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1. Introduction et résultat
Soit R” 1’espace euclidien 4 dimensions 7z (=1); on note par x=(x,, X,,--*, X,,)
son point et pose |x|=(>1x;?)/*. Pour un nomber a avec 0<<a<n, le noyau de
=1

Riesz-Frostman d’ordre a est une fonction x— |x|*~” sur R”, et il s’écrira sym-
noliquement 7*~*.  Pour une mesure de Radon réelle x dans R”, le potentiel de
Riesz-Frostman d’ordre a par p est défini par

i (x)= 15—y " "dp()

des que la convolution 7* ™y a un sens.

La notion du principe relatif de domination a été explicitement introduite
par N. Ninomiya (cf. [4]), et il 1’a discuté pour les noyaux de Riesz-Frostamn
(cf.[5]). Cette amélioration est obtenue dans [2], qui est 1’énoncé suivant:

Soient @, B deux nombres avec 0<a=<2 et a<B<n. Alors 7** satisfait
au prinicipe de domination relatif a 7#"; c’est-a-dire, quelles que soient p, v
mesures de Radon positives dans R” a4 support compact et avec

1(3 )= P (@)dp(@) <+,

uﬁf”(x)gui‘”(x) partout sur R” dés que la méme inégalité a lieu sur le support de

> supp (u).

Cela se base tout a fait sur le principe de domination pour 7*~"%, et ce résultat
est généralisé pour les noyaux de convolution de Hunt (cf. [3]).
Dans cette note, nous discuterons son inverse.

1) Si r®~" satisfait au principe de domination relatif & lui-méme, on dit simplement que cela
satisfait au principe de domination.
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Théoréme. Soit o un nombre avec 0<a<<n. Alors l'énoncé survant a lieu
st et seulement st 0<<a=<2.

11 existe un noyau de convolution borné N (== 0) sur R" invariant par rotations®
relatif auquel r*~" satisfait au principe de domination; c'est-a-dire, quelles que soient
w une mesure de Radon positive dans R™ a support compact et ¢ une fonction non-
négative, finie et continue dans R* a support compact, ul>< Nx@ partout sur R*
dés que ui@(x) < Nxgp(x) sur supp (u).

2. Deux lemmes

Remarquons d’abord la formule de Riesz. Pour deux nombers positifs «,
B avec a+B<n, il existe une constante positive C(a, Q) telle que

r* P = Cla, B)r* 8"

(cf. [6]). On désigne par A lopérateur différentiel qui vérifie Ar*""=—¢& au
sens des distributions, ot & est la mesure de Dirac a l'origine, et alors A est
proportionnel au laplacien ordinaire sur R”. Pour 0<<a <2, la distribution
pf. r~ 2" est de la forme

2. 77() = ()~ 9 0) 2] ~*"d

pour toute fonction infiniment dérivable @ dans R” a support compact, et alors
il existe une autre constante positive A(«) telle que

Aa)(pr. r™ 2 "ypr® " = —&
au sens des distributions (cf. par exemple, [1]). On note A*’=A(a)pf. r™*~".
Soit & un nombre avec 0<<a<z; on appelle 1'indice de & I’entier non-négatif

p tel que O<%—p§ 1, et on écrit A*? = A?%AU*P=?) dés que p=1. Dans ce

cas, on a

Aw/z*rw—n_ (__1)p+1

 C(2p,a—2p)C(2Ap—1),2)--C(2, 2)8.

Lemme 1. Soient o un nombre avec 0<a<<n et N un noyau de convolution
borné sur R", et supposons que r*~" satisfait au principe de domination relatif a N.
Alors, pour une fonction non-négative, finie et contiue @ dans R* a support compact,
il existe une mesure de Radon positive u, dans R* et une constante non-négative c,
telles que

2) Un noyau de convolution N sur R” signifie une mesure de Radon positive dans R”. On
dit qu’il est borné si, quelle que soit ¢ une fonction finie et continue a4 support compact,
Nx@ est bornée.
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ufz)—!—cq, = Nx@ sur R".

