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Introduction

We have given, in [5], a characterization of a right (upper) serial ring in
terms of submodules of finite direct sums of serial modules. In this paper
we shall replace the serial module by hollow modules in the above. Then
it is clear that we shall be able to obtain a new class of rings R generalized from
the right serial rings.

However, it is difficult for the author to give a complete characterization
of those rings. We shall restrict ourselves to a particular case where the Jacob-
son radical J of R is square zero. It is not still easy to find the characterization
of such rings. If R is either a commutative artinian ring or an algebra of finite

dimension over an algebraically closed field, then we can show the structure
of R as follows: \eR\, the composition length of &/?, is equal to or less than
three and if two simple right ideals Al and A2 in ej are isomorphic to each
other, then there exists a unit element x in eRe such that A2=xA1 and [eRe/eJe:
Δ(A1)]r=2, where e is a primitive idempotent of R and Δ(Al)={x&eReleJe\

xA^Ai}. We shall give the similar structure for any right artinian ring R
under an assumption that \eR\ <5. We do not know any examples of rings
which have the property mentioned above (see Condition I in § 3) and \eR\^4
for some primitive idempotent e. We shall study the similar problem without

the assumption ej*=0 in the forthcomming paper.

1 Right serial rings

Let R be a ring with identity. Every module in this paper is a unitary
right jR-module. For an /?.-module M, | M \ means the length of the composi-
tion series of M. We shall denote the Jacobson radical and the socle of M by

J(M) and S(M), respectively. Put J\M)=J(J*-l(M)) and Sn(M)ISu^(M)
=S(M/Sn.1(M)) inductively. Then M^/(M)3/2(M)3 and OcS^MJc
S2(M) c - are called the upper Loewy series and the lower Loewy series of M,

respectively. If each factor module J"(M)/J»+\M) (Sn+1(M)/Sn(M)) is simple
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or zero, the upper (lower) Loewy series is a unique composition series such

that \MIJn(M)\ = n(\Sn(M)\=n) and if |M/ΛΠ = m<«> (\N\ = m<oo) for

some submodule N, N=Jm(M) (N=Sm(M)) provided that Jk(M)*Jk+l(M)
(Sk(M)3=Sk+1(M)) for all k^m— 1. If M has the unique chain as above, we

call M an upper (lower) serial module. An upper (lower) serial module M with

J*(M)=Q (St(M)=M) for some t is called a serial module and in this case

Let R be a semi-perfect ring. If, for each primitive idempotent ey eR

is an upper serial module, then R is called a right upper serial ring (cf. [5]). Next
we assume that R is a right semiartinian ring. If, for each indecomposable

injective module E, E is a lower serial module, then R is called a right lower

coserial ring.

We have shown in [5], Theorem 2 that if R is an artinian right (upper)

serial ring, R satisfies the following condition: every submodule of a direct

sum of hollow modules is also a direct sum of hollow modules. We shall study,

in this section, a similar property for a quasi-projective module. The following

result is well known provided R/J is a simple ring (cf. [1], p. 75). We shall
give a proof for the sake of completeness.

Proposition 1. Let R be a semi-perfect ring. If R/J2 is a right serial ring,
then R is a right upper serial ring.

Proof. We may assume that R is basic. We shall show by induction

on t that eRlDeJlΞϊ lΞieJ* is serial for each primitive idempotent e. Assume
that the above fact is true for ί<£. Then £>2 by assumption. If eJ2=eJ,
the proposition is trivial. We assume that ej/ej2 is a non-zero simple module.
Then eJleJ2f*3fRlfJ for some primitive idempotent /. Hence there exists an
element x in ejf such that eJ=xR+eJ2. Then eJt = xJt~1+eJt+\ and so
ej*lejt+1 is a homomorphic image of fj*"1!/}*, since x=exf^ej. Hence
ej*lejt+1 is either simple or zero. Therefore R is right upper serial by induction.

We obtain the following proposition as dual to the above.

Proposition 1.' Let R be a right semi-artinian ring. If S2(E) is serial
for every indecomposable and injective module E, then R is a right lower coserial

ring.

