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Introduction

We have given, in [5], a characterization of a right (upper) serial ring in
terms of submodules of finite direct sums of serial modules. In this paper
we shall replace the serial module by hollow modules in the above. Then
it is clear that we shall be able to obtain a new class of rings R generalized from
the right serial rings.

However, it is difficult for the author to give a complete characterization
of those rings. We shall restrict ourselves to a particular case where the Jacob-
son radical J of R is square zero. It is not still easy to find the characterization
of such rings. If R is either a commutative artinian ring or an algebra of finite
dimension over an algebraically closed field, then we can show the structure
of R as follows: |eR|, the composition length of eR, is equal to or less than
three and if two simple right ideals 4, and A4, in ¢J are isomorphic to each
other, then there exists a unit element x in eRe such that A,—xA, and [eRe/e]e:
A(4,)],=2, where e is a primitive idempotent of R and A(4,)={x<eRe/e]e|
%A, A4,}. We shall give the similar structure for any right artinian ring R
under an assumption that |eR|<5. We do not know any examples of rings
which have the property mentioned above (see Condition I in § 3) and |eR| >4
for some primitive idempotent e. We shall study the similar problem without
the assumption ¢/?=0 in the forthcomming paper.

1 Right serial rings

Let R be a ring with identity. Every module in this paper is a unitary
right R-module. For an R-module M, | M | means the length of the composi-
tion series of M. We shall denote the Jacobson radical and the socle of M by
J(M) and S(M), respectively. Put J*(M)=J(J*'(M)) and S,(M)/S,-,(M)
=S(M|S,-(M)) inductively. Then M 2 J(M)2 J)(M)2--- and 0= S(M)<
Sy(M)< -+ are called the upper Loewy series and the lower Loewy series of M,
respectively. If each factor module J*(M)[J"* (M) (S,+1(M)/S,(M)) is simple
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or zero, the upper (lower) Loewy series is a unique composition series such
that | M[]"(M)|=n (| S,(M)|=n) and if |M|N|=m<oco (|[N|=m< o) for
some submodule N, N=]J"(M) (N=S,(M)) provided that J*(M)== J**'(M)
(Sy(M) =+ S,11(M)) for all k<m—1. If M has the unique chain as above, we
call M an upper (lower) serial module. An upper (lower) serial module M with
Ji(M)=0 (S(M)=M) for some ¢t is called a serial module and in this case
S(M)=]"*""(M).

Let R be a semi-perfect ring. If, for each primitive idempotent e, eR
is an upper serial module, then R is called a right upper serial ring (cf.[5]). Next
we assume that R is a right semiartinian ring. If, for each indecomposable
injective module E, E is a lower serial module, then R is called a right lower
coserial ring.

We have shown in [5], Theorem 2 that if R is an artinian right (upper)
serial ring, R satisfies the following condition: every submodule of a direct
sum of hollow modules is also a direct sum of hollow modules. We shall study,
in this section, a similar property for a quasi-projective module. The following
result is well known provided R[] is a simple ring (cf. [1], p. 75). We shall
give a proof for the sake of completeness.

Proposition 1. Let R be a semi-perfect ring. If R|]? is a right serial ring,
then R is a right upper serial ring.

Proof. We may assume that R is basic. We shall show by induction
on ¢ that eRDeJ D--- DeJ! is serial for each primitive idempotent e. Assume
that the above fact is true for 7<¢z. Then #>2 by assumption. If ¢J*=e],
the proposition is trivial. We assume that e//eJ? is a non-zero simple module.
Then ef/e]J?~ fR]f] for some primitive idempotent f. Hence there exists an
element x in eJf such that ef=xR-+eJ? Then eJ'=x]""'4eJ'*, and so
efleJ**! is a homomorphic image of fJ*"'/f]!, since x=exfee]J. Hence
eJ'le]**! is either simple or zero. Therefore R is right upper serial by induction.

We obtain the following proposition as dual to the above.

Proposition 1.” Let R be a right semi-artinian ring. If Sy(E) is serial
for every indecomposable and injective module E, then R is a right lower coserial
ring.

Proof. Let Sy(E)2S;_(E)2--28,(E)D0 be a serial chain of E. We may
assume 7 >2. Then E/S;_(E) is a uniform module. Hence E=E(E|S;_,(E)),
injective hull of E/S;_,(E), is indecomposable. Therefore S;,,(E)/S;(E)< S« E)/
Sy(E), and so S;;,(E)/S(E)is either simple or zero. Hence R is right lower
coserial®

It is clear that eR is not serial even if eR/e]? is serial for a primitive idem-
potent e (cf. Example 1 below). Concerning this fact, we have the following
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proposition.

Proposition 2. Let R be a semi-perfect ring and ] the Jacobson radical
of R. Let P be a hollow module eR|B with B a character right ideal of eR; i.e.
P is a cyclic quasi-prejective module. Assume P|P]? is a serial R-module. Then
P is upper serial if and only if every maximal submodule of a finite (two) direct
sum of homomorphic images P; of P with |P;|<<oco is also a direct sum of hollow
modules.

Proof. “Only if” part is clear from [3], Theorem 2 and [4], Theorem 1.

“If” part. Assume that the last condition of the proposition is satisfied
and that, for a primitive idempotent e, eRDeJ D (eJ?+B)D --- D(eJ*+ B)
is the chain with (eJ/’+B)/(eJ*'4B) simple for all {<t—1. Then we may
assume f>2 by assumption. Let N, and N, be maximal submodules, con-
taining (¢J**'4-B), of (¢J'+B). Put D=eR/N,BeR/N, and D=D[J(D)=
eRle] DeRle]. Let M'={x+x|xcéR} be a submodule of D. Then there
exists the maximal submodule M of D such that M D J(D) and M/J(D)=M'.
Since |S(D)|=|(eJ*+B)/N,B(eJ'+B)|N,| =2, M=M,PM, by assumption,
where the M; are either hollow or zero. Assume M;=+0 for i=1, 2. Then
we know that each M; is uniform, for |S(D)|=2. Let z;: D—eR|N; be the
projection for i=1, 2. Since M=M', =,(M,)=eR|N; for some j(i) of {1, 2},
and so |Mj;|>t+1. On the other hand, |M|=2t41. Hence j(1)=j(2)
(=1). M, containing the simple socle, either z,|M, or =,|M, is an isomor-
phism. Assume z|M, is an isomorphism. Then D=M;PeR|/N,. Now take
the composition mapping f: eR/Nl—l>D£>eR/N2, where 7 is the injection and p
is the projection of the above decomposition. Let m be an element in M.
Then m=r(m)+r,(m), and so = (m)=m—n,(m). Hence f(r(m))=—m.(m).
On the other hand, ,(m)=m—my(m)=(R+&)—m,(m) =&+ (2—m,(m)), where
M==x+%; £SeR. Hence my(m)==&=m(m)=—f(z(m)). Accordingly, since
m|M, is an isomorphism, the identity mapping of eR/eJ is liftable to
—fEHomg(eR/N,, eR|/N,). Then there exists an element x in eRe such that
—f(P)=x7 for 7€eR|N,. Hence xN,CN, and e—x=j is an element in eJe,
for f is the identity of eR/eJ. On the other hand, jN,Cj(eJ*+B)<(eJ**'+B)
CN,. Hence N,=eN,=(x+j)N,=N, and so N,=N, (cf. the proof of [3],
Theorem 4). Therefore (¢/"+B)/(eJ**'+B) is either simple or zero. Next
assume that M,=0 and so M is hollow. Then J(M)=J(D) and M|J(M)~
eR/e]. Hence we may assume M=eR/eA for some right ideal A. |D|=2t+2
implies |eR/ed|=2t+1. Since M|J(D)=M’', =;|eR[eA is an epimorphism
for i=1, 2. Put B;=ker(n;|eR[ed). Then |eR/B;|=t+1. On the other
hand, since N;<(eJ*+ B), we have the natural epimorphism »; of eR/N; onto
eR/(eJ*+ B). Hence v;z; is an epimorphism of eR/N; onto eR/(e]'- B).
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Therefore there exists a unit element y in eRe such that y7=v;z 7 for 7€eR/|N;.
Since B;Cker v;z;, yB;S(eJ'+B), and so B;Sy '(eJ'+B)<(eJ'+B). Now
|eR/(eJ*+B)| =t and |eR/B;|=t+1. Hence |(¢J'+B)/B;|=1. Furthermore,
B,NB,=eA. Therefore |eR[eA|=|eR/(eJ*+B)|+ |(eJ'*+B)/B,|+ |B\Jed|=
t4-14-|(B,+B,)/B,| <t+2, for B,+B,SeJ'+B. On the other hand, |eR/eA|
=2t-+1, which contradicts the assumption #>2.

