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1. Introduction

Throughout this paper all complex spaces are assumed to be reduced and with
countable topology.

Let X be a complex spac&X is said to bmbeddablef it can be realized as a
complex analytic subset di™ x P" for some positive integerss and . For instance,
one checks that a complex curve of bounded Zariski dimension is embeddable.

We say thatX is Tconvexif X is a modification at finitely many points of a Stein
spaceY ,i.e, there exist a compact analytic s&tC X without isolated points and a
proper holomorphic mapr : X — Y such thatr,.(Ox) = Oy and = induces an
isomorphism betweex \ S andY \ 7(S). S is called theexceptional sebf X and Y
the Remmert’s reductiof X. See [16] for further properties of 1-convex spaces.

A criterion of Schneider [18] says that acbnvex spaceX of bounded Zariski
dimension is embeddable #nd only if there is a holomorphic line bundlé  ovef
such thatL|s is ample

Using this, Banica [3] proved that a 1-convex complex surfade of bounded
Zariski dimension issmbeddablgrovided thatX does not admit compact two dimen-
sional irreducible components. By extending this Coltoiu ([4], [5]) showed that every
connected 1-convex manifold  with 1-dimensional exceptional set is embeddable if
dim(X) > 3. This is true also for threefoldX  with some exceptions when the excep-
tional set contains ®* ([5]).

In this short note we reconsider Coltoiu’s example from another point of view.
This is based on the following proposition which may be of independent interest.

Proposition 1. Let ¥ C P" be a hypersurface of degre¢  with isolated sin-
gularities m : M — Y a resolution of singularitiesand H C P" a hyperplane
which avoids the singular locus af and such tHat:= H N Y is smooth. Set
X =M\ m~XI"). Then forn > 4 the following statements are equivalent
(&) X is embeddable.

(b) X is Kahler.
(c) M is projective.

By this and an example due to Moishezon [12] (see also [6]) we obtain:
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Theorem 1. There exists al-convex threefoldX with exceptional sBt such
that X is not Kahler; a fortiori X is not embeddable.

For the proof of Proposition 1 we use several short exact sequences, Bott's for-
mula, Thom’s isomorphism, and some facts on pluriharmonic functions.

Also employing recent results due to Fujiki [9] we prove (see the next section for
definitions):

Theorem 2. Letw : X — Y be a finite holomorphic map of complex spaces
with X of bounded Zariski dimension. ¥ is maximal arnd is Hodpen it holds
(@) Y compact impliesX projective.
(b) Y is 1-convex impliesX idl-convex and embeddable.

Remark 1. Note that by [23], 1-convexity is invariant under finite holomorphic
surjections. However, this does not hold for embeddability.

As a consequence of Theorem 2 we improve a well-known projectivity criterion
due to Grauert [10] to:

Proposition 2. Let X be a compact complex spaceXIf is Hodge and maximal
then X is projective.

and the embeddability result due to Th. Peternell ([17], Theorem 2.6) to:

Proposition 3. Let X be al-convex space of bounded Zariski dimension such
that X is Hodge and maximal. Thexi  is embeddable.

2. Continuous weakly pluriharmonic functions

Let X be a complex space. As usu&y denotes the sheaf of germs of pluri-
harmonic functions onX . Then the canonical m&8R — Px given by f — Ref
induces a short exact sequence

(*) 0—R—0Ox — Py — 0.

Considerﬁx = the sheaf ofcontinuous weakly pluriharmonic functignse., for
every open subsdl  of Py (U) consists of thosé € CO(U, R) which are plurihar-
monic on Regl ).

Clearly Py C Py, and if Oy denotes the sheaf of continuous weakly holomorphic
functions, we have a natural mapy — Py given by f — Ref.

Here we prove:
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Proposition 4. The canonical short sequence
0—>R—>@X—>ﬁx—>0,
is exact.

Proof. We check only the surjectivity @y — Py. We do this in two steps.

Step 1. SupposeX is normal. Let: M — X be a resolution of singularities.
Thenr, Py = Px by Proposition 2.1 in [9]. Now, since on a complex manifold a con-
tinuous real-valued functiop is pluriharmonic if and only ify and —¢ are plurisub-
harmonic we obtain thaPy = Py, whence the desired surjectivity in view of)(

STEP 2. The general case. Let : Y — X be the normalization ofX . Let
x, € X, U an open neighborhood of, , arnde 73X(U). Then, by Step 1.hov €
Py(v~1(U)). By Proposition 2.3 in [9] after shrinking/ > x,, there is f € @X(U)
such that R¢ # . Note that iloc. cit. this is done under the additional hypothesis
h € C*(U, R). But our case followsnutatis mutandiswhence the proposition. [

Recall ([7], pp. 122-126) that a complex space is said tanbeimalif O =
(52 and that every complex space admitsnaximalizationX, i.e, X is maximal
and there is a holomorphic homeomorphigm X — X which induces a biholomor-
phic map betweenX \ 7~ }(M(X)) and X \ M(X), where M ¥ ) is the non-maximal
locus of X ,i.e, M(X)={x € X; Ox, # (5x,x}. Clearly every normal complex space
is maximal. For this reason, maximal complex spaces are also called “weakly normal”.

