.
The method is called penalized least squares.

The roughness penalty functional J (f) is designed so that a rougher function
f gives a larger value of J(f). For example, if we use J(f) = [{f"(t)}?dt,
the integral of the squared second derivative of f, the estimated function f
that minimizes S(f) in the class of twice differentiable functions is necessarily
a natural cubic spline with knots at tq,...,%,, called the smoothing spline.
Hence the class of smoothing splines is often used when minimizing S(f). In
addition, f tends to the ordinary least squares estimate as A tends to infinity,

5



6 CHAPTER 2. MAXIMUM PENALIZED LIKELIHOOD ESTIMATION

and f tends to the function that interpolates the points (¢;,y;) as A tends to
zero. See Eubank (1988), Green and Silverman (1994) and Appendix.

Assume that the space of f is spanned by ¢ smooth basis functions ¢y,
k =1,...,q. For example, B-splines, which are orthogonal basis for splines
and are constructed from ¢,... ,%,, are often used as {¢}. In some cases such
as natural splines, ¢ is equal to n. Then f is written as f(t) = >_1_, &kr(t).
Moreover, using the coefficients & = (&1,...,&,)7, assume that J(f) = ¢T K€,
where K is a ¢ X ¢ non-negative definite symmetric matrix. If the penalty
J(f) = [{f"(t)}?*dt is used, J(f) can be written in such a quadratic form
using t1,...,t, (see Appendix). Let y = (y1,.-.,9.)7, £ = (f1,..-, fa)T,
W = diag(wy,... ,w,) and denote the n X ¢ basis matrix {¢r(t:) }i=1,.. mik=1,.. 4
by B. The penalized sum of squares (2.1) is then rewritten as

S(f) = W-H"Wy-F)+r"K¢
(y — B)TW(y — BE) + \eTKE. (2.2)

The coefficient vector £ that minimizes (2.2), denoted by Aé', is found by
differencing (2.2) on £ and setting 0S/0¢ = 0, and we obtain £ = (BTWB +
AK)~'BTWy. Therefore the values of estimated function f becomes

F= (). .., fta)) = BBETWB+K) " BT Wy, (23)
The n x n matrix S, = B(BTWB-I— )\K)‘lBTW is called the smoother matrix.

2.1.2 Semiparametric Regression Models

Next, we consider the case that responses are observed with several explanatory
variables. However, it is difficult to estimate a function of several variables.
Semiparametric regression models, and additive models discussed in the next
section, are simple approximations to such a surface. Especially, semiparametric
regression models that contain one nonparametric function of a single variable
are the simplest extension, and provides an algorithm without any iteration.

Suppose that each of the responses y;, : = 1,... ,n, is observed with a vector
of explanatory variables @; = (z;1,... ,zip)T and another variable t; (assumed
to be one-dimensional for simplicity). A semiparametric regression model is
formulated as

yi:wf,@—i—f(ti)—%ei, i=1,...,n,

where 3 is a p-vector of regression coefficients and f(t) is a smooth function,
both of which are to be estimated. The vector 3 and the function f(t) are
estimated by minimizing the penalized weighted sum of squares

SB, f) = Z wi{y; — 27 B — f(t:)}* + A (f). (2.4)

Assume that f(t) = Y1_, &ok(t) (e, f = BE) and J(f) = €T K¢ as in
the previous subsection, and let the design matrix X = [@y,...,2,]T. Then
(2.4) is rewritten as

S(B,f)=(y—XB- B&TW(y— XB - BE) + \eTKE.
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Moreover, assume that each column of X is independent of the null space of K.
Setting 0S/083 = 0 and dS/3f = 0, we have a system of equations

XTwxp = XTw(y - BE) (2.5a)
and
(BTWB + M\K)¢ = BTW (y — X3). (2.5b)

The equation (2.5a) is the ordinary least squares equation to the response vector
y — B¢, and (2.5b) is the penalized least squares algorithm to the response
vector y — XB. The vectors 3 and £ can be also found using (2.5a) and (2.5b)
alternatively. Under the condition described above, this iterative scheme always
converges (Green and Silverman, 1994, Theorem 4.2).

If we denote the smoother matrix by Sy = B(BTWB 4+ AK)"!BTW, we
have f = B¢ = S\(y — XB) from (2.5b). By substituting it into (2.52) and
rearranging it, the estimates of 3 and f is represented as

B={XTwW(I - S)X} ' XTW I - 5))y (2.6a)
and
f=S(y-XB) (2.6b)

Therefore, when the nonparametric term is a univariate function, once com-
puting S» X and S,y by ordinary smoothing operations, ,3 can be obtained
using a common linear equation algorithm without any iteration (see Green
and Silverman, 1994).

Rice (1986) pointed out that, if there exists a regression dependence of {z;}
on {t;}, such as

xij‘—‘gj(ti)—l—(sij, i=1,...,n,j:1,...,p,

where g; is a smooth function and §;; is an error, the estimate ,8 might contain
bias. Speckman’s (1988) alternative approach diminishes some of the bias of
,@3. Let X = $)X and § = S»y, which can be considered to contain no error
components. Estimate 3 and f by

~

B=(X"X)"'x"y
and
f=5S\@w-XB)=9-XB.

They are called partial regression estimates. Chen and Shiau (1991) consid-
ered a two-stage spline smoothing method. Sakamoto and Shirahata (1997a)
investigated these three types of estimates and compared the bias of ,B by a
simulation study.
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2.1.3 Additive Models and Other Models

Suppose that each of the responses y;, ¢ = 1,...,n is observed with p ex-
planatory variables t;1,... ,t;,. As a natural generalization of multiple linear
regression model, an additive relationship on ¢;;,... ,¢;, such as

P
yz:a+z.f](tzg)+€h i=1,...,n,

=1
is often assumed, where a constant a and smooth functions f;, j = 1,...,p,
are estimated. Buja, Hastie and Tibshirani’s paper (1989) and Hastie and
Tibshirani’s monograph (1990) discuss the additive models in detail.

The additive model can be also estimated using penalized least squares by

minimizing

2
n 14 P
S(frseenfo) =D wiqui—a— Y filti) ¢ + 2 NI (), (2.7)
=1 i=1 j=1

where A;’s are smoothing parameters.

Let B; and K; be the basis matrix and the penalty matrix, respectively,
constructed from the values of the jth explanatory variable, t1;,... ,¢,;. The
smoother matrix on the jth explanatory variable is then denoted by S/(\i) =
B; (B;-FWBJ- + )\jKj)_lBJTW. In the same way as in the previous subsections,
minimizing (2.7) yields a system of equations

fJ:S,(\]J) y_a—ka , J=L...,p, (28)

Py
where a = (o, ..., )T and f; = (fj(t1;), ..., fi(tn;))?. Initially « is set to be
Y, the sample mean of yy,... ,y,, and f,’s are all set to be zero. Given current
values of fy,..., f,, a new value of f; is obtained from equation (2.8) in the

order of j = 1,...,p, and the cycle is repeated until all f,’s converge. This
procedure is known as the backfitting algorithm (Friedman and Stuetzle, 1981;
Hastie and Tibshirani, 1986, 1990).

Other methods for non(semi)-parametric regression analysis have been pro-
posed. Projection pursuit regression (PPR) (Friedman and Stuetzle, 1981)
assumes a model of the form

p
vi=Y_ filalz)+e,

i=1

where ajTa:i is a one-dimensional projection of the vector of explanatory vari-
ables x;, and f; is a smooth function. On the other hand, the approach of alter-
native conditional expectations (ACE) (Breiman and Friedman, 1985) supposes
a model that contains a transformation of a response variable, that is,

P

E[9(Y)] = > El$;(X;)],

J=1
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and selects the transformations 6* and ¢7,... , ¢, that maximize the correla-
tion between both sides. The backfitting approach is also adopted in these re-
gression methods. Recently, non(semi)-parametric regression models that take
interaction into account are proposed: multivariate adaptive regression splines
(MARS) (Friedman, 1991), interaction splines (Gu et al., 1989), and so on. Gu
(1989) provided the FORTRAN program RKPACK for fitting the interaction
spline models. Nagai et al. (1994) gives a genealogy of computer-intensive tools
for non(semi)-parametric regression analysis.

2.1.4 Inference and Diagnostics in Non(semi)-parametric Re-
gression

The equivalent degrees of freedom (EDF) indicates the effective number of pa-
rameters. When the vector of predicted values § = (g1,... ,in)T is denoted
by 4 = Ay for some matrix A, called the hat matrix, the overall EDF for the
model is defined as the trace of A. For the univariate nonparametric regres-
sion model in Section 2.1.1, the EDF becomes v = trS). Green and Silverman
(1994) defined the equivalent degrees of freedom for noise. It takes the value
more than 2, and the value becomes larger as A tends to zero, that is, the es-
timated function f becomes rougher. For the semiparametric regression model
in Section 2.1.2, the overall EDF becomes

v =1trS) + te[{ XTW({I — SO)X Y XTW (I - 8))%X]

(Green and Yandell, 1985), and hence the EDF for the nonparametric term
f(t;) becomes v — p. For the additive model in Section 2.1.3, the EDF is
difficult to compute. The EDF for the term f;(t;;) is often approximated by

trsy) —1, where one is subtracted since each of the term contains one redundant
constant, and hence the overall EDF for the additive model is approximated by
v=3"_, trS/(\]j) -p+1.

Each component of the hat matrix A, denoted by A;;, determines how y;
affects §;. Especially, the diagonal components of A are called the leverage
values. They satisfies 0 < A;; < 1. Properties of the leverage values are
investigated by Eubank (1984). The leverage values are useful for a diagnostic
tool of explanatory variables.

Diagnostics for residuals have also been developed. One of the diagnostic
measures is the studentized residual

r:‘:f‘i/ 6’2(1—14

which is the ordinary r; = y; — ; divided by its standard error, where 62 is an
estimate of the error variance o2. Silverman (1985) suggested the studentized
residual as an analogue of the one proposed by Cook and Weisberg (1982)
in ordinary least squares regression problems. Eubank (1985) and Eubank and
Gunst (1986) derived it from the Bayesian viewpoint. Moreover, Eubank (1985)

and Eubank and Gunst (1986) proposed the studentized deleted residuals

r?i) =1/, /&(21.)(1 — Aii),
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where &?i) is an estimate of o after removing the influence of the observation y;

from s?. These measures can evaluate the goodness-of-fit to each observation.
Eubank (1985) and Eubank and Gunst (1986) also derived some influential mea-
sures called DFIT and DFITS, which allow to detect the existence of influential
observations.

Estimating the error variance is required in various cases, such as diagnosing
influential observations, constructing confidence intervals, and so on. The first
approach is the one called local differencing, suggested by Rice (1984) and
Gasser, Sroka and Jennen-Steinmetz (1986). Their estimators are constructed
on the basis of the variance of the first (or second) differences of the adjacent
data. The second approach is based on the residual sum of squares. The errors
¢; are assumed to have a common variance o2. The natural analogue of the
ordinary least squares yields the estimate of o2,

6'2 — Z;ﬂ:l(yz — g’l)2
n—v

9

where the denominator n — v is the EDF for noise, and the numerator is the
residual sum of squares. If the true function f (or all f;’s) are in the null space
of J(f) (or J(f;)), 6% is an unbiased estimator of o2 (Buckley, Eagleson and
Silverman, 1988).

One common way of constructing confidence intervals is to base on Bayesian
approaches, proposed by Wahba (1983). For simplicity, the univariate nonpara-
metric regression model in Section 2.1.1 is considered. Assuming some specific
form of (prior) stochastic Gaussian process to f(t), the posterior distribution of
F=(f(t1),...,f(t:))T for given y = (y1,... ,y,)7 is the multivariate normal
distribution with mean f = S)\y and variance matrix 025y, where o2 is the
variance of ¢;. Hence a 100 X (1 — a) % Bayesian posterior probability inter-
val for each f(t;) is given by f(t;) & z(«/2)5(S))ii, Where z(a/2) is the upper
100 X a/2 % point of the standard normal distribution, & is some estimate of
o as defined in the last paragraph, and (S)):; is the ¢th diagonal matrix of S).
For details about Bayesian approaches, see Eubank (1988) and Wahba (1990).
Some authors discuss bootstrap approaches (e.g., Hastie and Tibshirani, 1990).

2.2 Generalized Linear Models

In this section we briefly describe generalized linear models (GLMs), proposed
by Nelder and Wedderburn (1972).

2.2.1 Generalized Linear Models

Generalized linear models have two components below. For the stochastic com-
ponent, suppose that responses y;, ¢ = 1,...,n, are independent and have
distributions belonging to the exponential family, which has the density (or
probability) function of such a form as

b(6:)

i0i —
p(yi; 0i, ¢) = exp { y*_(_

@) +C(yi;¢)}, (2.9)
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where a; (1 =1,...,n), b and ¢ are functions specific to each distribution. We
assume that the function g; is of the form a;(¢) = ¢/m; for some known weight
m;. In (2.9), 6;,i=1,...,n, are called the natural parameters, and are related
to mean structure since they satisfy

wi = E(y) = ¥(6) (2.10)

under some regularity conditions. Also, ¢ is called the scale (or nuisance)
parameter. The variance of y; becomes

var(y;) = b"(6:;)ai(4) = b"(6:)p/m..

The factor 4”(6;) depends on y; by (2.10), so b”(8;) is called the variance func-
tion, and is denoted by V'(u;).

For the systematic component, assume that there exists a link function G
such that

G(ui) = = B (2.11)

for given p-vector of explanatory variables @;, and the p-vector B3 is to be
estimated. The right-hand side of (2.11) is called the linear predictor, denoted
by 7;.

Estimating 8 can be based on maximum likelihood method. Denote the
log-likelihood function by [, that is,

1(0) =Z{—yi%/:nf—f@+c(y¢;¢)}. (2.12)

Notice that @ = (6,,...,68,) is linked to 8 by (2.10) and (2.11). The log-
likelihood (2.12) is maximized over 3. Nelder and Wedderburn (1972) proposed
Fisher scoring for the numerical evaluation of the maximum likelihood estimate

(MLE) B in GLMs. The Fisher scoring algorithm has the following form of the
updating equation

=1

new __ pold _ 621 )}_1ﬁ
v =i {E(-32)} 35

where both derivatives are evaluated at 3°4. The updating is repeated until 3

converges.

In GLMs, the updating equation is written explicitly. Let 7 = (m1,... ,7.)%
and X = [#1,... ,2,]T. From (2.10) and (2.11), some evaluation of derivatives
yields

dl (an>T o g0l 1o 1

= (o) o =XT = —XTW(z - XB°

o6 = \og) m X am -5 "l )
and

LN _(oam\T [ 9 \Nom_1 g
E(‘aﬁaﬂT)‘ (38)  (“awaar) 33= 575



12 CHAPTER 2. MAXIMUM PENALIZED LIKELIHOOD ESTIMATION

where z is the n-vector called the working response vector with ith component
zi = (yi — pi)G' (i) + 2 B, (2.13)

and W is the n x n diagonal matrix called the working weight matrix with 7th
component

w; = {G'(u,-)zb”(ei)}“lmi. (2.14)
Therefore the updating equation becomes
BrY = (XTwX) 1 XTwz. (2.15)

Notice that, for each iteration, z and W are reevaluated by (2.13) and (2.14),
respectively, using p; and 6; that are reevaluated by (2.11) and (2.10) from
B°4. The updating equation (2.15) has the form of a weighted least squares
equation, so the algorithm is one of the iterative reweighted least squares (IRLS)
(Green, 1984). Many statistical packages and libraries provide the routines for
the IRLS. ;

For details on Fisher scoring algorithm in GLMs, see also McCullagh and

Nelder (1989) and Green and Silverman (1994).

2.2.2 Models included in GLMs
We describe three examples which are representative of GLMs.

(a) Normal linear regression model. Suppose that each of responses y; has
the normal distribution N(y;,0?), that is, a;(¢) = o2, b(#;) = 167 and
c(yi, ¢) = —1(y/0)* —log ov/27 in (2.9). So p; coincides with 6; in (2.10),
and the variance function is V(u) = 1. If G is the identical function in
(2.11), the normal linear regression model

yi=a!B+e, e~N(0,07%)
is obtained.

(b) Binomial distribution (binary response) case. Suppose that g;, i = 1,...,
n, has the binomial distribution B(m;, u;), and then y; = §;/m; takes
discrete values in [0,1]. Especially, when all the m;’s are 1, y; become
binary random variables, each of which takes only two values 0 and 1 with
the probability P(y; = 1) = ;. Put a;(¢) = 1/m;, b(8;) = log(1+€%) and
c(yi; ¢) = log (m"jél) in (2.9). The mean of y; is written as u = e% /(14¢%)
from (2.10), and the variance function is V(u) = u(1 — p). If we put G
as the logit function of u;:

Hi
1—p;’

G(pi) = log

then 6; coincides with G(u;) = 7 3, and the logistic regression model

Hi
log 3= = z] B
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is obtained. As the link function G, the probit function G(i;) = ®~1(1;)
is also often used, where ® is the cumulative distribution function of the
standard normal distribution.

(c) Poisson distribution case. Suppose that each of y; has the Poisson distri-
bution with the mean parameter y;, that is, a;(¢) = 1, b(8;) = e’ and
c(yi, ¢) = — log(y;!) in (2.9). Then the mean becomes p; = €/ from (2.10),
and the variance function is V(u) = p. If we put G as G(u;) = log pi,
then 6; equals to 7 3, and the Poisson regression model

log (i) = =/ B

is obtained. This model is also known as the log-linear model, which is
often used in analysis of contingency tables.

If G is the inverse function of '(6;), then 8; coincides with the linear pre-
dictor :czT,B In this case G is called the canonical link function. In each of
the three examples described above (in (b), if G is the logit function), G is the
canonical link function.

2.2.3 Influence and Diagnostics in GLMs

The deviance is one of the measures of goodness-of-fit of a model to data.
The scaled deviance D* is defined as the log-likelihood ratio statistic D* =
2[lmax — l(@)], where [jnay is the maximum log-likelihood for the saturated model
that allows one parameter for each observation. The vector 8 = (6y,... ,6,)
is linked to the MLE 3. The nuisance parameter ¢ is multiplied so that the

deviance is independent of ¢, and hence the deviance D becomes

D=¢D* = 22 mil{yi6; — b(6;)} — {wibi — b(6:)}],

=1

where 6; satisfies b’ (é,) = yi, which gives lpax. In the normal distribution case,
the deviance D results in the residual sum of squares. So, in the way similar
to analysis of variance, analysis of deviance (ANODEV) is often implemented
for model selection in hierarchical models, where the scaled deviance D* is
compared to the chi-squared distribution with the degrees of freedom n — p.
The contribution to the deviance from the ith observation

di = 2mi[{yifi — b(6:)} — {wibi — b(6:)}]

is called the deviance increment, which measures the local influence of each
observation.
Another measure of goodness-of-fit is the Pearson chi-squared statistic

n

2 _ (yi — ﬂi)z
=2 V(i) /m;’

where V(i) is the variance function. The measure is also compared to the chi-
squared distribution X%_p. For details on these statistics, see McCullagh and
Nelder (1989).

i=1
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The asymptotic variance matrix of 3 is

(o(gotn)) st

The scale parameter ¢ is usually estlmated by ¢ = D/(n — p), where D is the
deviance, or ¢ = y? /(n — p), where x? is the Pearson chi-squared statistic.

The leverage values is defined as the ¢th diagonal component, A;;, of the
hat matrix A on the updating equation (2.15), where A = X (XTWX)"1XTW,
and W is evaluated on the final iteration.

In GLMs, the simple quantity y; — 2; might be considered as a residual,
but it is inappropriate for the local assessment of goodness-of-fit, because the
variance of y; depends on its mean in GLMs. So the standardized versions
of residuals have been proposed on the basis of the goodness-of-fit measure
described above. The deviance residual is

ri = sign(y; — j;)\/d;

and the Pearson residual is
i — i
V(ii)/mi
To evaluate the departure between each observation and the fitted value, the
studentized Pearson residual

r, =

Yi — i
\/V,“z 1— Ay)é /mz

is useful. Other residuals for checking the local goodness-of-fit of a model are
introduced in Goto and Tsuchiya (1985) and McCullagh and Nelder (1989).
To investigate influence of the zth observation on the MLE G, it is useful

to evaluate the deleted estlmate ,6 When the ¢th observation is deleted.

Computing the exact ,3 1s expensive, but the one-step approximation of 5 =9
by the Newton-Raphson method is convenient (Cook and Weisberg, 1982). Let
(=9 be the log-likelihood when the ith observation is deleted. The one-step

approximation is written as
_]_ ]
) oI(—9)
R 0 -
B s B

5(=i) 4 021(-9)

87—
0803

If G is the canonical link function (i.e., v = G(b'(6;)) = 6;), the Newton—

Raphson algorithm is equivalent to the Fisher Scoring algorithm, because all

the y;’s in the second derivative of [ disappear. Therefore we obtain

5 (—1) N N
B~ B (XHWeXe) T XEWe (26 - X(HB)

_ 5 (XTWX)"'XTW (z — X3)
1- Ay
B

(XTwx)-1XTs
1- Ay ’
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where the subscript (¢) means that the component corresponding to the ¢th
observation is deleted, A;; is the leverage value, and & = (sy,... ,sn)T with
s; = m;{y; — fi;). Other tools for regression diagnostics are described in McCul-
lagh and Nelder (1989). Especially in logistic regression case, Pregibon (1981)
developed many tools for regression diagnostics and sensitivity analysis.

2.3 Maximum Penalized Likelihood Estimation

In this section non(semi)-parametric extension of generalized linear models is
discussed, and the penalized version of maximum likelihood approach is de-
scribed.

2.3.1 Nonparametric Generalized Linear Models

The generalized linear model in Section 2.2 is extended in a nonparametric way.
For the stochastic component, the situation of exponential family is supposed on
the responses y; as in the ordinary GLM. On the other hand, for the systematic
component, the assumption of linearity on mean structure such as in (2.11) is
weaken. Assume that there exists a link function G such that

Gu) = f(t:) (2.16)

for some given explanatory variable ¢;, and the unknown function f is to be
estimated. In what follows, ¢; is supposed to be one-dimensional for simplicity.
So this model is called the nonparametric generalized linear model. Denote the
predictor, the right-hand side of (2.16), by ;.

Maximizing the ordinary log-likelihood (2.12) yields the estimate of f that
interpolates data and shows rapid variation. Instead, similar to the idea of
penalized least squares, we consider the penalized version of the log-likelihood.
In the log-likelihood (2.12), the nuisance parameter ¢ and the term c(y;; @) is
irrelevant to the maximization, so the penalized log-likelihood is defined as

) = 1) -390

il

}i mi{yifi — b(6:)} — %J(f)- (2.17)

Notice that each of 6; is linked to f(¢;) by (2.10) and (2.16). Here, as in
Section 2.1.1, A is the smoothing parameter (a positive number, specified in
this chapter), and J(f) is a roughness penalty. We find an estimate fin a class
of smooth functions that maximizes the penalized log-likelihood (2.17). The
estimate f is called the maximum penalized likelihood estimate (MPLE).

