

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

ON SOME SHARPLY T-TRANSITIVE SETS

MITSUO YOSHIZAWA

(Received February 5, 1986)

Let S_k be the symmetric group on a set $\Omega = \{1, 2, \dots, k\}$ and *t* be an integer with $t \ge 2$. A sharply *t*-transitive set *G* on Ω is a subset of S_k with the property that for every two ordered *t*-tuples $\alpha_1, \dots, \alpha_t$ and β_1, \dots, β_t of elements in $\Omega(\alpha_t +$ $(\alpha_j, \beta_i \neq \beta_j \text{ for } i \neq j)$ there uniquely exists $g \in G$ which takes α_i into $\beta_i:(\alpha_i)g=$ $B_i(i=1, \dots, t)$. If $t=k-1$, G is S_k . So from now on we assume $t < k$. Although the sharply *t*-transitive groups were classified by Jordan and Zassenhaus (cf. [1]), it seems difficult to classify the sharply t -transitive sets. Now we define a distance *d* in S_k as follows: For two elements g_1 and g_2 in S_k ,

$$
d(g_1, g_2) = |\{\alpha \in \Omega \colon (\alpha)g_1 \neq (\alpha)g_2\}|.
$$

Then (S_k, d) is a metric space and we have the following two propositions.

Proposition 1. Let g be an element in a sharply t-transitive set G on $\Omega(|\Omega|)$ $(k=k)$ and $x_i(0 \leq i \leq k)$ denote the number of elements $g' \in G$ satisfying $d(g,g') = k-i$. *Then the following equality holds for* $i=0, 1, \dots, t-1$ *:*

$$
x_i = \sum_{j=i}^{i-1} {j \choose i} {k \choose j} \{ (k-j) (k-j-1) \cdots (k-t+1) - 1 \} (-1)^{j+i}.
$$

In particular x/s are uniquely determined independent of the choice of an element g in G.

Proof. Counting in two ways the number of the set $\{(g', (\alpha_1, \dots, \alpha_i)\colon g'\})$ an element $\neq g$, $\{\alpha_1, \dots, \alpha_i\} \subseteq \Omega$, $\alpha_u \neq \alpha_v$ for $u \neq v$, $(\alpha_j)g = (\alpha_j)g'$ for $j = 1$, gives the following equality for $i=0, 1, \dots, t-1$:

$$
x_i + {i+1 \choose i} x_{i+1} + \cdots + {t-1 \choose i} x_{t-1} = {k \choose i} \{(k-i) (k-i-1) \cdots (k-t+1) - 1\}.
$$

Hence we have

$$
M\begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{t-1} \end{pmatrix} = \begin{pmatrix} \binom{k}{0} \{k(k-1)\cdots(k-t+1)-1\} \\ \binom{k}{1} \{(k-1)(k-2)\cdots(k-t+1)-1\} \\ \vdots \\ \binom{k}{t-1} \{(k-t+1)-1\} \end{pmatrix},
$$

462 M. YOSHIZAWA

where $M=[a_{ij}]$ is the $t \times t$ matrix with $a_{ij}=(\begin{matrix} j \\ i \end{matrix})(0 \leq i, j \leq t-1)$. Since the inverse matrix $M^{-1} = (b_{ij})$ is expressed by $b_{ij} = (\frac{J}{i})(-1)^{i+j}$, we get the result.

Proposition 2. Let g_1 and g_2 be elements in S_k . Then $d(g_1, g_2) = d(gg_1, gg_2)$ $= d(g_1g, g_2g)$ holds for any element g in S_k .

We call a sharply t -transitive set G schematic if it forms an association scheme [2] with the relations determined by the distance. That is, if $d(g_1,$ $g_2 = k - h(g_1, g_2 \in G)$, then the number $f(i, j, h) = |\{g \in G : d(g, g_1) = k - i, d(g, g_2)\}|$ $=k-j$ } *|* does not depend on the choice of g_1 and g_2 (with $d(g_1, g_2)=k-h$), but it depends on $i, j, h(0 \leq i, j, h \leq k)$. We define $f(i,j,h)=0$ when there exist no elements g_1 and g_2 with $d(g_1, g_2) = k - h$. We find that A_5 (the alternating group of degree five) and any sharply two-transitive set are schematic (cf. [3, Theorem 5.25]). Another example is given by

Proposition 3. $PSL(2,8)$ is schematic sharply three-transitive set.

Proof. PSL(2, 8) is a sharply three-transitive group on a set $Ω$ of nine letters. We may assume $PSL(2, 8) = \langle a, b, c: a = (1 2 3 4 5 6 7), b = (1 8) (2 4)$ (3 7) (5 6), c=(2 7) (3 6) (4 5) (8 9) $\succeq G$ with $\Omega = \{1, 2, \dots, 9\}$ (cf. [4]). Let g be elements in G with $d(g, g_1) = 9-h$. Let us set $f(i, j; g, g_1) = |g' \in G$: $=9-i$, $d(g',g_1)=9-j$ } |. We want to show that $f(i,j;g,g_1)$ depends on $i,j,h,$ but it does not depend on the choice of g and g ₁. By Proposition 2 we may assume $g_1 = e$ (the identity). Since $h=1$ if and only if g is an involution and since all involutions are conjugate to one another, we may assume $h=0$ or 2. By the Sylow's theorem if $h=0$ or 2, then g is conjugate to $u^*(1 \le n \le 8)$ or $a^*(1 \le n \le 6)$ respectively, where $u = a^3bc = (1 \ 7 \ 2 \ 3 \ 4 \ 6 \ 5 \ 9 \ 8)$. Now a, a^2, \dots , and a^6 are conjugate to one another and *u*, u^2 , u^4 , u^5 , u^7 and u^8 are also conjugate to one another in the automorphism group $PL(2, 8)$ of $PSL(2, 8)$. Hence we may assume $h=0$, and it is sufficient to show that $f(i,j;u,e)=f(i,j;u^3,e)$ holds for each *i* and j ($0 \le i, j \le 2$). But it can easily be found by computer calculations. Really if we set $f(i, j; u^*, e) = u_{ij}$ $(n=1, 3)$, we can get

$$
\begin{pmatrix} u_{ij} \\ u_{ij} \end{pmatrix} = \begin{pmatrix} 88 & 27 & 108 \\ 27 & 9 & 27 \\ 108 & 27 & 81 \end{pmatrix} \quad (0 \leq i, j \leq 2).
$$