Corollary 1. If X is maximal then Py :73X.

Corollary 2. If X is normal then every pluriharmonic function oReg(X ) ex-
tends uniquely to a pluriharmonic function on

Proof. Sinceh and-h extend uniquely to plurisubharmonic functiopsand
on X, we getp = —y. Hencey is continuous, whence is pluriharmonic by Corol-
lary 1. ]

By a d-closed, real(1, 1)}form (in the sense of Grauert [10]) on a complex space
X we mean, ad -closed, real,(1 1)-formm on Reg ) such that every point € X
admits an open neighborhodd  on which therepis C?(U,R) with w = iddyp on
Reg(U ). Thisy is called alocal potential functionfor w. We say thatv is Kahler if
the local potentials may be chosen strongly plurisubharmonic.

Alternatively, by Moishezon [14] we define@ -closed, real (1 1)-formXn as a
collection {(U;, ¢,)} je; Where {U,}; is an open covering ok ang; € C3U;, R)
are such thaty; — ¢, is pluriharmonic. Two such collection$(U;, ¢;)};jcs and
{(Vk, ¥i) }rex define the same form ifp; — ¢y is pluriharmonic onU; N V; for all
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indicesj andk .

Corollary 3. For a maximal complex spac& the above two notionsdof -
closed real (1, 1}forms coincide in an obvious sense.

Proof. This is immediate by Corollary 1. O

To everyd -closed, real (1 1)-forrm on X we associate canonically an element
of HY(X, Px), which in turn goes into itsle Rhamclass ] € H2(X,R) via the co-
homology sequence from Proposition 4.

We say thatw is integral if its de Rham class belongs to I®M¢(X,7Z) —
H?(X, R)).

One has the following (see [10], proof of Satz 3)

Lemma 1. If w is an integral form on a maximal spacé, then there is a holo-
morphic line bundlel. — X together with a clasg"?-hermitean metric on. whose
Chern form isw. In particular, if w is K&hler, then L is positive.

Let X be a complex spaceX is said to Kahler if X has a Kahler form (in
the sense of Grauert). We say th&t Hedgeif it admits a Kahler form which is
integral.

Proposition 5. Letw :Y — X be a finite holomorphic map of complex spaces
such thatX is Hodge. Ther is Hodge. In particylne maximalizationX and the
normalizationX* of X are Hodge too.

Proof. Let{(U;,v;)};, U; € X, defines a Khler formw on X. LetV; € U;
such that{V;}, is also a covering o . Then by [22] for evefyc C°(X,R), § > 0,
there exists) € C*(Y,R), 0 < ¢ < §, such thato; :=;on+1 are strongly plurisub-
harmonic onW; :=r—%(Vv;) for all j; hence{(W;, c;)}; defines a Khler form m*w
on Y. Of courser*w depends ony and ¢, but this is irrelevant for our discussion.
Moreover, in view of a canonical commutative diagram and Proposition 4, if in-
tegral, thent*w is integral too. ]

Now Lemma 1 and the criteria of Grauert [10] and Schneider [18] give Theo-
rem 2.

RemARk 2. There is a compact, normal, two dimensional complex space  with
only one singularity such that Rexj( ) isakler, andX isnot Kahler. (This follows
from [14] and [10].)
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3. Proof of proposition 1

The only nontrivial implication is (b)= (c) which we now consider. First we
state:

CLam. The restriction mapZi(M, Py) — HY(X, Py) is surjective.

The proof of this will be done in several steps.

STEP 1. For every abelian grougG  we havB (T, G) = 0.

Indeed, by a theorem of Siu [19], &\T is a Stein subspace @' \T, it admits
a Stein open neighborhoafl ; thi®\T' = DU(P"\Y) is a union of two Stein open
subsets. On the other hand, if an -dimensional complex manfiold is a unign of
Stein open subsets, thel Q,(G ) =0 foK n — g. The assertion follows easily.

STEP 2. H?(Y,Oy)=0.

For this, we letZy be the coherent ideal sheaf &f ®f. ThenZy, ~ O(—[Y]),
where V'] denotes the canonical line bundle associated to the divisor defin&d by

Now Bott's formula gives the vanishing off’ P(, O(k)) for integersi, k with
1 <i < n, and by the long exact cohomology sequence associated to the short exact
sequence 0— Zy — Op — Oy — 0, the assertion of Step 2 results immediately.