From the first half of the above proof we obtain the following:

Proposition 2. Let R and P be as above (not necessarily P|P]J? is serial).
Then P is an upper serial module if and only if every finite (two) direct sum of homo-
morphic images P; of P with |P;| <co has the lifting property of simple modules
modulo the radical.

Proof. If D=eR/N,@eR|N, has the lifting property of simple modules
modulo the radical, then every maximal submodule of D contains a non-zero
direct summand of D by definition. Hence we have the first case of the above
proof.

We note that the assumption on P/PJ?is inevitable in Proposition 2 (cf. § 3).

2. Maximal submodules

1) General case

From now on we always assume that R is a right artinian ring. We shall
study the similar situation to Proposition 2. Hence we may assume that R
is basic. Let e be a primitive idempotent, then eRe/e]e is a division ring. We
consider hollow modules N; of the form eR/B;, where B; is a submodule of

eJ. Put Dzjz:;@Nj and D=D|J(D)=3 @ eRJeJ. Now R is basic. Then
(eRle])R=(eR/eJ)(eRe)=(eR/e])(eRe[e]e) and R(e]|e]?)=(eReleJe)(e]|e]?). Put

eRelefe=eRe=A. Then D is a right A-vector space of dimension k. Let
X=3)%, be an element in D, where the #; are in N,/J(IN;)=eR/e] and we denote
27! by «7', where x7' is an element in eRe. Then %xj'=2. Let M be a
maximal submodule of D. Then M 2 J(D), and put M=M/|J(D). It is clear
that either M=2)@N; for some i or M has the following basis: {@,=(5, ¢,

iF

0, *++, 0, 0), @;=(8,, 0, &, 0, **+, 0), *++, Ay_,=(84_y, 0, ***, &)} and that M is gene-
rated by {ajz(gj, 0, -+, &, .-+, 0)} and J(D) for the latter case, where the §; are
in eRe and 3]- is an element in N;. Conversely, if we take the set {a;}}i, the
module generated by the ¢; and J(D) is a maximal submodule of D. We con-
sider the condition in Proposition 2.

(*¥) Any maximal submodule of D is a direct sum of hollow modules.

Lemma 3. Let {N,, N,, ---, Ny1,} be a set of hollow modules with |N;|=t.
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Put DzﬁeBN,-. If D satisfies (), then every maximal submodule M of D contains
. i=1
a direct summand of D, which is isomorphic to some N;.

Proof. Let #;: D—N; be the projection of D onto N;. Assume that
M is a direct sum of hollow modules M;: M=>\pM;. If |M,;|<t, M;< J(D)
=>PJ(N,). Furthermore, since |M|=t and M;=(M;+J(D))/J(D)~M,/
(M;N J(D) is either simple or zero, there exist at least # M;; among {M;} such
that |M;,|=1, and hence |M;,|>1t, since ;| M;; is an epimorphism for some
k. If |M;|>t+1 for all j, |M|>#t+1)=|D|. Hence there exists some
M; with |M;|=t. m|M; is an epimorphism for some k as above. Hence
M, is a direct summand of D for | M; |=|N,|.

Assume that M in Lemma 3 is generated by {a;, @, ---, @;} as above and
J(D). Then M, is generated by 8=3] a;y;+j, where j is an elements in J(D).
Since M, is a direct summand of D, M < J(D). Hence some y; of {y;} is
not contained in ¢Je, Therefore we may assume ,6’=0(1—{—§2 a;y;+j. Put

where aiz(g,-, 0, +*,0, &, 0,:+,0)is in D.

We frequentely use the method of the proof of [3], Theorem 2, and so
we summarize here its content. Let NN, and N, be hollow modules and f’
an element in Homg(V,/J(V,), N,/J(N,)). If there exists an element f, which
induces f’, in Homg(V,, V), we say that f’ is lifted to f.

Lemma 4. Let D:Z”}GBN,- be a direct sum of hollow modules. Let M=
i=1

{2+ F(®)+ - +F (&) | €N, and f;cHomg(N,, N,)} be a submodule of D=
D|J(D). If each f; is liftable, D contains a divect summand D, such that D,=M.

From Lemma 3, we are interested in the condition:

(%%) Every maximal submodule of D(k)=N,DN,D---@DN, contains a direct
summand of D, which is isomorphic to some N.

Let B be a submodule in e] contained in 74(efe)={x=R|eJex=0} and
put A(B)={x=A|xBCB}.

Lemma 5. Let B be a submodule in e] contained in ry(efe)® and N;=eR|B
for i=1,2, .- k+1. Then [A: A(B)|=k as a right A(B)-module if and only if
D(k+1)=33® N, satisfies (x+), but D(K) does not.

Proof. Assume [A: A(B)]=k. Let M be a maximal submodule of D

=D(k+1). Then we may assume that M has the basis {@,, @, -, @} as
before. Since [A: A(B)]=k, there exists a set of elements {¥;} =0 of A(B) such

1) We shall remove this assumption in the forth comming paper.
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that 315, 5,€A(B). Then 0= a;y,=(28.v;, 7, -+, 3,) is an element in M.
Now all components of § modulo ¢] are elements in A(B). Therefore there
exists a direct summand M, of D such that M,=(9R-+J(D))/J(D) by Lemma 4.
Hence M, is a submodule of M, for M 2 J(D). Itis clear that M, is isomor-
phic to some N,, for M,=(9R+J(D))/J(D). Assume that D(k-1) satisfies
(#x). Let {3,=¢, §,, 5,, -+, 5,} be any set of elements in A and M a maximal

submodule generated by {a;=(5;, o, ---,'é)(,lo, ,0)}.; and J(D). Then M
contains a direct summand M, of D with |M,|=|eR/B| by assumption. We
may assume that M, is generated by B=a,y,+a,y,+ - +a,y,+j, where the
¥;arein A and j in J(D). We may assume that there exists an integer 7 such
th:it ¥,#o for all j<7 and ¥y=o for all j'>i. Then Bz(glyl—l—gzyz—l—---
+0,y:+71 €y1+72 €Y2F 73 -y €YitTisns Jivzr+s Jar1), Where the j, are in e]/B.
Consider the natural epimorphism @ of eR onto SeRS M, by setting o(r)=pBr
for rceR. Let x be in ker@. Then (e+j,)vx&B. We may assume that
J.€eJe and (e-+j,)'=e+j%, where j} is in efe. Hence x&(e-+j5)B=B, and so
ker B, which implies |eR/B|=|M,| > |BeR|=|eR/ker ¢| > |eR/B], and so
ker p=B. Hence SBCB, (ey,)B=B, --- and (ey;)B=B provided §=(8,+85,7,
+--:8;9;)%0 (note that j,B=0). Therefore [A: A(B)]<k. Thus we obtain
the lemma from the above.

We note that if D(i) satisfies (%), then D(7) does for all i>j (cf. §3).
Hence we have the following corollary.

Corollary. [A: A(B)]=Fk implies that k is the minimal integer among k' such
that D(k’-+1) satisfies (xx), where D(k’—{—l)——-ki‘,l@N,- and N;=eR|B for all i.