As in the penalized least squares, if we use the roughness penalty J(f) =
[{f"(t)}?dt, the class of f becomes cubic smoothing splines with knots at
t1,...,t,. Moreover, f tends to the linear estimated function in the ordinary
GLM as A tends to infinity, and f shows more rapid variation as A becomes
smaller.
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In the special case where each of the responses y; follows the normal distri-
bution N(f(#;),0?), the penalized log-likelihood (2.17) becomes

() = S fw - £EY — 23(5),
2 2

=1

which is equivalent to the penalized sum of squares (2.1). Hence the algorithm
described in Section 2.1.1 can be used, and no iterative algorithm is required.
The constant factor % in (2.17) is multiplied by AJ(f) for this reason.

In the other distribution case, the maximum penalized likelihood estimation
requires iterative calculation as in the ordinary GLM. The approach of Fisher
scoring can be also used in the penalized version. As in Section 2.1.1, assume
that f is written as f(t) = Y 3_, &kpx(t), and that J(f) = ETKE for £ =
(&1,-..,€,)T and some g x ¢ non-negative definite symmetric matrix K. The
updating equation for £ has the form

new __ gold _ 82H )}—16_1—[
e =gt {B(-omr)) G

where both derivatives are evaluated at £°¢, and the updating is repeated until
§ converges.
It is easy to show that

oll — ﬁ _ )\I{gold

aE ~ ¢

0?11 0?1 3
" (‘asazT) =k (_ asasT) ALK

If we denote the n X ¢ basis matrix {¢x(t;)}i=1,... njk=1,..,¢ by B, then n =

and

(M,---,1.)T = BE. Some evaluation of derivatives yields
_8..{_— 3_17 Tﬁ.‘BTW(z_ old)
€~ \9€) o~ 7
and

9% an>T ( 821 ) m 7
El-———|=|w) E{-—5F%= ) ===B WB,
( agagT) (ag onon™ ) o€
where, similarly to the ordinary GLM in Section 2.2.1, z is the working response
vector with ith component

zi = (yi — pi) G (i) + ™ (2.18)
and W is the working weight matrix with sth component

w; = {G'(:)*8" (8:)} i (2.19)
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Hence we obtain

‘;—1; = BTW(z - B€*") - AK¢°" = BTWz — (BTWB + AK)¢""

and

2 .
E (——‘9-117> = BTWB + XK.
DEDE

Therefore the updating equation for f = (f(t1),.-- , f(ta))T becomes
frev = B¢ = B(BTWB + A\K) " 'BTW =. (2.20)

Notice that, for each iteration, z and W are reevaluated by (2.18) and (2.19),
respectively, using y; and 6; that are reevaluated by (2.16) and (2.10) from £°/.
The updating equation (2.20) has the same form as the penalized least squares
equation (2.3), and can be written as f"°* = S)z, where S} is the smoother
matrix.

For further discussion about maximum penalized likelihood estimation in
nonparametric GLMs, see also O’Sullivan, Yandell and Raynor (1986) and
Green and Silverman (1994).

2.3.2 Semiparametric Generalized Linear Models

Green and Yandell (1985) proposed the semiparametric extension of GLMs.
They considered as an assumption on the systematic component

G(wi) = = B+ f(t:) (2.21)

(as in Section 2.1.2, t; is assumed to be one-dimensional), and called this the
semiparametric generalized linear model. Both the parameter 3 and the un-
known function f are to be estimated. As in the previous subsection, denote
the right-hand side of (2.21) by #;.

Just as in the nonparametric GLM, the penalized log-likelihood

08,5 = 18,1~ 5J(f)
= Z mi{yi6; — b(6;)} — gJ(f)

is maximized over 3 and f in a class of smooth functions. Notice that each of
9; is linked to B8 and f(¢;) by (2.10) and (2.21).

The approach of Fisher scoring can be also applied to the maximum pe-
nalized likelihood estimation in the semiparametric GLM. Assume that f(t) =
Yoi_1&rer(t) and J(f) = ETK¢ as in the previous subsection. The updating
equation for 3 and £ is written as

9211 9211 “1 o oI

Brev Beld 9808T  8B0ET a8
(G- [ ]| T | R

“otapT  atoeT o€
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where all the derivatives in the right-hand side are evaluated at B and £°¥,
and the updating is repeated until both 8 and £ converge.

Let X = [®y,...,®,]T. The predictor vector is written as n = X3 + B¢,
and hence the first derivatives become

ol (8_17)T—(9—I:XTW(2—17”M)

8~ \aB) o
and
ol (on T a3l old _ pT old - pold
e - (ag) 5~ MKE = BTW (=~ ') - AKE

= BTW(z - XB°") - (BTWB + AK)¢°¥,

where z is the working response vector (2.18), and W is the working weight
matrix (2.19). By evaluating the expectations of the second derivatives similarly
and performing some matrix calculation, the updating equation becomes

g 1 [ xTwx  XTwB 17'[ xT
¢gev | | BTWX BTWB+AK BT

If the notation qf the sznoothe;r matrix ,S,\ = B(BTWB + )\K)_IBTW is
used, the MPLE’s 3 and f = (f(t1),-..,f(t»))T can be obtained with the
updating equations

[w=.

B" = (XTW(I - S\ X} XTW(I - 83)z (2:222)

and

~new

F =8z - XB™). (2.22b)

These representations are just the same as the penalized least squares estimates
(2.6) in the semiparametric regression model, and so the algorithm of the semi-
parametric GLM is the iteration of the semiparametric regression algorithm.

For details about semiparametric GLMs, see also Green (1987) and Green
and Silverman (1994).

2.3.3 Generalized Additive Models and Other Models

Hastie and Tibshirani (1986) proposed an extension of GLMs. They considered,
for the systematic component, replacing the linear predictor (2.11) by a sum of
smooth univariate functions,

Gu) =+ filti), (2.23)

i=1

and called this the generalized additive model (GAM). The additive model de-
scribed in Section 2.1.3 is a special case of GAM, in which the responses y;
follow the normal distribution.
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The generalized additive models can be also estimated using the principle
of maximum penalized likelihood estimation. In GAMSs, the penalized log-
likelihood is written as

N | =

¥4
H(fla--'afp)zl(fla"',fp)_" Z)‘]J(fj)v
7=1

where I{f1,..., fp) is the ordinary log-likelihood. The idea of Fisher scoring
can be generalized into GAMs, and Hastie and Tibshirani (1986) called this
the local scoring algorithm. The algorithm is practically the iteration of the
backfitting algorithm, described in Section 2.1.3.

In our notation the local scoring algorithm is represented as follows. Let z
be the working response vector (2.18), where 7; is the additive predictor, the
right-hand side of (2.23), and W be the working weight matrix (2.19). Each of
the equations in the backfitting algorithm (inner loop) is written as

fj:S,(\i)(Z_a_ka), J=1...,p,

ki

where a = (a,...,a)T and i = (fi(ta5), ... , fi ;)T Initially « is set to
be G(7) and f,’s are set to be zero. After getting f;,’s and n = a + Z§=1 fis
z and W are reevaluated, and the updating (outer loop) is repeated until n
converges. For detailed derivation and convergence criterion of the local scoring
algorithm, see Hastie and Tibshirani (1986, 1990). Some applications of GAMs
are discussed in Hastie and Tibshirani (1987, 1990).

The interaction spline models for non-Gaussian data have been developed by
Wang (1994) and Wahba et al. (1995). They called these models the smoothing
spline analysis of variance (ANOVA) models. Wang (1995) provided the FOR-
TRAN program GRKPACK for fitting the spline smoothing ANOVA models.
The code GRKPACK calls RKPACK (Section 2.1.3) as the subroutine.

- 2.3.4 Inference and Diagnostics in Non(semi)-parametric GLMs
and GAMs

In non(semi)-parametric GLMs and GAMs, the overall equivalent degrees of
freedom (EDF) for a model, denoted by v, is defined as the trace of the hat
matrix A, evaluated on the final iteration of the Fisher scoring or the local
scorinig. The leverage values, defined as the diagonal components A;; of the hat
matrix A, are also evaluated on the final iteration.

The deviance D and the Pearson chi-squared statistics x? are of the same
form as in the ordinary GLM (Section 2.2.4), in which the values of 8; or fi;
evaluated from the MPLE are used. The measures may be used for analysis of
deviance (ANODEV), and compared to the chi-squared distribution with the
degrees of freedom for noise, n—v, but the asymptotic theory on the distribution
of D and x? does not seem to have been established. These measures can not
be used for selecting the smoothing parameter, because in general they give
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smaller values as A becomes smaller. The scale parameter ¢ is estimated by

¢=D/(n—v)or é=x%/(n-v).
In the semiparametric GLM in Section 2.3.2, the EDF is written as

v =trS\ + tet[{XTW(I - S\) X} ' XTW (I - 8,)2X],
and the asymptotic variance matrix of B is represented as
var(B) = H{XTW I - S\ XY ' XTW (I - S X{XTW (I - $,)X}71,

where W is evaluated on the final iteration (Green and Yandell,1985). Green
(1987) provides further discussion about the deviance and the EDF in semi-
parametric GLMs.

The notion about the residuals and influential observations will be gener-
alized into the non(semi)-parametric case. The one-step approximation of the
deleted estimates in nonparametric GLMs is developed in Section 3.2.

2.4 Case Studies

In this section we illustrate some examples in which non(semi)-parametric
GLMs are fitted. As representative examples, logistic regression and Poisson
regression are taken up. Density estimation for classified data is also attempted.
Through this section, cubic B-splines with knots at the values of the nonpara-
metric explanatory variables ty,...,t, are used as nonparametric estimated
functions.

2.4.1 Logistic Regression
Binary Response Case: Kyphosis in Laminectomy Patients

Hastie and Tibshirani (1990) and Chambers and Hastie (1992) considered fitting
a generalized additive model to data on laminectomy surgery. Each of the data
is composed of a response that indicates presence or absence of kyphosis after
the operation, and three variables: age, number and start (See Appendix).
The goal of analysis is to investigate the relationship between the prevalence of
kyphosis and these three predictors, and to identify risk factors for kyphosis.
The observations No. 15 that has extremely large value of age and No. 28 that
has extremely large value of number are removed from the analysis.

Hastie and Tibshirani (1990, Section 10.2) fitted various form of additive lo-
gistic models to the kyphosis data in preliminary analysis, and finally suggested
the parametric model

log 1 pip = poly(age,2) + (start — 12) - I(start > 12),
— P
where p; = P(present), the probability of presence of kyphosis, poly(age,2) is

the quadratic polynomial of age, and /() is the indicator function.
For an illustration of the semiparametric generalized linear model, we fit a
semiparametric logistic regression model to the kyphosis data. The boxplots in
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Figure 2.1: Boxplots of age, number and start by presence or absence of
kyphosis.

Figure 2.1 and Chambers and Hastie’s (1992) consideration with tree models
suggest that presence of kyphosis should be typically caused by higher num-
ber of level (number > 4.5) and lower start level (start > 12.5). We fit the
semiparametric model of the form

log P

7 = f(age) + 1l (number > 4.5) + (oI (start > 12.5)

+ B3I (number > 4.5) - I(start > 12.5).

The last term of the right-hand side is incorporated to evaluate the effect of
interaction, since both number and start are related on vertebrae level.

Table 2.1 shows the results of comparing the model in which the interaction
term is included, with the model from which the interaction term is excluded.
The S-PLUS function smooth.spline is used for computation. We select the
value of the smoothing parameter, say 5\, by minimizing LCV1(A) to be de-
scribed in Section 3.2. (See also Section 3.3.) The existence of the interaction
term has little effect on the values of A and 8y (k = 1,2, 3), and makes the val-
ues of the chi-squared statistic x? and the deviance D less decreasing. Hence
the model with no interaction term is suggested. It can be seen from Table 2.1
that the term of I(start > 12.5) associated with ﬁz gives stronger effect. In
fact, the numbers 1-12 correspond to the thoracic vertebrae, while the numbers
13-17 correspond to the lumbar vertebrae.

Figure 2.2 plots the fitted function f concerned with age for the model
with no interaction term. The values of the parametric term and the Pearson
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Table 2.1: The results of analysis to the kyphosis data: the model in which the
interaction term is included, and the model from which the interaction term is
excluded.

Interaction term Included Excluded

A 0.066 0.064

A 1.550 (0.555) | 1.472 (0.436)

Ba —-2.685 (1.111) | —2.852 (0.615)

Bs 1.550 (0.555) | 1.472 (0.436)
v (EDF) 5.99 5.01
n—v 75.01 75.99
x? 62.985 65.387
D 51.073 51.096
d=x*/(n—v) | 0.840 0.860
LCV1 () 0.7877 0.7567

Note: The standard errors of Bl, ,@2 and Bg are in parentheses.
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Figure 2.2: Plot of the fitted function f to the kyphosis data (in logit scale).
The dots on the top side plots the values of the sum of the parametric terms,
and the dots on the bottom side plots the Pearson residuals. The broken line
shows the ordinary logistic regression fitting.



24. CASE STUDIES 23

e 4 O 000 O @O WOD® O
------ Ordinary GLM
g — Semiparametric GLM
(lambda=0.064)
2> o _
E o
Q
«
Q
e <
o o
N
(=]
g | axbam @O O O@EEIXGDOO O O O
T T I T T
0 50 100 150 200
age

Figure 2.3: Plot of the logit of f to the kyphosis data in probability scale.
The responses that show presence or absence of kyphosis are also plotted. The
broken line shows the ordinary logistic regression fitting.

residuals are also plotted. Figure 2.3 plots the logit of f in probability scale
with the responses. For comparison, ordinary logistic regression model fitting
are superimposed with the broken lines in both figures. The figures show that
risk of kyphosis is the highest at about 120 months old.

The interaction between age and other variables cannot be evaluated with
the models described in the previous sections. It requires a multidimensional
nonparametric models such as an interaction spline model. We would like to
consider using such a model in further analysis.

Semiparametric GLMs were also considered by Green and Yandell (1985),
where the semiparametric logistic model was fitted to the data on prevalence
of bileduct hyperplasia. O’Sullivan, Yandell and Raynor (1986) fitted logis-
tic models using two-dimensional smoothing splines to heart disease data and
potato early dying disease data.
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Binomial Response Case: Assay of Trypanosomes

Ashford and Walker (1972) illustrated the analysis of quantal response data on
Assay of Trypanosome. They considered the mixture of probit model

pi = 0®(ar + bit;) + (1 — 0)®(ag + bat),

where p; is the probability of response, the mortality rate, ® is the standard-
ized cumulative normal integral, ¢; is the log dose, and a;, as, by, b, and 8 are
parameters to be estimated. Eilers and Marx (1996) fitted a nonparametric lo-
gistic regression model to the trypanosome data. They used P-splines proposed
by themselves, of degree 3 and penalties of order 2, 3 and 4, without taking the
logarithm of the dose, and selected the smoothness of the estimated function
by AIC. They suggested a cubic logistic fit as a result.

Denote the number of deaths by y; and the number of observations by m;
in the ith dose level. We fit the nonparametric logistic regression model

yi~ B(mi,p;) and log 72— = f(t).

P
The penalized likelihood becomes

n

() = 3 {wslog i + (mi — i) log(L — )} - 5 [ {1"(0))a.

i=1

The models of the EDF v = 3, 4 and 5 are selected, and the results for them
are listed with the ordinary GLM fitting in Table 2.2. Moreover, four fitted
functions are displayed in Figure 2.4. Underfitting for the ordinary GLM and
the nonparametric model of v = 3 is obvious from the large values of x? and
é = x%/(n — v). The model of v = 4 gives seemingly good fitting, which
supports the suggestion of Eilers and Marx (1996). The model of v = 5 seems
to be slightly overfitting since x? = 1.695 and n — v = 3.00.

Table 2.2: The results of ahalysis to the trypanosome data. The models of the
EDF v = 3, 4 and 5 are listed with the ordinary GLM fitting.

Ordinary GLM | Nonparametric GLMs

Tog o A — —0.98 —192 -2.65
v 2 3.00 4.00 5.00

x? 20.039 11.085 3.536 1.695

é 3.340 2.217  0.884 0.566
LCVi(A) 5.026 4.582 2.668 1.768
LCVa(}) 3.753 3.120 2783  3.900

Note: LCV;(A) and LCV4(\) are the likelihood-based cross-validation scores to be
discussed in Section 3.2. See also Section 4.1.1.



24. CASE STUDIES 25

1.0

0.8

probability
0.4 0.6

0.2

0.0

4.8 5.0 5.2 5.4

dose

Figure 2.4: Plot of the logit of the fitted functions f to the trypanosome data
in probability scale, of the EDF 3, 4 and 5, with the fitted function by the
ordinary GLM.

2.4.2 Poisson Regression

Poisson regression is effective in situations where the dependent variable is a
count within a series of subdivisions of the data. Assume that the count of
events y; in ith category follows the Poisson distribution Po(u;). The expected
count p; depends on the size of the ith category, say ¢;, such as the person-time,
the total time accounted for those who experienced the event and who could
have experienced it but did not. In Poisson regression the expected rate u;/¢;,
rather than the expected count y;, is modeled as the function of an independent
variable ¢; associated with the ith category:

pi = q;e*tPt or  log (&> = a+ Bt;. (2.24)
q

Poisson regression models are expressed in various forms. Let y;; be the number

of a two-way contingency table classified by, for example, age categories and

exposure categories, and g;; be the person-time. The number y;; can be modeled
as

Hi

yi; ~ Po(u;;) and log (q—

)

>=a+@+w

using the parameters §; and 4; that incorporate the effect of the (4, j)th cate-
gory. See Selvin (1995) for details.
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The Poisson regression model also belongs to the class of GLMs. The person-
time ¢; is included in the model as an additive effect that is not an independent
variable, since the model (2.24) is rewritten as

log pi = log ¢; + a + Bt;.

The term log¢; is called an offset variable, which is added to the working re-
sponse for each iteration of the Fisher scoring algorithm.

We consider a nonparametric extension of the Poisson regression model
(2.24). Let y; be the count of events such as deaths, and ¢; be the size of the
1th category such as the population size or the person-time. The expected rate
i/ ¢; is then modeled as the nonparametric function of an independent variable
t; such as the age:

3

yi ~ Po(p;) and log (%) = f(t:)-
This model can be applied to analysis of a mortality table as described below.

Example: Analysis of a Mortality Table

Green and Silverman (1994) applied the nonparametric GLM to the analysis
of a mortality table. Let y; be the number of death and ¢; be the number of
individuals in the ¢th age category. Actuaries estimate true death rates p; from
crude death rates y;/¢; by a smoothing technique called graduation to make
use of calculating insurance premiums. Green and Silverman (1994) fitted the
nonparametric logistic regression model

vi ~ B(gi,p;) and log (1 f’p') = f(t;),
which ensures that the true death rate p; is represented as a smooth function
of the age t;.
The approach of Poisson regression is also available for a mortality table.
The nonparametric Poisson regression model

yi ~ Po(y;) and log (&> = f(t:)
is fitted to the mortality table, where y; is the expected number of deaths. The
penalized log-likelihood

n

() = Y lusdlog i + S0} - awexp S0 - § [0

=1

is maximized to estimate f. We attempt to fit the nonparametric Poisson re-
gression model to the mortality table discussed by Green and Silverman (1994).
The estimated death rates ji; /q; = exp f(¢;) is plotted with the crude death rates
in Figure 2.5. The smoothing parameter A is selected by minimizing LCV ().
The result is similar to that by the logistic regression in Green and Silverman
(1994).
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Figure 2.5: The estimated death rates exp f(t,) (the solid line) and the crude
death rates (the dots). to the mortality table in Green and Silverman (1994).

2.4.3 Density Smoothing for Classified Data

The idea of Poisson regression can be applied to density estimation for classified
data, or smoothing histograms. Suppose that raw data z,., r = 1,... , N, are
extracted from a distribution of the density function g(z). When z’s are
classified into n disjoint classes C4,...,C, and the count of data in each class
yi = #{zr; 2z, € C;} is observed, the density g(z) is estimated from y;,... ,y,
using nonparametric Poisson regression.

The probability of observing y in C; is p; = fc,' g(z)dz and ) -, p;i = 1.
Under the condition that the sum of countsis ) ., y; = N, the vector of counts
(y1,... ,Yn) follows a multinomial distribution with N draws and probability
vector (p1, ..., ps). Equivalently, each of the counts y; can be also considered to
have a Poisson distribution Po(y;), where the mean parameter is y; = p;N. See
Bishop, Fienberg and Holland (1975) for the equivalence between multinomial
distribution and Poisson distribution. Let ¢; be the ith class mark located at
the midpoint of each class. Assume that all the classes have a common width A,
that is, t;’s are equally spaced. The probability p; is then roughly approximated
by pi = hg(t;) and hence p; = Nhg(t;). Therefore a histogram can be smoothed
by using the technique of Poisson regression. We fit the nonparametric Poisson
regression model

yi = Po(u;) and logpu; = f(t:) (2.25)

and estimate f with a cubic smoothing spline. As in the previous subsection,
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the penalized log-likelihood
- A 1! 2
() = Y- (f (8) — exp £} - § [ {70
=1

is maximized to obtain f. The estimated density becomes g(t) = exp f(t)/Nh.

Eilers and Marx (1996) discussed the density estimation using P-splines as
an application of Poisson regression. Efron and Tibshirani (1996) proposed a
family of density estimators as a combination of an exponential family and a
kernel estimator, and called it the specially designed exponential family. The
idea of Poisson regression is also included in their approach. Density estimation
for non-classified data in the context of maximum penalized approach is dis-
cussed in Good and Gaskins (1971), Silverman (1982, 1986), O’Sullivan (1988)

and so on.

Example: Old Faithful Geyser Data

As an example, the density smoothing method with Poisson regression is applied
to the data on duration of eruptions of the Old Faithful geyser, also discussed
by Silverman (1986) and Eilers and Marx (1996). At first, the domain from
1.5 to 5 is divided into 35 intervals of bin width 0.1 and the histogram is
constructed. The nonparametric Poisson regression model (2.25) is fitted using
a cubic smoothing spline with knots at class marks of the histogram. The
smoothed density function Nhg(t) is plotted in Figure 2.6 with the histogram.
The smoothing parameter A that minimizes LCV () is selected.

Next we consider changing the origin of the histogram. Figure 2.7 plots
the smoothed density function with the histogram when the domain from 1.55
to 5.05 is divided into 35 intervals of bin width 0.1. The two histograms give
different impression, while the two smoothed density functions seem to be sim-
ilar. In general, a histogram gives various impression with the position of the
origin as well as the number of classes or bin width. On the other hand, density
smoothing has the advantage of little influence from the shape of a histogram,
if the division of the histogram is appropriate and the smoothing parameter is
selected adaptively.
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Figure 2.6: The smoothed density and the histogram to the Old Faithful geyser
data, in which the domain from 1.5 to 5 is divided into 35 intervals of bin width

0.1.
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Figure 2.7: The smoothed density and the histogram to the Old Faithful geyser
data, in which the domain from 1.55 to 5.05 is divided into 35 intervals of bin

width 0.1.



Chapter 3

Selecting the Smoothing
Parameter

3.1 Standard Procedures

In this section we discuss some of the standard procedures for selecting the
smoothing parameter in maximum penalized likelihood estimation. Through
this chapter we take up the case of only one smoothing parameter, that is,
the case that only one variable is related to nonparametric component, but
similar idea will be adopted to the case of multiple smoothing parameters such
as additive models.

