
Title UNIX上でのマルチスレッド機構の実現

Author(s) 安倍, 広多

Citation 大阪大学, 2000, 博士論文

Version Type

URL https://hdl.handle.net/11094/42942

rights

Note

著者からインターネット公開の許諾が得られていない
ため、論文の要旨のみを公開しています。全文のご利
用をご希望の場合は、<a
href="https://www.library.osaka-
u.ac.jp/thesis/#closed">大阪大学の博士論文につい
てをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

氏 ぺ
倍

< 108 >

広多名
ぁ
安
博
第 士(工学)博士の専攻分野の名称

学位記番号 15081 号

学位授与年月日 平成 12 年 2 月 22 日

学位授与の要件 学位規則第 4 条第 2 項該当

学位論文名 UNIX 上でのマルチスレッド機構の実現

論文審査委員

(主査)
教授谷口健一
(副査)

教授萩原兼一 教授井上克郎 教授東野輝夫

論文内容の要旨

1 つのプロセスの中に、複数の制御の流れ(スレッド)を作り出し、それぞれに独立した処理をさせることができ

る機構(マルチスレッド機構)が注目されている。マルチスレッドを用いたプログラムでは、複数のスレッドが CPU

を切り替えながら見掛け上同時に動作する。マルチスレッドは、複数のプロセスを用いるよりも実行効率が良い。

UNIX 上で動作する既存のマルチスレッド機構(マルチスレッドを実現するプログラム)は、いずれも特定の CPU

に依存しているため、移植が困難であった。本論文では、移植性の良いマルチスレッド機構の実現法を提案している。

移植性を保つ上で、 CPU のスタックポインタレジスタの設定を、 CPU に依存せずに行う方法が問題となるが、この問

題を UNIX のシグナルスタック機構(割り込み処理を、指定したメモリ領域をスタックとして実行する機構)を利用

して解決する方法を提案している。また、将来拡大する余地を残しながらスレッドのスタック領域を確保することで、

スタック領域が不足した場合に自動的に拡大する方法を提案している。

UNIX 上に実装したマルチスレッド機構では、 1 つのスレッドが発行するシステムコールによって、他のスレッド

の実行が中断する問題があるが、システムコールの発行を他のプロセスに代行させることで解決する方法を提案して

いる。また、この時に発生するプロセス開通信のコストを削減するため、プロセス間でアドレス空間を共有する方法、

プロセス開通信のシステムコールを可能な限り省略する方法を提案している。

マルチメディア処理等で、ユーザが指定した時間でなるべく正確にスレッドが処理を行えるようなマルチスレッド

機構が関心を集めている。本論文では、このようなマルチスレッド機構を、非実時間 OS である UNIX 上で実現する

方法についても述べている。 UNIX では処理に必要な CPU 資源を予約できないため、実際に利用できた CPU 資源を

測定し、アプリケーションに伝えることで、スレッドの周期を調整する方法を提案している。また、デッドラインに

基づいてスケジューリングを行う方式も実装し、応用として時間拡張 LOTOS(形式記述言語 LOTOS に対し、イベン

トが実行可能な時刻の範囲を指定できるように拡張したもの)のコンパイラの実装法を示している。

単一のスレッドで実行されることを想定している既存のプログラムコードを、複数のスレッドから実行するために

は、大域データをスレッド毎に分離する必要がある。従来、このためにはコードを修正する必要があったが、この方

法は手聞がかかり、またソースコードが必要である。本論文では、この問題の解決法として、スレッド毎にメモリ領

域を割り当て、その中にスレッドが実行するコードと大域データを配置する方法を提案している。大域データはスレ

ッド毎に存在するため、既存のコードを修正することなく呼び出すことが可能である。さらに、既存のプログラムを

スレッドとして実行する機構、プロセス間通信と同一のインタフェースでスレッド開通信を行う機構を設けること

で、複数プロセスで構成された既存のアプリケーションを、軽微な修正でマルチスレッド化する方法も提案している。

論文審査の結果の要旨

本論文は、 UNIX 上で動作するマルチスレッド機構に関する研究をまとめている。

まず、 UNIX 上で動作する移植性の良いマルチスレッド機構の実現法を提案している。 CPU 依存性が高いスタック

ポインタの設定などの処理を C言語とシステムコールだけを用いて行う方法を考案して実装し、それにより、マルチ

スレッド機構を様々な CPU 上の UNIX で動作させることが可能となった。また、スレッドごとに予め割り当てたスタ

ック領域が不足した際にそれを自動的に拡大する方法も考案し、メモリ効率を向上させている。これらの方法を用い

て実装したマルチスレッド機構の実行速度は、既存の CPU 依存のマルチスレッド機構と比べても遜色ないことを確

認している。また、スレッドからのシステムコールを他のプロセスに代行させ、スレッド群の実行が中断されないよ

うな方法も提案している。この時生じるプロセス開通信を極力減らして性能の低下を防ぐ方法も考案している。提案

する方法をファイル 1/0 に適用した結果、1/0 時間の大半(例えばローカルディスクへの 8K バイト書き込み時で80%

以上の時間)を他のスレッドが利用できること、 1/0 完了時間は多少増えるが実用範囲内に収まっていることを確認し

ている。

次に、非実時間 OS である UNIX 上で、可能な限り時間制約を満たしながら動作する実時間マルチスレッド機構の

実現法について検討し、そのプロセスで実際に使用できた CPU 時間を測定してそれに基づいてスレッド周期を制御

する方法を提案している。この方式により他プロセスの影響下でも安定したスケジューリングが可能なことを確認し

ている。また、デツドライン時間順にスケジューリングを行なう方式も実装し、時間拡張 LOTOS コンパイラへ適用

して、実装した実時間スレッド機構の有用性を示している。

さらに、単一のスレッドとして実行されることを想定している既存のプログラムコードを、複数のスレッドから利

用できるようにするための方法を提案している。それにより、既存の膨大なプログラムコード群を、マルチスレッド

プログラムから容易に利用することが可能となる。また、複数のプロセスで構成された既存のアプリケーションを、

容易にマルチスレッド化する方法も提案している。マルチスレッド化することにより、アプリケーションの実行速度

を向上させることができる。実際にこの方法を用いて UNIX のシェルパイプラインをマルチスレッド化することで、

速度が向上することを確認している。

以上の研究成果は、マルチスレッドに関する技術の発展に貢献しており、本論文は博士(工学)論文として価値あ

るものと認める。

-600