Proposition 6. Let A and B be submodules of e] contained in rg(efe) and
with |A|=|B| and [A: A(B)]=k.
i) There exists a unit element x in eRe such that xB=A if and only if
k

—
D(k+1)=eR/APeR[B®---PeR|B satisfies (x%).
i) If eJ is an irredundant sum of {B=B,, B,, ---, B,,,| |B;|=|B| for all
i} and i) is satisfied for any pair (B;, B;), then k>t+1.

Proof. 1i). If there exists a unit x such that xB=A4, eR[A~eR/B. Hence
D(k+1) satisfies (x*) by Lemma 5. Conversely, we assume that D(k4-1)
k

e A e
=eR/APeR/BPD---PeR|B satisfies (¥*). Let M be a maximal submodule
of D such that M=<a,, @, -, &>, where a;=(5;, 0, ,o0,¢; 0, --,0) and
{8, 8, -+, 8;} is linearly independent over A(B). Then M contains a direct
summand M, generated by B+j, where 8= Sy,-, &, ¥y -, ¥,). From the
similar argument to the proof of Lemma 5, we have (3} §;y,)BS 4 and X 8;y;
=3,-—|—§ 8;y;%o. 1ii). Let e/=B,+B,+--+B,,, be an irredundant sum.
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Then there exists a unit element x; of eRe such that x;,B,=B; and eJ=eB,
-l-g: x;B,. Therefore {%=¢, x,, ---,%,,,} is linearly independent over A(B),
and so [A: A(B)]>t+1.

ii) Case ¢J?=0. )
From now on we assume ¢/?=0. Then e/=>)PA4,;, where the A; are
i=1

simple. We shall study the case #=2 in the above. In this case (**) is equiva-
lent to

(%), Every maximal submodule of a direct sum D(3) of three serial modules
(of length two) contains a direct summand of D(3).

(2 in (*%), means the length of the serial modules in D(3).)

Case I. A,~A,.

Then there exists a simple right ideal 4; such that 4P A,=A,PA;=
A, PA;. Put e =A,PA,PB, N,=eR/(A,PB), N,=eR/(A;PB) and N,=
eR/(4,BB).

Case II. |e]| =3.

Put eJ=A,PA,PA;BB, N,=eR|(A,PA;PB), N,=eR|(A,DA;DB) and
N;=eR/|(A,BA,PB).

In either case we put D=N,DON,PN,. We take a maximal submodule
M’ of D generated by (¢, k,, 6) and (0, é, k,), where k=0 and k,&0. M’ being
maximal in D, there exists a unique maximal submodule M of D such that
McJ(D) and M=M'. From now on, we assume (*x), Then M contains
a direct summand M, with |M,|=2. M is generated by (¢, %, 0), (6, &, k)
and J(D). Hence M, is generated by an element

(2) a = (¢, ky, 0)x+(0, &, R)y+j,

where x or y is not in J and j is in J(D). Since R is basic, we may assume that
x and y are in eRe as above. Here we shall observe the element a of the form
k,=k,=e in (2), dividing into three cases:

i) yisin efe, ii) x is in eJe and iii) x and y are units in eRe.

Case i). M,2ax"'4,= {4, ka, o)lacA4,}+0 and M,2ax"'4,2(0 4,
—)=+0. Hence |M,|>3.

Case ii). We have similarly |M,| >3.
Thus we have the following lemma.

Lemma7. Assume (%%),. Let D=N,DN,PN,be asin Cases I and 11 and
M the maximal submodule of D given as above. Then there exists a hollow direct
summand M, of M with |M,| =2, whose generator a is of the form in Case iii).
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Lemma 8. Assume (xx),. In Case I, there exists a unit x in eRe satisfy-
ing xB=DB and xA,= A, (mod B), where e]=A,DA,DB.

Proof. Let A; N; and B be as in Case I. Then there exists a of Case
iii) by Lemma 7, which generates a hollow direct summand M, of M with |M,|
=2. We may assume that M, contains a=(¢, &+5, ¥)+j and y is a unit in
eRe. 'Then ad,= {(@, (é+3)a, ¥a))|a,= A} +£0. Assume yB==B. Then
there exists b0 in B such that yb=a,+a,+b’, where q; is in 4;, b’ in B and
a,-+a,%+0. Then ab=(0, (¢+ 3)b, 3b)= (0, &,+a,, @)+ o0, and so |M,|>3,
a contradiction. Therefore yB=B. Similarly, a4,=(0, —, ¥4,)=0, and so
yA,CA,PB. Since yB=B, yA,=A, (mod B).

Lemma 9. If |e] | >3, all the simple right ideals in eR are isomorphic to
one another provided thal (x%), is satisfied.

Proof. Assume |eJ|>3 and A,a&A4; for simple right ideals 4, and A;
in eJ. Since |eJ|>3, we have ¢J=A,PA,PDA;PB as in Case II. Let M,
and «a be as above. Then a4,=+0. Let ya;=pR,+B,+B;+b’, where b’ is
in B and B;, a; are in A;. Since A,7&A,, B,=o. Hence, since |M,|=2,
aas=(0, B,+ds Bs)=o implies

(3) 1 =B=B3=o0.

Therefore yA;&B. Let yb=a,+a,+a;+b’, where b, b’ are in B and q; in
A;. Then ab=(0, &, @s)=o by the assumption |M,|=2. Hence a,=az=o,
and so yBCB®A,. Let = be the projection of BPA, onto A, Since
myB=A, (note that y4,C B implies yB=B), B=A{PB,, where A{~A, and
B,=ker zy. Hence yB,CB. Since yA;SB as above, and A;~yA;aAj,
yA;SB,. Put B=yA;+y*As+ - +y"Ay=yAs+---+y"As+y*"'4; for some n.
Since yB,C B and y*4;a A}, y*4;S B,—=yB,< B, by the above fact and induc-
tion on k of y*4,, which is a contradiction, for A;%B,, yA4;C B, and yB,=B,.

Proposition 10. Assume (xx), and eJ?=0. If |eJ|>3, eRA,=e], where
A, is a simple right ideal in e¢]. Hence e is a simple two-sided ideal of R.

Proof. Put ¢J=eRA,®B. Assume B=+0. Put B=A,PB, and eRA,=
A,BC, Then ef=A4,PA,D(BDBC,). By Lemma 8, there exists an x in
eRe such that x4, S A, P BDC,; xa,=a,+by+c, (a,70) for a,#o0in 4;. Hence
xa,—cy=a,+b,=eRA, N B=0, which is a contradiction.

Proposition 11. Assume (%), and e¢J*=0. There exist two simple right
ideals mot isomorphic to each other in e] or |e] |=1 if and only if A=A(4,) for
a simple right ideal A,. In this case, e]=A,P A, or 4,=0.

Proof. This is clear from Lemmas 8 and 9.
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3. Main theorems

Let R be a right artinian ring with identity. We have shown in [5], Corol-
lary 3 that R is a right serial ring if and only if

I Every submodule of a finite direct sum of hollow (serial) modules is also
a direct sum of hollow modules, and

II R s aright QF-2 ring.

We shall study, in this section, a ring R satisfying Condition I. It is clear
that Condition I is preserved by Morita equivalence, and hence we may assume
that R is a basic ring. Then if R=>1Pe;R for primitive idempotents e;,
ejRe;=e; Je; for i= j and e;Re;/e; Je; is a division ring.

If every finitely generated indecomposable R-module is hollow, R is called
a ring of right local type following Tachikawa [8] (see [7]). Now we assume
that every indecomposable injective module is finitely generated (e.g. R is an
algebra of finite dimension over a field, cf. [6]). It is clear that if R is of right
local type, then R satisfies Condition I and every indecomposable injective
module is hollow. Conversely, we assume the above two conditions. Let
M be a finitely generated indecomposable module. Then the injective en-
velope of M is a finite direct sum of indecomposable injectives, which are hol-
low. Hence M is hollow by Condition I, and so R is a ring of right local type.