Our main result is

Theorem. If a sharply t-transitive set G on $\Omega(|\Omega|=k>t\geq 2)$ is sche*matic, then* $2t-1 \leq k$.

Proof. First we remark that *S⁴* (the symmetric group of degree four) is not

schematic. Hence the theorem holds for $t=2, 3$. Let us suppose that there exists a schematic sharply *t*-transitive set *G* on $\Omega(|\Omega| = k > t)$ with $t \ge 4$ and $k \le$ 2*t*—2. Let us set $n=k-t$. Then by Proposition 1, there exist two elements *g*₁ and *g*₂ in *G* with $d(g_1, g_2) = n+1$. If we set $\Gamma = {\alpha_1, \dots, \alpha_{n+1}} =$ $\pm(\alpha)g_2$, then we have

$$
f(t-1, t-n-2, t-1) = |\{g \in G : d(g, g_1) = n+1, d(g, g_2) = 2n+2\}|
$$

= |\{g \in G : (\alpha_i)g = (\alpha_i)g_1 (i = 1, \cdots, n+1), |\{\beta \in \Omega - \Gamma : (\beta)g \neq (\beta)g_1\}| = n+1\}|
= {t-1 \choose n+1} n.

Since $f(t-1, t-1, t-n-2)=f(t-1, t-n-2, t-1)x_{t-1}/x_{t-n-2}$ holds (cf. [2]), we have the following by Proposition 1:

$$
f(t-1, t-1, t-n-2)
$$

=
$$
\frac{{t-1 \choose n+1} n {t+n \choose n+1} n}{\sum_{i=t-n-2}^{t-1} {i \choose t-n-2} {t+n \choose i} {t+n-i \choose t+n-i-1} \cdots (n+1) -1} (-1)^{i+t-n+2}
$$

On the denominator of the above we have

$$
\binom{i}{t-n-2}\binom{t+n}{i}\{(t+n-i)(t+n-i-1)\cdots(n+1)-1\}
$$

>
$$
\binom{i+1}{t-n-2}\binom{t+n}{i+1}\{(t+n-i-1)(t+n-i-2)\cdots(n+1)-1\}
$$

for $i=t-n-2$, $t-n-1$, \cdots , $t-2$, because we have

$$
\frac{\binom{i}{t-n-2}\binom{t+n}{i}\{(t+n-i)(t+n-i-1)\cdots(n+1)-1\}}{\binom{i+1}{t-n-2}\binom{t+n}{i+1}\{(t+n-i-1)(t+n-i-2)\cdots(n+1)-1\}}\n> \frac{\binom{i}{t-n-2}\binom{t+n}{i}(t+n-i)}{\binom{i+1}{t-n-2}\binom{t+n}{i+1}} = i+1-t+n+2 \ge 1.
$$

If n=l, then we have

$$
f(t-1, t-1, t-3) < \left\{ {t-1 \choose 2} {t+1 \choose 2} \right\} / \left\{ {t-1 \choose t-3} {t+1 \choose t-1} \right\} = 1,
$$

which contradicts that $f(t-1, t-1, t-3)$ is a positive integer. Thus we have $n \geq 2$. Hence,

$$
f(t-1, t-1, t-n-2) <
$$

$$
\leq \frac{\binom{t-1}{n+1}\binom{t+n}{n+1}n^2}{\binom{t-n}{t-n-2}\binom{t+n}{t-n}!(2n)\cdots(n+1)-1}-\binom{t-n+1}{t-n-2}\binom{t+n}{t-n+1}!(2n-1)\cdots(n+1)-1} \n
$$
\leq \frac{\binom{t-1}{n+1}\binom{t+n}{n+1}n^2}{\binom{t-n}{2}\binom{t+n}{2n}(2n)\cdots(n+1)-\binom{t-n+1}{3}\binom{t+n}{2n-1}(2n-1)\cdots(n+1)}{3(2n)!\,n^2} = \frac{3n^2}{(2n)\cdots(n+1)(n+1)!\,(n+1)!} = \frac{3n^2}{(n+1)(n+1)!} < 1,
$$
$$

a contradiction. Thus we complete the proof.

References

- [1] N. Blackburn and B. Huppert: Finite groups III, Springer-Verlag, Berlin/ Heidelberg/New-York, 1982.
- [2] R.C. Bose and D.M. Mesner: *On linear associative algebras corresponding to association schemes of partially balanced designs,* Ann. Math. Statist. 30 (1959), 21-38.
- [3] P. Delsarte: *An algebraic approach to the association schemes of coding theory,* Philips Res. Rep. Suppl. 10 (1973).
- [4] C.C. Sims: *Computational methods in permutation groups,* Computational Problems in Abstract Algebra, (Oxford 1967), (J. Leech, Ed.), 169-184, Pergamon Press, Oxford/London/Edinburgh, 1970.

Department of Mathematics Josai University 1-1 Keyakidai, Sakado 350-02, Japan