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AN APPLICATION ON NAGAO’S LEMMA
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With time, the importance of Nagao’s lemma has grown in modular re-
presentation theory of finite groups. In this note, we add another application.

Let G be a finite group, and let F be a field of characteristic p>0.

For a subgroup H of G and a (right) FG-module V, we denote V¥ the
fixed-point-set of H in V, so that V# is an FNy(H)-module. The trace map
Trg: VE—>VC is defined by Trf(v)=3, vg, where g runs over a complete set
of representatives of H\G.

Main Theorem. Let V be an indecomposable FG-module in a block B,
and let P be a p-subgroup of G. Then each composition factor of the FN(P)-module

V(P) = V7| X Tri(V*),

where A runs over proper subgroups of P, belongs to a block b such that b°=B.
Remark. If V(P)=0, then P is contained in a defect group of B.

Proof. of the theorem. Set N=N,(P). Let e be the centrally primitive
idempotent of FG corresponding to B. Let s: Z(FG)—Z(FN) be the Brauer
homomorphism. Then Nagao’s lemma ([2], Chapter III, Theorem 7.5) states
that

VN = VNS(B)@ Wll@ "'@Wn

as FN-modules, where each W; is @;-projective FN-module for some p-sub-
group @; of N with P<Q;. Thus in order to prove the theorem, it will suffice
to show that

WP < 3 Tri(V4),

AP

where A runs over proper subgroups of P. But this follows directly from the
following lemma, and so the theorem is proved.

Lemma. Let N be a finite group with a normal p-subgroup P. Let W be
a Q-projective FN-module, where QR P. Then
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WP = ) Tri(W4),
ALP

where A runs over proper subgroups of P.

Proof. In order to prove this lemma, we may assume that for some FQ-

module U,
W = Indg (U) .
Then by Mackey decomposition, we have that
Wp = @, IndEnen(Ubner),
where 7 runs over a complete set of representatives of Q\N/P and Q"=n"'@Qn.
Let n be an element of N and set R=PNQ", X=U%. Since P is normal in N

and @ is not contained in P, we have that R is a proper subgroup of P. Thus,
in order to prove the lemma, it will suffice to show that

(Ind% (X))P S Trk (Ind% (X)F) .

But this follows directly from an easy calculation (eq. [2] Chapter II Lemma
3.4). The lemma is proved.

ReMarRk. The main theorem can be proved also by the Brauer homomor-
phism of modules, which is defined by Broue and Puig [1]. Let B be a block
of G and e a corresponding central primitive idempotent of FG. We define
the Brauer homomorphism Br; with respect to P by the canonical homomor-
phism V?—V(P). Now le sp: Z(FG)—Z(FC4(P)) be the classical Brauer ho-
momorphism with respect to P. Then we can prove that Bry(ve)=Bri(v)sp(e)
for the element v of V?. The main theorem is immediate from this fact.
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