3.1.1 Selecting the Smoothing Parameter in Penalized Least
Squares Problems

At first we describe some of the common procedures for selecting the smoothing
parameter in penalized least squares that correspond to the normal distribution
case of maximum penalized likelihood estimation. Here the scores are defined
in the weighted form for extension in later section.

In penalized least squares the method of cross-validation is commonly used.
The cross-validation is based on the viewpoint of prediction. See Stone (1974)
for detail survey and discussion about cross-validation. Denote the predicted
value of y; by #);, which is obtained as the value 7; (¢ = 1,... ,n) that minimizes
the penalized weighted sum of squares

= wi(yi—m)® + ATKE,
i=1

where 7; stands for f(t;) in the nonparametric regression model in Section 2.1.1
and for I B + f(t;) in the semiparametric regression model in Section 2.1.2.

The function f is assumed to be written as f(¢;) =) §_, &rpr(t:). Let ﬁz(_i) be
the value of 7; predicted from n — 1 observations when y; is deleted. A cross-

validation score is then constructed on the basis of the squared-error criterion,

31
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and defined as

n

1 (=i
OCV(A) = = wily: — ")’
=1

(Wahba and Wold, 1975). The notation OCV stands for ordinary cross-valida-

tion to distinguish it from GCV described below. The value of A that minimizes

OCV()) is selected.
(

Calculating ﬁi“i) directly by minimizing the penalized sum of squares con-

structed from n — 1 observations except y; is very expensive, so the method for
simple calculation was proposed. Craven and Wahba (1979, Lemma 3.1 and

3.2) proved that the deleted residual y; — ﬁg_i) is represented as

) _ Y= 1
y’l 77@ 1_ Aii7 (3. )

where 7); is the ordinary predicted value, and A;; is the ith leverage value, the
diagonal component of the hat matrix Ay, i.e., § = (f1,... ,7,)7 = Ayy. The
subscript ) is augmented to emphasize the dependence of the hat matrix on .
The derivation of (3.1) is similar to that of the PRESS criterion, proposed by
Allen (1974) in the context of multiple linear regression and ridge regression.
See also Green and Silverman (1994, Lemma 3.1 and the following remarks).
By using (3.1), the ordinary cross-validation score is written as

Ly~ (B’
== i . 2
OCV(}) = ~ ;w (1 — Aii) (3.2)
A more popular score is the one proposed by Wahba (1977) and Craven
and Wahba (1979), called the generalized cross-validation (GCV) score. By
replacing A;; in (3.2) with n~'trA,, the equivalent degrees of freedom for the
model divided by n, the score is written as

_ 1wy — )?
GOV = e

which is minimized to select .

In the context of the univariate nonparametric regression (Section 2.1.1),
Craven and Wahba (1979) established the optimality of the GCV score in terms
of the predicted mean squared error (here we denote in the weighted form)

T()) = %Z wi{ f(t:) — F(t:)}?,

that is,

ET()

Wy
min ET()) asm o0,

where ) is selected by minimizing GCV(A). Also, the GCV score has invariance
properties for orthogonal transformations (see Wahba, 1990). Golub, Heath and
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Wahba (1979) applied the GCV score to ridge regression. Utreras (1981) and
Silverman (1985) proposed methods to compute the GCV score using approxi-
mations of the eigenvalues of the smoother matrix. Behavior of the GCV score
as A tends to zero is studied by Wahba and Wang (1995).

The method of the cross-validation does not require any knowledge of the
error variance. If the error variance (assumed to be common to each observa-
tion), say o2, is known or estimated using the methods in Section 2.1.4, the
unbiased risk (UBR) estimate is valid. Let

] Liwise 2_ 0’ 2, 0 a2
T = AW = Ayll* = —te(l = A" + ——trAj,

where || -|| means the Euclidean norm. Then ET'(A) = ET()). Minimizing 7'())
is equivalent to minimizing

1 < X 2
UBR()) = ~ Z wi(yi — )% + ;UZtrA,\.
=1

The UBR score is an extended form of Mallows’ C), statistic (Mallows, 1973) to
nonparametric regression, and is equivalent to the Akaike information criterion
(AIC) described in Section 3.1.3 in the normal distribution case.

3.1.2 Cross-validation Scores Based on Squared Error

In general cases of maximum penalized likelihood estimation, the cross-valida-
tion method has been also most commonly used for selecting the smoothing
parameter. The equation (2.20) for evaluating the MPLE f in the nonparamet-
ric GLM is viewed as the solution of the penalized least squares problem:

Minimize & = Z wi(z; — ) + MTKE over f, (3.3)

i=1

where 7; = f(t;). Similarly, the equation (2.22) in the semiparametric GLM
is viewed as the solution of minimizing S of (3.3) over B and f, where ; =
! 3+ f(t;). Here 2 is the working response, and w; is the working weight,
both evaluated on the final iteration of the Fisher scoring algorithm. Therefore,
two types of cross-validation scores based on the squared-error criterion might
be considered, on the analogue of the discussion in the previous subsection.
Let Ay be the hat matrix in the equations (2.20) or (2.22), that is, ) = Az,
and Aj; be the ith diagonal component of A). Green and Yandell (1985) and
O’Sullivan, Yandell and Raynor (1986) used the generalized cross-validation
score :
_ 13 wilz = )
GOV = n (1 —n"1trdy)? -~

This score was also suggested by Hastie and Tibshirani (1990, Section 6.9),
in the context of generalized additive models (GAM), as an approximation to
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the likelihood-based cross-validation score described in the next section. The
ordinary cross-validation score

1 zi =\
OCV() = ﬁzwi (1 — Aii)

i=1

was suggested by Green and Silverman (1994, Section 5.4.3), again as an ap-
proximation to the likelihood-based cross-validation score. These scores are
evaluated using the values of z;, w; and A;; on the final iteration of the Fisher
scoring algorithm, and minimized to select A.

However, it has been known that the GCV score is inappropriate for non-
normal distribution case, especially for binary data, in maximum penalized
likelihood estimation. Green and Yandell (1985) evaluated the GCV score to
select the smoothing parameter in applying semiparametric logistic regression to
bioassay data. They pointed out that the GCV score might show bad behavior,
that is, it might have no global minimum, and tend to zero as A tends to
zero. Many other authors made a similar suggestion (e.g., Gu, 1992), and
our numerical experiments will show the bad behavior of the GCV score (see
Chapter 4).

3.1.3 Akaike Information Criterion

The Akaike information criterion (AIC) (Akaike, 1973) has been also often used
for selecting the smoothing parameter. The AIC score is constructed from the
theory of Kullback-Leibler information, and is defined as 21(9) — 2v, the twice
of the log-likelihood from which the twice of equivalent degrees of freedom is
subtracted. In our notation the AIC score is written, divided by n for the

convenience of our comparison, as

AIC(N) = %—i—%(ﬁu

= %Z mi[{yif; — b(8:)} — {yib: — b(6:)}] + %gbtrA,\

where D is the deviance, 6; is the solution of b'(éi) = y;, ; is the MPLE of
the natural parameter 6;, and ¢ is the scale parameter. In the case of binomial
or Poisson distribution, ¢ is often known and set to be 1. See also Hastie and
Tibshirani (1990). Eilers and Marx (1996) also proposed using the AIC score.
An asymptotic equivalence of selecting a model by AIC and cross-validation is
discussed by Stone (1977).

3.2 Likelihood-based Cross-validation Score

The OCV and GCV scores described in the previous section are based on the
squared error criterion, but the performance of these scores, especially the GCV
score, is unsatisfactory. We think it is better to construct a cross-validation
score based on likelihood in maximum penalized likelihood estimation. The
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AIC score is based on likelihood, but the term related to the effective number
of parameters is added simply by analogy with the degrees of freedom for a
family of parametric models. In this section we construct a likelihood-based
cross-validation score, and propose a method for simple calculation of it. We
also derive a simpler AIC-like form of the score.

3.2.1 Likelihood-based Cross-validation Score

The likelihood-based cross-validation score, suggested by Green and Silverman
(1994), is defined as the sum of the deviance increment (Sections 2.2.4 and

2.3.4) from the model fitted to the delete-one data. Let dl(_i) be the deviance

increment of y; and éz(_i) be the delete-one estimate of the natural parameter
0; when the ith observation y; is deleted. The likelihood-based cross-validation

(LCV) score is written as
_ Lm0
LCV()) = n;di
2 = = (=i (=i
= = mil{yi - b(0)) - b - b0, 34)
=1

where 6; is the solution of b(6;) = y;. In the normal distribution case, LCV ()
coincides with OCV ()).

However, direct calculation of 631(_2

)

and hence the exact calculation of the
LCV score (3.4) is very expensive and not practical, because finding él(_z) re-
quires solving a maximum penalized likelihood equation to the data from which
y; is deleted. So we propose a method for simple calculation of the delete-one

estimate éz(‘i) and the LCV score, also discussed in Sakamoto and Shirahata
(1997b).

3.2.2 Simple Calculation of the Delete-one Estimate and the
Likelihood-based Cross-validation Score

As described in 3.1.2, the MPLE in a non(semi)-parametric GLM is viewed
as the solution of the penalized least squares problem (3.3). By applying the
deletion lemma of Craven and Wahba (1979) such as (3.1), an approximation
to the predicted values of 7; when y; is deleted

(=3) _ %W

AT ITA
or
J(=i) _ a Ag; R
n,( )~ 1T A; (zi — ) (3.5)

is obtained. Therefore the delete-one estimate {~") is obtained from (3.5) using

7

the relationships (2.16) [or (2.21)] and (2.10), that is, ﬁ(_i) = G(b'(éz(_i))).
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If G is the canonical link function, i.e., 7; = G(b/(8;)) = 6;, the expression
(3.5) is rewritten explicitly as follows. Since G(u;)b"(6;) = 1, the variance
function becomes V'(1;) = G'(1;)™", and the working response (2.18) is written
as

zi = (yi — pa) [V (i) + nf".
Hence, on the final iteration, (3.5) is rewritten without using z; as

A yi—
1— Ay V(i)'

617 ~ b - (3.6)
where fi; = b'(éi). Therefore the delete-one estimate él(_i) is found by simple
calculation using the ordinary estimate 6; and the leverage value A;;. In the
normal distribution case, the relationship (3.6) holds exactly.

An approximation of the LCV score is obtained by substituting the delete-

one estimate éz(_z) just found into (3.4). If G is the canonical link function, the
approximated score is written from (3.6) as

LCVi(A) = %imi[{yiéi“b(éi)}

. Ay Y — i - Ay Y — i
—qy |0~ - -b16; - — .
{y ( 1— Ay V() ) ( 1~ Agi V(jig)

In the normal distribution case, LCV{()) coincides with OCV()).

3.2.3 Equivalence to the One-step Approximation

The expression (3.5) can be associated with the one-step approximation to the
delete-one estimate based on the Newton—Raphson method. For simplicity, we
describe this in the nonparametric case (Section 2.3.1), but it also holds in the
semiparametric case (Section 2.3.2).

Let IT1(=9 be the penalized log-likelihood when y; is deleted

— A
MEI(f) =3 mi{yi; — b(6)} - ZI(F),
JF#i
where 6; is linked to f(t;), and f is assumed to be f(t) = ! 1 &pr(t). The

one-step approximation to é(_z), the vector of estimates of £ = (&,... ,fq)T
when y; is deleted, is written as

) 11

R 0

2 3

(=) - ?11(=9
£ [T
2473
in the same way as in Section 2.2.4. If G is the canonical link function, the
Newton-Raphson algorithm is equivalent to the Fisher scoring algorithm, and

>
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hence

é(—l)

&+ (B Wi By + M) ™H{Bu Wi () — Bt) — AKE}
_ ~\—1t T
= (B{yWB) + MK)™ By Wiz
= (BTWB — w;ib;b] + \K)"Y(BTW z — w;z;b;)
= {(BTWB +AK)~?
N w;(BTWB + AK)~'b;b7 (BTWB + AK)~!
1 — w;b] (BTW B + AK)~1b;

} (BTWz — w;zb;),

where the subscript (¢) means that the components related to the ith observa-
tion are removed, and b} is the ith row of B.

Noticing that Ay = wbT (BTWB 4 AK)~'b; and £ = (BTWB + \K)™!
BTW z, we derive

&7~ (BTWB+AK)'BTWz — win(BTWB + AK) b,
+ 2 (BTW B + K)o (BTWB + AK) ™ BTW =
Aiwizi
1— Agi
é wi(zi — b;‘ré)
S 1- Ay

(BTWB 4+ AK)™'b;
(BTW B + AK)™b;.

Since 7; = b;‘ré , the one-step approximation to ﬁ(—i) becomes

1
(=) _ - A .
A i — T A (),

which coincides with (3.5).

Similar ideas were proposed by O’Sullivan (1988) in the context of den-
sity estimation, and le Cessie and van Houwelingen (1992) on choosing a ridge
parameter in logistic ridge regression.

3.2.4 An AIC-like Form of the LCV Score
We derive a still simpler form of the LCV score. We rewrite (3.4) as

LCV(A) = %Z mil{yi; — b(6:)} — {v:6; — b(6:)}]
b2 w00 - ) 0@ B

If we use the first-order approximation

b(6:) — b8y = b'(6:)(4; — 67V
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then the second term of the right-hand side of (3.7), say Dg, becomes
2 — A Al
Dy = milyi — ) (0; - 677).
i=1

Moreover, if G is the canonical link function, by substituting (3.6), we have

L2~ Ai (yi — u)?
Dy~ ;Z 1-— A V(ﬂl)/ml

=1

From the fact that var(y;) = V(u:)¢/mi, a rather rough approximation

(i = 3)*
V(pi)/mq
leads to an AIC-like form of the LCV score

2 & - - . . 2 A
LCVz()) = ;Z mi[{yidi — b(6:)} — {v:0: - b(6:)}] + ;vﬁZ 1A
=1 i=1 *

The difference between AIC(A) and LCV3(A) is in the second terms, in which
trAy = ) i, Ai; for AIC(X) is replaced with )~ | A;;/(1 — Ai) for LCV(X).
In the case of binomial or Poisson distribution, ¢ can be set to be 1.

3.3 Comparison with Exact Calculation

In this section we show how the method for simple calculation of the delete-one
estimate and the LCV score gives good approximations to the exact calcula-
tion method. The LCV scores proposed in the previous section are derived
in the case of logistic regression and Poisson regression, and the goodness of
approximation is examined by using some of the data introduced in Section
2.4. Diagnostics of influential observation with the delete-one estimate are also
illustrated.

3.3.1 Logistic Regression Case

In the case of Logistic regression, the likelihood-based cross-validation score is
written as

LCV(A) = %Z m;i[{yilogyi + (1 — i) log(1 — y:)}

— (i) —log(1 + exp 6},

where we define that y;logy; = 0if y; = 0 and (1 — y;)log(1 —y;) = 0if y; = 1.
Since V() = (1 — p), the delete-one estimate éz(*z) by simple calculation is

~

680 b — Aii_Yi = i
' 1= A (1 — fii)
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from (3.6), and substituting it into the right-hand side of LCV()) yields the
form of simple calculation. Especially in the case of binary response case, the
LCV score by simple calculation becomes

2 - A Au Y, —
LCVI(A)—;Z{—M (9 A )

=1 ﬂ
+ log (1+exp( Aii — B ))}
1- Am ,u'z(1 - ﬂz)

The AIC-like form of the LCV score becomes

2 o Ay
LCV,()) = nZ{ yi0; +log(1 + expb;)} + = ¢Z i

=1

where ¢ is usually set to be 1.

The likelihood-based cross-validation scores LCV(A) and LCV2(A) for var-
ious values of A are evaluated to the kyphosis data introduced in Section 2.4.1,
and are compared with the exact values of LCV() evaluated according to the
definition of deleting each one observation. The cross-validation scores GCV(A)
and OCV()) based on the squared error criterion are also evaluated for refer-
ence. The S-PLUS function smooth.spline was used for computation as in
Section 2.4.1.

Figure 3.1 plots these cross-validation scores as the function of log;y A be-
tween —5 and 2. The scores LCV;(A) and LCV3(A) give good approximations
to the exact score LCV(A) when logjo A > —2. The value A = 0.064 that mini-
mizes LCV1()\) and the value A = 0.1 that minimizes LCV3()\) are near to the
value A = 0.08 that minimizes LCV(A). Approximations of the two scores be-
come worse when A becomes small, but it seems to make little trouble because
the scores become much greater as A tends to zero. On the other hand, the
plots of GCV(A) and OCV(A) show bad behavior. It can be seen that these
scores based on the squared error criterion are inadequate for approximations
to LCV(A).

To verify the goodness of approximation by our simple calculation method,
the deleted estimates 9( ) and the deleted deviance increments

d) = 2{-yidl™) +10g(1 + exp ™))

obtained by the simple calculation were compared with those obtained by the
exact calculation. Table 3.1 lists a part of these values to the kyphosis data
in the case of logistic linear regression, and Table 3.2 lists them in the case of
nonparametric logistic regression with ) selected by minimizing LCV;()). The
difference between the values HAZ(_Z) obtained by both the methods of calculation
is small for almost all the observations, although the observations No. 11, 76
and 79 give slightly different values of ég_l). The observations No. 11 and 79

have high deviance increments and the differences of dz(_i) for these observations
between the exact calculation and the simple one become relatively large.

The results as these scores were evaluated to other data are described in
Section 4.1.1.
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Table 3.1: The values of ordinary estimates 6;, deleted estimates 0"1(—1')’ deleted

deviance increments dz(_i) and leverages A;; when a logistic linear regression
model] was fitted to the kyphosis data.

Obs. é,‘ 6*2(-1) dz(»*z) Az'z'
Exact Simple | Exact  Simple
-1.212 | —1.138 —1.137 | 0.00686 0.00687 | 0.0545
—-2.998 | —2.964 —2.964 | 0.00124 0.00124 | 0.0314
—0.448 } —0.658 —0.654 | 0.02654 0.02649 | 0.0746
—0.594 | —0.414 —-0.412 ] 0.01253 0.01255 | 0.1053
—5.102 | —5.093 —5.093 | 0.00015 0.00015 | 0.0094
—5.102 | —5.093 —5.093 | 0.00015 0.00015 | 0.0094
—4.298 | —4.285 —4.285 | 0.00034 0.00034 | 0.0126
—4.620 | —4.608 —4.608 | 0.00024 0.00024 | 0.0112
—3.601 | —3.582 —3.582 | 0.00068 0.00068 | 0.0182

0.170 0.051 0.051 | 0.01649 0.01649 | 0.0607
—-2473 | —3.337 —3.146 | 0.08326 0.07872 | 0.0497
-3.132 | -3.103 —3.102 | 0.00109 0.00109 | 0.0272
—0.380 | —0.217 —0.216 | 0.01458 0.01460 | 0.0888
—2.150 | —=2.071 —2.070 { 0.00293 0.00294 | 0.0675
—2.864 | —2.824 -2.823 |} 0.00142 0.00142 | 0.0366
—5.102 | —-5.093 —5.093 | 0.00015 0.00015 | 0.0094
—2.527 | —2.473 —2.472 | 0.00200 0.00200 | 0.0482
—1.227 | —1.006 —0.998 | 0.00770 0.00775 | 0.1503
—2.500 | —2.445 —2.445 | 0.00205 0.00205 | 0.0489

[ T e
S ©C XTI WN LD DPIDOCE WN -

~1.922 | —1.845 —1.843 | 0.00362 0.00363 | 0.0645

P
—_

72 | -3.372 | —3.335 —3.335 | 0.00086 0.00086 | 0.0347
73 | —1.455 | —1.296 —1.290 | 0.00597 0.00600 | 0.1176
74 | -0461 | —0.332 -0.331 | 0.01335 0.01336 | 0.0737
75 | —3.949 | —3.934 —3.934 | 0.00048 0.00048 | 0.0148
76 0.598 1.260 1.247 | 0.03728 0.03702 | 0.1872
77 | —4.968 | —4.958 —4.958 | 0.00017 0.00017 | 0.0098
78 | —2.730 | —2.682 —2.682 | 0.00163 0.00163 | 0.0431
79 | -3.011 | —3.901 -3.691 | 0.09682 0.09173 | 0.0309
80 | —3.224 | —3.185 —3.185 | 0.00100 0.00100 | 0.0363
81 | —3.507 | —3.486 —3.486 | 0.00074 0.00074 | 0.0195
82 | —0.058 | —0.212 —0.211 | 0.01986 0.01985 | 0.0691

Q0
o

—-4.633 | —4.622 -4.622 | 0.00024 0.00024 | 0.0111
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Table 3.2: The values of ordinary estimates 6;, deleted estimates éggi), deleted

. . —i . -
deviance increments dz( ) and leverages A;; when a nonparametric logistic re-

gression model was fitted to the kyphosis data, with ) selected by minimizing
LCVi(A).

Obs. | 6 6" =" Asi
Exact Simple | Exact  Simple

1 ~0.773 | —0.618 —0.617 | 0.01064 0.01066 | 0.0965
2 ~3.335 ] —3.303 -3.305 | 0.00089 0.00089 | 0.0282
3 ~0.219 | —0.429 —0.428 | 0.02298 0.02296 | 0.0853
4 ~1.513 | —1.307 —-1.302 | 0.00591 0.00594 | 0.1477
5 —5.874 | —5.864 —5.868 | 0.00007 0.00007 | 0.0058
6 -5.874 | —5.864 —5.868 | 0.00007 0.00007 | 0.0058
7 —3.880 | —3.859 —3.858 [ 0.00052 0.00052 | 0.0210
8 —-4.604 | —4.590 —4.591 | 0.00025 0.00025 | 0.0123
9 -3.048 | —=3.014 -3.012 | 0.00118 0.00119 | 0.0332
10 0.390 0.244 0.242 | 0.021429 0.01430 | 0.0810
11 | ~-1.913 | —2.812 —-2.645 | 0.07088 0.06699 | 0.0861
12 | -3.224 | —3.193 —3.194 | 0.00099 0.00099 | 0.0279
13 | -0.937 | —0.762 —0.755 | 0.00946 0.00951 | 0.1158
14 | —-3.021 | —2.953 —2.957 | 0.00126 0.00125 | 0.0580
16 | —3.470 | —3.436 —3.439 | 0.00078 0.00078 | 0.0293
17 | —5.874 | —5.864 —5.868 | 0.00007 0.00007 | 0.0058
18 | —1.995 | —1.898 —1.894 | 0.00345 0.00346 | 0.0815
19 | -2.104 | —1.939 —1.938 | 0.00332 0.00332 | 0.1286

LN
[e=)

—-1.953 | —1.852 —1.848 | 0.00360 0.00361 | 0.0838

71 | —2.409 | —2.336 —2.337 | 0.00228 0.00228 { 0.0620
72 | —3.897 | —3.868 —3.871 | 0.00051 0.00051 | 0.0244
73 | —-1.863 | —1.720 -1.718 | 0.00407 0.00408 | 0.1119
74 | —0.214 | —0.047 —0.047 | 0.01655 0.01654 | 0.0849
75 | —3.293 | —3.263 —3.260 | 0.00093 0.00093 | 0.0310
76 | —1.248 | —0.416 —0.263 | 0.01251 0.01408 | 0.4334
77 | —-5.512 [ —5.502 —5.505 | 0.00010 0.00010 | 0.0069
78 | —3.623 | —3.585 —3.590 | 0.00068 0.00067 | 0.0315
79 | —-3.323 | —4.467 —4.153 | 0.11057 0.10294 | 0.0281
80 | —3.508 | —3.474 —3.476 | 0.00075 0.00075 | 0.0297
81 | —3.046 | —3.013 -—3.011 | 0.00118 0.00119 | 0.0321
82 | —0.116 | —0.330 —0.326 | 0.02152 0.02146 | 0.0898
83 | —4.637 | —4.624 —4.625 | 0.00024 0.00024 | 0.0120
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Figure 3.1: Plots of the cross-validation scores to the kyphosis data as the
function of log,y A. The solid line plots the exact values of LCV(A).

