

Title	On some sharply t-transitive sets
Author(s)	Yoshizawa, Mitsuo
Citation	Osaka Journal of Mathematics. 1987, 24(3), p. 461-464
Version Type	VoR
URL	https://doi.org/10.18910/4259
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

ON SOME SHARPLY T-TRANSITIVE SETS

MITSUO YOSHIZAWA

(Received February 5, 1986)

Let S_k be the symmetric group on a set $\Omega = \{1, 2, \dots, k\}$ and t be an integer with $t \ge 2$. A sharply t-transitive set G on Ω is a subset of S_k with the property that for every two ordered t-tuples $\alpha_1, \dots, \alpha_t$ and β_1, \dots, β_t of elements in $\Omega(\alpha_i \ne \alpha_j, \beta_i \ne \beta_j)$ for $i \ne j$ there uniquely exists $g \in G$ which takes α_i into $\beta_i : (\alpha_i)g = \beta_i(i=1,\dots,t)$. If t=k-1, G is S_k . So from now on we assume t < k. Although the sharply t-transitive groups were classified by Jordan and Zassenhaus (cf. [1]), it seems difficult to classify the sharply t-transitive sets. Now we define a distance d in S_k as follows: For two elements g_1 and g_2 in S_k ,

$$d(g_1,g_2) = |\{\alpha \in \Omega \colon (\alpha)g_1 \neq (\alpha)g_2\}|.$$

Then (S_k, d) is a metric space and we have the following two propositions.

Proposition 1. Let g be an element in a sharply t-transitive set G on $\Omega(|\Omega| = k)$ and $x_i(0 \le i \le k)$ denote the number of elements $g' \in G$ satisfying d(g, g') = k - i. Then the following equality holds for $i = 0, 1, \dots, t-1$:

$$x_i = \sum_{j=i}^{t-1} {j \choose i} {k \choose j} \{ (k-j) (k-j-1) \cdots (k-t+1) - 1 \} (-1)^{j+i}$$
.

In particular x_i 's are uniquely determined independent of the choice of an element g in G.

Proof. Counting in two ways the number of the set $\{(g', (\alpha_1, \dots, \alpha_i)): g' \text{ an element} \neq g, \{\alpha_1, \dots, \alpha_i\} \subseteq \Omega, \alpha_u \neq \alpha_v \text{ for } u \neq v, (\alpha_j)g = (\alpha_j)g' \text{ for } j=1, \dots, i.\}$ gives the following equality for $i=0, 1, \dots, t-1$:

$$x_i + \binom{i+1}{i} x_{i+1} + \cdots + \binom{t-1}{i} x_{t-1} = \binom{k}{i} \{ (k-i) \ (k-i-1) \cdots (k-t+1) - 1 \} \ .$$

Hence we have

$$M \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{t-1} \end{pmatrix} = \begin{pmatrix} \binom{k}{0} \{k(k-1)\cdots(k-t+1)-1\} \\ \binom{k}{1} \{(k-1)(k-2)\cdots(k-t+1)-1\} \\ \vdots \\ \binom{k}{t-1} \{(k-t+1)-1\} \end{pmatrix},$$

where $M = (a_{ij})$ is the $t \times t$ matrix with $a_{ij} = {j \choose i} (0 \le i, j \le t - 1)$. Since the inverse matrix $M^{-1} = (b_{ij})$ is expressed by $b_{ij} = {j \choose i} (-1)^{i+j}$, we get the result.

Proposition 2. Let g_1 and g_2 be elements in S_k . Then $d(g_1, g_2) = d(gg_1, gg_2) = d(g_1g, g_2g)$ holds for any element g in S_k .

We call a sharply t-transitive set G schematic if it forms an association scheme [2] with the relations determined by the distance. That is, if $d(g_1, g_2) = k - h(g_1, g_2) = G$, then the number $f(i, j, h) = |\{g \in G: d(g, g_1) = k - i, d(g, g_2) = k - j\}|$ does not depend on the choice of g_1 and g_2 (with $d(g_1, g_2) = k - h$), but it depends on $i, j, h(0 \le i, j, h \le k)$. We define f(i, j, h) = 0 when there exist no elements g_1 and g_2 with $d(g_1, g_2) = k - h$. We find that A_5 (the alternating group of degree five) and any sharply two-transitive set are schematic (cf. [3, Theorem 5.25]). Another example is given by

Proposition 3. PSL(2,8) is schematic sharply three-transitive set.

Proof. PSL(2, 8) is a sharply three-transitive group on a set Ω of nine letters. We may assume PSL(2, 8)= $\langle a, b, c: a=(1\ 2\ 3\ 4\ 5\ 6\ 7), b=(1\ 8)\ (2\ 4)\ (3\ 7)\ (5\ 6), c=(2\ 7)\ (3\ 6)\ (4\ 5)\ (8\ 9)>=G$ with $\Omega=\{1,2,\cdots,9\}$ (cf. [4]). Let g and g_1 be elements in G with $d(g,g_1)=9-h$. Let us set $f(i,j;g,g_1)=|\{g'\in G: d(g',g)=9-i,d(g',g_1)=9-j\}|$. We want to show that $f(i,j;g,g_1)$ depends on i,j,h, but it does not depend on the choice of g and g_1 . By Proposition 2 we may assume $g_1=e$ (the identity). Since h=1 if and only if g is an involution and since all involutions are conjugate to one another, we may assume h=0 or 2. By the Sylow's theorem if h=0 or 2, then g is conjugate to $u^n(1 \le n \le 8)$ or $a^n(1 \le n \le 6)$ respectively, where $u=a^3bc=(1\ 7\ 2\ 3\ 4\ 6\ 5\ 9\ 8)$. Now a,a^2,\cdots , and a^6 are conjugate to one another and u,u^2,u^4,u^5,u^7 and u^8 are also conjugate to one another in the automorphism group PL(2, 8) of PSL(2, 8). Hence we may assume h=0, and it is sufficient to show that $f(i,j;u,e)=f(i,j;u^3,e)$ holds for each i and j $(0 \le i,j \le 2)$. But it can easily be found by computer calculations. Really if we set $f(i,j;u^n,e)=u_{ij}$ (n=1,3), we can get

$$\begin{pmatrix} u_{ij} \end{pmatrix} = \begin{pmatrix} 88 & 27 & 108 \\ 27 & 9 & 27 \\ 108 & 27 & 81 \end{pmatrix} \quad (0 \le i, j \le 2) .$$