Proof. Let S^^S^E^-'^S^E^G be a serial chain of E. We may
assume i >2. Then E/S^E) is a uniform module. Hence E=E(E/Si^(E))y

injective hull of E/S^E), is indecomposable. Therefore Si+1(E)/Si(E)^S2(E)l
S^E), and so Si+1(E)/Si(E)is either simple or zero. Hence R is right lower
coserial*

It is clear that eR is not serial even if eR/eJ2 is serial for a primitive idem-
potent e (cf. Example 1 below). Concerning this fact, we have the following
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proposition.

Proposition 2. Let R be a semi-perfect ring and J the Jacobson radical
of R. Let P be a hollow module eR/B with B a character right ideal of eR\ i.e.

P is a cyclic quasi-prcjective module. Assume P/PJ2 is a serial R-module. Then
P is upper serial if and only if every maximal submodule of a finite (two) direct

sum of homomorphic images Pt of P with \Pi \ < oo is also a direct sum of hollow

modules.

Proof. "Only if" part is clear from [3], Theorem 2 and [4], Theorem 1.
"If" part. Assume that the last condition of the proposition is satisfied

and that, for a primitive idempotent e> &RlD ejϋ (eJ2+B)^) ••• Ί^(eJt-\-B)

is the chain with (eJi+B)/(eJi+1+B) simple for all i<t—l. Then we may
assume ΐ > 2 by assumption. Let Nλ and N2 be maximal submodules, con-

taining (eJt+1+B), of (eJ'+B). Put D=eR/Nl®eRIN2 ano^ S=D//(D)=
eR\e]@eR\eJ. Let M'= {%+%\%<=LeR} be a submodule of D. Then there
exists the maximal submodule M of D such that MlDj(D) and MIJ(D)=M'.

Since \S(D)\ = \(eJ'+B)IN1®(eJ'+B)IN2\=29 M=Ml®M2 by assumption,
where the M; are either hollow or zero. Assume M, ΦO for /=!, 2. Then
we know that each M{ is uniform, for \S(D)\=2. Let πέ: D-*eR/Ni be the

projection for ί=l, 2. Since M=M', π^Mj^^eR/Ni for some j(i) of {1, 2},

and so |M>ω| >t+l. On the other hand, \M\=2t+l. Hence j(l)=j(2)

(—1). M! containing the simple socle, either πι\M1oι π2\Ml is an isomor-

phism. Assumes I M! is an isomorphism. Then D=M1@eR/N2. Now take

the composition mapping/: eR/Nl-^D-^eR/N2y where i is the injection andjf)

is the projection of the above decomposition. Let m be an element in Mλ.

Then m=πι(m)-\-π2(m), and so π1(m)=m—π2(m). Hence /(τr1(m)) = —τr2(w).

On the other hand, πι(m) = m—π2(m)=(%-\-%)—π2(m) =%-{-(%—π2(m))y where

ffi — %-\-%\ X^eR. Hence π1(m) = % — π2(m)==—f(π1(m)). Accordingly, since

πl\M1 is an isomorphism, the identity mapping of eR/eJ is liftable to
—f^Hom.Ii(eR/Nly eR/N2). Then there exists an element x in eRe such that

—f(¥}=x¥ for f^eR/N^ Hence xN^N2 and e—x=j is an element in eje,

for / is the identity of eR/eJ. On the other hand, jN1^j(eJ'+B)^(eJt+1+B)

^N2. Hence N1=eN1^(x+j)N2^N2 and so N,=N2 (cf. the proof of [3],

Theorem 4). Therefore (eJ"+B)/(eJn+1+B) is either simple or zero. Next

assume that M2=0 and so M is hollow. Then J(M)=J(D) and M/J(M)&

eR/eJ. Hence we may assume M=eR/eA for some right ideal A. \D\ =2t+2

implies \eR/eA\=2t+l. Since M/J(D) = M', π^eRjeA is an epimorphism

for i = 1, 2. Put Bi = ker (m \ eR/eA). Then | eR\B{ \ = t + 1. On the other

hand, since Ni^(eJt+B)> we have the natural epimorphism v{ of eR/Ni onto

eRI(eJ* + B). Hence Z^TT,- is an epimorphism of eR/Nj onto eRI(eJ*
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Therefore there exists a unit element y in eRe such that y?= ϊ>, τrt F for
Since 5,-cker zvr,-, yB^eJt+B), and so Bi^y'\eJt+B)^(eJt+B). Now

I eRI(eJ'+B) \ =t and | &R/J5, | -ί+1. Hence | (eJt+B)jBi \ = 1. Furthermore,
#x Π 52= *A Therefore | eΛ/^ | = | eRI(eJ'+B) \ + \ (e^+B^/B, \ + \ BJeA \ =
t+l+ I (B1+B2)/B2\ <ί+2, for B^B^eJ'+B. On the other hand, | eR/eA \
— 2t+l, which contradicts the assumption

From the first half of the above proof we obtain the following :

Proposition 2'. Let R and P be as above (not necessarily P/PJ2 is serial).
Then P is an upper serial module if and only if every finite (two) direct sum of homo-
morphίc images P{ of P with | P, | < oo has the lifting property of simple modules
modulo the radical.