Diagnosing Influential Observations

The simple calculation of delete-one estimates ég_z) makes it easier to detect
influential observations. Figure 3.2 plots the values of |6; — él(_z)|, the leverage
value A;; and the deviance increments d; for each observation in the nonpara-
metric logistic regression to the kyphosis data. A large value of |§; — é§~1)|
implies that deleting the ¢th observation gives strong influence. The observa-
tion No. 76 has a high leverage value, and the observations No. 11 and 79 have
high deviance increments. Inspection of |§; — 91(’1)| enables us to identify these °
three influential observations together.
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Figure 3.2: The top figure plots |§; — éz("i)| versus 4, the middle figure plots A;;
versus ¢, and the bottom figure plots d; versus ¢ in the nonparametric logistic
regression to the kyphosis data.
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3.3.2 Poisson Regression Case

In the case of Poisson regression and density smoothing for classified data, the
likelihood-based cross-validation score is written as

2 ¢ A(—i A(—i
LCV(A) = ;Z{yi(log yi— 1) - (yi0§ ) _ exp 01( ))},
i=1
where we define that y;(log y; — 1) = 0if y; = 0. Since V(i) = p, the delete-one
estimate 01(*1) by simple calculation is

a2 o A . 1
02( z)zai_l 1114 yzA/Lz
— Ag Mg

from (3.6). Substituting it into the right-hand side of LCV () yields

2 o _Ai yi—
LCV;(A\) = EZ[yi(logy,- -1) - {yi (Oi— 1_1;1”3/_“)

=1 P

~exp (@i - 1_4114.% ;M)H

The AIC-like form of the LCV score becomes

2 A . 2 o~ A
LCVz(A) = ;Z{yi(log% —1) — (b —expbi)} + ggbz 1- A
=1 i=1 "

where ¢ is usually set to be 1.

The scores LCV; () and LCV4(A) for various values of A are evaluated in the
situation of density smoothing. As in logistic regression case, the exact values
of LCV(A) and two scores GCV(A) and OCV()) are also evaluated. Figure
3.3 plots these scores when the density smoothing in Section 2.4.3 is applied
to the Old Faithful geyser data. The class marks are rescaled in [0,1] and a
cubic smoothing spline with knots at the class marks was fitted. The value
A = 0.00019 that minimizes LCVi(]) is almost equal to the one that minimizes
the exact score LCV(])), while the value A = 0.0005 that minimizes LCV3()
is slightly larger. Moreover LCV3(A) becomes greater when ) is small. The
behavior of GCV(A) and OCV(]) is not so wrong as in the logistic regression
case, but our LCV scores approximate the exact score better.

Table 3.3 compares the deleted estimates 0}_1) and the deleted deviance

increments
- 2 5(—i j(—i
di™) = ﬁ{yi(log yi— 1) — (6 — exp 7))

obtained by the simple calculation with those obtained by the exact one, where
the value of A that minimizes LCV, (A) was used. Since there exists no class
that has extreme influence, the difference between the values obtained by the
two calculation methods is very small for every class.

The results as these scores were evaluated to other data are described in
Section 4.1.2.
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Table 3.3: The values of ordinary estimates éi, deleted estimates é(_i), deleted

¢

deviance increments dg_i) and leverages A;; when density smoothing was applied
to the Old Faithful geyser data, with A selected by minimizing LCV()).

~

Class | 6; 6" dY A
mark Exact Simple | Exact Simple

1.55 | —0.101 0.779 0.796 | 0.12453 0.12661 | 0.473
1.65 0.933 0.837 0.812 | 0.00540 0.00639 | 0.401
1.75 1.689 1.739 1.743 | 0.00251 0.00267 | 0.417
1.85 1.960 1.716 1.746 | 0.05103 0.04523 | 0.444
1.95 1.692 1.635 1.624 | 0.00402 0.00456 | 0.395
2.05 1.089 1.275 1.242 | 0.02369 0.02084 | 0.318
2.15 0.470 0.805 0.821 | 0.12777 0.12993 | 0.260
2.25 0.008 | —0.303 —0.287 | 0.04176 0.04059 | 0.231
2.35 | —0.316 | —0.422 —0.417 | 0.00444 0.00435 | 0.214
245 | —0.531 | —0.296 —0.276 | 0.04252 0.04337 | 0.204
2.55 | —0.635 | —0.863 —0.857 | 0.01627 0.01608 | 0.200
2.65 | —0.640 | —0.403 —0.384 | 0.03817 0.03892 | 0.204
275 | —0.568 | —0.780 —0.776 | 0.01363 0.01349 | 0.213
2.85 | —0.463 | —0.206 —0.175 | 0.04653 0.04795 | 0.223
2.95 | —0.362 | —1.010 —0.917 | 0.10113 0.09256 | 0.229
3.05 | —0.277 | —0.016 0.015 | 0.05625 0.05803 | 0.226
3.15 | —0.143 | —0.185 —0.188 | 0.00092 0.00095 | 0.227
3.25 0.098 0.135 0.127 | 0.00054 0.00048 | 0.238
3.35 0.466 0.610 0.601 | 0.01317 0.01273 | 0.266
3.45 0.911 1.000 0.998 | 0.00597 0.00587 | 0.307
3.55 1.301 0.948 0.969 | 0.09386 0.08974 | 0.344
3.65 1.531 1.795 1.845 | 0.10373 0.11557 | 0.356
3.75 1.625 1.172 1.203 | 0.19756 0.18730 | 0.353
3.85 1.658 1.961 1.979 | 0.14680 0.15233 | 0.341
3.95 1.789 1.973 1.974 | 0.04824 (.04849 | 0.358
4.05 1.933 1.518 1.559 | 0.18524 0.17052 | 0.388
4.15 1.875 1.905 1.923 | 0.00229 0.00308 | 0.378
4.25 1.676 1.724 1.710 | 0.00193 0.00150 | 0.343
4.35 1.547 1.638 1.618 | 0.00788 0.00665 | 0.325
4.45 1.597 1.795 1.800 | 0.05324 0.05395 | 0.341
4.55 1.705 1.515 1.538 | 0.03232 0.02922 | 0.381
4.65 1.589 1.282 1.310 | 0.07156 0.06606 | 0.394
4.75 1.134 1.325 1.324 | 0.02853 0.02843 | 0.348
4.85 0.483 0.684 0.690 | 0.01699 0.01737 | 0.351
4.95 | —0.218 | —0.439 —0.471 | 0.00479 0.00545 | 0.508
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Figure 3.3: Plots of the cross-validation scores to the Old Faithful geyser data
as the function of log;y A\. The solid line plots the exact values of LCV(A).

3.4 Other Procedures

3.4.1 Gu’s Algorithm

Gu (1990) proposed an algorithm to obtain a stable value of A. His proposal
was to select A within each cycle of the Fisher scoring algorithm and to estimate
a function f for the A after stabilized. In Gu (1990) the GCV score was used
to select \, while Gu (1992) suggested that the unbiased risk estimate

n

1 2
UBR()) = ;sz( i— )2+ + =g trA,
=1

as ¢ is set to be 1 should have better performance.

It is sure that Gu’s (1992) method yields a stable A and f, but we think
that the method takes much time because searching A is replicated, and is
inappropriate for large scale algorithms such as the local scoring in generalized
additive models. Moreover Gu’s algorithm changes the optimization problem
for each iteration and so convergence is not guaranteed. To invert the order of
iteration to update an estimate and minimization of the score was also discussed
by Green and Silverman (1994), where the OCV score was used, but they say
that it is more attractive to select A on the final iteration.
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3.4.2 Generalized Approximate Cross-validation

Xiang and Wahba (1996) also proposed likelihood-based cross-validation scores,
but their scores are different from LCV;(A) and LCV;(A) that we proposed.
At first they defined the delete-one cross-validation score

2 « i R
LOVxw(A) = = > _{-ufi " +5(8)},

which is multiplied by 2 for comparison. The difference from LCV () defined as

(3.4) is, up to constant terms, in the term b(d;), which is replaced with b(f; o~ 1))
in LCV(A). Then they derived an approximate cross-validation score

’Hyl y'l
ACV(A Z{ —yidi +b(0)} + = Zl_hb,, @

from LCVxw(A), where h;; is the ith diagonal component of the Hessian matrix
H of the penalized log-likelihood. In our notation H = B(BTWB + AK)~!BT
and hence Ay = HW, hiib”(éi) = Ai; and hy = Aii/w; = Ai/V (). Moreover
they derived a generalized approximate cross-validation score

26 H Y i vi(Yi — )
n n—tr(WY2HW1/2)

GACV()) = %Xn:{—yiéi +b(0:)} +

by replacing h;; and hiib’(éz-) in ACV()) with their averages n~'trH and n~!
tr(WY/2HW1/2), respectively.

We think that there exists no evidence for the form of LCVxw(A) even if
it may be an approximation of LCV()A). What should the form of the score
become in the case such as binomial or Poisson distribution? In addition the
way of taking the trace in GACV ()) seems very strange. We cannot understand
the reason of “generalization” in the non-normal distribution case, because the
weight for each observation in the Fisher scoring algorithm is not homogeneous.



Chapter 4

Comparison of the Scores
to Select the Smoothing
Parameter

In section 3.2 we proposed the simple calculation method and the AIC-like
version of the likelihood-based cross-validation (LCV) score. Goodness of the
approximation of the simple calculation to the exact calculation was confirmed
in Section 3.3. In this chapter the performance of the simple calculation (LCV;)
and the AIC-like version (LCV3) is compared with that of other standard scores
(GCV, OCV and AIC) to select the smoothing parameter.

4.1 Comparison by Data in Literature

In this section various data sets in literature are examined and the comparison
of five scores is attempted. We describe the examination in each case of lo-
gistic regression, Poisson regression and density smoothing for classified data.
Through the section FORTRAN programs are implemented for computation
and cubic smoothing splines are fitted.

4.1.1 Binary Logistic Regression

Nonparametric logistic regression models

P(lyi=1)=p; and log 1 pzp. =f{t), i=1,...,n,

are applied to several data sets, where each zero—one response y; is observed
with a one-dimensional explanatory variable t;. The data sets applied to are
listed in Table 4.1. The data set No. 3 has been also taken up in Sections 2.4.1
and 3.3.1. Each of the data is assumed to have only one explanatory variable for
simplicity. The values of the smoothing parameters ) are chosen by minimizing
each of the five scores GCV(A), OCV(X), AIC(A), LCV()) and LCV3(A). The
sets of explanatory variables are rescaled in [0,1] to unify the range to search
the value of log;, A from —7 to 2 at intervals of 0.1.

49
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Table 4.1: The examined data sets: binary logistic regression.

No. | Response Explanatory var. | n
1 | Tumor prevalence | Age at death 207 | Male rats
2 112 | Female rats
3 | Kyphosis ’ Age 83
4 | Toxicity Velban dose 55
5 | Nodal involvement | Age 53
6 ‘ ACP 53
7 | Defects Purity index 22 | Standard process
8 22 | Modified process

The column labeled ‘n’ lists the sample size.

, 2:  Green and Yandell (1986)
: Hastie and Tibshirani (1990)
: Brown and Hu (1980)
, 6:  Brown (1980)
8: Cox and Snell (1981)

References: 1
3
4
5
7,

Table 4.2 shows the values of log,, A chosen by minimizing each of the five
scores with the values of equivalent degrees of freedom (EDF). When extremely
small values of A are chosen, other values of log;o A that give local minimums
are also listed with EDF in italics. Notice that EDF is at least 2 and that EDF
becomes large as A becomes small. The value of EDF near to 2 implies that a
nearly linear function is fitted and the extremely large values of EDF implies
that an almost interpolating function is fitted. Figures 4.1-4.4 plot the five
scores to the eight data sets as the functions of EDF less than 10. The exact
score LCV () are also plotted for reference.

For the data set No. 1 all the five scores become increasing functions of EDF
where EDF is greater than 3 and are minimized at the values of EDF less than
3, which suggests that a linear fitted function is appropriate. On the other
hand, for the data set No. 2 the four scores except LCVy(A) become nearly
decreasing functions of EDF where EDF is less than 10 and small values of
are chosen. Only the LCV; score takes the minimum at the values of EDF
between 2 and 3, although the approximation of LCV{(A) to LCV(}) is not so
good. We think that the observation No. 106 gives strong influence since it has
the extreme value of age.

For the data set No. 3 LCV;(A) and LCV3(A) take the minimums at the
values of EDF between 3 and 4, which suggests apparent nonlinearity, and
OCV(])) takes the minimum at the value of EDF between 2 and 3. The scores
GCV(A) and AIC(A) also have local minimums at the values of EDF less than
4, but these scores become smaller as A tends to zero. For the data set No. 4
only the LCV; score provides appropriate fitting with the EDF 3.22. The other
scores also have local minimums but become smaller as A tends to zero.

The data sets No. 5 and 6 have common responses but are composed of
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Table 4.2: The values of log;o A and EDF (in parentheses) to the data sets in
Table 4.1. The values that give a local minimum are in italics.

No. GCV OCV AIC LCV; LCV,

1 | —0.3(226) | —0.2 (2.21) | —0.9 (2.73) | —0.8(2.63) | —0.8 (2.63)

2 [ <-7 —4.8(10.16) | < -7 —1.1(2.60) | —4.7 (9.76)
—2.2(3.80)

3 [ <—7 —15 (284) | < 7 ~18(3.12) | —2.1 (3.46)
—1.5(2.84) —2.1(3.46)

i [<-7 ~6.3(11.80) | < -7 —2.4(3.22) | —6.4 (11.90)
—3.9(5.56) | —=8.2 (4.28) | —3.2 (4.28) ~3.0 (3.99)

5 | —0.4(2.16) | 05 (2.20) | —2.8 (4.82) | —2.8(4.82) | —0.2 (2.11)

6 | —1.3(254) | —1.2 (2.47) | —2.0 (3.17) | —1.8(2.98) | —1.2 (2.47)

7 | —0.1(2.03) | 2.5 (329) | > 2 (2.00) | —0.9(2.17) | > 2 (2.00)

8 | —12(238) | —-1.1 (232) | <—7 —1.3(244) | =15 (2.58)

~1.8(2.82)

different explanatory variables. In both cases there exist the minimums of the
five scores. For the data set No. 5 the AIC and LCV; scores select almost the
same values of A but the minimum of the scores are hardly different from the
scores when EDF=2, and the other scores seem to increase monotonously with
EDF. The ground of nonlinearity on age is thought to be little. On the other
hand, for the data No. 6 the minimum of each score is about 0.1 lower than
the score when EDF=2, and hence weak nonlinearity on ACP can be admitted,
although the curves of the scores are very different.

For the data sets No. 7 the algorithm does not converge when log;q A < —5.4
(EDF > 6.7). The scores of GCV(XA) and AIC()) trace strange curves while
the curves of the other scores go up as EDF becomes large. For the data set
No. 8 AIC(A) becomes small as A tends to zero while the other scores take the
minimums at the values of EDF less than 3.

Overall, the GCV score has local minimums at appropriate values of A and
EDF but often becomes smaller as A tends to zero. The OCV score shows
similar behavior to the GCV score but the behavior as A tends to zero is not
8o bad as the GCV score. The AIC score also has local minimums but traces
the curve with smaller variation than the other scores. The LCV; score seems
to show the most stable behavior. The score becomes large when A tends to
zero for many data sets, and when it takes the minimum all the values of EDF
are between 2 and 5. Moreover the LCV; score approximates the exact LCV
score well. The LCV; score is a crude approximation of the LCV score but the
behavior of the LCV, curve seems to be next best to the LCV; score.
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4.1.2 Binomial Logistic Regression

Nonparametric logistic regression models

yi ~ B(m;,p;) and log b = f(ti), i=1,...,n,
1-pi
are applied to the data sets listed in Table 4.3, where each response y; is ob-
served with a one-dimensional explanatory variable ¢;. The data set No. 9 has
a relatively larger number of age categories, while the data sets No. 10 and 11
have smaller numbers of age categories. The data sets No. 12-16 from dose
response experiments are a part of the ones that were referred and analized by
Kawai (1997) and have small numbers of dose levels. The data set No. 9 is the
same as the one taken up in Section 2.4.2 and here we attempt fitting a logistic
regression model. The data set No. 12 has been also taken up in Section 2.4.1.

The values of  are chosen by minimizing each of the five scores GCV(A),
OCV(}), AIC(X), LCV1(A) and LCV2(}) in the same way as in the previous
subsection. Table 4.4 shows the values of logmj\ with the values of EDF.
Figures 4.5-4.9 plot the five scores with the exact score LCV()) as the functions
of EDF.

For the data set No. 9 quite a large value of EDF is chosen by the AIC
score while the other scores select the values of EDF between 7 and 10. For the
data set No. 10 all the scores take minimums when EDFs are near 3 and the
minimum scores are about half of the scores when EDFs are 2, which suggests
strong nonlinearity. On the other hand, for the data set No. 11 all the scores
take the minimums when EDFs are 2 and suggest linear fitting. It is interesting
that these two data sets separated only by presence or absence of breathlessness
provide different shapes of fitted functions.

For the data sets No. 12-14 the results are similar. The score GCV ()) finds
local minimums but no global minimums. The scores OCV()) and LCV{()\)
select appropriate values of EDF between about 4 and 5. The curves of AIC()\)
seem to have smaller variation than the other curves. The score LCV3()
becomes extremely large when EDF's are large and hence relatively small EDFs
are selected. For the data set No. 12 taken up in Section 2.4.1 the value of EDF
about 5 can be suggested.

The data set No. 15 provides quite strange behavior of the scores as shown
on the top of Figure 4.9. The data set contains an unusual number of responses
at the dose level 0.11 and so almost interpolating fitted functions are chosen by
all the scores except LCV3(A). The curves after the dose level 0.11 is removed
are moderate as shown in the bottom of Figure 4.9. For the data set No. 16 all
the scores except GCV () provide linear fitted functions.

The overall results are similar to the binary logistic regression case. In
addition, the OCV and LCV; scores take very close values and show similarly
good behavior. The LCV, score is close to the AIC score when EDF is small
but becomes quite larger when EDF is large, and hence it tends to give a small
EDF especially when n is small.
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Table 4.3: The examined data sets: binomial logistic regression.

No. | Response Explan. var. | n N

9 | Crude death rates | Age category | 50 | 364,440 | Mortality Table
10 | Subjects respond- | Age category | 9 | 15,855 | Breathlessness: No
11 | ing to wheeze 9 2,427 | Breathlessness: Yes
12 | Number of deaths | Log dose 8 426

13 7 350

14 6 292

15 8 80

16 9 54

The column labeled ‘n

References:  9:

10, 11:

12:
13:
14:
15:
16:

Cox and Snell (1981)

Ashford and Walker (1972)

Thompson (1947)
Finney (1971)

Bliss (1938)

Reed and Muench (1938)

> lists the numbers of categories or dose levels, and the
column labeled ‘N’ lists the total numbers of zero—one observations.

Green and Silverman (1994)

Table 4.4: The values of log;, A and EDF (in parentheses) to the data sets in
Table 4.3. The values that give a local minimum are in italics.

No. GCV OCV AIC LCV, LCV,

9 | —1.2 (7.88) —1 2 (7.88) —6 4 (46.78) —1 3 (8.27) —1 8 (10.48)

10 | 0.3(3.30) 3 (3.30) 3 (3.30) 3 (3.30) 7 (2.88)

1 | > 2(2.00) 2 (2.00) | > 2 (2.00) 2 (2.00) > 3 (2.00)

12 | <7 —2 7 (5.08) | —2.5 (4.78) ~2 8(5.24) | —1.7 (3.74)
~2.4 (4.63)

13 | <=7 —3.0 (4.01) | 4.9 (5.36) | —3.2 (4.19) | —1.9 (3.03)
—3.1(4.10)

14 | < -7 —2.4 (4.02) | =14 (3.10) | —2.3(3.93) | —0.3 (2:32)
—1.1(2.86)

15 | < -7 —6.4 (7.49) | —3.2 (4.69) | —6.7 (7.55) | > 2 (2.00)
> 2(2.00) | —0.5 (2.16) —0.2 (2.04)

16 | <-7 > 2(200) | > 2 (200) | > 2(2.00) | > 2 (2.00)
> 2(2.00) |
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4.1.3 Poisson Regression

Nonparametric Poisson regression models

yi ~ Po(u;) and log% = f(t:), i=1,...,n,

are applied to the data sets listed in Table 4.5, where each response y; is observed
with an offset variable ¢; and a one-dimensional explanatory variable t;. The
data set No. 17 has no offset variable and hence all ¢;’s are set to be 1. The
data set No. 18 has been also taken up in Section 2.4.2 and is the same as the
data set No. 9. The values of logmj\ chosen by minimizing each of the five
scores GCV(X), OCV(X), AIC()), LCV1(A) and LCV3()) are shown in Table
4.6 with the values of EDF. Figures 4.10 and 4.11 plot the five scores with the
exact score LCV() as the functions of EDF.

For the data set No. 17 all the scores trace similar curves and select almost
equal values of 5\, whereas for the data set No. 18 extremely small ) is chosen by
the AIC score. The data set No. 18 provides the result very similar to the data
set No. 9 where a logistic regression model is fitted. The data sets No. 19 and
20 have relatively small numbers of age categories. For both data sets the AIC
and LCV; scores trace different curves from the other scores and select slightly
smaller \, while the scores OCV(S\) and LCV () take very similar values and
approximate the exact LCV score well.

Table 4.5: The examined data sets: Poisson regression.

No. | Response Explan. var. | Offset variable | n
17 | Number of accidents | Year — 112
18 | Number of deaths Age category | Category size 50
19 Person-years 12 | Male
20 12 | Female
The column labeled ‘n’ lists the numbers of categories.
References: 17: Jarrett (1979)
18: Green and Silverman (1994)

19, 20:  Selvin (1994)

Table 4.6: The values of logloj\ and EDF (in parentheses) to the data sets in
Table 4.5. The values that give a local minimum are in italics.