Our main result is

Theorem. If a sharply t-transitive set G on $\Omega(|\Omega|=k>t\geq 2)$ is schematic, then $2t-1\leq k$.

Proof. First we remark that S_4 (the symmetric group of degree four) is not

schematic. Hence the theorem holds for t=2,3. Let us suppose that there exists a schematic sharply t-transitive set G on $\Omega(|\Omega|=k>t)$ with $t\geq 4$ and $k\leq 2t-2$. Let us set n=k-t. Then by Proposition 1, there exist two elements g_1 and g_2 in G with $d(g_1,g_2)=n+1$. If we set $\Gamma=\{\alpha_1,\dots,\alpha_{n+1}\}=\{\alpha\in\Omega: (\alpha)g_1+\alpha(\alpha)g_2\}$, then we have

$$f(t-1, t-n-2, t-1) = |\{g \in G : d(g, g_1) = n+1, d(g, g_2) = 2n+2\}|$$

$$= |\{g \in G : (\alpha_i)g = (\alpha_i)g_1 (i = 1, \dots, n+1), |\{\beta \in \Omega - \Gamma : (\beta)g \neq (\beta)g_1\}| = n+1\}|$$

$$= {t-1 \choose n+1} n.$$

Since $f(t-1, t-1, t-n-2) = f(t-1, t-n-2, t-1)x_{t-1}/x_{t-n-2}$ holds (cf. [2]), we have the following by Proposition 1:

$$= \frac{\binom{t-1}{n+1}n\binom{t+n}{n+1}n}{\sum\limits_{i=t-n-2}^{t-1}\binom{i}{t-n-2}\binom{t+n}{i}\{(t+n-i)(t+n-i-1)\cdots(n+1)-1\}(-1)^{i+t-n+2}}.$$

On the denominator of the above we have

$$\binom{i}{t-n-2} \binom{t+n}{i} \{ (t+n-i) (t+n-i-1) \cdots (n+1) - 1 \}$$

$$> \binom{i+1}{t-n-2} \binom{t+n}{i+1} \{ (t+n-i-1) (t+n-i-2) \cdots (n+1) - 1 \}$$

for i=t-n-2, t-n-1, ..., t-2, because we have

$$\frac{\binom{i}{t-n-2}\binom{t+n}{i}\{(t+n-i)(t+n-i-1)\cdots(n+1)-1\}}{\binom{i+1}{t-n-2}\binom{t+n}{i+1}\{(t+n-i-1)(t+n-i-2)\cdots(n+1)-1\}} > \frac{\binom{i}{t-n-2}\binom{t+n}{i}(t+n-i)}{\binom{i+1}{t-n-2}\binom{t+n}{i+1}} = i+1-t+n+2 \ge 1.$$

If n=1, then we have

$$f(t-1, t-1, t-3) < \left\{ \binom{t-1}{2} \binom{t+1}{2} \right\} / \left\{ \binom{t-1}{t-3} \binom{t+1}{t-1} \right\} = 1$$

which contradicts that f(t-1, t-1, t-3) is a positive integer. Thus we have $n \ge 2$. Hence,

$$f(t-1, t-1, t-n-2) <$$

$$<\frac{\binom{t-1}{n+1}\binom{t+n}{n+1}n^{2}}{\binom{t-n}{t-n-2}\binom{t+n}{t-n}\{(2n)\cdots(n+1)-1\}-\binom{t-n+1}{t-n-2}\binom{t+n}{t-n+1}\{(2n-1)\cdots(n+1)-1\}}\\<\frac{\binom{t-1}{t-n-2}\binom{t+n}{t-n-2}\binom{t+n}{t-n+1}n^{2}}{\binom{t-n}{2}\binom{t+n}{2n}(2n)\cdots(n+1)-\binom{t-n+1}{3}\binom{t+n}{2n-1}(2n-1)\cdots(n+1)}\\=\frac{3(2n)!\,n^{2}}{(2n)\cdots(n+1)\,(n+1)!\,(n+1)!}=\frac{3n^{2}}{(n+1)\,(n+1)!}<1\;,$$

a contradiction. Thus we complete the proof.

References

- [1] N. Blackburn and B. Huppert: Finite groups III, Springer-Verlag, Berlin/Heidelberg/New-York, 1982.
- [2] R.C. Bose and D.M. Mesner: On linear associative algebras corresponding to association schemes of partially balanced designs, Ann. Math. Statist. 30 (1959), 21-38.
- [3] P. Delsarte: An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973).
- [4] C.C. Sims: Computational methods in permutation groups, Computational Problems in Abstract Algebra, (Oxford 1967), (J. Leech, Ed.), 169-184, Pergamon Press, Oxford/London/Edinburgh, 1970.

Department of Mathematics Josai University 1-1 Keyakidai, Sakado 350-02, Japan