Proof. If D=eRIN1®eRIN2 has the lifting property of simple modules
modulo the radical, then every maximal submodule of D contains a non-zero

direct summand of D by definition. Hence we have the first case of the above
proof.

We note that the assumption on P/PJ2 is inevitable in Proposition 2 (cf. § 3).

2. Maximal submodules

i) General case
From now on we always assume that R is a right artinian ring. We shall

study the similar situation to Proposition 2. Hence we may assume that R
is basic. Let e be a primitive idempotent, then eRe/eJe is a division ring. We
consider hollow modules Nέ of the form eR/Bi9 where J5t is a submodule of

ej. Put JD==2ΘΛΓ, and D=DIJ(D) = ̂ ®eR/eJ. Now R is basic. Then

(eR/eJ)R=(eR/eJ)(eRe)=(eR/eJ)(eRe/eJe) and R(eJ/eJ2)=(eRe/eJe)(eJ/eJ2). Put

eReleJe=eRe=Δ. Then D is a right Δ-vector space of dimension k. Let
χ=^ Xj be an element in D, where the Xj are in Nj/J(Nj)=eR/eJ and we denote

XJ1 by xjl, where xj1 is an element in eRe. Then XjXjl=e. Let M be a

maximal submodule of D. Then M^J(D), and put M=M/J(D). It is clear
that either M— Σθ^Vy for some / or M has the following basis: {#ι=(δ, e,

/Φ*
o, •••, o, o), tf2==(S2, o, e, o, •••, o), •••, σA_1=(SΛ_1, o, •-, e)} and that M is gene-
rated by {aj=($jy 0, •••, e, •••, o)} and/(D) for the latter case, where the δ; are
in &R0 and §,- is an element in Nj. Conversely, if we take the set {α, }i«ι, the
module generated by the α, and J(D) is a maximal submodule of D. We con-

sider the condition in Proposition 2.

(*) Any maximal submodule of D is a direct sum of hollow modules.

Lemma 3. Let {Nlt N2> •••, Nt+1} be a set of hollow modules with \Nt\=t.
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Put D=^2φNi. If D satisfies (*), then every maximal submodule M ofD contains
ί=ι

a direct summand of D, which is isomorphic to some N{.

Proof. Let τrt : D-^N{ be the projection of D onto Nt. Assume that
M is a direct sum of hollow modules M, : Af=20Mie If \M{ \ <t, M^

=ΣθjΓ(ΛΓ,). Furthermore, since \M\=t and Jtf l=(
(M^ Π J(D) is either simple or zero, there exist at least t Mi} among {Mt} such
that |Λf ί y |=l, and hence |Mίy| >ί, since nk\M{j is an epimorphism for some
k. If |Λf ί y |>t+l for all;, |Λf | >ί(ί+l)= |Z)|. Hence there exists some
Λf f 0 with |Λf, 0 |=f. ττJMf 0 is an epimorphism for some & as above. Hence
Mg 0 is a direct summand of Z) for | MΪQ \ = \Nk\.

Assume that M in Lemma 3 is generated by {al9 a^ ••-, at} as above and

J(D). Then Mj is generated by /8=Σ ^iVi^riy where 7 is an elements in /(D).
Since Ml is a direct summand of D, M^J(D). Hence some yi of {y{} is

not contained in eje, Therefore we may assume /3=
ι>2

( 1 ) 7 = α1+Σ«^ι, 8 = 8i+28^ and /S=
ι>2 ,>2

where .̂=(8^ o, •••, o, ,̂ o, •••, o) is in D.
We frequentely use the method of the proof of [3], Theorem 2, and so

we summarize here its content. Let Nl and N2 be hollow modules and /'
an element in Hom^Λ/y^JVi), N2/J(N2)). If there exists an element /, which
induces/', in HomR(Nl9 N2), we say that/' is lifted to f.