No.| GCV OCV AIC LCV, LCV,

17 | —2.0(6.23) | —2.0(6.23) | —2.3 (7.19) | —2.3(7.19) | —2.1 (6.53)
18 | —1.1(7.66) | —1.1(7.66) | —5.9(44.94) | —1.2(8.03) | —1.7 (10.18)
19 | —0.9(3.90) | —0.8(3.76) | —0.2 (3.02) | —0.8(3.76) | 0.2 (2.63)
20 | —1.9(5.22) | —2.1(5.60) | —1.7 (4.87) | —2.1(5.60) | —0.7 (3.43)
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Figure 4.10: Plots of six scores to the data sets No. 17 and 18.
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4.1.4 Density Smoothing

The method of density smoothing described in Section 2.4.3 is applied to several
data sets listed in Table 4.7. The data sets No. 23 and 24 has been also taken
up in Sections 2.4.3 and 3.3.2. The values of log;, X chosen by minimizing each
of the five scores GCV()), OCV(A), AIC(A), LCV()) and LCV2()) are shown
in Table 4.8 with the values of EDF. Figures 4.12-4.14 plot the five scores with
the exact score LCV(\) as the functions of EDF.

For the data sets No. 23, 24 and 25 all the scores trace similar shapes
of curves and almost the same values of A are chosen. These data sets have
relatively large number of observations. For the data set No. 21 OCV(A) and
LCV1(A) select the EDF about 10 while AIC(X) and LCV2()) select small
values of EDF. For the data set No. 22 all the scores except LCV3(A) have
two local minimums. The scores OCV(A) and LCV1(A) are the lowest where
EDFs are about 3, while AIC(}) is the lowest where EDF=13.18 and GCV(})
becomes smaller as EDF becomes larger. For the data set No. 26 all the scores
suggest the linear fitted function, which implies shifted exponential distribution
that has the density of the shape p(z) = exp{—8(z — o)}.

As a whole, the GCV score has local minimums but often can not select A.
The OCV score takes close values to the GCV score when EDF is small while
to the LCV score when EDF is large. The values of \ selected by the OCV
and LCV; scores are very similar. The AIC score seems to go up more slowly
than the other scores as A becomes small, while the LCV; score seems to go up
steeply and select slightly large A. We think that the LCV; score or the OCV
score is useful for determining the optimal degree of smoothing.



4.1. COMPARISON BY DATA IN LITERATURE 67
Table 4.7: The examined data sets: density smoothing.
No. | References Observations of raw data | n | N
21 | Simonoff (1996) Time intervals 55 | 109
22 | Efron and Tibshirani (1996) | Pain scores 40 | 67
23 | Silverman (1986) Duration of eruptions 35| 107
24 35 | 107
25 | Simonoft (1996) Salary 28 | 147
26 | Silverman (1986) Length of treatment spells | 20 | 86

The column labeled ‘n’ lists the numbers of classes, and the column labeled
‘N’ lists the numbers of observations.

Note:

23: The domain [1.5, 5] is divided into 35 intervals.

24: The domain [1.55, 5.05] is divided into 35 intervals.

Table 4.8: The values of log;, X and EDF (in parentheses) to the data sets in
Table 4.7. The values that give a local minimum are in italics.

> 2 (2.00)

No. GCV OCV AIC LCV, LCV,

21 | < —7 —3.8(10.81) | —2.3 (5.50) | —3.6 (9.89) | —1.6 (4.08)
~5.8(10.81)

22 | < -7 —0.8 (2.83) | —4.6(13.18) | —1.0 (3.04) | —1.0(3.04)
~0.9 (2.93) —1.1 (3.16)

23 | —4.0 (11.89) | —3.7(10.54) | —3.9(11.42) | —3.8(10.97) | —3.3(8.98)

24 | —3.1 (8.60) | —3.7(11.05) | —3.8(11.52) | —3.9(12.00) | —3.1(8.60)

25 | —1.0 (3.69) | —0.9 (3.53) | —2.0 (5.61) | —1.0 (3.67) | —1.2(3.98)

26 | < —7 > 2 (2.00) | > 2 (2.00) | > 2 (2.00) | > 2(2-00)
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4.1. COMPARISON BY DATA IN LITERATURE

Score

Score

Data set No.23

0
o
s —— LCVexact ’
A —— Lcvi /
5 —-= LCV2 ’
o NN acy /
- \\ ---- ocv /
\ ——- AlC /
w0 | )
(41}
o
N
v
T T T T
5 10 15 20
EDF
Data set No.24
I.Q i 7
© — LCVexact /
—— Levd /
\
W —-- Lcv2 /
g . \\\ --------- acv /
A -
w
N
o |
o
0

EDF

Figure 4.13: Plots of six scores to the data sets No. 23 and 24.

69



70

Score

Score

CHAPTER 4. COMPARISON OF THE SCORES

Data set No.25

o ] y
A ——— LCVexact /,’/
—— Levd ,/’ /
%) —-- LCcV2 L7
I I N Gecv ,’//
---- ocv
S
™
o
N
o
N
o
- T T T T T T T
2 4 6 8 10 12 14
EDF
Data set No.26
(=T ,/ / //
@ ——  LCVexact / / /
—— LcV1 1 / 4
—-- Loz / /
--------- acv / /-,
v ---: ocv ; /
N ——- AC /
o _
N
o

EDF

Figure 4.14: Plots of six scores to the data sets No. 25 and 26.



4.2. SIMULATION STUDIES 71

4.2 Simulation Studies

In this section some simulation is performed to assess characteristics of the
LCV; and the LCV4 scores and to show usefulness of these scores. The per-
formance of the LCV; and the LCV, scores are compared with that of the
GCV, OCV and the AIC scores and whether the LCV; and the LCV; scores
improve overall goodness-of-fit of estimates is examined. Moreover the effect of
factors such as sample size and smoothness of a true function on the bias and
the dispersion of estimates is investigated.

4.2.1 Logistic Regression Case

In this section the simulation is performed in the context of binary logistic
regression case. Binary responses y; are produced according to

P .
1_Zpi =ft), i=1,...,n,

P(yi=1)=p; and log

for some true function f and explanatory variables ;.

We use the fitted functions to the data sets examined in Section 4.1.1 as the
true functions f to perform more practical simulation. Out of the eight data
sets, No. 2 and 4 are excluded because extremely small values of X are chosen
by the four scores except LCV7(A), and the data set No. 7 is excluded because
the iteration of the algorithm often does not converge. The data sets No. 1 and
5 provide similar results and hence we use No. 1 to which all the scores select
the values of EDF less than 3. Therefore the data sets No. 1, 3, 6 and 8 are
used. For each data set three fitted functions with the EDFs 2, 3 and 6 are
selected as the true functions. These are plotted in Figures 4.15 and 4.16. The
fitted function with EDF=2 is a straight line, that is, the fitted function of the
ordinary logistic regression model, the one with EDF=3 is a relatively smooth
function and the one with EDF=6 is a relatively rough function. The values of
X and log;y A corresponding to EDF=3 and 6 are listed in Table 4.9. The data
set No. 3 is used because we want to examine how the low probability affects
the performance of the scores.

The sample size n is taken as 25, 50, 100 and 200 corresponding to the
sample size of the data sets in Section 4.1.1. To unify the range to search
A, the domain of explanatory variables of each original data set is rescaled so

Table 4.9: The values of A and log;, A (in parentheses) corresponding to EDF=3
and 6 for the fitted functions to the data sets used in the simulation.

No. EDF=3 EDF=6
1 0072 (—1.143) | 0.00183 (—2.738)
3 10021 (—1.678) | 0.00034  (—3.469)
6 | 0.0015 (—2.824) | 0.00017 (—3.770)
8 | 0.0097 (—2.013) | 0.000107 (—3.971)
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that the lower and upper bounds coincide with 0 and 1 respectively, and {t;}
are set to be equally spaced on [0,1] for simplicity. The nonparametric logistic
regression model is fitted to each of 200 data sets produced as above. The
values of A are chosen by minimizing any of the five scores GCV(XA), OCV()),
AIC()), LCV;()) and LCV3()), and the natural cubic B-splines f with knots
at ty,...,t, are estimated from the \’s just chosen.

The binary responses are made by transforming uniform pseudo-random
numbers produced by using the IMSL FORTRAN subroutine DRNUN. Some
other IMSL, FORTRAN subroutines are also used in computation. The simula-
tion is performed with the program compiled by Microsoft FORTRAN Visual
Workbench ver. 1.00 on the PC with Pentium processor of 150MHz and the
RAM of 32MB in which Windows 95 has been installed.

The values of log;y A are searched at first at intervals of 0.5 from —6 to 2,
and still more searched at intervals 0.5 & 0.016 on the neighborhood of log, A
just chosen. The distribution of A chosen by minimizing each of the five scores
is shown in Figures 4.17-4.24, which are plotted by the S-PLUS command
boxplot. White marks in the box indicate the median and both bounds of the
box indicate the first and the third quartiles. Whiskers are drawn to the nearest
value not beyond 1.5 times of the inter-quartile range from the quartiles, and
points beyond are drawn individually. The numbers of times that A > 102 and
A < 107° are counted and are listed in Tables 4.10, 4.12, 4.14 and 4.16. Notice
that X\ > 10? implies that a nearly linear function is fitted and that A < 10~°
implies that an almost interpolating function is fitted.

The GCV score tends to choose quite small A when sample size is small and
have many times that A < 10~. The AIC score also does so but seems not to be
so bad as the GCV score. The GCV score provides distribution of A similar to
the OCV score when sample size is large, although these scores choose relatively
larger values of A even when the true function is rough. The AIC score provides
distribution of A similar to the LCV; and the LCV, scores when sample size
is large. The LCV; and the LCV; scores provide similar distribution of J,
although the LCV, score provides distribution of slightly wider range and the
LCV g score selects slightly larger . These scores tend to select A larger than or
close to 10 when the true function is linear, and select X closer to the one with
which the true function is fitted to the original data when the true function is
nonlinear. Moreover these scores hardly choose extremely small A which leads
to an interpolating function. The LCV, score never selects ) less than 106.
There are many times that A > 102 even if the true function is rough when the
fitted functions to the data set No. 1 are used. We think it is because the true
function has smaller variation even when EDF is large.

To investigate overall goodness-of-fit of estimated functions selected with
each of the five scores, the averaged mean squared error

AMSE(f) = %Z E{f(t:) - f(t)}?

is evaluated. The logarithms of the estimates A@E(f) are taken since the
distribution of AMSE(f) is skewed to the left side. Tables 4.11, 4.13, 4.15 and
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Figure 4.17: Boxplots of distribution of X\ when the fitted function to the data
set No. 1 is used.
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Data set No.1, Sample Size=100
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Figure 4.18: Boxplots of distribution of A when the fitted function to the data
set No. 1 is used (continued).
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Figure 4.19: Boxplots of distribution of X when the fitted function to the data

set No. 3 is used.
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Data set No.6, Sample Size=25
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Figure 4.21: Boxplots of distribution of X when the fitted function to the data
set No. 6 is used.
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Data set No.6, Sample Size=100
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Figure 4.22: Boxplots of distribution of A when the fitted function to the data
set No. 6 is used (continued).
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Data set No.8, Sample size=25
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Figure 4.23: Boxplots of distribution of X when the fitted function to the data
set No. 8 is used.
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Data set No.8, Sample size=100

o~ &~ -+ _- - = - — ~ m - - = -
m
< -] o -
) 3 )
2 3 3
5 = RN i N
g g 5 g
g 5 o= g
- - = - | & h
= - | 4 EZ
v s - - i - - +
[ : =
g —_—
iy _ - = -
= iR - _
O; [mE] [E} Q; B — — pu— '9 4
GCY OCV AIC LCV1 LCvV2 GCV OCV AIC LCV1LCV2 GCV QCV AIC LCVi LCv2
EDF=2.0 EDF=3.0 EDF=6.0
Data set No.8, Sample size=200
~ o —_ - = = — o~
H oM =
| ga o 7T
28
5 % I @ @ @ 7 Tom
0 ' b H T b H i
a H o H | a H H
5w 5« T E Lo
3z ; 5 - =y 5 e
© H ) N @ g @
K i K] 2 E = K]
L - Z-=°¢ o
Ly = - - = _ [ T
L - T = — H : =
- - <+ — H == j—
_ N - = - = 4 2 =
_ = = — = ==
[RE} - = =
L —
'? —_— — t? < == — w J— = —
GCV OCV AIC LCV1 LCV2 GCV OCV AIC LCV1 LCV2 GCV OCvV AIC LcVviLcv2
EDF=2.0 EDF=3.0 EDF=6.0

Figure 4.24: Boxplots of distribution of A when the fitted function to the data
set No. 8 is used (continued).
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Table 4.10: The numbers of the times that A > 102 and A < 10~ out of 200
replications when the fitted functions to the data set No. 1 are used.

Design A> 102 A<10°°

EDF | n | GCV OCV AIC LCV; LCV, | GCV OCV AIC LCV; LCV,
2.0 25 41 84 60 110 129 131 5 108 2 0
50 69 92 96 109 129 81 0 44 0 0

100 88 96 103 117 126 20 0 15 0 0

: 200 86 88 121 123 127 2 0 1 0 0
3.0 25 29 80 50 97 123 149 7 119 2 0
50 52 80 64 83 96 76 0 55 0 0

100 62 71 65 73 78 21 0 14 0 0

200 39 39 45 45 47 1 1 1 1 0.

6.0 25 26 53 30 70 91 153 8 132 2 0
50 37 50 45 58 63 78 0 56 0 0

100 22 26 27 28 30 24 1 11 1 0

200 5 5 4 5 5 3 0 1 0 0

Table 4.11: The values of the mean and the standard error (in parentheses) of
log AMSE(f) when the fitted functions to the data set No. 1 are used.

EDF | n GCV oCcv AIC
2.0 25 3.035 (0.212) | —0.410 (0.147) 2.229 (0.220)
50 | 0.249 (0.209) | —1.430 (0.114) | —0.570 (0.178)
100 | —2.106 (0.143) | —2.512 (0.105) | —1.966 (0.136)
200 | —3.226 (0.101) | —3.262 (0.096) | —3.065 (0.110)
3.0 | 25| 3.172(0.186) | —0.490 (0.129) | 2.381 (0.198)
50 | 0.271 (0.179) | —1.360 (0.085) | —0.106 (0.155)
100 | —1.649 (0.119) | —2.077 (0.071) | —1.543 (0.100)
200 | —2.710 (0.064) | —2.729 (0.061) | —2.465 (0.073)
6.0 | 25| 3.493 (0.201) | —0.130 (0.122) | 2.960 (0.202)
50 | 0.490 (0.173) | —1.181 (0.070) | 0.182 (0.154)
100 | —1.203 (0.117) | —1.712 (0.059) | —1.274 (0.089)
200 | —2.080 (0.047) | —2.142 (0.036) | —2.036 (0.055)
2.0 | 25| —0529 (0.142) | —0.936 (0.110)
50 | —1.437 (0.112) | —1.656 (0.095)
100 | —2.391 (0.109) | —2.512 (0.107)
200 | —3.121 (0.106) | —3.185 (0.101)
3.0 | 25| —0.453 (0.116) | —0.800 (0.083)
50 | —1.199 (0.091) | —1.376 (0.080)
100 | —1.809 (0.076) | —1.922 (0.067)
200 | —2.546 (0.073) | —2.573 (0.071)
6.0 | 25 | —0.062 (0.108) | —0.420 (0.078)
50 | —0.920 (0.080) | —1.095 (0.062)
100 | —1.539 (0.066) | —1.632 (0.057)
200 | —2.095 (0.050) | —2.126 (0.047)
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Table 4.12: The numbers of the times that A > 10% and A < 10~ out of 200
replications when the fitted functions to the data set No. 3 are used.

Design A > 102 A< 1076
EDF | n | GCV OCV AIC LCV; LCV, [ GCV OCV AIC LCV; LCV,
2.0 25 9 50 26 95 132 182 5 157 0 0
50 23 68 91 110 129 161 0 66 0 0
100 31 58 98 106 115 122 1 19 3 0
200 56 68 115 114 117 63 8 2 1 0
3.0 25 2 14 9 48 79 196 7 169 0 0
50 0 8§ 17 28 42 182 0 95 0 0
100 1 3 15 17 18 174 17 28 2 0
200 0 i 3 3 3 167 69 7 6 0
6.0 25 0 0 3 18 31 200 13 165 0 0
50 0 0 2 2 8 197 1 100 1 0
100 0 0 0 0 0 183 12 41 7 0
200 0 0 0 0 0 176 28 7 2 0

Table 4.13: The values of the mean and the standard error (in parentheses) of
log AMSE(f) when the fitted functions to the data set No. 3 are used.

EDF | n GCV OCV AIC
2.0 | 25| 4.839(0.163) | 0.414 (0.175) | 4.069 (0.222)
50 | 2.344 (0.169) | —0.771 (0.144) | 0.100 (0.205)
100 | 0.412 (0.154) | —1.264 (0.141) | —1.640 (0.135)
200 | —1.896 (0.162) | —2.735 (0.120) | —2.889 (0.104)
3.0 | 25| 6.186 (0.109) | 1.200 (0.148) | 5.493 (0.172)
50 | 4.395 (0.143) | 0.921 (0.145) | 2.241 (0.213)
100 | 2.823 (0.132) | 0.437 (0.148) | —0.447 (0.141)
200 | 1.482 (0.120) | 0.249 (0.132) | —1.514 (0.098)
6.0 | 25| 6.933 (0.064) | 1.858 (0.147) | 6.193 (0.156)
50 | 5.931 (0.079) | 1.637 (0.137) | 3.501 (0.209)
100 | 4.927 (0.101) | 1.639 (0.140) | 1.542 (0.172)
200 | 4.261 (0.113) | 1.564 (0.147) | 0.190 (0.132)
EDF | n LOV; LCV,
2.0 | 25| —0.068 (0.157) | —0.643 (0.135)
50 | —1.168 (0.126) | —1.572 (0.104)
100 | —1.944 (0.112) | —2.163 (0.094)
200 | —2.921 (0.103) | —2.973 (0.096)
30 | 25| 0.902 (0.130) | 0.420 (0.111)
50 | 0.198 (0.123) | —0.313 (0.094)
100 | —0.834 (0.108) | —1.203 (0.083)
200 | —1.514 (0.095) | —1.781 (0.073)
60 | 25| 1.689(0.108) | 1.401 (0.087)
50 | 1.427 (0.130) | 0.956 (0.097)
100 | 0.893 (0.128) | 0.310 (0.096)
200 | 0.057 (0.116) | -0.159 (0.097)
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Table 4.14: The numbers of the times that A > 102 and A < 1079 out of 200
replications when the fitted functions to the data set No. 6 are used.

Design A> 102 A< 1078
EDF | n { GCV OCV AIC LCV; LCV, | GCV OCV AIC LCV; LCV,
2.0 25 26 71 59 97 129 102 3 84 0 0
50 52 78 84 109 133 96 0 55 0 0
100 74 89 111 113 119 39 1 7 0 0
200 82 81 113 115 117 10 0 4 0 0
3.0 25 16 27 15 30 38 152 8 142 0 0
50 7 7 7 8 8 69 0 54 0 0
100 0 0 0 0 0 12 0 17 0 0
200 0 0 0 0 0 0 0 0 0 0
6.0 25 4 10 4 11 16 182 15 164 1 0
50 0 0 0 1 0 135 1 86 0 0
100 0 0 0 0 0 59 0 28 0 0
200 0 0 0 0 0 10 1 4 0 0

Table 4.15: The values of the mean and the standard error (in parentheses) of

log AﬁSE(f) when the fitted functions to the data set No. 6 are used.

EDF | n GCV oCv AlIC
2.0 25 3.204 (0.181) | —0.233 (0.140) 2.233 (0.204)
50 | 1.085 (0.212) | —1.158 (0.139) | 0.043 (0.194)
100 | —1.471 (0.157) | —2.110 (0.105) | —1.950 (0.112)
200 | —2.862 (0.105) | —3.038 (0.082) | —2.878 (0.093)
3.0 25 3.211 (0.157) | —0.140 (0.110) 2.909 (0.172)
50 | 0.620 (0.158) | —0.989 (0.052) | 0.263 (0.151)
100 | —0.964 (0.077) | —1.266 (0.036) | —1.134 (0.089)
200 | —1.403 (0.024) | —1.408 (0.024) | —2.076 (0.055)
6.0 | 25| 4.067 (0.108) | 0.625 (0.113) | 3.685 (0.137)
50 | 2.380 (0.139) | —0.182 (0.062) | 1.467 (0.157)
100 | 0.428 (0.111) | —0.494 (0.047) | —0.416 (0.097)
200 | —0.503 (0.052) | —0.608 (0.039) | —1.580 (0.060)
20 | 25 | —0.364 (0.130) | —0.850 (0.103)
50 | —1.210 (0.133) | —1.633 (0.111)
100 | —2.132 (0.095) | —2.213 (0.092)
200 | —2.989 (0.084) | —3.007 (0.083)
3.0 | 25| —0.176 (0.083) | —0.376 (0.061)
50 | —0.861 (0.077) | —1.028 (0.064)
100 | —1.440 (0.063) | —1.514 (0.059)
200 | —2.127 (0.052) | —2.153 (0.051)
6.0 | 25| 0.440 (0.081) | 0.110 (0.051)
50 | —0.074 (0.081) | —0.333 (0.057)
100 | —0.851 (0.060) | —0.961 (0.052)
200 | —1.658 (0.048) | —1.700 (0.044)
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Table 4.16: The numbers of the times that \ > 102 and \ < 1079 out of 200
replications when the fitted functions to the data set No. 8 are used.

Design A > 102 A< 108
EDF | n | GCV OCV AIC LCV; LCV, | GCV OCV AIC LCV; LCV,
2.0 25 34 72 42 93 125 138 1 121 0 0
50 52 76 73 94 108 96 1 58 0 0
100 81 93 102 110 115 26 0 10 0 0
200 96 95 115 116 123 2 0 1 0 0
3.0 25 24 60 35 74 95 159 5 136 0 0
50 18 29 26 38 43 97 1 68 1 0
100 15 16 17 18 18 26 0 12 1 0
200 2 2 3 3 4 2 0 2 1 0
6.0 25 6 30 13 47 62 181 13 162 0 0
50 8 23 18 31 33 151 1 92 0 0
100 5 5 3 5 5 74 3 21 2 0
200 0 0 0 0 0 26 1 5 2 0

Table 4.17: The values of the mean and the standard error (in parentheses) of

log AﬁSE(f) when the fitted functions to the data set No. 8 are used.