It is not easy for the author to give a characterization of R with Condition
I. Hence we shall restrict ourselves to a case J?=0. From now on, we always
assume J?=0. In this section we shall add one more assumption: |eJ|<4
for every primitive idempotent e.

Theorem 12. Let R be a right artinian ring with J*=0. Assume |eJ | <4
for every primitive idempotent e. Then R satisfies Condition 1 if and only if e]
has one of the following forms: !

i) eJ=A4,.

i) eJ=A,DA,; AA&A,.

i) eJ=A,DA,; A;~A, and a), for any right ideals A and A’ with |eR|A|
=|eR/A'| =2, eR[A=~eR|A'; ie. A=xA' for a unit element x in eRe and
b) [A: A(4)]=2.

iv) eJ=A,DA,DA;; Ai~A,~A, and iii-a) and iii)-b) are satisfied for
right ideals A’ in e] with |eR|A'| =2 and a), for any right ideals B, B’ in e] with
|eR/B| = |eR|B'| =3, eR/|B~eR|B’ and b) [A: A(B,)]=3, where B,=A,DA,.

v) ¢J=APA,PA;PA,; A~,A~A;~A, and iii)-a), iii)-b) and iv)-a),
iv)-b) are satisfied for right ideals A and B with |eR[A|=2 and |eR|B|=3,
respectively and a), for any right ideals C, C' of e] with |eR|C|=|eR|C’'|=4,
eR/C ~¢eR|C’, b) [A: A(C)]=4 and c) Endg(4,)= A(4,), where the A; are
simple right ideals in eR, A=eRe[eJe and A(A)={xcA|xAC A}.
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Proof of “Only if” part.

i), ii) and iii).

We assume Condition I, and hence (%) and (*%),, We may assume
eJ=A,DA, and A,~A,. Let A; be a simple right ideal in ¢J. Then 4,=A4,
or efJ=A,PA, It is clear that A,~A4,. Hence there exists a unit element x
in eRe such that x4,=A4, by Lemma 8. Therefore [A: A(4,)]=2 by Lemma 3
and Corollary to Lemma 5.

iv) From now on, in this paragraph, we shall assume that R satisfies

Condition I and that eJ]=A4,PA,D---PA,; A;~A,; foralli. Hence D:fi1 @N,;
satisfies (#*) by Lemma 3, where N;~¢R|C; and |N;|=t. o

Lemma 13. Let A, and B, be right ideals in e] such that |A,|=1 and
|By|=n—1. Then [A: A(4))]=nr and [A: A(B)]=2.

Proof. Let [A: A(4,)]=m and A=A(4))Dx,A(4)P - Px,A(4,). Then
e]=AA1=A1—l—_<Z:} x;4, by Proposition 10, provided n>3 (note if n=2, 4,~B,).

Hence m>n. On the otner hand, m<#n by Lemma 3 and Corollary to Lemma
5, and hence m=mn. It is clear from Lemma 5 that [A: A(B)]<2. If n=2
and A(B,)=A, B, is a character submodule of e/, which contradictions the as-
sumption: 4,~A; by Lemma 8. Hence if n=2, [A: A(B))]=2. Ifn>3, eJ=
AA,=AB, by Proposition 10. Hence [A: A(B,;)]=2.

Lemma 14. Let A,, A, and B,, B, be as in Lemma 13, respectively. Then
there exists a unit x in eRe such that xA,=A4, (xB,=B,).

Proof. 'This is clear from Lemma 13 and Proposition 6.

Thus we have shown the “Only if”’ part for the case |eJ | =3.

v). We shall show the “Only if” part for |eJ|=4. It is remained to
show [A: A(B,;)]=3 and Endg(4,)=A(4,), where B;=A,PA4,. [A: AB)]<3
by Lemma 3 and Corollary to Lemma 5. Hence we may show by Proposition
6 that, for B in e with |B|=2, there exists a unit element y in eRe such that
yB, =B, for eJ is an irredundant sum of B,+(A4,PA4;)+ (4,P4,). Since
AB,=e] by Proposition 10, A%=A(B,)=A,. Then there exist two elements b,
¢ in A which are independent over A, and @ in A— A}, where Aj=A(B). Put
D=eR/BPeR/B,@eR|B, (not necessarily n=4, but |B,|=|B|=n—2). We
shall consider three elements in D as before: «a,=(&, &, 0, 0), a2=(5, o, é, 0)
and a3=(C, 0, 0, €). By Lemma 3 we can find a cyclic submodule M, with

| M| =3 containing B'=B-j, where ,8:2,—‘ a;y; and j€ J(D). We shall show

from the choice of {a, b, ¢} that we may assume that two elements of {y,} are
not in efe. If J,=y;=o, assuming ¥,=é, we have |BC|={(dc, 0,0, 0)|c=C}
>2, where ¢J=B®C. On the other hand, BB=(é&B, 0, 0, 0)==0, and hence
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| J(M,)| > |BC|+|BB| >3, which is a contradiction. If y,=7y,=o, |BC’| >2,
where eJ=B,®C’, and hence 8B,=(bB,, 0, 0, 0) must be zero by the similar
argument as above. Hence dB,=B. Similarly, if y,=7%,=o0, cB,=B. Hence
we may assume that some two elements of {y;} are not in efe. Assume ¥,
%0 and j,#o0. Then we may assume ,8=(d—}—5y2—l—5y3, é, ¥, ¥;). Since
BC=(—, C, —, —), |BC|>2. Hence BB=(—, 0, 7,B, —)=0. Therefore
y.B=B,. We have the same situation for 7,40 and j;#o0. Finally, assume
$1=0, #Fo and F,%o0. Then B=(d+cCy, 6, &, F;). As above, BB,=0=
{(5+¢y3)by, 6, 6, F:b)|b,=B}. Hence (b-+Cy))B, S B and y,B,C B,, which
implies that J; is in A,. Since b and € are independent over A,, b-+¢¥,+o0
and so b-+cy; is a unit element. Therefore [A: A,]=3 by Proposition 6.
From the above argument we have the following lemma.

Lemma 15. [A: A(B)]=3, where BCe] and |B|=n—2.

Lemma 16. Endg(4,)=A(4,) if |eJ | =4, where A, is a simple right ideal
in e].

Proof. Let f be a non-zero element in Homg(4,, 45). Put Ai={f"(as)+
a;|la,€ A4} CA,DPA;,. Then BPA;j=BPA, where B=A,PA,. There exist
a and b in A such that a(B)=A,PA} and b(4,)=A; by Proposition 6 and
Lemmas 14 and 15. Let M be a maximal submodule of D=eR/BPeR/B®PeR/A,
whose basis modulo J(D) is {@,=(a, ¢, 0), a@,=(b, o, &)}. We define an
epimorphism ¢@: eR@eR— aR+a,RCM by setting @(r'+s") = a,r'+as’
=(a@r'+bs', 7', §') for 7', s’SeR. Let r+s be in ker . Then 7 is in B and
sin 4,. Since a(B)=A4,DA%, B=B,PB,, where Bj=a"'(4,) and B,=a(4%).
Now ar+bse B=B,®B,. Put r=0b,+b,; b,=B;. Then ar-tbs=ab,+ab,+bs
€ B, where ab,c A% and bs€ 4;. Since ab,& A}, ab,—f '(x)+x for some x= 4,.
Hence o=ab,+ab,+bs=f"'(x)+(x+bs)+ab, (modB) implies x=—bs and
b,=o, and so —ab,=f"'(bs)+bs. Thus we obtain an isomorphism g: 4,— B,
by setting g(s)=b,. Hence ker p={g(s)+s|s€4,} CeRPeR and (a;R-}a,R)~
(eRPeR)[ker . On the other hand, |M|=9=|(eR@eR)/ker p|. Hence
M ~(eR®eR)/ker . Now M is a direct sum of hollow modules by assump-
tion and M is decomposable for M=a,RPa,R. Therefore g is extendible
to an element in Homg(eR, eR)=eRe, say g(s)=cs; c€A by [2], Theorem 2.5
and [7], Lemma 1.2. g(s)=b,=c¢s and (—ac—b)s=f"'(bs). Accordingly, f is
given by the left-sided multiplication of (—ack™'—e)™'. Let & be in
Homg(4,, 4,). Then bh=Homg(A4,, A;). Hence bh is given by an element
¢’ in A from the above.