_

Lemma 4. Let D=^®N{ be a direct sum of hollow modules. Let M=
1 = 1

h Λ W l Λ e / J Ί «wrf /;eHomΛ(2vΊ, 2V,.)} ^ Λ submodule of D==
D/J(D). If each f{ is lif table, D contains a direct summand Dl such that D1=M.

From Lemma 3, we are interested in the condition:

(**) Every maximal submodule of D(k)=Nl®N2® ®Nk contains a direct
summand of D, which is isomorphic to some ΛΓ, .

Let B be a submodule in ej contained in rR(eJe)={x^R\eJex=0} and
put Δ(B)={x<=Δ\xB^B}.

Lemma 5. Let B be a submodule in ej contained in rR(eJe)l) and N~eR/B
for ί=l, 2, •••, k+1. Then [Δ: Δ(B)]=k as a right Δ(B)-module if and only if

D(k+l)=^®Nf satisfies (**), but D(k) does not.

Proof. Assume [Δ: Δ(B)]=k. Let M be a maximal submodule of D

= D(k-}-l). Then we may assume that M has the basis {&19 aτ2, " >^*} as
before. Since [Δ: Δ(B)]=k, there exists a set of elements {jf,-} ̂ o of Δ(-B) such

1) We shall remove this assumption in the forth comming paper.
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that Σ S,.;y,eΞΔ(£). Then 0=Σ αtj,— (Σ S.-y,., ft, ••-, ̂ ) is an element in M.
Now all components of θ modulo ej are elements in Δ(.β). Therefore there
exists a direct summand Mx of D such that M1=(ΘR-\-J(D))/J(D) by Lemma 4.
Hence Mx is a submodule of M, for M ^J(D). It is clear that M: is isomor-
phic to some Niy for Λ?1=(0/Z+/(Z)))//(Z)). Assume that £>(&+!) satisfies
(**). Let {S0=£, ?!, S2, •••, δj be any set of elements in Δ and M a maximal

submodule generated by {#,• = (§,., 0> •••, £, o, ••-, 0)};=ι and /(D). Then M
contains a direct summand Ml of D with | Ml \ — | &R/S | by assumption. We

may assume that Ml is generated by β=ctιy1

Jra2y2-{ ----- hcW*+.7> where the
yι are in Δ and j inJ(D). We may assume that there exists an integer ί such

that y^o for all /</ and JV-o for a11 ./'>*• Then ^-(δ^+
4Aj>ί+/ι» 0JΊ+/2, 2y2+/3> '••> £yί+/ί+ι, Λ+2Γ' > /*+ι)ι where the;', are in
Consider the natural epimorphism 9? of eR onto βeR^Ml by setting φ(r)=βr
for r^eR. Let Λ? be in ker^. Then (^+y2)Λjeβ. We may assume that
J2^eje and (^+y2)~

1— ̂ +72> where ^2 is in eje. Hence x^(e-\-j2)B=B, and so
ker φ^B, which implies | eR/B \ = \Ml \ ̂  \ βeR \ = \ eR/ker φ\>\ eR/B \ , and so
ker^— B. Hence SB^B, (ey2)B=B9 -•• and (ey^B^B provided 5=(S1+S2y2

+ 5ίyf.)φo (note that 7^= 0). Therefore [Δ: Δ(JB)]<^. Thus we obtain
the lemma from the above.

We note that if D(i) satisfies (**), then D(ί) does for all i^j (cf. §3).
Hence we have the following corollary.

Corollary. [Δ: Δ(B)]=k implies that k is the minimal integer among k' such

that D(k'+V) satisfies (**), where D(kf+l)=^®Ni and N~ eR/B for all i.

Proposition 6. Let A and B be submodules of ej contained in rR(eJe) and
with \A\ = \B\ and[Δ: Δ(J5)]=Λ.

i) There exists a unit element x in eRe such that xB=A if and only if
k

D(k+l)=eR/A®eR/B®"^®eR/B satisfies (**).
ii) If ej is an irredundant sum of {B=B^ B2y •••, Bt+1\ \Bt\ = \B\ for all

i} and i) is satisfied for any pair (Bi9 Bj), then k^t-\-\.