EDF | n GCV OCV AIC
20 | 25| 3.102 (0.204) | —0.568 (0.126) | 2.511 (0.206)
50 | 0.810 (0.201) | —1.303 (0.116) | 0.041 (0.175)
100 | —1.856 (0.145) | —2.367 (0.099) | —2.024 (0.120)
200 | —3.273 (0.099) | —3.341 (0.090) | —3.020 (0.100)
30 | 25| 3.847 (0.185) | —0.212 (0.126) | 3.221 (0.202)
50 | 1.188 (0.195) | —1.015 (0.089) | 0.572 (0.175)
100 | —1.220 (0.119) | —1.746 (0.062) | —1.316 (0.106)
200 | —1.965 (0.056) | —2.019 (0.048) | —2.248 (0.075)
6.0 | 25| 4.685(0.139) | 0.646 (0.133) | 4.258 (0.164)
50 | 2.725 (0.150) | —0.094 (0.079) | 1.639 (0.155)
100 | 0.389 (0.129) | —0.769 (0.046) | —0.647 (0.086)
200 | ~0.746 (0.075) | —1.075 (0.033) | —1.423 (0.068)
EDF | n LCV; LCV,
2.0 | 25| —0.623 (0.121) | —0.946 (0.106)
50 | —1.179 (0.118) | —1.440 (0.105)
100 | —2.251 (0.098) | —2.335 (0.093)
200 | —3.054 (0.098) | —3.189 (0.091)
3.0 | 25| —0.140 (0.101) | —0.407 (0.078)
50 | —0.744 (0.097) | —1.007 (0.077)
100 | —1.641 (0.082) | —1.758 (0.073)
200 | —2.323 (0.069) | —2.381 (0.065)
6.0 | 25| 0.585(0.100) | 0.228 (0.076)
50 | 0.063 (0.085) | —0.223 (0.060)
100 | —0.936 (0.062) | —1.064 (0.055)
200 | —1.503 (0.060) | —1.581 (0.055)
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4.17 list the values of the mean and the standard error of log AmE(f) The
GCV and AIC scores give larger values of the mean of log AK/IEE( f) when sam-
ple size is small because extremely small X’s are chosen. The mean to the GCV
and especially the AIC scores become quickly smaller as sample size becornes
larger. The OCV score gives the smallest values of the mean of log AMSE( f)
when the data set No. 1 is used, and when the linear true functions to the data
set No. 6 and 8 are used and sample size is large. But it gives larger values than
the AIC, the LCV; and the LCV4 scores do when the nonlinear true functions
to the data sets No. 3, 6 and 8 are used. In many cases the LCV; score gives
the smallest values of the mean of log AMSE( f) and the LCV, score gives the
second smallest values to the LCV2 score. We think that the LCV; score pro-
vides better results in overall goodness-of-fit because the way of constructing it
likes the AIC score. .

The criterion AMSE(f) contains the effect of both bias and dispersion to
be controlled in the process of smoothing. We attempt to divide the effect of
AMSE(f) into two criteria: the averaged squared bias

ASB(f Z{Eft)— i)}

and the averaged variance
1 - a2 2 2
=~ E{f(t:) ~Ef ()}
=1
Tables 4.18, 4.20, 4.22 and 4.24 list the ratios of the estimates @(f) and
AV(f) with the value
ASB(/)

100 X ——— e
ASB(f) +AV(f)

Relatively higher ratios of PTS\B(f) to the GCV and the AIC scores when the
sample size is small are due to the poor fitting. The OCV score gives much
higher ratio of @(f) than the other three scores when the true function is
nonlinear and especially when the sample size is large, which implies that the
OCYV score has a tendency to select ) so as to reduce the variance of f. On
the other hand the LCV; and the LCV; scores always give much lower ratios
of 1@3( f), which implies that these scores have a tendency to select ) so as to
reduce the bias of f

In addition, the values log ASB(f) and log @(f) are evaluated four times
repeatedly for each 50 estimates f to perform the two-way analysis of variance
with the EDF of three levels and the sample size of four levels as factors. Tables
4.19, 4.21, 4.23 and 4.25 show the proportions and the p- -values for each factor
in the analysis of variance to log ASB(f) and log AV(f). It can be seen that
both log ASB(f) and log AV(f) for the GCV and the AIC scores are affected
strongly by the sample size, which indicates that the fitting is improved quickly
as the sample size becomes large. On the other hand log ASB(f) for the OCV
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Table 4.18: The values (in percentage) of 100 x @(f)/(ASB(f) + ﬁ/(f))
when the fitted functions to the data set No. 1 are used.

EDF | n | GCV OCV AIC LCV; LCV,
2.0 2512418 4.63 17.96 4.39 4.76
50 | 13.52 4.74 7.89 3.77 2.93

100 | 4.43 325 3.68 3.27 3.29

200 | 243 2.07 2.58 2.52 2.43

3.0 25 123.02 211 16.62 2.11 1.93
50 | 11.71  3.11  8.07 2.90 2.90

100 | 3.32 9.77  2.39 2.63 3.65

200 | 16.27 18.65 3.49 4.15 4.21

6.0 25| 26.56 4.48 22.46 3.76 4.82
50 | 14.74 953 12.28 5.61 7.55

100 | 3.42 1796 4.10 5.46 7.65

200 | 32.84 51.43 7.99 1090 11.81

Table 4.19: The result of analysis of variance: proportions (in percentage) and
p-values (in parentheses), when the fitted functions to the data set No. 1 are
used.

log@( f) (Averaged squared bias)

Factor GCV OoCV AIC
v (EDF) 1.90 (.0002) | 10.48 (.0000) | 1.04 (.0029)
n (Sample size) | 90.34 (.0000) | 53.86 (.0000) | 95.35 (.0000)
VX n 4.66 (.0000) | 21.41 (.0000) | 0.90 (.0908)
Factor LCV; LCV,
” 470 (0171) | 21.47 (.0000)
n 69.59 (.0000) | 44.28 (.0000)
vXn 7.18 (.0536) | 11.65 (.0152)

log .A:\\/'(f) (Averaged variance)
Factor GCV 10102% AIC
v (EDF) 0.37 (.0483) | 0.55 (.3834) | 0.20 (.2006)
n (Sample size) | 97.06 (.0000) | 88.23 (.0000) | 97.38 (.0000)
vxn 0.57 (.1501) | 1.20 (.6362) | 0.31 (.5289)
Factor LCVI LCV2
v 0.16 (8411) | 0.44 (.4856)
n 82.13  (.0000) | 87.33 (.0000)
vxn 0.7 (.9459) | 145 (.5695)
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Table 4.20: The values (in percentage) of 100 X A/S\B(f)/(ASB(f) + AV(f))

when the fitted functions to the data set No. 3 are used.

EDF | » |GCV OCV AIC LCVy LCV,
2.0 25 | 2846 753 2555 10.57 10.33
50 | 17.68 5.62 8.72 4.54 4.20

100 | 11.82 6.03  4.59 4.18 3.47

200 | 5.14 277 224 2.12 2.43

3.0 25 | 51.25 13.07 4539 1421 10.68
50 | 47.27 19.02 26.95 13.09 7.25

100 | 39.54 1535 8.24 5.88 3.34

200 | 25.64 14.57 341 3.41 3.15

6.0 25| 67.93 8.08 58.36 7.75 6.48
50 | 72.72 13.13 37.46 8.84 2.16

100 | 72.28 17.39 16.69 7.45 1.37

200 | 69.88 19.08 7.27 5.08 3.31

Table 4.21: The result of analysis of variance: proportions (in percentage) and
p-values (in parentheses), when the fitted functions to the data set No. 3 are

used.
log A:ST3( f) (Averaged squared bias)
Factor GCV ocv AIC
v (EDF) 4599 (.0000) | 57.31 (.0000) | 18.21 (.0000)
n (Sample size) | 44.54 (.0000) | 22.00 (.0000) | 76.59 (.0000)
X n 8.75 (.0000) | 11.41 (.0000) | 2.30 (.0011)
Factor LCV, LCV,
v 30.70 (.0000) | 28.28 (.0000)
n 44.8%  (.0000) | 53.16 (.0000)
vXn 6.40 (.0689) | 3.80 (.1922)
log AV (f) (Averaged variance)
Factor GCV oCv AIC
v (EDF) 19.31 (.0000) | 46.38 (.0000) | 13.36 (.0000)
n (Sample size) | 70.43 (.0000) | 35.43 (.0000) | 72.58 (.0000)
vxn 0.0l (.0000) | 6.68 (.0081) | 6.25 (.0000)
Factor LCV, LCV,
” 4717 (.0000) | 51.62  (.0000)
n 33.05 (.0000) | 35.25 (.0000)
X n 6.66 (.0164) | 5.00 (.0059)
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Table 4.22: The values (in percentage) of 100 x ASB(f)/(ASB(f) + AV(f))
when the fitted functions to the data set No. 6 are used.

CHAPTER 4. COMPARISON OF THE SCORES

EDF | » | GCV OCV AIC LCV; LCV,
2.0 2512520 5.83 18.11 6.80 5.23
50 | 17.38  6.34 10.57 5.52 4.00

100 | 633 243 3.31 2.13 1.93

200 | 3.60 347 3.38 3.13 3.10

3.0 25| 25.85 1.56 23.60 1.82 6.10
50 | 9.31 28.27  9.02 2.29 4.76

100 | 545 6294 1.71 3.49 4.55

200 | 81.99 8192 4.64 6.65 6.42

6.0 25| 35.08 3.72 32.93 4.59 11.04
50 | 23.62 8.81 18.86 6.81 5.54

100 | 5.20 46.52 5.44 5.74 7.45

200 | 37.47 65.12  5.07 9.12 9.72

Table 4.23: The result of analysis of variance: proportions (in percentage) and
p-values (in parentheses), when the fitted functions to the data set No. 6 are
used.

log ASB (f) (Averaged squared bias)

Factor GCV ocv AIC
v (EDF) 417 (.0000) | 32.27 (.0000) | 3.80 (.0000)
n (Sample size) | 82.98 (.0000) | 14.01 (.0000) | 93.51 (.0000)
VX n 8.61 (.0000) | 40.88 (.0000) | 0.75 (.0524)
Factor LCV, LCV,
v 15.01 (.0000) | 26.75 (.0000)
n 52.56  (.0000) | 49.93 (.0000)
vXmn 20.61 (.0000) | 8.12 (.0126)

log AV (f) (Averaged variance)
Factor GCV 0102% AIC
v (EDF) 4.32 (.0000) | 5.75 (.0000) | 1.92 (.0000)
n (Sample size) | 90.46 (.0000) | 84.45 (.0000) | 95.60 (.0000)
vXn 2.87 (.0000) | 2.35 (.1081) | 0.85 (.0141)
Factor LCV, LCV,
v 3.90 (.0002) | 6.12 (.0000)
n 86.21 (.0000) | 83.06 (.0000)
vXn 3.60 (.0069) | 3.26 (.0348)
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Table 4.24: The values (in percentage) of 100 x ASB(f)/(ASB(f) + AV(f))

when the fitted functions to the data set No. 8 are used.

EDF { n |GCV OCV AIC LCV; LCV,
2.0 2512293 390 17.05 5.60 4.31
50 | 16.66  5.27 10.00 5.61 4.86

100 | 7.19 598 5.58 7.18 6.35

200 | 227 246 @ 2.48 2.37 2.22

3.0 2513295 3.04 27.01 5.78 4.90
50 ] 20.92 4.26 12.10 4.52 4.22

100 | 3.97 20.52 4.39 3.63 4.96

200 | 29.18 41.48 3.45 6.17 7.04

6.0 251 39.55 646 35.99 8.75 7.88
50 | 27.65 7.78 18.84 8.75 9.49

100 | 10.69 28.67 7.08 10.52 13.96

200 | 11.10 50.32 8.07 991 11.97

Table 4.25: The result of analysis of variance: proportions (in percentage) and
p-values (in parentheses), when the fitted functions to the data set No. 8 are

used.
log@( f) (Averaged squared bias)
Factor GCV oCcVv AIC
v (EDF) 8.17 (.0000) | 37.33 (.0000) | 4.36 (.0000)
n (Sample size) | 85.56 (.0000) | 41.70 (.0000) | 91.74 (.0000)
VX n 3.42  (.0000) | 8.85 (.0020) | 0.72 (2611)
Factor LCV, LCV,
v 93.89 (.0000) | 37.11 (.0000)
n 55.90 (.0000) | 38.53 (.0000)
vxn 1.87  (7190) | 4.93 (.1991)
log AV ( f) (Averaged variance)
Factor GCV oCV AIC
» (EDF) 454 (.0000) | 5.77 (.0000) | 2.02 (.0001)
n (Sample size) | 91.48 (.0000) | 84.61 (.0000) | 94.91 (.0000)
vxn 1.89  (.0004) | 2.93 (.0325) | 0.31 (.6783)
Factor LCVy LCV,
v 9.25 (.0000) | 1178 (.0000)
n 80.53 (.0000) | 78.20 (.0000)
vxn 0.28 (.9837) | 0.79 (.7941)
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score is affected by both of the EDF of the true function and the sample size.
The values log ASB( f) for the LCV; and the LCV; scores are also affected by
both factors but the sample size gives stronger effect. The values log AV( f) for
all the five scores are affected mainly by the sample size. The proportions when
the data set No. 3 is used is very different from that when the other data sets
are used. If the data set No. 3 is not taken account of, it can be said that for
the LCV; and LCV2 scores the smoothness of the true function gives stronger
effect on log ASB(f) than log AV(f)

To summarize, the GCV and the AIC scores often choose extremely small
A when sample size is small, although the fitting is improved as the sample size
becomes larger. In some cases the OCV score shows good performance and it
has a tendency to reduce the variance of estimates. The LCV; and the LCV,
scores select A more adaptively, that is, these scores have stronger possibility of
estimating linear functions when the true function is linear, smooth functions
when the true function is smooth and rough but not interpolating functions
when the true function is rough. These scores have a tendency to reduce the
bias of estimates.

4.2.2 Density Smoothing Case

Next, the simulation is performed in the context of density smoothing based

on Poisson regression. Raw data z,, r = 1,..., N, are observed at one of the
disjoint classes Cj, i = 1,... ,n, according to P(zr € Cy) fC g(z)dz for
some density g(z), and y; = {x,, z, € C;} is counted for each class C;.

Here we report the case that g(z) is the density of gamma distribution. The
gamma distribution Ga(a, #) has the density

where (@) is the gamma function. The values of the shape parameter a are
selected as 0.5, 1 and 2. In the case of o = 1 the gamma distribution coincides
with the exponential distribution and log §(z) becomes a linear function, while
in other cases log g(z) is nonlinear. The values of the scale parameter 3 are
determined so that a random variable that follows Ga(c,3) has the variance
1/25 and that more than 99% of the data extracted from Ga(e, 3) are observed
within (0,1), and hence 8 = v2/5if « = 0.5, = 1/5if = 1 and 8 = v/2/10
if @ = 2. For simplicity suppose that all data are observed on the interval
[0,1), which is divided into n classes C; = [=2,£), i = 1,...,n. Therefore

n 'n
the den31ty that produces random numbers is truncated at z > 1 and becomes

9(2) = §(z)/ [y §(e)de.

The numbers n of classes are taken as 10, 20, 30, 50 and 100 and the sample
size N of raw data is taken as 2, 3, 5 and 10 times of n. Two hundred data
sets composed of the counts y;, ¢ = 1,... ,n, are produced as above and density
smoothing is applied to each data sets. The values ) are chosen by minimizing
any of the GCV(}), OCV (X)), AIC()), LCV1(A) and LCV,()) as in the previous
subsection, and density functions §(t) = nexp f(t)/N are estimated, where f is
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the natural cubic B-spline estimate with knots at class marks ¢; = (2¢ — 1)/2n,
i=1,...,n

Some boxplots of the distribution of X chosen by minimizing each of the
five scores are shown in Figures 4.25-4.27. As a whole X’s are selected better
as number of classes and sample size become larger. The GCV score has a
tendency to choose extremely small X when number of classes or sample size is
small. The other four scores do not seem to have the trouble such as the GCV
score has. The OCV score provides distribution of X of a little wider range
than the AIC and the LCV; scores, and tends to choose smaller Aevenifa =1
where the log of the true density function is linear. The AIC score provides
distribution of A of narrower range than the OCV and the LCV; scores. The
LCV; score seems to select better than the OCV score but not so good as the
AIC score. The LCVy score provides distribution of A of the narrowest range
of all the five scores, although it tends to select larger X than the other scores
especially when the number of classes is small.

To investigate overall goodness-of-fit of estimated density, the Kullback-
Leibler distance

KL(G) = [ ole)og 25 do

between the true density g(z) and the estimated density §(z) is evaluated. We
estimate it by

RLG) = 7 Y ot 1og 5.

The logarithms of the estimates Ki(g) are taken because the distribution of it
is skewed to the left side. Tables 4.26-4.28 list the values of the mean and the
standard error of log ﬁ(f) The GCV score gives larger values of the mean
of log Ia(f) but they become quickly smaller as number of classes and sample
size become larger. In some cases the OCV score gives smaller values than the
other scores in the case of o = 0.5 and 2 and small number of classes, but the
differences are not significant. The AIC score gives the largest values when
o = 0.5 and sample size is large. The LCV; score provides good overall fitting
when both number of classes and sample size are small but not better than
the LCV, score. The LCV, score provides the best performance in terms of
Kullback-Leibler distance especially when sample size is small.

The effect of the Kullback-Leibler distance are divided into the effect of
bias and dispersion, and two criteria ASB( f) and AV( f) are evaluated from
200 data sets as in the previous subsection. The three-way analysis of variance
is applied to log ASB(f) and log AV(f) with shape of true density « of three
levels, number of classes m of five levels and sample size N of four levels as
factors. Table 4.29 shows the proportlons and the p-values for each factor. The
values log ASB(f) and log AV(f) for the GCV and the AIC scores have strong
dependence on the number of classes and the sample size. The shape of true
density affects on log ASB(f) for the OCV, the LCV; and especially the LCV,

scores rather than log AV( f )
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Gamma distribution (10 Classes, Sample size=20)
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Figure 4.25: Boxplots of distribution of A in the simulation of density smooth-
ing.
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Gamma distribution (30 Classes, Sample size=60)
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Figure 4.26: Boxplots of distribution of A in the simulation of density smoothing

(continued).
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Gamma distribution (100 classes, Sample size=200)
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Figure 4.27: Boxplots of distribution of ) in the simulation of density smoothing
(continued).
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Table 4.26: The values of the mean and the standard error (in parentheses) of

log ﬁ(f) when o = 0.5.

N | n GCV OCV AIC
10 | 20 | —0.497 (0.056) | —2.727 (0.071) | —2.237 (0.089)
30 | —1.051 (0.071) | —2.876 (0.071) | —2.714 (0.080)
50 | —1.663 (0.076) | —3.227 (0.059) | —3.026 (0.079)
100 | —2.975 (0.085) | —3.744 (0.053) | —3.865 (0.060)
20 | 40 | —0.742 (0.056) | —2.649 (0.059) | —2.540 (0.066)
60 | —1.454 (0.074) | —3.004 (0.056) | —3.007 (0.061)
100 | —2.270 (0.080) | —3.374 (0.055) | —3.502 (0.059)
200 | —3.245 (0.077) | —3.852 (0.039) | —4.001 (0.046)
30 | 60 | —1.194 (0.058) | —2.794 (0.054) | —2.825 (0.057)
90 | —1.778 (0.066) | —3.095 (0.048) | —3.154 (0.056)
150 | —2.676 (0.078) | —3.408 (0.044) | —3.554 (0.046)
300 | —3.767 (0.071) | —3.979 (0.041) | —4.222 (0.041)
50 | 100 | —1.681 (0.059) | —2.879 (0.044) | —3.013 (0.051)
150 | —2.254 (0.067) | —3.160 (0.047) | —3.278 (0.047)
250 | —3.199 (0.060) | —3.587 (0.037) | —3.787 (0.036)
500 | —4.200 (0.046) | —4.102 (0.034) | —4.333 (0.034)
100 | 200 | —2.368 (0.045) | —2.990 (0.044) | —3.288 (0.036)
300 | —2.889 (0.046) | —3.349 (0.037) | —3.608 (0.031)
500 | —3.667 (0.045) | —3.785 (0.036) | —4.031 (0.026)
1000 | —4.462 (0.030) | —4.297 (0.029) | —4.569 (0.021)
N | n LCV, LCV,
10 | 20 | —2.721 (0.070) | —2.759 (0.044)
30 | —2.945 (0.070) | —2.930 (0.036)
50 | —3.206 (0.058) | —3.112 (0.034)
100 | —3.733 (0.054) | —3.453 (0.031)
20 | 40 | —2.638 (0.054) | —2.795 (0.037)
60 | —2.964 (0.056) | —3.011 (0.035)
100 | —3.406 (0.054) | —3.387 (0.031)
200 | —3.863 (0.039) | —3.766 (0.027)
30 | 60 | —2.748 (0.054) | —2.954 (0.033)
90 | —3.091 (0.049) | —3.250 (0.031)
150 | —3.420 (0.046) | —3.528 (0.028)
300 | —3.998 (0.042) | —3.960 (0.025)
50 | 100 | —2.916 (0.045) | —3.211 (0.027)
150 | —3.168 (0.049) | —3.396 (0.028)
250 | —3.616 (0.038) | —3.781 (0.024)
500 | —4.145 (0.035) | —4.212 (0.024)
100 | 200 | —3.110 (0.040) | —3.456 (0.022)
300 | —3.412 (0.037) | —3.672 (0.022)
500 | —3.813 (0.036). | —3.985 (0.021)
1000 | —4.323 (0.030) | —4.454 (0.017)
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Table 4.27: The values of the mean and the standard error (in parentheses) of
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logﬁ(f) when o = 1.

N | n GCV OCV AIC
10 | 20 | —0.724 (0.084) | —3.540 (0.131) | —3.449 (0.142)
30 | —1.293 (0.092) | —4.106 (0.148) | —4.010 (0.148)
50 | —2.409 (0.152) | —4.488 (0.147) | —4.745 (0.166)
100 | —4.061 (0.164) | —5.390 (0.134) | —5.337 (0.151)
20 | 40 | —1.206 (0.099) | —4.373 (0.148) | —4.533 (0.181)
60 | —2.151 (0.144) | —4.663 (0.147) | —4.983 (0.172)
100 | —3.423 (0.181) | —5.363 (0.137) | —5.605 (0.146)
200 | —5.012 (0.183) | —5.910 (0.150) | —6.157 (0.166)
30 | 60 | —1.641 (0.120) | —4.612 (0.157) | —5.134 (0.167)
90 | —3.009 (0.180) | —5.114 (0.161) | —5.679 (0.179)
150 | —4.527 (0.201) | —5.786 (0.156) | —6.058 (0.163)
300 | —5.951 (0.167) | —6.484 (0.145) | —6.709 (0.144)
50 | 100 | —2.543 (0.142) | —4.910 (0.184) | —5.832 (0.187)
150 | —4.200 (0.196) | —5.545 (0.159) | —6.190 (0.161)
250 | —5.438 (0.168) | —6.006 (0.141) | —6.615 (0.149)
500 | —6.885 (0.147) | —7.122 (0.139) | —7.200 (0.142)
100 | 200 | —3.950 (0.181) | —5.471 (0.175) | —6.348 (0.156)
300 | —5.060 (0.179) | —6.122 (0.156) | —6.742 (0.164)
500 | —6.599 (0.171) | —6.911 (0.158) | —7.361 (0.160)
1000 | —7.764 (0.147) | —7.805 (0.146) | —7.891 (0.146)
N | n LCV, LCV,
10 | 20 | —3.612 (0.133) | —4.534 (0.132)
30 | —4.146 (0.148) | —5.065 (0.132)
50 | —4.469 (0.153) | —5.636 (0.158)
100 | —5.337 (0.134) | —6.356 (0.128)
20 | 40 | —4.703 (0.171) | —5.434 (0.150)
60 | —4.796 (0.153) | —5.768 (0.154)
100 | —5.367 (0.142) | —6.130 (0.127)
200 | —5.877 (0.155) | —6.815 (0.164)
30 | 60 | —4.843 (0.157) | —5.686 (0.151)
90 | —5.327 (0.169) | —6.189 (0.160)
150 | —5.832 (0.162) | —6.524 (0.157)
300 | —6.574 (0.150) | —7.192 (0.145)
50 | 100 | —5.485 (0.187) | —6.330 (0.172)
150 | —6.009 (0.174) | —6.559 (0.161)
250 | —6.431 (0.152) | —6.927 (0.146)
500 | —7.189 (0.156) | —7.642 (0.135)
100 | 200 | —6.260 (0.153) | —6.564 (0.146)
300 | —6.676 (0.168) | —7.036 (0.155)
500 | —7.264 (0.164) | —7.668 (0.163)
1000 | —7.823 (0.149) | —8.098 (0.141)




4.2. SIMULATION STUDIES

99

Table 4.28: The values of the mean and the standard error (in parentheses) of
log KL(f) when o = 2.