Proof of “If” part.
We assume the conditions in Theorem 12 and we shall show that R satis-
fies Condition I. In order to see this we need several lemmas below.
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Let N, and N, be hollow modules. Assume that N,=eR and N,=eR/A
for a right ideal 4 in eJ. Let f' be an element in Homg(eR/e], eR[e]). 'Then
f' is given by the left-sided multiplication of an element k in eRe/efe, where
k is in eRe. Let v be the natural epimorphism of eR to eRfeA. Then vke
Homg(eR, eR/eA) induces f'. Hence we have the following lemma.

Lemma 17. Every element in Homg(eR/e], eR/e]) is lifted to an element
in Hompg(eR, eR/eA).

By N; we denote the hollow module of the form efe;B, where B is a
right ideal. Let T—E@NI,@ZEBNZ,EB GBZGBN,,,, and let M be a maximal

submodule of T. Then MD](T) and T= T/](T)DM M|J(T). We shall
show by induction on ‘;ll | that M is a direct sum of hollow modules. Since

Z}EBIV,-,- is the homogeneous component of T and M is maximal, M=
é@(ﬂnE@Nﬁ) and M;EEBN-/- except some 7, say i=1. Therefore M=
M&BZ Z‘GBN, ; and M, is a max1mal submodule of ZEBNI, Hence we may
assume n=1; i.e. T-_ZGBN and N;~eR/e B;. Let 7; be the projection
of T onto N;. If 7:,(M)—0 for some i, M——](N,)EBEGBN, and J(N;) is a

direct sum of simple modules by the form of N;. Hence M is a direct sum
of hollow modules. Therefore we assume #,(M)=0 for all 7. Then we
have the following lemma.

Lemma 18. Let T, M and N; be as above. If N, is either isomorphic
to eR or eR|e], then M contains a non-zero direct summand of T.

Proof. Assume that IV, is simple. Since M is maximal, M2N, or M D
N,=T. Next assume N,=¢R. Since 7,(M)=+0, M contains a simple sub-
module C such that #;(C)#0. Furthermore every element in Homg(N,, N,)
is liftable by Lemma 17 for all . Therefore T contains a direct summand
T, isomorphic to N, such that T,=C by Lemma 4. Since M2 J(T), M2T,.

Let T, be a direct summand of 7" as in Lemma 18. Then T'=T97T,2M
=T\®(M NT,) and M N T, is a maximal submodule of T,.

i), ii) and iii).

Now {eR, eR[e] and eR[A,}, or {eR, eRle], eR|A, and eR/A,}, is the
representative set of hollow modules, accordingly as {4,=0 or 4,~A4,} or
{4,4¢4,}. Hence it is sufficient to consider the case N;=eR/A, or eR/A4,
for all i by Lemma 18. Under this assumption we shall show by induction
on |I| that M is a direct sum of hollow modules.

1) A4,=0.

Then A, is a character submodule of eR. Hence T has the lifting pro-
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perty of direct decompositions modulo the radical by [3], Theorem 3 (cf. Lemma
4), and so Mz](NQEB%‘,@N,-.

2) |I|=1.
This is trivial.
3) |I|=2.

Let M be a maximal submodule of D=eR/N,DeR/N,. Then M—=aR
for some a=M. Since aR<% J(D) and J(D) is semi-simple, aR-+J(D)=aR
BC,P---DC,;, where the C; are simple. Hence M= aRPC,P - PC; for
M=aR. We shall show the explicit form of @R in the following.

a) A4,

Then A, and A4, are character submodules.

a) T—=eR[A,PeR[A, or eR|A,BeR|A,.

We have the same situation as in 1).

b) T=eR|A,DeR|A,.

We may assume M= {%-+f(x)|x<eR|/A, f&Homg(eR|A, eR|A,)=
Homg (eR/e], eRle])}. f is given by the left-sided multiplication of an
element 2, where 2 is in eRe. Take a mapping 0: eR—T given by setting
0(a)=v,(a)+v,(2a), where v;: eR—eR|A; is the natural epimorphism for 7=1, 2.
Then ker §=A4,N A,=0 provided z&efe, and im §=M. Hence M=im §~eR
for IM|=|eR|=3. (If z<e]e, it is clear that M=eR[A,De]|A,.)

B) A,~A, and hence eR/A,~eR|A4,.

Let M and z be as above. If 2 is in A(4,), f is liftable. Hence M~
eR/A,Be]|A,. If z&A(4,), 27'(4)*4,, and so 4,Nz'(4,)=0. We can
define the 0: eR—T as ini). Then ker 9=4,N%7'(4,)=0. Therefore M=~eR.

4) |1|=3. a) AA4d,

a) T=eR|A,DeR|A,DeR|A, or T=eR|A,DeR|A,DeR[A,.

b) T=eR/A,BeR|/A,DeR|A,.

Since ﬁa(ﬂ)#O, M contains a simple submodule C contained in JQ/AIEB
eR/A,. Then eR/A,®eR[A, contains a direct summand 7, of T such that
T,=C by 3)-a). Then M2T,. Let T=T,BT,HeR/A,DM=T,HM N (T,D
eR/A4,)). Then M is a direct sum of hollow modules by 3).

B) A,~A,and hence [A: A(4))]=2.

Let T=eR/A,PeR|A,PeR|A,2 M be as above. Then M contains a
direct summand of T by Proposition 6.

From the above argument we obtain the following lemma.

Lemma 19. Let D=3YBN; and N,—cR|A; as above such that |N;|

=2 for i=1, 2, 3, and e a primitive idempotent. Then under the conditions of
Theorem 12, every maximal submodule of D contains a direct summand D, of D
with |D,|=2.
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We note that if z(M)=0, M=J(N,)®N,®DN,, and so M contains the
direct summand N, of D. We shall show by induction on ¢ that the content
of Lemma 19 is true for ¢ direct summands (¢>>3).

Let N; be as in Lemma 19 and D=2@Ni. Assume £>4. Let M be

a maximal submodule of D. As is well known, M contains a maximal sub-
_ i
module M, in N,PN,BN,D-Y-N,=D,. Hence M contains a maximal sub-

Z
module M, in N;®N,P¥-@N,=D,. Since M, contains a direct summand
D, of D, by the induction hypothesis, M contains a direct summand D, of D
with |D,|=2. Thus we can show, by 1)~4), Lemma 19 and induction on the
number of direct summands of D, that every maximal submodule is a direct
sum of hollow modules.

Now let P be a submodule of D and let M be a maximal submodule of
D containing P. Then M is also a direct sum of hollow modules. Repeating
this manner, we can show that P is a direct sum of hollow modules.

iv) We shall show the “If” part for |e] | =3.

Put A7, k) ={xcA|x(4,D4,D--DPA,)S(4,PA,PD---DPA,)} for i<k.

Lemma 20. We assume that i) eR|(A,PA,PD - PBA;)~eR|B for any
right ideal B in e] with |eR|B|=n—i+1, where n=|eJ | and ii) [A: A(4A,DA,
@D BA)=n—i+1. Then [A(s, k): A(A,PA,D---PA;,)|=k—i+1 as a right
A(A,DA,D - DA;)-module for k=i (cf. Proposition 6).