Proof, i). If there exists a unit x such that xB=A, eRjA^eR/B. Hence
D(k+l) satisfies (**) by Lemma 5. Conversely, we assume that D(k-\-l)

k

satisfies (**). Let M be a maximal submodule
of D such that M=<α1, a2, ••-, αA>, where αf.=(Sf , o, •••, o, eh o, •••, o) and
{ î, S2, " ,SΛ} is linearly independent over Δ(B). Then M contains a direct
summand M! generated by β+j, where β= (Σ ^V»> ^> 3^2> " >Λ) From the
similar argument to the proof of Lemma 5, we have (Σ Siy^B^A and Σ ^ίJ*

")• Let eJ=Bl

J

ΓB2-\ ----- \-Bt+1 be an irredundant sum.
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Then there exists a unit element x{ of eRe such that xiB1=Bi and eJ=eBl

t+l

+Σ#A Therefore {#ι=£, %2> '"> ^s+i} is linearly independent over Δ(β),
i = 2

and so [Δ: Δ(£)]>t+l.

ii) Caseς/2=0.

From now on we assume eJ2=0. Then ς/=ΣΘ-4, , where the -4, are
» = 1

simple. We shall study the case t=2 in the above. In this case (**) is equiva-
lent to

(**)2 Every maximal submodule of a direct sum Z)(3) of three serial modules

(of length two) contains a direct summand of D(3).

(2 in (*#)2 means the length of the serial modules in D(3).)

Case I. A^A2.
Then there exists a simple right ideal A3 such that A1®A2—A1ΦA3=

A2®A3. Put eJ=A1@A2®B, N2 = eR/(Al®B)9 N2 = eR/(A3®B) and N3=

Case II. |ς/|>3.
Put eJ=Al®A2®A3®B9 N^eRKA&A&B), N2=eRI(A1®A3®B) and

In either case we put D=N1®N2ΦN3. We take a maximal submodule
M' of D generated by (e, kly o) and (δ, e, k2), where k^o and ^2Φo. M' being
maximal in Z), there exists a unique maximal submodule M of D such that
M^J(D) and M=M'. From now on, we assume (**)2. Then M contains
a direct summand Mj with \Ml\^=2. M is generated by (ey kly o)y (δ, e, k2)
and/(Z>). Hence Ml is generated by an element

( 2 ) α = (ft £ι, β)Λ+(β, ft

where ^ or 3; is not mj and/ is ΊnJ(D). Since I? is basic, we may assume that
x and y are in &Re as above. Here we shall observe the element a of the form
k1=k2=e in (2), dividing into three cases:

i) y is in eje, ii) x is in eje and iii) x and 3; are units in eRe.

Case i). Af^αaΓ1.^ = {tf, M, o) | a^A^ ΦO and MX2 a^~^2 2 (0 A2,
-)ΦO. Hence IMJ^S.

Case ii). We have similarly \Mλ\ >3.
Thus we have the following lemma.

Lemma 7. Assume (**)2. Let D=N1(&N2($N3 be as in Cases I and II and

M the maximal submodule of D given as above. Then there exists a hollow direct

summand Ml of M with \ Ml \ =2, whose generator a is of the form in Case iii).
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Lemma 8. Assume (**)2. In Case I, there exists a unit x in eRe satisfy-
ing xB=B and xAl=A2 (mod B)y where eJ=A1®A2®B.

Proof. Let Aiy N{ and B be as in Case I. Then there exists a of Case
iii) by Lemma 7, which generates a hollow direct summand Ml of M with | Mλ \
—2. We may assume that M1 contains a=(e, e+$y 30+./ and y is a unit in
eRe. Then aAl = {(άly (e+$)aly yaj \ a1 <Ξ A^ Φ 0. Assume yB Φ B. Then
there exists δΦo in B such that yb=a1-\-a2+b', where #, is in Aiy V in B and

αι+α2Φo. Then α& - (όy (e+ 3% jfc) = (o, ^+02, 02) Φ o, and so | M, \ > 3,
a contradiction. Therefore yB=B. Similarly, aA2= (0, — , jM2)— 0, and so

yΛ^iθ-B. Since ;y£=#, ̂ 2=Λ (mod β).

Lemma 9. If \ej \ >3, all the simple right ideals in eR are isomorphic to
one another provided that (**)2 is satisfied.