N | n GCV OCV AIC
10 | 20 | —0.813 (0.065) | —2.588 (0.060) | —2.439 (0.080)
30 | —1.427 (0.081) | —2.822 (0.067) | —2.778 (0.078)
50 | —2.221 (0.082) | —3.203 (0.059) | —3.196 (0.069)
100 | —3.352 (0.080) | —3.776 (0.053) | —3.876 (0.059)
20 | 40 | —1.127 (0.076) | —2.855 (0.055) | —2.793 (0.069)
60 | —1.885 (0.085) | —3.115 (0.053) | —3.153 (0.060)
100 | —2.543 (0.079) | —3.469 (0.048) | —3.543 (0.049)
200 | —3.734 (0.064) | —4.000 (0.043) | —4.153 (0.036)
30 | 60 | —1.720 (0.083) | —2.918 (0.052) | —3.128 (0.059)
90 | —2.418 (0.087) | —3.319 (0.047) | —3.395 (0.051)
150 | —3.153 (0.077) | —3.746 (0.043) | —3.833 (0.043)
300 | —4.068 (0.058) | —4.187 (0.042) | —4.316 (0.039)
50 | 100 | —2.388 (0.076) | —3.217 (0.044) | —3.427 (0.043)
150 | —3.066 (0.073) | —3.555 (0.048) | —3.761 (0.038)
250 | —3.740 (0.061) | —3.994 (0.038) | —4.128 (0.033)
500 | —4.510 (0.036) | —4.554 (0.030) | —4.619 (0.031)
100 | 200 | —3.186 (0.063) | —3.665 (0.041) | —3.921 (0.034)
300 | —3.797 (0.050) | —4.006 (0.035) | —4.204 (0.029)
500 | —4.357 (0.042) | —4.456 (0.032) | —4.558 (0.029)
1000 | —4.941 (0.026) | —4.956 (0.026) | —4.999 (0.027)
N | = LCV, LCV,
10 | 20 | —2.588 (0.058) | —2.832 (0.041)
30 | —2.791 (0.068) | —3.083 (0.044)
50 | —3.178 (0.059) | —3.324 (0.044)
100 | —3.742 (0.053) | —3.779 (0.038)
20 | 40 | —2.849 (0.056) | —3.176 (0.041)
60 | —3.164 (0.056) | —3.440 (0.038)
100 | —3.489 (0.049) | —3.700 (0.035)
200 | —4.001 (0.044) | —4.111 (0.032)
30 | 60 | —3.018 (0.057) | —3.356 (0.037)
90 | —3.352 (0.050) | —3.648 (0.035)
150 | —3.808 (0.040) | —3.937 (0.030)
300 | —4.200 (0.042) | —4.371 (0.027)
50 | 100 | —3.369 (0.045) | —3.605 (0.031)
150 | —3.671 (0.045) | —3.843 (0.033)
250 | —4.042 (0.037) | —4.175 (0.026)
500 | —4.555 (0.035) | —4.679 (0.022)
100 | 200 | —3.882 (0.036) | —4.014 (0.027)
300 | —4.167 (0.030) | —4.266 (0.026)
500 | —4.530 (0.031) | —4.619 (0.024)
1000 | —4.981 (0.026) | —5.038 (0.022)
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To summarize, in the case of density smoothing the AIC score selects \ in
a stable way especially when sample size and number of classes are large. The
LCV; score is effective if sample size and number of classes are small. The
LCV; score provides the best performance in terms of the Kullback-Leibler
distance, although it selects slightly larger A.

Table 4.29: The result of analysis of variance: proportions (in percentage) and
p-values (in parentheses) in the simulation of density smoothing.

log@( f) (Averaged squared bias)

aXxXn 1.04
N Xn 2.08

Factor GCV ocv AIC
a (Shape) 6.39 (.0000) | 34.17 (.0000) | 19.50 (.0000)
N (Classes) 47.30 (.0000) | 22.46 (.0000) | 40.66 (.0000)
n (Sample size) | 40.55 (.0000) | 31.52 (.0000) | 31.77 (.0000)
ax N 0.81 (.3015) | 4.02 (.0005) | 4.30 (.0001)
axn 0.82 (.1610) | 4.18 (.0001) | 1.10 (.0612)
N xn 223 (.0368) | 1.46 (.2583) | 0.82 (.5697)
Factor LCV, LCV,
a 32.87 (.0000) | 62.18 (.0000)
N 30.12  (.0000) | 13.82 (.0000)
n 27.88  (.0000) | 11.82 (.0000)
ax N 475 (.0001) | 6.16 (.0001)
axmn 157 (.0192) | 2.03 (.0242)
Nxn 0.84 (.5981) | 1.30 (.5032)
log AV (f) (Averaged variance)

Factor GCV 0102 AIC
a (Shape) 6.68 (.0000) | 19.91 (.0000) | 11.43 (.0000)
N (Classes) 49.27 (.0000) | 32.41 (.0000) | 47.30 (.0000)
n (Sample size) | 37.76 (.0000) | 36.51 (.0000) | 34.64 (.0000)
ax N 0.46 (.5662) | 5.43 (.0001) | 1.97 (.0183)
axmn 0.42 (4228) | 141 (.0658) | 0.58 (.3571)
Nxn 3.81 (.0006) | 1.91 (.1641) | 2.08 (.0597)
Factor LCV;, LCV,
a 30.30 (.0000) | 33.64 (.0000)
N | 37.38 (.0000) | 23.74 (.0000)
n 29.00 (.0000) | 38.65 (.0000)
ax N 6.58 (.0006) | 2.12 (.0002)

(:3680) (2176)

(:3695) (:6243)




Chapter 5

Conclusions and Further
Developments

5.1 Conclusions

We have summarized the subject on maximum penalized likelihood estima-
tion in non(semi)-parametric regression problems in Chapter 2. The maximum
penalized likelihood estimation is a natural extension of the penalized least
squares and the maximum likelihood method, and is useful as a method of es-
timation in non(semi)-parametric generalized linear models. The algorithm is
based on Fisher scoring and is easily constructed as the iteration of the penal-
ized least squares algorithm by using some packages with matrix manipulation.
The maximum penalized likelihood estimation is also incorporated into large
scale models such as generalized additive models. The equivalent degrees of
freedom (EDF) for a model defined as the trace of the hat matrix indicates
the number of effective parameters. The deviance and the chi-squared statis-
tic evaluates goodness-of-fit of a model. The non(semi)-parametric generalized
linear model contains the ordinary linear model at the limit as A — oo and
so it is appropriate for detecting nonlinear relationships in logistic regression,
Poisson regression and so on. The method of Poisson regression is also applied
to density smoothing for classified data.

We have proposed the method for simple calculation of the delete-one es-
timate and the likelihood-based cross-validation score (LCVy) in Chapter 3.
The method is an analogy of the deletion lemma of Craven and Wahba (1979)
and coincides with the one-step approximation based on the Newton—Raphson
method in the case of canonical link. The AIC-like form of the likelihood-based
cross-validation score (LCV3) has been also derived. The LCV; and the LCV;
scores have been compared with the one by exact calculation. They provide
good approximations if the smoothing parameter is not extremely small. The
simple calculation of the delete-one estimate also enables us to diagnose influ-
ential observations.

We have compared the LCV; and LCV, scores with other standard scores:
the GCV, the OCV and the AIC scores, through examination of data sets in
literature and simulation studies in Chapter 4. The GCV score often chooses ex-
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tremely small value of the smoothing parameter and sometimes fails to choose.
We think the “generalization” in the context of non-normal regression is inad-
equate because the weight for each observation is not homogeneous. The AIC
score provides good fitting when sample size is large and in the situation of
Poisson regression, but it sometimes fails in selecting the smoothing parameter
when sample size is small and in the situation of logistic regression. This prob-
lem might be improved if the term of the degrees of freedom in the AIC score
were modified. The OCYV score diminishes the defect that GCV and AIC have
to some extent and has the effect of reducing the variance of estimates.

However, in many cases the LCV; and the LCV, scores can select the
smoothing parameter more adaptively. These scores take quite larger values
as the smoothing parameter becomes smaller and hence they have little risk
of choosing extremely small smoothing parameter. The LCV; score provides
distribution of the smoothing parameter of a little wider range, while the LCV,
score selects slightly larger smoothing parameter. They have the effect of re-
ducing the bias of estimates and provide better performance in the sense of
overall goodness-of-fit. We consider that these scores are useful especially in
the case of small sample size and in the case of binary logistic regression, and
that they are available when other scores can not select an appropriate value
of the smoothing parameter.

5.2 Further Developments

It is necessary to give further examination in various cases on selecting the
smoothing parameter, especially on the likelihood-based cross-validation scores.
In this thesis the simple calculation of the likelihood-based cross-validation score
is described only in the case of one smoothing parameter. We must consider
the adaptation of the simple calculation to more complicated models such as
generalized additive models where several smoothing parameters determine the
smoothness of a surface. The LCV; score does not require any knowledge of
the scale parameter and will be possible to apply to the models that contain
over(under)-dispersion. In addition the method of diagnosing influential obser-
vations by the simple calculation of the delete-one estimate must be developed
further.

All of the procedures for selecting the smoothing parameter that have been
taken up such as the cross-validation and the AIC are based on the viewpoint
of prediction. However few procedures that reflect the structure of explana-
tory variables have been developed. The penalized approach is familiar in the
context of the ridge regression, where various procedures for selecting the ridge
parameter have been developed. We want to consider procedures that make
good use of the structure of a model such as the semiparametric or the additive
models.

The problem on the bias of the estimate of the parameter 3 in semipara-
metric regression models discussed in Section 2.1.2 will be possible also in non-
normal distribution case. It is necessary to investigate how the relationship
between explanatory variables affects the estimation of B and the selection of
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the smoothing parameter, and to develop a technique to reduce the bias of B

In this thesis the maximum penalized likelihood estimation has been dis-
cussed in the framework of generalized linear models. We would like to take
the notion of the penalized approach into quasi-likelihood in generalized estima-
tion equations (GEE) and to consider the method for selecting the smoothing
parameter such as cross-validation. Furthermore we want to study applying
non(semi)-parametric approaches to proportional hazard models, random ef-
fect models and so on.
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Appendices
A.1 Splines

In this section we briefly summarize splines that have been used as the fitted
functions. Ichida and Yoshimoto (1979) and Green and Silverman (1994) are
referred for the description here. Further description about splines are also seen
in de Boor (1978), Eubank (1988) and so on.

A.1.1 Natural Splines and Smoothing Splines

Suppose that we have real numbers t,...,t, (n > 3) on some interval [a,b]
satisfying @ < t; < t3 < +-- < t, < b. A function f defined on [a,d] is a
spline of degree m — 1 if f is a polynomial of degree at most m — 1 on each of
the intervals (a,t1), (t1,t2), ..., (tn,b), and if f itself and its derivatives up to
order m — 2 are continuous at each point ¢;, and hence on the whole interval
[a,b]. The points ¢; are called knots. Cubic splines, the case of m = 4, are most
commonly used. Furthermore the spline of degree 2m’ — 1 is said to be a natural
spline if f is a polynomial of degree at most m’ — 1 on each of the two extreme
intervals (a,t1) and (¢,,b).

When constructing a roughness penalty J(f) of a function f, it is desirable
that J(f) is not affected by adding a constant or a lower-degree function to f.
For example, J(f) = f:{f”(t)}Zdt, the integral of the squared second derivative
of f, is not affected by adding a constant or a linear function. Let W;[a, b] be
the space of functions that are differentiable and have an absolutely continuous
first derivative on [a, b]. All twice-differentiable functions such that their second
derivatives are square integrable are included in Ws[a, b]. It can be proved that
the function f that minimizes J(f) = f:{f”(t)}zdt over all functions f in
Wsa,b] that interpolate n points (¢;, fi), ¢ = 1,...,n, is the natural cubic
spline with knots at ¢{,... ,t,. Uniqueness of f as such is also guaranteed. See
Green and Silverman (1994), Theorem 2.3.

For the natural cubic splines f, the roughness penalty J(f) = fab{f”(t)}2dt
is represented as the quadratic form J(f) = fTKf of f = (f(t1),-.., f(ta))T
for some positive definite matrix K = QR™'QT. Here, letting h; = t; — t;_ for
i=1,...,n, Q is the n x (n — 2) band matrix with entries ¢;; for ¢ =1,... ,n
and j=2,...,n—1 given by

Gi1i=h, gi=-h7Y —h7' and giy1;=h;"

7

for j=2,...,n—1,and ¢; =0 for | — j| > 2, and R is the (n — 2) X (n — 2)

band matrix with entries r;; for 4,5 =2,... ,n — 1 given by
hi—1 4+ h; .
riiz%—lw fori=2,...,n -1,
h; :
r,-,j+1:ri+1ﬂ~:€ fori=2,...,n—2

and r;; = 0 for |i — j| > 2.
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Similarly, if we denote by W5*'[a, b] the space of functions that are (m' — 1)
times differentiable and have an absolutely continuous (m’—1)-th derivative, the
function f that minimizes J(f) = fab{f(m')(t)}2dt, the integral of the squared
m’th derivative of f, over all functions f in W;”I[a, b] that interpolate (t;, fi),
i =1,...,n uniquely exists and it is the natural spline of degree 2m’ — 1 with
knots at t1,... ,t,. In addition, for the natural spline of degree 2m’' — 1, J(f)
is represented as the quadratic form J(f) = fTKf of f = (f(t1),--- , f(ta))T
for some positive definite matrix K constructed from ty,...,¢,. Notice that
the value f(t) of the natural spline for any ¢ can be computed from the values

ft1),..., f(t,) at n knots.
Now suppose that we have n observations yq,...,y, at some design points
t1,... ,tn, respectively. We consider the nonparametric regression problem

vi=ft)+e, i=1,...,n

As described in Section 2.1.1, the penalized sum of squares
S(f) =Y _Ayi— F)Y +MI(f)
=1

is minimized over f. If we define J(f) = fab{f(m’)(t)}zdt, it can be proved
that the function f that minimizes S(f) over f € Wi*'[a,b] is the natural cubic

spline of degree 2m' — 1 with knots at t1,...,t,, called the smoothing spline.
The values f(¢;), ¢ =1,...,n, are given by
F=(f@t), f)T = T+ 2K) 'y, (A.1)

which is the special case of (2.3). See Green and Silverman (1994), Theorem
2.4.

It is expensive to compute the inverse of I + AK in (A.1). Reinsch’s (1967)
algorithm makes it possible to compute f in O(n) algebraic operations. In
the case of cubic smoothing splines, the equation for the (n — 2)-vector v =
(f"(t2),... , f"(tn-1))T of the second derivative of f is given by

(R+2QTQ)y=Q"y (A.2)
and the estimates f(¢;) are obtained by
f=y-2Q.

The matrix R + MQTQ in (A.2) is banded with bandwidth 5 and so (A.2) is
solved by the Cholesky decomposition of R + AQTQ and forward and back
substitution.

A.1.2 B-splines

The use of a spline function sometimes causes the problem that the linear system
to determine its coeflicients become ill-conditioned. To avoid this problem, it is
convenient to represent a spline function as a linear combination of some basis
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functions each of which has a local support. B-splines satisfy this condition and
have good computational property. ’

Consider the sequence of real numbers -+ < s_9 < 51 < 89 < 81 < -+- <
Sk < Sk41 < ---. For a given natural number m, let
4 t—s)™ 1 ifs<t
1) = _ o ym—1 — ( .
Mm(87 ) (t S)+ { 0 if s >t
and
M, (t;s ...,S8 — M, (t; 85, ..., Skti—
My (t;50, - s Spal) = m(t; k41, -+ -, Sk41) m (£ 8Ky - - s Skt1-1)
Sk+l — Sk
for ! =2,3,... ,m. The B-spline of degree m — 1 with knots at sg,... ,Sg4m I8
defined as
Bk (t) = My (t; Sky Sk41y - -+ » Sktm )

The B-spline B,,x(t) satisfies the conditions of splines of degree m — 1 and has
the support on [s, Sgim], that is, Bx = 0 if t € (—00, sg] U [Sk4m,00) and
Bmk(t) >0ift e (Sk,8k+m).

The B-splines can be the basis of spline functions. Let a < sp < 81 < 52 <
-+ < 8, < b. If f(t) is the spline function of degree m — 1 on [a,b] with knots
at s1,...,84, f(t) is represented as the linear combination of B-splines

ft) = Z & Bk (t)

k=—m+1

for some constants &_pp1,... , &g _

To construct B,,x(t) in practice, 2m additional knots s_p,41 < S_pmy2 <
<< 521 < So(< a) and (b <)sgq1 < Sg42 < -+ < Sg4m are introduced. Then
the value of the B-spline B,,;(t) is easily computed by recursive formulas

. (Sk+1 — Sk)_l if s <t < 84
By (t) = { 0 otherwise (A-3)
and
B k(t) - (t - Sk)BT—lyk‘(t) + (Sk‘l'?” - t)Br—lyk‘i'l(t) (A4)
" Sk4r — Sk

for r = 2,3,...,m. This is called de Boor-Cox’s algorithm. See Ichida and
Yoshimoto (1979), Section 3.3. For example, if the value of the cubic B-spline
(m = 4) at some t € [a,b] is wanted, find k such that s, <t < 544 at first, and
compute By (t) from (A.3). Then from (A.4) obtain Byi(t) and By g41(t); next
Bsk(t), Bsk+1 and Bsgio(t); and at last Bax(t),. .., Bakts(t). The B-splines
not listed here are all zero in [sg, Sg41). In such a way the basis matrix using
B-splines B = {B,,x(t;)} can be easily constructed for any sequence of design
points t1,... ,t,. Assumptions on the uniqueness and the order of ¢1,... ¢,
are not necessary.
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Correction to satisfy the condition of natural splines is also possible. For
example, the natural cubic spline f(t) with knots at s;,... , s, is represented as
the linear combination of ¢ B-splines f(t) = ZZ=1 fkR;,k“ (t), where B4yk+2 (t)
for k=1,2,¢ — 1 and ¢ are adjusted from By ;42(t) so that they are linear on
[a, 51) and (s4,b] and twice differentiable at ¢ = s; and s,. Notice that B4yk+2(t)
is the same as Byj42(t) for £ = 3,...,¢ — 2. Especially in constructing a
smoothing spline, the number of B-spline basis ¢ is set equal to n and knots are
taken at ty,... ,t,.

The roughness penalty J(f) = fab{f(m')(t)}zdt for the B-spline can be also
computed. The case of natural cubic splines (m' = 2) is described. If a natural
cubic spline f(t) is written as f(f) = ?czl Ekpr(t) where k(1) = 34,k+2(t),
the penalty is represented as J(f) = £¢L K¢, where & = (&4,... ,&)T and K is
the ¢ X ¢ symmetric band matrix with (k,{)th component

b
K = / L (0) gl (t)dl.

Notice that Ky = 0if |7 — k| > 3 since ]_~34,k+2(t) has the support on [sg, Skt4].
At first compute the second derivatives of B-spline basis at the knots by
6
1
Pr1(sk) =
k 1( ) (Sk+1 - 5k—3)(3k+1 - 3k—2)(5k+1 - Sk—l),
6 < 1 1 )
"
PelSk) = — +
(k) (Sk+2 — Sk—2) (Sk+1 — Sk—1) \ Sk41 — Sk—2 = Sk+2 — Sk—1/
6

(Sk+3 — Sk—1) (Sk+2 — Sk—1) (Sk+1 — Sk—1)

‘P,Ié+1(3k) =

for k = 2,...,¢— 1, and put ¢}(s;) = 0 for the other combinations of (j, k).
On each interval (s;,s;41), the second derivatives ] (t) for k = j,... ,j+ 3 are
linear functions

"o "ie.
) = POV =) ) ot

Sj+1 — 8
and hence the partitioned integral [+ ¢}(t)¢](t)dt is exactly computed as
the integral of a quadratic function. Therefore the penalty matrix K can be
obtained.

If the B-splines are used as the basis functions, the smoother matrix Sy =
B(BTWB + AK)7!BTW is easily constructed. Since the basis matrix B con-
tains many zero entries and K is banded, BTW B+ AK is also banded. If cubic
B-splines are used, BTW B + AK has the bandwidth 7. Therefore, once BTW B
and BTWy are computed, the Cholesky decomposition of BTWB + AK and
forward and back substitution make it possible to compute the estimate of the
coefficient vector £ = (BTW B + AK)~!BTWy in O(q) operations. Each lever-
age value Ay = w,'sz(BTWB + AK)71b; is also computed in O(g) operations.
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A.2 Data

Data sets taken up in Section 2.4

Kyphosis in Laminectomy Patients
bers and Hastie, 1992)

109

(Hastie and Tibshirani, 1990; Cham-

The table below shows the data on 83 patients (almost children) undergoing
laminectomy surgery. Each of the data is composed of a response that indicates
presence or absence of kyphosis after the operation, and three variables: age of
patients (age), the number of vertebrae levels involved in the surgery (number),
and the starting vertebrae level of the surgery (start).

Obs. Kyphosis Age Number Start Obs. Kyphosis Age Number Start
1 absent 71 3 5 43 present 73 5 1
2 absent 158 3 14 44 absent 35 3 13
3 present 128 4 5 45 absent 143 9 3
4 absent 2 5 1 46 absent 61 4 1
5 absent 1 4 15 47 absent 97 3 16
6 absent 1 2 16 48 present 139 3 10
7 absent 61 2 17 49 absent 136 4 15
8 absent 37 3 16 50 absent 131 5 13
9 absent 113 2 16 51 present 121 3 3

10 present 59 6 12 52 absent 177 2 14
11 present 82 5 14 53 absent 68 5 10
12 absent 148 3 16 54 absent 9 2 17
13 absent 18 5 2 55 present 139 10 6
14 absent 1 4 12 56 absent 2 2 17
15 absent 243 8 8 57 absent 140 4 15
16 absent 168 3 18 58 absent 72 5 15
17 absent 1 3 16 59 absent 2 3 13
18 absent 78 6 15 60 present 120 5 8
19 absent 175 5 13 61 absent 51 7 9
20 absent 80 5 16 62 absent 102 3 13
21 absent 27 4 9 63 present 130 4 1
22 absent 22 2 16 64 present 114 7 8
23 present 105 6 5 65 absent 81 4 1
24 present 96 3 12 66 absent 118 3 16
25 absent 131 2 3 67 absent 118 4 16
26 present 15 7 2 68 absent 17 4 10
27 absent 9 5 13 69 absent 195 2 17
28 present 12 14 2 70 absent 159 4 13
29 absent 8 3 6 71 absent 18 4 11
30 absent 100 3 14 72 absent 15 5 16
31 absent 4 3 16 73 absent 158 5 14
32 absent 151 2 16 74 absent 127 4 12
33 absent 31 3 16 75 absent 87 4 16
34 absent 125 2 11 76 absent 206 4 10
35 absent 130 5 13 77 absent 11 3 15
36 absent 112 3 16 78 absent 178 4 15
37 absent 140 5 11 79 present 157 3 13
38 absent 93 3 16 80 absent 26 7 13
39 absent 1 3 9 81 absent 120 2 13
40 present 52 5 6 82 present 42 7 6
41 absent 20 6 9 83 absent 36 4 13
42 present 91 5 12
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Assay of Trypanosome (Ashford and Walker, 1972)
The table below shows data on the numbers of trypanosome organisms killed
at different doses of a certain poison.