Proof. Put B=A,P ---PA;.,, B=B,PA;. Then there exists a unit
element x;,; in eRe such that x,, ;B=B®PA;,; by i). Since B+ﬁ x,B is an

t=4+1

irredundant sum, (A(B)+>)x,A(B)) is a direct sum. Hence A=A(B)PX)
@x,A(B) by ii). Let x=8§,+>)x,5, be an element in A(z, k), where the §;
are in A(B). Note that x;,,5,,;(B)=B,®4;;;. Then =0 for /<<k, and so
xEAB)Dx;  , A(B)D - D A(B) S A(s, R).

For the latter use, we assume that |e]J |=n and B,=4,D--PA4,_,. Then
the following cases 1) and 2) are trivial from the remark of case |e] | =2.

1) D=eR|B,®eR|B,.

Let M be a maximal submodule of D and @,=(e, a), a basis of M. Ifa
is in A,_,=A(B)) ([A: A,_;]=3), M contains a direct summand of D by Lemma
4, If ais not in A,_,, a'B,NB,=C, where |eR/C |=4 or 5. Then M con-
tains an isomorphic image M, of eR/C with M=M,. Hence M=M,DM,,
where M, is simple.

2) D=eR|BPeR|(B,PA,-,), where B=B, or B=B,PA4,_,.

Let M and « be as above. If aBEB,PA,_,, M contains a direct summand
of D. Assume aBCB DA, ,. If B=B DA, ,, a (BDPA,.,)N(B,DPA4,-,)=C,
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where C is a submodule of B,PA,., with |C|=d—2. Then M contains an
isomorphic image of eR/C, and hence M ~eR/C. If B=B,, B,Ca (B,®4,-,)
and so |B,Na {(B,PA4,-,)|=n—3. Then M contains an isomorphic image
of eR/C’, where |C’|=n—1, and hence M ~eR|C".

3) D=eR/B,®eR|B,PeR|B,.

Let M be a maximal submodule of D. We shall show that M contains
a non-zero direct summand of D. We may assume that M has a basis
{.=(@', o, &), a,=(D, &, 0)} with a’b’=£0. Assume a’, b’ and & are dependent
over A,_,=A(B,). Then there exist ® and y in A,_, such that a’x+b'yeA,_,
and ®=0 or y=Fo. O=ax+a,y=(W, X, J) is in M, where w=a'x+b"y. Since
all components of @ modulo eJ belong to A,_,, M contains a direct summand
M, with M=06R by Lemma 4. Next assume a’, b’ and ¢ are independent
over A,_,. We consider special elements 3, 3, in D. Let 8,=(&, %, ¥) and
B,=(b, %', 3'") be two elements in D, where neither @ nor b belongs to A,_,.

Assume <§; ;) is a unit matrix in (A,-;),. Then B, and B, are independent

over A. First we consider the following case: a(B,)<B,®4,-, and 8B, <
B,®A,. Since B,PA,.,—B,+a(B,) and B,PA,=B,+b(B,), a(B,)NB,=C,
and b(B,)NB,=C, are of length n—3. We shall define a homomorphism ¢,
of eR to D by setting @,(r)=(ar, Xr, Jr). Letr be in ker ¢,. Then areB,,
xrEB, and yreB,. Since ® and yarein A,_, and x40 or y=+o,reB,Na (B,)
=a '(C)).Hence @, induces a monomorphism of eR/a"'(C,) to D. Similarly,
we obtain a monomorphism ¢, of eR/b7}(C,) to D. Next we shall show that
B.R+B,R=M" is a maximal submodule of D. BB=(aB, 0, 0)= (£, 0, 0),
where a(B,)=C,®E, and E, is simple and B,B,=(bB,, 0, 0)=(F,, 0, 0), where
b(B,)=C,®E,. Since B,+a(B)=B,®A4,.,+B,®A,=B,+bB), E,+FE, Let
u and v be any elements in A4, A4, Then Bu-+B=(du+tbv, Tut+x',
X

Yu+3'v). Since (5’ ;:) is a unit, Bu—+ B,v=o0 if and only if u=v=0. Hence

MIQJ(M/);-)(BIB@_IQIB@ﬂI(An—l@An)@BZ(Aﬂ—leaAn))’ and so M'2 J(D) for
| J(D)|=6. Since M'=B,R+B,R, M' is a maximal submodule of D. Hence
|M'|=8. On the other hand, we have an epimorphism @ @,: eR/a"'(C,)P
eR/b(Cy)—M'. |eR|a™(C,)PeR/b Y (C,)| =8 for |a™(C))|=|b"YC,)|=n—3.
Hence PP, is an isomorphism and M’ is a direct sum of hollow modules.
Now we shall come back to the beginning. Assume a’, b’ and & are indepen-
dent over A,_,. There exist @’, b’ in A such that a”/(B,))=A,®--- DA, sDA4,_,
and b”(B))=A,D---PA,_;PA, by assumption. Then &, a” and b” are inde-
pendent over A,_, for e(B))+a”(B,)+b"(B,) is an irredundant sum. There
exist x, ¥, 2 and &', y’, 2’ in A,_, such that a’=eéz+a'x}+b'y and b’"=éz'+

’

a'x'+b'y’ by the assumption [A: A,_,]=3. It is clear that (i_) ;,) is a unit

matrix in (A,_;);. Then M contains B,=ax-+a,y=(@"—éz, %, ¥) and B,=
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ax' +ay' =F"—ezx', ®,5). It is clear that (a”—e2)(B)< B, ®A4,-,
(b”—ez2")(B))SB,PA, and neither (@”—ez) nor (b”—eéz’) belongs to A,_,.
Hence, as was shown in the initial part, M=@G,R+B,R is a direct sum of
hollow modules M; with |M;|=4.

4) D=eR|B,®eR|B,PeR/(B,PA,-,). B

We may assume that the maximal submodule M has the basis {@,=(e, 9, a),
a,=(o, & b)}. Now [A/A(n—2, n—1): A,_,]=1 by Lemma 20 and the as-
sumptions in Theorem 12. Hence there exists an element Z in A,_, such that
a+bzeA(m—2,n—1). Then 6=a,+a,2=(@, 2, @+bz2) is an element in M.
Therefore M contains a direct summand of D by Lemma 4.

5) D=eR|B,®eR|(B,PA,-)DeR/(B,DA,-)-

Let {a,=(a, o, &), @,=(b, &, 0)} be the basis of M. Then there exist &,
in A,_,=A(B,®A,_,) such that £=o0 or j=o and ax}+byEA,_, by the assump-
tions in Theorem 12. Since each component of §=ax+a,y=(Gx+by, ¥, %)
modulo eJ belongs to A,_;, M contains a direct summand of D (consider two
cases ax-+by=o and ax-+by=+o).

6) D=eR/(B,DA,-,)DeR/(B,DA,-,)DeR/(B,DA,-,).

Every maximal submodule M of D contains a direct summand M, of D by
Lemma 5.

7) D=eR/B,@eR/B,PeR|B,DeR|B,.

This is similar to 6).

8) D=¢R/B,PeR|B,PeR|B,PeR/(B,PA,-,) and

D=¢R|B,®eR|B,PeR|(B,DA,_,)PeR|(B,DA,-,).

They are reduced to 4) or 5) (cf. the proof of Case |e]|=2).

9) D=eR|B,@eR/(B,®A,-,)DeR/(B,PA,-,)PeR|(B,BA,-,).

This is reduced to 6).

10) Let D=X@®¢R/C;, where C;=B, or B®A,.. If t>6, every

maximal submodule M of D has a direct summand of D by the assumptions
of Theorem 12 and Proposition 6. Hence M is a direct sum of hollow modules
from 1)~9) and by induction. Therefore R satisfies Condition I for |e] |=3
from the similar argument to Case |¢J | =2.

v). We assume |e] |=4 and that the conditions of Theorem 12 are satis-
fied. We have many situations similar to those in Case iv), and so we shall
give only some remarks in those cases. Let {N;} be a set of hollow modules
such that N;~eR/C; for some right ideal C; in e¢J. Put D=IZ®N,~. We

shall show that every maximal submodule M of D is a direct sum of hollow
modules. We shall do this by induction on |7 |.