Proof. Assume | ej \ > 3 and A^A3 for simple right ideals Al and A3

in ς/. Since |ς/|>3, we have eJ^A^Az^A^B as in Case II. Let Mj
and α: be as above. Then α^ΦO. Let ^3=/?i+/32+/33+i'> where V is
in jB and βi9 a{ are in ^4,-. Since A&A& βι=o. Hence, since |Mj| = 2,
aa3=(o, βz+άsy β3)=o implies

( 3 ) β^β^β^o.

Therefore yA3^B. Let j>i=0ι+fl2+tf3+&', where &, δ' are in B and #, in
A^ Then ab=(ό, ά2y ά3)=o by the assumption |Mj|=2. Hence a2=a3—oy

and so yB^B®Al9 Let TT be the projection of B@Aλ onto ^4lβ Since
7rj;B^^l1 (note that yA3^B implies yBΦB)y B=A{®Bly where A{^Al and
βj^kerTr^. Hence yB^B. Since yA3^B as above, and A3^yA3^Aιy

yA^B^ Put B2=yA3+y2A3-{ ----- \-ynA3=yA3^ ----- \-y*A3+y*+ίA3 for some n.
Since yB^B and ykA3^A{y ykA3^B2=yB2^B1 by the above fact and induc-
tion on k of ykA3y which is a contradiction, for A3QB2y yA3dB2 and yB2=B2.

Proposition 10. Assume (**)2 and eJ2=Q. If |ς/|>3, eRA1=eJy where
A! is a simple right ideal in ej. Hence ej is a simple two-sided ideal of R.

Proof. Put eJ^eRA^B. Assume JSΦO. Put B= A2®BQ and eRAλ=
-4ιΦC0. Then eJ=Al@A2(&(B0(&C0). By Lemma 8, there exists an x in

gjR^ such that Λz^ci^φJS^CΌ; ^^1=^2+^0+^0 (^2Φ°) f°r ^iΦo in -4X. Hence
xa1—c0=a2-\-b0&eRAlΓiB=Q, which is a contradiction.

Proposition 11. Assume (**)2 αwJ eJ2=Q. There exist two simple right
ideals not isomorphic to each other in ej or \ej\=l if and only if Δ— A^) for
a simple right ideal Av In this case, eJ=A1®A2 or A2=0.

Proof. This is clear from Lemmas 8 and 9.
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3. Main theorems

Let R be a right artinian ring with identity. We have shown in [5], Corol-
lary 3 that R is a right serial ring if and only if

I Every submodule of a finite direct sum of hollow (serial) modules is also
a direct sum of hollow modules, and

II R is a right QF-2 ring.

We shall study, in this section, a ring R satisfying Condition I. It is clear
that Condition I is preserved by Morita equivalence, and hence we may assume
that R is a basic ring. Then if R=^®e{R for primitive idempotents eiy

ejRei=eiJej for iΦj and e^Re^eiJei is a division ring.
If every finitely generated indecomposable Λ-module is hollow, R is called

a ring of right local type following Tachikawa [8] (see [7]). Now we assume
that every indecomposable injective module is finitely generated (e.g. R is an
algebra of finite dimension over a field, cf. [6]). It is clear that if R is of right
local type, then R satisfies Condition I and every indecomposable injective
module is hollow. Conversely, we assume the above two conditions. Let
M be a finitely generated indecomposable module. Then the injective en-
velope of M is a finite direct sum of indecomposable injectives, which are hol-
low. Hence M is hollow by Condition I, and so R is a ring of right local type.

It is not easy for the author to give a characterization of R with Condition
I. Hence we shall restrict ourselves to a casey2=0. From now on, we always

assume J2=0. In this section we shall add one more assumption: |ς/|<4

for every primitive idempotent e.

Theorem 12. Let R be a right artinian ring with J2=0. Assume \ej \ <4
for every primitive idempotent e. Then R satisfies Condition I if and only if ej
has one of the following forms:

ϋ) eJ=
iii) eJ=Aλ®A2\ A^A2 and a), for any right ideals A and A' with \eR\A \

= \eR/A'\=2, eR/A**eR/A'; i.e. A=xAf for a unit element x in eRe and
b) [Δ: A(A)]=2.