Dose Observations Killed

4.7 55 0
4.8 49 8
4.9 60 18
5.0 55 18
5.1 53 22
5.2 53 37
5.3 51 47
54 50 50

Mortality Table (Green and Silverman, 1994)

The table below gives, for a particular population of retired American white
females, the age structure of the population and the annualized number of
deaths in each age group. The column size gives the population size, and the
column death gives the number of death.

age size death age size death age size death
55 84 1 72 20116 480 89 510 97
56 418 2 73 18876 537 920 430 93
57 1066 10 74 17461 566 91 362 75
58 2483 21 75 15012 581 92 291 84
59 3721 35 76 11871 464 93 232 31
60 5460 62 77 10002 461 94 196 75
61 6231 50 78 8949 433 95 147 29
62 8061 55 79 7751 515 96 100 25
63 9487 88 80 6140 374 97 161 20
64 10770 132 81 4718 348 98 11 5
65 24267 267 82 3791 304 99 10 3
66 26791 300 83 2806 249 100 8 2
67 29174 432 84 2240 167 101 5 0
68 28476 491 85 1715 192 102 4 2
69 25840 422 86 1388 171 103 2 0
70 23916 475 87 898 126 104 2 1
71 21412 413 88 578 86

Duration of Eruption of Old Faithful Geyser (Silverman, 1986)
The data set is the duration (in minutes) of 107 eruptions of Old Faithful geyser
in Yellow National Park, USA.

437 387 400 4.03 350 4.08 225 470 1.73 4.93
173 462 343 425 1.68 392 368 3.10 4.03 177
408 1.75 320 185 462 197 450 392 435 2.33
3.83 188 460 180 4.73 177 457 185 3.52 4.00
3.70 3.72 425 358 3.80 377 3.75 250 4.50 4.10
3.70 3.80 343 4.00 227 440 4.05 425 3.33 2.00
433 293 458 190 358 373 3.73 1.82 4.63 3.50
400 3.67 167 460 '1.67 400 1.80 442 190 4.63
293 350 197 428 183 413 183 465 4.20 3.93
433 183 453 203 4.18 443 4.07 413 3.95 4.10
272 458 1.90 450 195 4.83 4.12
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Data sets examined in Chapter 4

1, 2: Tumor Prevalence (Green and Yandell, 1986)

The table below show the data from the toxicology experiment in which 207
male and 112 female rats were exposed to six dose levels of flame retardant, and
presence or absence of bileduct hyperplasia at death of each rat was reported as
the zero-one response (presence is indicated by 1). Here only one explanatory
variable Age at death (in month) is employed, although the original data contain
the dose levels and other two explanatory variables.

Male rats
0Obs. Dose Age Resp. Obs. Dose Age Resp. Obs. Dose Age Resp. Obs. Dose Age Resp.
1 0 7 0 53 1 112 O 106 2 97 1 157 4 105 O
2 0 100 0 54 1 113 © 106 2 99 1 158 4 108 O
3 0 101 O 55 1 117 0 107 2 106 1 159 4 108 O
4 0 102 O 56 1 118 0 108 2 106 1 160 4 112 0O
5 0 104 O 57 1 118 0 109 2 108 1 161 4 112 O
6 0 106 O 58 1 122 0 110 2 111 1 162 4 112 0
7 0 107 O 59 1 122 O 111 2 113 1 163 4 77 1
8 0 108 0O 60 1 123 O 112 3 69 0 164 4 85 1
9 0 108 0 61 1 123 O 113 3 79 0 165 4 93 1
10 0 109 O 62 1 123 O 114 3 80 0 166 4 93 1
1 0 111 O 63 1 123 0 115 3 8 0 167 4 95 1
12 0 111 O 64 1 77 1 116 3 90 O 168 4 96 1
13 0 111 0O 65 1 81 1 117 3 9% © 169 4 96 1
14 0 111 O 66 1 94 1 118 3 91 0 170 4 98 1
15 0 112 0O 67 1 99 1 119 3 94 0 171 4 98 1
16 0 113 0 68 1 100 1 120 3 97 © 172 4 98 1
17 0 116 O 69 1 102 1 121 3 97 © 173 4 98 1
18 0 117 0 70 1 1108 1 122 3 100 O 174 4 102 1
19 0 119 O 71 1 112 1 123 3 103 0O 175 4 103 1
20 0 121 O 72 1 115 1 124 3 107 O 176 4 104 1
21 0 122 O 73 2 8 0 125 3 107 0 177 5 42 O
22 0 122 0O 4 2 90 O 126 3 110 O 178 5 73 0O
23 0 123 O 7% 2 93 0 127 3 112 O 179 5 77 0
24 0 123 O 7% 2 94 0 128 3 117 0O 180 5 84 O
25 0 123 O 77 2 95 O 129 3 118 0 181 5 8 O
26 0 71 1 78 2 99 0 130 3 78 1 182 5 8 0
27 0 71 1 79 2 104 O 131 3 8 1 183 5 8 O
28 0 84 1 80 2 105 O 132 3 87 1 18 5 87 O
29 0 103 1 81 2 105 0O 133 3 88 1 18 5 90 O
30 0 118 1 82 2 105 O 134 3 91 1 186 5 91 O
31 0 122 1 83 2 106 O 135 3 92 1 187 5 92 0
32 0 123 1 8 2 106 O 136 3 97 1 188 5 92 O
33 0 123 1 8 2 107 O 137 3 98 1 189 5 94 0O
3 1 54 0 8 2 107 O 138 3 101 1 190 5 94 O
35 1 87 0 87 2 108 O 139 3 102 1 191 5 94 O
36 1 8 0 88 2 109 O 140 3 106 1 192 5 94 0O
37 1 101 O 8 2 110 O 141 3 111 1 193 5 95 0
38 1 102 0 90 2 111 0O 142 3 112 1 194 5 97 ©
39 1 102 0 91 2 112 O 143 4 62 O 195 5 97 O
40 1 103 O 92 2 112 O 144 4 83 O 196 5 101 O
41 1 105 0 93 2 112 O 145 4 85 O 197 5 101 O
42 1 105 0 94 2 112 O 146 4 87 O 198 5 103 O
43 1 107 0O 95 2 113 O 147 4 92 O 199 5 44 1
44 1 107 0O 9 2 113 0 148 4 94 O 200 5 74 1
45 1 107 0 97 2 113 O 149 4 95 O 201 5 &1 1
46 1 108 O 98 2 113 O 150 4 98 0 202 5 82 1
47 1 108 O 99 2 115 O 151 4 99 O 203 5 87 1
48 1 108 O 100 2 116 O 152 4 100 O 204 5 94 1
49 1 110 O 101 2 116 O 153 4 100 O 205 5 96 1
5 1 110 0 102 2 78 1 154 4 102 O 206 5 99 1
51 1 111 O 103 2 87 1 155. 4 103 O 207 5 101 1
52 1 112 0 104 2 94 1 156 4 104 O
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Female rats
Obs. Dose Age Resp. Obs. Dose Age Resp. 0Obs. Dose Age Resp. Obs . Dose Age Resp.

1 0 50 o0 29 1 106 0 57 2 123 0O 85 4 123 0O
2 0 59 0 30 1 108 O 58 2 123 0O 8 4 123 O
3 o 77 0 31 1 108 O 59 2 123 O 87 4 124 0
4 o 77 0 32 1 113 0 60 2 124 O 8 4 124 ©
5 0 8 0O 33 1 114 © 61 2 124 O 893 4 381 1
6 0 87 0O 34 1 116 © 62 2 124 © 90 4 81 1
7 0 106 0O 35 1 116 © 63 3 112 O 91 4 102 1
8 0 106 O 36 1 123 ¢© 64 3 114 O 92 4 105 1
9 0 111 o0 37 1 123 0O 65 3 120 O 93 . 5 36 0
10 0 111 o© 38 1 124 0 66 3 122 0 94 5 41 0
11 0 111 o0 39 1 124 0 67 3 123 O 95 5 86 0
12 0 112 0 40 1 124 0 68 3 123 O 9% 5 94 O
13 0 114 0 41 1 124 0 69 3 123 O 97 5 103 O
14 0 114 O 42 2 9 0 70 3 123 0 98 5 103 0
15 0 119 0 43 2 96 0 71 3 124 O 9 5 105 O
16 0 120 O 44 2 100 0O 72 3 124 0 100 5 106 O
17 "0 123 0O 45 2 103 0 73 3 96 1 101 5 108 O
18 0 124 0 46 2 103 0 74 4 87 0 102 5 109 O
19 0 98 1 47 2 104 O 75 4 92 O 103 5 113 O
20 0 108 1 48 2 109 0 76 4 94 0 104 5 116 O
21 1 78 0 49 2 110 O 7T 4 109 O 105 5 117 O
22 1 82 o0 50 2 113 O 78 4 109 0 106 5 34 1
23 1 8 0 51 2 119 0 79 4 110 0 107 5 74 1
24 1 98 0 52 2 119 0 80 4 112 O 108 5 98 1
25 1 99 o0 53 2 120 O 81 4 121 O 109 5 106 1
26 1 101 © 54 2 122 O 82 4 123 0 110 5 112 1
27 1 103 0 55 2 123 O 83 4 123 0 111 5 115 1
28 1 105 0 56 2 123 O© 84 4 123 0O 112 5 118 1

3: Kyphosis in Laminectomy Patients See p. 109.

4: Dose Levels for the Treatment of Testicular Cancer (Brown and
Hu, 1980)

The table below is on 55 courses of treatment received by 14 patients with
testicular cancer. Each patient received one to six courses of a combination of
three days. Here the dose of velban used for each patient is given in mg/day
per body weight (in kg) with the occurrence of serious gastrointestinal toxicity.

Patient Course Dose Toxicity Patient Course Dose Toxicity Patient Course Dose Toxicity

A 1 201 Yes F 1 184 No J 1 158 No
2 207 Yes 2 181 No 2 159 No

B 1 199 Yes 3 183 No 3 152 No

C 1 199 Yes 4 143 No 4 154 No
2 111 No 5 89 No 5 171 No
3 218 Yes G 1 132 No L 1 185 No
4 123 No 2 147 No 2 186  Yes
5 124 No 3 177 Yes 3 156 No
6 122 No 4 188 No 4 156 No

D 1 202 Yes 5 182 No 5 156 No
2 204  Yes 6 143 No M 1 188  Yes
3 214 Yes H 1 189 Yes 2 194 No
4 144 Yes 2 123 No 3 203 No

E 1 218 Yes 3 129 No N 1 217 Yes
2 191 No 4 125 No (0] 1 181 No
3 180 No 5 126 No 2 127 No
4 183 No I 1 220 Yes 3 156 No
5 179 Yes 2 208 Yes 4 156 Yes
6 173 No
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5, 6: Nodal Involvement for Prostate Cancer Patients (Brown, 1980)
The table below gives the data on 53 prostate cancer patients receiving surgery.
Here for each case presence (1) or absence (0) of nodal involvement is given
with two quantitative variables to predict whether or not the lymph nodes were
affected: age at diagnosis and level of serum acid phosphatase (ACP) (x100).

Case Age ACP Nodes Case Age ACP Nodes Case Age ACP Nodes

1 66 48 0 19 52 &3 0 37 59 63 0
2 68 56 0 20 56 98 0 38 61 102 0
3 66 50 0 21 67 52 0 39 53 76 0
4 56 52 0 22 63 75 0 40 67 95 0
5 58 50 0 23 59 99 1 41 53 66 0
6 60 49 0 24 64 187 O 42 65 84 1
7 65 46 0 25 61 136 1 43 50 81 1
8 60 62 0 26 56 82 1 44 60 76 1
9 50 56 1 27 64 40 0 45 45 70 1
10 49 55 0 28 61 50 0 46 56 78 1
11 61 62 0 29 64 50 0 47 46 70 1
12 58 71 0 30 63 40 0 48 67 67 1
13 51 65 0 31 52 55 0 49 63 82 1
14 67 67 1 32 66 59 0 50 57 67 1
15 67 47 0 33 58 48 1 51 51 72 1
16 51 49 0 34 57 51 1 52 64 89 1
17 56 50 0 35 65 49 1 53 68 126 1
18 60 78 0 36 65 48 0

7, 8: Effect of Process and Purity Index on Fault Occurrence (Cox
and Snell, 1981)

Batches of raw material were selected and each batch was divided into two
equal sections: for each batch, one of the sections was processed by the standard
method and the other by a slightly modified process. Before processing, a purity
index was measured for the whole batch of material. For the product from each
section of material it was recorded whether the minor faults did (F) or did not
occur (NF). Results for 22 batches are given in the table below.

Purity Standard Modified Purity Standard Modified

index  process process index = process process
7.2 NF NF 6.5 NF F
6.3 F NF 4.9 F F
8.5 F NF 5.3 F NF
7.1 NF F 7.1 NF F
8.2 F NF 8.4 F NF
4.6 F NF 8.5 NF F
8.5 NF NF 6.6 F NF
6.9 F F 9.1 NF NF
8.0 NF NF 7.1 F NF
8.0 F NF 7.5 NF F
9.1 NF NF 8.3 NF NF

9, 18: Mortality Table See p. 110.
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10, 11: Incidence of Pneumoconiosis among Coalminers

Snell, 1981)

The table below is on 18,282 coalminers who were known to be smokers but
who showed no radiological abnormality were grouped by age and classified
according to whether or not they showed signs of two symptoms, breathlessness

and wheeze.

Breathlessness Yes No Total
Wheeze Yes No | Yes No

Age group 20-24 9 7 95 1,841 1,952

(years) 25-29 23 9 105 1,654 1,791

30-34 54 19 177 1,863 2,113

35-39 121 48 257 2,357 | 2,783

40-44 169 54 273 1,778 2,274

45-49 269 88 324 1,712 2,393

50-54 404 117 245 1,324 | 2,090

55-59 406 152 225 967 1,750

60-64 372 106 132 526 1,136

Total 1,827 600 | 1,833 14,022 | 18,282

12: Assay of Trypanosome See p. 110.

13: Quantal Response Data

The data is on 350 male mice that were divided into 7 groups of each 50 mice
and 7 dose levels of toxin were injected. The number of death is observed for

each dose levels.

(Thompson, 1947; Kawai, 1997)

Dose Subjects Responses
1.0625 50 6
1.125 50 7
1.25 50 33
1.5 50 39
2 50 45
3 50 50
5 50 50

14: Quantal Respdnse Data (Finney, 1971; Kawai, 1997)

The data set below counts the numbers of death out of 50 macrosiphoniella
sanbornis on a day after 6 levels of the concentration (mg/l) of deguelin were

sprayed on them.

Dose Subjects Responses
2.6358941 49 16
3 48 18
3.4794154 48 - 34
3.7894873 49 47
4.0525184 50 47
4.2490096 48 48
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15: Quantal Response Data

(Bliss, 1938; Kawai, 1997)
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Eight levels of the concentration of gelsemicine hydrochloride were prescribed
to 80 rabbits and the numbers of death were observed.

16: Quantal Response Data

Dose Subjects Responses
0.06 10 0
0.07 10 1
0.08 10 3
0.09 10 6
0.1 10 8
0.11 10 5
0.12 10 9
0.13 10 10

(Reed and Muench, 1938)

The number of death observed in each group composed of 6 subjects for 9 levels
of stimulus was observed.

Dose Subjects Responses

1 6 0

2 6 0

4 6 1

8 6 0

16 6 2
32 6 4
64 6 4
128 6 6
256 6 5

17: Numbers of Coal-mining Disasters
Jarrett (1979) corrected the data on time intervals between 191 coal mine ex-
plosions involving more than ten men killed in Great Britain between 1851 and
1962. The table below rewrites it into the count of disasters in each year.

(Jarrett, 1979)

Year Count Year Count Year Count Year Count Year Count
1851 4 1874 4 1897 0 1919 0 1941 3
1852 5 1875 4 1898 0 1920 o 1942 3
1853 4 1876 1 1899 1 1921 0 1943 0
1854 1 1877 5 1900 0 1922 2 1944 0
1855 [¢] 1878 5 1901 1 1923 1 1945 0
1856 4 1879 3 1902 1 1924 0 1946 1
1857 3 1880 4 1903 0 1925 0 1947 4
1858 4 1881 2 1904 0 1926 0 1948 0
1859 0 1882 5 1905 3 1927 1 1949 0
1860 6 1883 2 1906 1 1928 1 1950 0
1861 3 1884 2 1907 0 1929 0 1951 1
1862 3 1885 3 © 1908 3 1930 2 1952 0
1863 4 1886 4 1909 2 1931 3 1953 0
1864 0 1887 2 1910 2 1932 3 1954 0]
1865 2 1888 1 1911 0 1933 1 1955 0]
1866 6 1889 3 1912 1 1934 1 1956 0
1867 3 1890 2 1913 1 1935 2 1957 1
1868 3 1891 2 1914 1 1936 1 1958 Q
1869 5 1892 1 1915 0 1937 1 1959 0
1870 4 1893 1 1916 1 1938 1 1960 1
1871 5 1894 1 1917 0 1939 1 1961 0
1872 3 1895 1 1918 1 1940 2 1962 1
1873 1 1896 3
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19, 20: Hodgkin’s Disease Mortality Data (Selvin, 1994)
The table below lists the numbers of death by Hodgkin’s disease observed in
males and females for residents of California in 1989.

Male Female

Age | Person-Years Death | Person-Years Death
30-34 1,299,868 55 1,300,402 37
35-39 1,240,595 49 1,217,896 29
40-44 1,045,453 38 1,045,801 23
45-49 795,776 26 810,260 12
50-54 645,991 19 665,612 7
55-59 599,729 17 633,646 12
60-64 568,109 22 650,686 9
65-69 506,475 21 600,455 19
70-74 368,751 18 474,609 13
75-79 252,581 11 376,781 14
80-84 140,053 10 265,412 5
85+ 81,850 4 313,603 3
Total 7,545,231 290 8,345,163 183

21: Time Intervals between Mine Explosions (Simonoff, 1996)

The table below gives counts that correspond to a discretization into 5 cells of
109 time intervals between explosions in mines from December 8, 1875 to May
29, 1951, which is probably a part of the data set No.17.

Cell Days  Count Cell Days Count Cell Days Count
1 0- 30 18 20 571- 600 1 38 1111-1140 0
2 31- 60 14 21 601- 630 0 39 1141-1170 0
3 61- 90 9 22 631- 660 0 40 1171-1200 0
4 91-120 8 23 661- 690 1 41  1201-1230 1
5 121-150 6 24 691- 720 0 42 1231-1260 0
6 151-180 4 25 721- 750 0 43 1261-1290 0
7 181-210 6 26 751- 780 1 44  1291-1320 1
8 211-240 7 27 781- 810 0 45 1321-1350 0
9 241270 1 28 811- 840 0 46  1351-1380 1

10 271300 6 29 841- 870 0 47 1381-1410 0
11 301-330 6 30 871- 900 0 48 1411-1440 0
12 331-360 5 31 901- 930 1 49  1441-1470 0
13  361-390 5 32 931- 960 0 50 1471-1500 0
14 391-420 0 33 961- 990 0 51 1501-1530 0
15  421-450 0 34 991-1020 0 52 1531-1560 0
16 451-480 2 35 1021-1050 0 53 1561-1590 0
17 481-510 1 36 1051-1080 0 54 1591-1620 1
18 511-540 1 37 1081-1110 0 55 1621-1650 1
19 541-570 1

22: Pain Scores Data (Efron and Tibshirani, 1996)

The table below shows the discretized version of pain scores for 67 women, each
obtained by averaging the results from a questionnaire administered after an
operation. The score 0 means no pain and the score 4 means worst pain. The
domain [0,4] is partitioned into 40 cells of length 0.1.
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Cell Scores Count Cell Scores Count Cell Scores Count
1 0.0-01 3 15 14-1.5 3 28 2.7-2.8 0
2 0.1-0.2 7 16 1.5-1.6 5 29 2.8-2.9 1
3 02-03 6 17 1.6-1.7 0 30 29-3.0 1
4 03-04 1 18 1.7-18 1 31 3.0-3.1 1
5 04-0.5 2 19 18-1.9 0 32 3.1-3.2 0
6 0.5-0.6 3 20 1.9-2.0 0 33 3.2-3.3 0
7 0.6-0.7 3 21 2.0-2.1 2 34 3.3-34 0
8 0.7-0.8 1 22 2.1- 2.2 2 35 3.4-3.5 0
9 0809 7 23 2.2-23 0 36 3.5-3.6 0
10 09-1.0 5 24 23-24 0 37 3.6-3.7 0
11 1.0-1.1 4 25 2.4-25 0 38 3.7-3.8 0
12 1.1-1.2 4 26 2.5-2.6 1 39 3.8-3.9 0
13 1.2-1.3 1 27  2.6- 2.7 0 40 3.9-4.0 0

14 13-14 3

23, 24: Duration of Eruption of Old Faithful Geyser See p. 110.

25: Monthly Salary Data

(Simonoft, 1996)
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The table below gives a 28-cell discretizations of data representing the month
spray salary (in dollars) of 147 nonsupervisory female employees holding the
Bachelors (but no higher) degree who were practicing mathematics or statistics

in 1981.
Cell Salary Count Cell Salary Count Cell Salary Count
1 951-1050 5 11 1951-2050 6 20 2851-2950 5
2 1051-1150 1 12 2051-2150 9 21 . 2951-3050 4
3  1151-1250 0 13  2151-2250 5 22 3051-3150 2
4 1251-1350 5 14 2251-2350 12 23 3151-3250 1
5 1351-1450 2 15 2351-2450 7 24 3251-3350 2
6 1451-1550 10 16  2451-2550 3 25  3351-3450 0
7 1551-1650 5 17  2551-2650 10 26  3451-3550 1
8 1651-1750 10 18  2651-2750 4 27  3551-3650 1
9 1751-1850 10 19  2751-2850 6 28 3651-3750 1
10 1851-1950 20

26: Length of Treatment Spells (Silverman, 1986)
The data set comprises the lengths of 86 spells of psychiatric treatment under-
gone by patients used as controls in a study of suicide risks. In applying the
density smoothing to the data set the domain [0,800] is divided into 20 intervals
of length 40.

1 1
17 18
31 31
40 49
67 75
91 92

123 126
228 231

369 415

1
21
32
49
76
93

129
235
573

5
21
34
54
79
93
134
242
609

7 8
22 25
35 36
56 56
82 83

103 103
144 147
256 256
640 737

3
27
37
62
84

111
153
257

13
27
38
63
84
112
163
311

14 14
30 30
39 39
65 65
84 90
119 122
167 175
314 322
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