1) |II<2.

This is clear from the remark given in Case |e] | =2

Put B=A4,BA4,, Ci=A4,PA4,PA; A=A(4,), A,=A(B,) and A;=A(C)).
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2) |I|=3.
a) D=eR/A,PeR|A,BeR|A,.

Assume that M has a basis {@,=(a, ¢, o), a,=(b, o, &) with ab=o}. If
a, b and € are dependent over A;, M contains a non-zero direct summand of
D as in Case iv). Assume &, b and ¢ are independent over A,. Then 4,+
a(A4,)+b(A4,)=A,Ba(A4,)Pb(4,), since the sum is irredundant and 4, is simple.
We obtain a homomorphism ¢@: eRPeR— M given by setting o(r,+7,)=
ary+or,=(@r,+-br, 7, 7). It is clear from the above direct sum that @ is
an isomorphism. Since im @=M, M=im @@ M,, where M, is simple.

b) D=eR|/B,dPeR/B,DeR|B,.

This is Case 3) of iv).

c) D=eR|C,@®eR|C,DeR|C,.

Since [A: Ag]=2, M contains a direct summand of D by Lemma 5.

d) D=N,@eR|/A,PeR|A, where N;=eR|B, or eR/C,.

Since [A: Aj]=4 and [A(1, 2): A]=2, [A/A(], 2): A;]=2. Let D=
eR/B@eR|A,PeR|A,. We shall use the same notations as in 3) of iv). Let
B=(@, %, 3) and B,=(b, %', ¥'), where (?; ;:) is a unit matrix in (4,),, a(4,)
CB,®A4; and b(A4,)SB,BA,. We define a homomorphism @: eRPeR—D
by setting @(r-s)=Br+Bys=(ar-+bs, Zr+Z's, Jr+5's). Assume Xr4-Z'sc A4,
and Jr4-3'sA,. Since ('?; ;,) is a unit matrix in (A)),, 7 and s belong to 4,.

Further @r+4bs=ny(@r)+n(bs)cA,BDA, where =; is the projection of ef
onto A;. Hence ker ¢ is equal to one of the following: (0), (4,+(0)) and
(A4,84,). Therefore, for a maximal submodule M* containing G, and B,
M*=((eR+eR)/ker p) DM, PM,P---, where the M; are simple or zero. Now
let M be any maximal submodule of D and {@,=(a’, &, o), a,=(b’, o, &)} a
basis of M. First we consider the elements @’ and b’ in AJA(1, 2). If @’ and
b’ are dependent over A,, there exist ® and # in A, such that a’x+b'y€ A, and
X=Foor yFo. =ax+a,yisin M and OR is a direct summand of D by Lemma
4. Next we assume that @', b’ are independent over A,. There exist a”, b”
in A such that a”(B,)=A4,PA4; and b”(B,)=A,PA, by assumption. Then
@’ and b” are independent over A,. Since [A/A(1, 2)]=2, there exists a unit

matrix (z, ;,) in (A), such that @’=a'x+b'y and b”=a"x'+b"y’. Then M

contains B, =a,x+at,y =(@"+w, %, §) and B,=ax'+a,y’' =¥+, %', ¥'),
where @, and w, are in A(1, 2). Hence M is a direct sum of hollow modules
by the beginning of d). If N;=eR/C, the above argument is valid, for C,2B,.
e) D=eR|B,®eR|B,PeR|A,.
We need the following lemma.

Lemma 21. Assume Endg(A4,)=A(A4,) and that there exists a umil element
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xin A such that xA,=A for any simple right ideal A in e]. Let S, and S, be
simple submodules of eR and ¢R|A,, respectively. Then every f in Homg(S;, S;)
is extendible to an element in Homg(eR, eR/A,).

Proof. Let v be the natural epimorphism of eR onto eR/A;,. Then we
may assume from the assumption that f is given by the left-sided multiplication
of an element Z in A. Then vx induces f.

Let M be a maximal submodule and {@,=(a, €, o), @,=(b, o, &)} the basis
of M. If b(A,)SB,, M contains a direct summand M, of D such that M,=a,R
by Lemma 4. Hence we assume b(4,) < B,.

e-1). a(B,)Nb(A4,)=0 and eJ=B,Pa(B,).

Then b(4,)=X(f)={x+f(x)|x€X} < B,Pa(B,), where X is a simple
submodule of a(B;) and feHomg(X, B,). Let @: eRPeR—a,R+a,R be
an epimorphism given by setting @(r-s)=ayr+a,s=(a@r+bs, 7, 5). Ker p=
{ri+s|rnea(X), s,€4, and ar,+f(ar,)=bs;}. Hence we obtain an isomor-
phism g: 4,—a7(X) such that g(a;)=r,. Therefore a;R+a,R~(eRPeR)/ker @
~eR®(eR/A,) by Lemma 21, [7], Lemma 2.1 and [2], Theorem 2.5 (cf.
Lemma 4). Accordingly, M ~eR®eR[A, for |M|=9=|eRDeR/A4,]|.

e-2) a(B,)Nb(A4,)=0 and B, Na(B,)=X is simple.

e-2.1) a(B,)Pb(4,)2B,;.

Let a(B)=X@®Y. Since a(B,)Db(A4)=XPY Bb(4,), Bi=XPZ, where
Z=B N (Y®b4,)). For z in Z, 2=y+b(a); y€Y and a,€4,. b4,)EB,
implies that the mapping: g(y)=a, is an isomorphism of Y onto 4, Let
@ be as above. Then ker p=(a"{(X)PO0)PA,(k), where k: A,—a (Y) is
given by k(a,)=a"'g"'(a,). Hence a,R+a,R~eR[a" (X)PeR|A;, by Lemma
21. Since M=a,R®a,R, M ~eR|a *(X)DeR|A,DM,, where M, is a simple
submodule.

e-2.2) a(B)®b4,)DB,.

Then ef =a(B,)Pb(4)PZ=XDPYDb(A,)PZ=YDb(4,)PB,. Hence
M ~eR[a™(X)DeR.

e-3) a(B,)Db(4,) and eJ=a(B,)PB,.

Then we have an isomorphism a'4 of A4, onto a simple submodule X
of B,. Hence M ~eR|A;@®eR by [7], Lemma 2.1.

e4). a(B;)Db(4,) and a(B,) N B;=b(4,).

This is contained in Case B;Db(4,).

e-5). a(B,)Db(4,) and a(B,)NB,=X is a simple module not equal to
b(4,).

Let a(B)=X®Y. Since B, Db(4,), b(4,)=Y(f) for some f: Y—>X.
Hence M ~e¢R[a " (X)PeR|A,PM, by Lemma 21.

e-6). a(B,)Db(4,) and a(B,)=B,.

Then M contains a direct summand M, of D such that M,=a,R by
Lemma 4.
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f) D=eR|/C,BN,P¢eR|/A,, where N,—eR/B, or eR/C,.

Let {@,=(a, &, o), @,= (b, o, &)} be the basis of M. Since [A/A(1, 3):
A]=1 by Lemma 20 and assumption, there exist ¥ and y in A, such that
ax-+byeA(l, 3). Put 0=ax+a,y=(Gx4by, %, 7). Then M contains a direct
summand M, of D such that M,=8R by Lemma 4.

3) |I|=4

a). D=eR|A,@eR|A,DeR|A,PeR|A,.

Since |D|=16, |M|=15. Hence M contains a direct summand of D,
which is isomorphic to eR@eR by the similar argument to 3) of Case |eJ |=3.

b) Other cases.

Since [A/A(1, 2): A]]=3 and [A/A(2, 3): A,]=2, we can use the same
argument as above.

4). The remaining part is similar to Case |eJ | =3.

Thus we have completed the proof of Theorem 12.