iv) eJ=Al®A2®Az\ A^Az&As and iii-a) and iii)-b) are satisfied for
right ideals A' in ej with \eR/A' \ =2 and a), for any right ideals B, B' in ej with
\eR/B\ = \eRIB'\=3, eR/B^eR/B' and b) [Δ: Δ^XM, where

v) eJ=Al®A2®Az@Aι\ A^2A^A3^A4 and iii)-a), iii)-b) and
iv)-b) are satisfied for right ideals A and B with \eRfA\=2 and
respectively and a), for any right ideals C, C' of ej with \eRjC\ = \eRICf\=4,
eR/C^eR/C', b) [Δ: Δ(C)] = 4 and c) End^A) = Δ(A), where the A{ are
simple right ideals in eR, Δ=eRe/eJe and
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Proof of "Only if " part.
i), ii) and iii).
We assume Condition I, and hence (*) and (**)2. We may assume

eJ=Al®A2 and A^A2. Let A3 be a simple right ideal in ej. Then Aλ=Az

or eJ=Al(&A3. It is clear that A^AZ. Hence there exists a unit element x
in eRe such that xAλ=A3 by Lemma 8. Therefore [Δ: Δ(A1)]=2 by Lemma 3
and Corollary to Lemma 5.

iv) From now on, in this paragraph, we shall assume that R satisfies

Condition I and that eJ=Al@A2@ - - ®An A^A{ for all i. Hence Z)=
satisfies (**) by Lemma 3, where N^eR/Of and | N{ \ =t.

Lemma 13. Let Aλ and Bλ be right ideals in ej such that 1^1=1 and
I Bλ\ =n-l. Then [Δ: Δ(A,}}=n and [Δ:

Proof. Let [Δ: Δ(AJ\=m and Δ==Δ(^1)θ*2Δ(Λ)θ θ*βlΔ(-41). Then

eJ=ΔA1=Al+Ϋ^ x^ by Proposition 10, provided τz>3 (note if n=2, A^BJ.

Hence m^n. On the otner hand, m^n by Lemma 3 and Corollary to Lemma
5, and hence m— n. It is clear from Lemma 5 that [Δ: Δ(B1)]<2. If n— 2
and Δ(J5!)=Δ, B1 is a character submodule of ej, which contradictions the as-
sumption: A^Af by Lemma 8. Hence if n=2, [Δ: ^(B1)]=2. If ra>3, ej=

,=AB, by Proposition 10. Hence [Δ: A(Bί)]=2.

Lemma 14. Let A19 A2 and B19 B2 be as in Lemma 13, respectively. Then
there exists a unit x in eRe such that xAl=A2 (xB1=B?).

Proof. This is clear from Lemma 13 and Proposition 6.
Thus we have shown the "Only if " part for the case | ej \ —3.
v). We shall show the "Only if" part for \ej\=4. It is remained to

show [Δ: Δ(βO]=3 and EndΛ(^1)=Δ(^41), where B^A&A* [Δ: Δ(B1)]<3
by Lemma 3 and Corollary to Lemma 5. Hence we may show by Proposition
6 that, for B in ej with \B\ =2, there exists a unit element y in eRe such that
yB1 = B9 for ej is an irredundant sum of B1+(A1φA3) + (Al®A4). Since
ABl=eJ by Proposition 10, ΔΦΔ(jB1)=Δ2. Then there exist two elements &,
c in Δ which are independent over Δ2 and a in Δ — Δ£, where Δ2=Δ(β). Put
D=eR/B®eR/B1®eR/B1 (not necessarily n= 4, but \Bl\ = \B\=n—2). We
shall consider three elements in D as before: (Xι=(ά, ey o, o), (X2=(by δ, e, δ)
and ct3=(c, δ, δ, e). By Lemma 3 we can find a cyclic submodule M1 with

\M!\ =3 containing β'=/3+j, where /3=Σ a^ and ;e/(D). We shall show
1 = 1

from the choice of {a, 6, c} that we may assume that two elements of {j>t } are

not in eje. If jy2— Js— 0, assuming 5>ι=£, we have \βC\ — | {(άc, δ, δ, δ) \c^C}
>2, where eJ=B®C. On the other hand, βB=(άB, 0, 0, 0)ΦO, and hence
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I J(Mj) I > I βC I + I βB I > 3, which is a contradiction. If j?1== j3-o, | /3C" | > 2,
where eJ=Bl®C'y and hence βB1=(bBl9 0, 0, 0) must be zero by the similar
argument as above. Hence bB1=B. Similarly, if y1:=y2=o9 cBl=^B. Hence
we may assume that some two elements of {y{} are not in eje. Assume y1