STEP 3. The mapsHY(M, O) — HY(X, ) and H3(M, ©) — H?*(X, O) are
surjective and injective respectively

Let V be an arbitrary open neighborhood Bf Ik . Singe\ I' is Stein,
the Mayer-Vietoris sequence faf =Y'(\ ') U V and Step 2 give that the maps
HYV,0) — HYV\T,0) and H*(V, ©0) — H?(V\T, O) are surjective and injec-
tive respectively.

Assume nowV C Reg( ); hencer—%(V) is biholomorphic toV viar. This and
the above discussion plus the Mayer-Vietoris sequence\for X Lsr—%(V) completes
the proof of Step 3.

STEP 4. H?*(M,G) — H?(X, G) is surjective for every abelian groug.

We view I' as a smooth complex hypersurfaceMh . The inclusion M gives
rise to an exact cohomology sequence (coefficients in any abelian gfroup )

. — H'M,X:G) — H'(M;G) — H (X;G) — H™"'(M, X;G) — ---

On the other hand sinc& is a non-singular complex hypersurface, a tubular
neighborhood off” is diffeomorphic to a neighborhood of the 0-section of the normal
bundle ofI" inM . This bundle being holomorphic is naturally oriented. We thus have,
see [2], a Thom isomorphism:

H'(M,X;G) =¥ H %T;G),

whence the assertion of Step 4 using Step 1.
(e) The proof of the claim follows by diagram chasing using Steps 3 and 4 and
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the next commutative diagram with exact rows:

HYM,©) — HYM,P) — H?*M,R) — H3*M, O)

! ! ! l
HYX,0) — HYX,P) — H?*X,R) — H?*(X,0),

(e) For the proof of the proposition we Ie’f,b1 be the sheaf of germs of real
smooth (1 1)-forms omM  which aré -closed. As usug), represents the sheaf of
germs of smooth real functions af . The short exact sequencd on

0— Py — Euw — K3t — 0,

where the last non trivial map is given hy — /=190y, induces a commutative
diagram with exact rows:

HO(M, Ey) — HO(M,KyY — HYM,Py) — O

! ! ! !
Ho(X, Ey) — HO(X,KYYH — HYX,Py) — O

By diagram chasing and the above claimuifis the Kahler form of X , then there are:
a smooth,d -closed, real (1 1)-forma on M and a smooth real-valued functignon
X such that

(1 aly —w =v—100¢.

Now, selecty € C*°(X, R) which vanishes on a neighborhostl  of *(Sing())
and equals 1 outside a compact subsetXof . By, the smooth (1 1)-formv +
V—=100(xy) on X extends trivially to a smooth, real, aad -closed (1 1)-fasnon
M.

Let 8 be the canonical &hler form onP". For everyc > 0 define ad -closed
(1, 1)-form @, on M by setting:

Te 1= B+t (B).

Clearly w, restricted toQ2 is positive definite for every> 0. On the other hand, there
is ¢ > 0 sufficiently large such thab, is positive definite near the compact get\ .
Thus M is Kahler. SinceM is Moishezon, by [13} is projective. O

Remark 3. In [20] a similar version to our Proposition 1, without any smooth-
ness assumption o N'Y and with the additional assumption thH?(X, Ox) = 0, is
stated.
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Unfortunately, the “given proof” is wrong. See Coltoiu’s pertinent comments [5]
for this and many, many other fatal errors, which, to our unpleasant surprise, are used
again in [21].

4. Proof of theorem 1

Let Y c P* be a hypersurface of degree> 2 having a nondegenerate quadratic
point y, as its only singularity [12]. Let : V — P* be the quadratic transform with
centery, . Setx :=0~%(y,), W := the proper transform of W is a nonsingular
hypersurface iV ), and® :E N W ~ P! x P Let S be one of the two factors and
p: T — S the corresponding projection.

If N denotes the normal bundle & iW , the restriction 8f  to each of the
fibres of p is the negative of the hyperplane bundle, so the criterion of Nakano and
Fujiki applies ([8], [15]).

In other wordsW is obtained by blowing-up a non singubdr along a rational
non singular curveS . One obtains easily a holomorphic map M — Y which
resolve the singularity, of and = 1(y,)~ P

On the other hand, by [6]M is not&ler if d > 2. Therefore, if we choose a
linear hyperplaned irP*, H ¥ y,, such thatH N'Y is smooth, then by Proposition
1, X =M\ 7YY N H) is the desired example. U

Remark 4. As a counterexample for embeddability this example is due to
Coltoiu [5] where by a different method he obtained th&t(X, Ox) = 0 under the
additional hypothesis thall  intersedts transversally.

Here we emphasize the noraHler property of the example.
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