En effet, d’aprés la théorie générale du balayage (cf. [4]), pour un entier
positif m, il existe une mesure de Radon positive u,, portée par B telle que

u (€)= Nxgp(x) sur R* et w;;’(x) = Nxp(x)a-p.p.p. sur B>,

ou B,={xeR";|x|<m}. Lasuite (u;‘fn))‘fn;l converge fortement vers N*g dans
L,,. avec m—-+oo®. La suite (u! )m-, étant vaguement bornée, on peut supposer
qu'il existe une mesure de Radon positive u;, dans R”* telle que (u,,)=-, converge
vaguement vers u, avec m—>-+oo. On a N *qagufja’ sur R”, d’aprés la semi-

continuité inférieure de r*~”,

La suite (#;%’),-: étant umiformément bornée sur
R”, on obtient que la suite (A**su?’)m-, converge vers A**+(N+*@) au sens des
m
distributions dans R”* avec m—oco. Donc
®/2 @) — |1 (@) ) —
A (Nxp—u2’) = lim  A™*x(u2 —u?) =0

My 00
au sens des distributions dans R". Pour une fonction infiniment dérivable +r
dans R" a support compact, la fonction (N*«p——u;",;))*\]r est bornée, et par suite
elle est égale a une constante. En effet, on a

A(a/2~p)*AP(N*(p__uiZ))*\lﬁ(x) =0
pour tout ¥ de R" dés que l'indice p de o est = 1. Dans ce cas, d'aprés le
résultat de Riesz concernant la <~C% — p)—harmonicité (cf.[6]), AP (Nsp—ul’)xyr

est égale 2 une constante, et doncelle est égalea 0. Par récurrence, (N*@p—u(’)sr
@

est aussi égale 4 une constante. La fonction yr étant quelconque, il existe une

constante non-négative ¢, telle que N *‘P—",(li):% presque partout sur R”.

Posons

1
< -—
cm) |x|=m

fl) = |
0, || >E

b

ol ¢,, est une constante positive telle que 1'on ait S fm dx=1. On a alors

7 = fim | 2(e9) ful )y

3) - Une propriété a lieu a-p.p.p. sur un sous-ensemble X de R” si, quelle que soit A une mesure
de Radon positive dans R" avec supp (1) € X et I(A;a) < oo, elle a lieu presque partout
pour A.

4) Ly, est Uespace vectoriel topologique usuel des fonctions localement sommables dans R".
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sur R* d'ot Nxp = uf;i’—{—q, partout sur R”.

Dans ce cas, la couple (uq, ¢,) est uniquement déterminée. En effet, soit
(py, €p) une autre couple qui vérifie la présente condition. Alors, quelle que
soit y» une fonction finie et continue dans R” a support compact,

11:5 (2 —u2)xp(x) = 0.

et donc ¢,=—c,. L'autre égalité u,—pg résulte immédiatement du principe

d’unicité pour r*~*® ‘

Corollaire 1. Soient o, 3 deux nombres avec 0<a, B<n. Sir®** satisfait
au principe de domination relatif a r*=", on a alors a <.

En effet, d’aprés le présent lemme, pour une fonction non-négative, finie
et continue @ dans R” 4 support compact, il existe une mesure de Radon positive
we dans R™ telle que quB):uf;;’ partout sur R”, ou @ désigne aussi la mesure

positive avec la densité @. Supposons a>43; alors, d’aprés la formule de Riesz
et le théoréme de Fubini,

uf;’,: = Up w-p ua-P% sur R*.
[

On a donc, d’apreés le principe d’unicité pour 7%,
o= C(B, a—ﬁ)uffé‘“’ .

Si @0, alors pe=+0 et par suite uf;i'"” est 4 support non-compact, d’ot une
contradiction. Par conséquent, o< 3.

Lemme 2. Soit y une mesure de Radon positive dans R™ a support compact
et invariante par rotations. Si supp (u) O, alors, quel que soit a un nombre
avec 0 < a<n, ui® est fini et continu dans R”.

De la maniére usuelle, il existe une mesure positive A dans R*= {t>0}
portée par un intervalle fermé $0 telle que

U (x) — S UE)ANT) |

ou o, est la mesure uniforme sur S,={xE R”;|x|=r} de masse totale d’unité.

Le potentiel #{* étant fini et continu dans R”, uf,.w) 1’est aussi.

