<table>
<thead>
<tr>
<th>Title</th>
<th>An application on Nagao's lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ikeda, Tadashi; Sasaki, Hiroki; Yoshida, Tomoyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 22(2) P.391–P.392</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1985</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/4258</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/4258</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
</tbody>
</table>
With time, the importance of Nagao’s lemma has grown in modular representation theory of finite groups. In this note, we add another application.

Let G be a finite group, and let F be a field of characteristic $p > 0$. For a subgroup H of G and a (right) F^G-module V, we denote V^H the fixed-point-set of H in V, so that V^H is an $FN_G(H)$-module. The trace map $\text{Tr}_H^G: V^H \to V^G$ is defined by $\text{Tr}_H^G(v) = \sum g v g$, where g runs over a complete set of representatives of $H \setminus G$.

Main Theorem. Let V be an indecomposable F^G-module in a block B, and let P be a p-subgroup of G. Then each composition factor of the $FN_G(P)$-module AJP, where A runs over proper subgroups of P, belongs to a block b such that $b^G = B$.

Remark. If $V(P) \neq 0$, then P is contained in a defect group of B.

Proof. of the theorem. Set $N = N_G(P)$. Let e be the centrally primitive idempotent of F^G corresponding to B. Let $s: Z(FG) \to Z(FN)$ be the Brauer homomorphism. Then Nagao’s lemma ([2], Chapter III, Theorem 7.5) states that

$$V_N = V_N s(e) \oplus W_1 \oplus \cdots \oplus W_n$$

as FN-modules, where each W_i is Q_i-projective FN-module for some p-subgroup Q_i of N with $P \nmid Q_i$. Thus in order to prove the theorem, it will suffice to show that

$$W_i^P \subseteq \sum_{A \nmid P} \text{Tr}^P_A(V^A),$$

where A runs over proper subgroups of P. But this follows directly from the following lemma, and so the theorem is proved.

Lemma. Let N be a finite group with a normal p-subgroup P. Let W be a Q-projective FN-module, where $Q \nmid P$. Then
where A runs over proper subgroups of P.

Proof. In order to prove this lemma, we may assume that for some FQ-module U,

\[W = \text{Ind}_Q^P (U). \]

Then by Mackey decomposition, we have that

\[W = \bigoplus_n \text{Ind}_{P^Q_n}^P (U_{P^Q_n}). \]

where n runs over a complete set of representatives of $Q\setminus N \cap P$ and $Q^s = n^{-1}Qn$. Let n be an element of N and set $R = P \cap Q^s$, $X = U_{R}$. Since P is normal in N and Q is not contained in P, we have that R is a proper subgroup of P. Thus, in order to prove the lemma, it will suffice to show that

\[(\text{Ind}_R^P (X))^p \subseteq \text{Tr}_R^P (\text{Ind}_R^P (X)^p). \]

But this follows directly from an easy calculation (eq. [2] Chapter II Lemma 3.4). The lemma is proved.

Remark. The main theorem can be proved also by the Brauer homomorphism of modules, which is defined by Broué and Puig [1]. Let B be a block of G and e a corresponding central primitive idempotent of FG. We define the Brauer homomorphism Br_P^G with respect to P by the canonical homomorphism $V^p \rightarrow V(P)$. Now let $s_P : Z(FG) \rightarrow Z(FC_G(P))$ be the classical Brauer homomorphism with respect to P. Then we can prove that $Br_P^G(ve) = Br_P^G(v)s_P(e)$ for the element v of V^p. The main theorem is immediate from this fact.

References

Tadasi Ikeda and Tomoyuki Yoshida
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060, Japan

Hiroki Sasaki
Department of Mathematics
Faculty of Education
Yamaguchi University
Yamaguchi 753, Japan