4. Rings with |eJ|>5
We shall study the ring R with |/eJ| >5 under the assumption: J?=0.

Theorem 22. Let R be a right artinian ring with J*=0. Then

(%), Every maximal submodule of a finite direct sum of serial modules is
a direct sum of hollow modules if and only if, for each primitive idempotent e,

i) eJ=A4,PA, AAA,or A,=0, or

i) ef=A4,DA4,D---DBA,; A=A, for alli (n>2),

a) [A: A(A,PAD--PA,-,)]=2 and

b) there exists a unit x in A, for any right ideal B in e¢] with |B|=n—1,
such that B=x(4,DA,PB---PA,-,); i.e. eR|[A~eR|B.

Proof. “Only if” part. Put B=4,pA4,P - -PA,,SeJ. Then [A: A(B)]
<2 by Lemma 3 and Corollary to Lemma 5. Assume A=A(B). Then n<2
by Lemma 8 and hence 4,=0 or 4,44, by Lemma 8. ii)-b) is obtained from
Proposition 6.

“If” part. Let D=>)PN,; be a direct sum of serial modules. Then
N; is isomorpbic to either eR/e] or eR/B (or ¢R if eJ=A4,). Let M be a maxi-
mal submodule of D. Then, from Proposition 6 and the proof of Theorem 12,
M is isomorphic to either ](NI)GBEEBN ; or MIEBEGBN ;» where M, is a maxi-
mal submodule of N;@N,. It is clear from the proof of 3) of Case |e] |=2

in Theorem 12 that M, is isomorphic to Ny N,[J(N,), N;/J(N,)®N, or eR/C,
where |eR/C |=3. Thus M is a direct sum of hollow modules.

Theorem 23. Let R be as above. Then
(%); Every maximal submodule of a finite direct sum of hollow modules whose
length is equal to or less than three is a direct sum of hollow modules if and only if
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R satisfies (%), and

1) ifeJ=A,PAD - PA, and A,~A; for all i (n>3), then

a) [A: A(4,DA4,D-- DA, ,)]=3, and

b) for a right ideal B with |B|=n—2, there exists a unit x in A such that
B=x(A4,®A4,D - PA,-,); i.e. eR[A~eR|B.

Proof. Since the proof of Theorem 12 for Case |e] | =3 is given in a general
form, we have the theorem from Theorem 22.

Theorem 24. Let R be a right artinian ring with J?=0. Then R satisfies
Condition 1 and e] is simple or contains a proper character submodule for each
e if and only if e]=A,PA, and A7 A4,.

Proof. Assume that R satisfies the first two conditions in the theorem.
If |eJ|>3, by Proposition 11 ef=eRA, for any simple submodule 4,. If B
is a proper character submodule containing A4, of ¢J, eJ=eReB=B, which is
a contradiction. Hence |eJ|<2. Further, if 4,~4, A,=xA4, by Lemma 8.
Therefore |e] | =1 or A,7%A4,.

Similarly, by Lemma 5 and Proposition 6, we have the following:

Proposition 25. Let R be a right artinian ring with J*=0. Assume the
conditions i)-a) and b) in Theorem 23. Then the following condition is satisfied.

(*x); Every maximal submodule of a direct sum D(4)=2 @N; of hollow
modules N; with |N;| =3 contains a non-zero direct summand of D. Conversely,

if D(4) satisfies (x¥%); and D(3) does not, then i)-a) and b) in Theorem 23 are
satisfied.

Proposition 26. Let R be as above. Assume R satisfies (*);. If |eJ | >3,
eRele]e is not commutative for a primitive idempotent e.

Proof. Assume |e]|>3 and ¢J=A4,D---PA4, ,PA,-,PA,, where the 4;
are simple. Put B=A4,p---PA4,_,. Then there exist unit elements x, y in A
such that xB=4,p---®A4,_;DA4,-, and yB=B, yA,_,=A, (mod B) by Lemma
8 and Theorem 23. xyB=A,P---DPA4,-:DA,-1EBPA,ZyxB. Hence xy=+yx.

Corollary 1. Let R be a commutative artinian ring or an algebra of finite
dimension over an algebraically closed field. Then R satisfied Condition 1 if and
only if i) or ii) in Theorem 12 is satisfied.

Proof. This is clear from Proposition 26 and Lemma 8.

Corollary 2. Let R be as in Corollary 1 (not necessarily J*=0). Assume
R|] is a simple ring. Then R is a right serial ring if and only if R satisfies Condi-
tion 1.
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Proof. This is clear from Corollary 1 and Proposition 1.

5. Examples

Proposition 26 suggests us very much the possibility of |ef|<2. We
shall study this situation. Let D, and D, be two division rings and V a left
D, and right D, vector space. For a right D,-subspace ' of V, we denote
the dimension by |V'|,. Put#=]|V|,, and consider the following conditions.

a) If |Vilp,=1V,l|p, for subspaces V,, V, of V, then there exists an element
d in D, such that dV,=V,.

b) [Dy: D(V))],=n—|V,|p,+1, where D(V,)={d €D,|dV,=V}.

c) Let d be a fixed non-zero element of V. There exists a monomorphism
o of D, into D, such that dx=o(x)d for x&D,.

Theorem 27. There exists an artinian ring R with J*=O0 satisfying the
conditions iv) (resp. v)) in Theorem 12 if and only if there exists a vector space
V' as above satisfying 1) |V |p,=3 (resp. |V|p,=4), 2) a) and b) are satisfied
Sfor any V, with |V,|p,<2 (resp. |V,|p,<3), (resp. 3) c) is satisfied).

Proof. If there exists a D,—D, vector space V, then R= (%))l g satisfies
2

Condition I by Theorem 12. Conversely, assume that there exists an artinian
ring R satisfying Condition I. Let ¢J=A4,PpA,PA; (resp. 4, P A4, DA, A,).
Since A4, is simple and R may be assumed basic, 4,~ fR/f]=fRf|f]f for a primi-
tive idempotent f. Put D,=eRefeJe and D,=fRf|f]f. Then e] is a left D,
and right D, vector space. Hence e] satisfies 1), 2) (resp. 1)~3)) by Theorem
12.

We note that if such a D,—D, vector space exists, D, should be non-com-
mutative. Finally let R be an algebra of finite dimension over a field K. As-
sume R satisfies Condition I and put A=eRe/eJe for a primitive idempotent e.

Proposition 28. Let R and A be as above. Then [A: K] is divisible by
leJ | provided |eJ | >3. If [A: K] is not divisible by 2 or 3, then |e] | <2.

Proof. This is clear from Lemmas 13 and 15.
Exampres 1. Let LD K be distinct fields and put
LL L
R = (0 L L
00 K/.

Then e R/e;, J? is serial but ;R is not serial.

2. Let T be a field and x an indeterminate. Let L=T(x) and K= T(x").
Then we have an isomorphism o of L onto K given by setting o(x)=x". Put
R=R(n)=L@Lu a vector space over L. R is a ring by the following product:
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(%, +x2) (V1 +y ) =29+ (%,y,+%,0(y))u. Then J(R)=Lu and Lu=Ku®D
Kxu --- @ Kx""'u. Every simple right ideal is isomorphic to Ku via the
left-sided multiplication of an element in L. Hence {R, R/J, R/Ku} is the
representative set of hollow modules if n=2. Therefore R(1) and R(2) satisfy
Condition I (note that J=4,P 4, and 4,~ A4, for R(2)), but R(n) does not
for n>3 by Theorem 12. R(3) satisfies (**); by Proposition 25.

3. Let LOK be as in Example 1. Put

KL L
R=(0LO
00L.

Then e, J=(0, L, 0)d(0, 0, L) and R satisfies Condition I (note that e, J=
AP A4, and A,7&A4,).
4. Let D,CD be division rings with [D: D;],=2. Then
DD
2=(§ 5,
satisfies Condition I. If [D: D,],>3, R is not of right local type (see [7]).
5. Put
_ (K KK
r=(G 85)
Then e, J[=K®K and (K, 0)~(0, K)Ze,,J. Hence R does not satisfy Condi-
tion I.
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