5) Cela signifie que, quelle que soit 2 une mesure de Radon réelle dans R”, 1=0 si et seule-

ment si W =0. Cela résulte évidemment de
4%/ = 0 .
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3. La démonstration du théoréme

I suffit de voir que si l’énoncé dans théoréme a lieu, alors 0<<ar =<2, car son
inverse est déja connu. Soit @ une fonction non-négative, non-zéro, finie et
continue dans R” 4 support compact et invariante par rotations; alors, d’apres le
lemme 1, il existe une mesure de Radon positive A dans R” et une constante ¢=>0
telles que Nxp=u{*+-c partout sur R*. D’aprés 'unicité de la couple (A, ¢),

A est invariante par rotations. Pose =A% et C=cS<pdx. Ayant N&0,0na
(¥, C)==(0, 0). On choit deux nombers positifs 7,, 7, avec 7,<7, tels que
supp(Y)EC(0; 7,, 7,) ou supp(yr) NC(0; r..1,) = ¢,

ot C(0; r, 7,) = {x€R*; r,< |x| <r,}. En utilisant encore la théorie générale
du balayage (cf. [4]), il existe une mesure de Radon positive x’ dans R” portée
par C(0; r,, r,) telle que

P <u§®+C sur R” et uf® = uy®+C a-p.p.p. sur C(r, r,),

car u®+C=Nxgpxp sur R". Dans ce cas, p/ est uniquement déterminée,
d’aprés le principe d’énergie pour =" ®, et donc p’ est invariante par rotations.
Supposons a>2 et soit p l'indice de a; alors

APUE = AP(u+C)
au sens des distributions dans {x& R”; r,< |x| <7,}, et donc

uw-zl’) — ufpm -20

presque partout dans {x&R"; r,< |x|<r,}. On a uf{* *’=u{#"2"xp, et donc
uj*~?» est fini et continu dans R". D’autre part, d’aprés le lemme 2, ufg-2»
est fini et continu dans R*. Donc

ugd =2 = uf2=2" sur C(0; r,, 1,).
D’apres le principe de domination et le principe d'unicité pour 7*~*”~* on a
uge P <ufr -2 sur R” et uiz P £uf*~*» (resp. p’ = 0)
dés que Y40 (resp. y=0). Par conséquent.
2" (u§e 2P —uge~*”) >0 sur R” (resp. u{*~2" —uiz-2»=0)

dés que Y30 (resp. y=0). Mais cela est en contradiction avec u{@=u{»+C

6) Cela signifie que, quelle que soit A une mesure de Radon réelle dans R” avec I (| 2} ;o) <+ oo,
2=0 si et seulement si I (1;a¢)=0. Cela résulte du fait que la transformation de Fourier de
r®~" est égale 4 Cr~% (cf. [1]), ou C est une constante positive.
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sur C(0; 7, 7,), dot «<2. La démonstration est ainsi compléte.

Corollaire 2. Soit o un nombre avec 0<<a<<n. S'il existe un nombre B
avec 0< B<n tel que r*~* satisfasse au principe de domination relatif a r®=", alors
I<a=2.

Notre méthode reste valable pour les noyaux besseliens.

REMARQUE.  Soit o un nombre positif quelconque ; on note k, le noyau besselien
d’ordre a. Pour que l’énoncé suivant ait lieu, il faut et il suffit que 0<a <2.

11 existe un noyau de convolution borné N sur R” invariant par rotations tel
que k, satisfasse au principe de domination relatif @ N.

On remarque ici que k, est une fonction continue au sens large dans R”
dont la transformation de Fourier est égale a 1/1(+|x|?)** Le potentiel
besselien d’ordre @ par une mesure u est défini par

v;w(x):Sk., (x—y)du(y)

dés que cette convolution a un sens.

UNIVERSITE DE NAGOYA

Bibliographies

[11 J. Deny: Les potentiels d’énergie finie, Acta Math. 82 (1950), 107-183.

[2] M. Itd: Remarks on Ninomiya's domination principle, Proc. Japan Acad. 40 (1964),
743-746.

[3] I. Higuchi and M. 1t6: Characterization of relative domination principle, Nagoya
Math. J. 50 (1973), 175-184.

[4] N. Ninomiya: Sur le probléme du balayage généralisé, J. Math. Osaka City Univ. 12

© (1961), 115-138.

Sur un principe du maximum pour le potentiel de Riesz-Frostman, ibid. 13
(1952), 57-62.

[6] M. Riesz: Intégrales de Riemann-Liouville et potentiels, Acta Sci. Math. Szeged 9
(1938), 1-42.

(3]