Φo and y2φ0. Then we may assume β=(ά+by2+cy3, e, $2> λ) Since
βC=(-, C, -, -), \βC\ >2. Hence βB=(-, 0, $2B, -) = 0. Therefore
y2B=B1. We have the same situation for jiφo and J>3Φ0. Finally, assume

yι=o, jp2φo and j3Φo. Then /S=(ί+^v3, δ, g, j>3). As above, ^=0=
{(δ+O^Xfl, o, Λ&OliieJSJ. Hence (b+cy^B^B and y3B^Bly which
implies that J>3 is in Δ2. Since 6 and c are independent over Δ2, δ+cj3φί>
and so δ+ζ)*3 is a unit element. Therefore [Δ: Δ2]=3 by Proposition 6.

From the above argument we have the following lemma.

Lemma 15. [Δ: Δ(β)]=3, where B^eJ and \B\ =n-2.

Lemma 16. EndR(A1)=^(A1) if \ej \ —4, where A1 is a simple right ideal
in ej.

Proof. Let /be a non-zero element in Hom^^i, A3). Put A/

3={f~1(a3)
J

Γ

A.φA^ Then B®A^=B®A^ where B=Aί®A2. There exist
a and b in Δ such that a(B)=A4®As and b(A1)=A3 by Proposition 6 and
Lemmas 14 and 15. Let M be a maximal submodule of D=eR/B®eR/B®eRIA1

whose basis modulo /(D) is {&!=(&, e, o), ct2 = (b, o, e)}. We define an
epimorphism φ: eR®eR-^aiR+a2Rc:M by setting ^(r'+ί') — alr'-\-a2s'
=(άr'+bs', ?', sr) for r', ί'e^Λ. Let r+ί be in ker ^>. Then r is in B and
ί in Aλ. Since α(J5)-^40^^, B=B1®B29 Λvhere B^α-1^) and B2=a-\A$.
Now ar+bs<=B=B1®B2. Put r = 61+*2; ^efi,.. Then αr+fe—α
eB, where βί>2e^t3 and fce^43. Since ab2^A^ ab2=f~l(x)-\-x for some
Hence o=abl-\-ab2+bs=f"1(x)-}-(x-\-bs)-\-ab1 (modJS) implies x = — bs and
b1=θy and so — ab2=f~1(bs)-\-bs. Thus we obtain an isomorphism g: A1-*B2

by setting g(s)=b2. Hence ker φ= {g(s)+s \ s^Aj] <^eR®eR and (afi+afl)^
(eR®eR)/kerφ. On the other hand, \M\ = 9=\(eR®eR)lkerφ\. Hence
M^(eR($eR)/ker φ. Now M is a direct sum of hollow modules by assump-
tion and M is decomposable for M=άιR®ά2R. Therefore g is extendible
to an element in Hom^&R, eR)=eRe, say g(s)=cs; c^Δ by [2], Theorem 2.5
and [7], Lemma 1.2. g(s)=b2=cs and (—ac—b)s=f~l(bs>). Accordingly, / is
given by the left-sided multiplication of (—0cb~l—e)~l. Let h be in
Hom^^j, Ai). Then bh^HomR(Al9 A3). Hence bh is given by an element
c' in Δ from the above.

Proof of "If "part.
We assume the conditions in Theorem 12 and we shall show that R satis-

fies Condition I. In order to see this we need several lemmas below.
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Let NI and N2 be hollow modules. Assume that Ni=eR and N2=eRIA
for a right ideal A in ej. Let/' be an element in HomR(eR/eJ, eR/eJ). Then
/' is given by the left-sided multiplication of an element k in eRe/eJe, where
k is in eRe. Let v be the natural epimorphism of eR to eRjeA. Then vkξ=.
HomR(eR, eR/eA) induces/'. Hence we have the following lemma.

Lemma 17. Every element in HomR(eRleJ, eR/eJ) is lifted to an element
in RomR(eR, eR/eA).

By Nj we denote the hollow module of the form e\eβ^ where B is a
right ideal. Let T=J^φNli®'Σ®N2i®^®'Σi®Nni9 and let M be a maximal

submodule of T. Then M^>J(T) and T=TIJ(T)^>M=M/J(T). We shall
show by induction on Σ 1 1% I that M is a direct sum of hollow modules. Since

*s ^ homogeneous component of T and M is maximal, M—
_ _

u) and Af3ΣθΛΓ f /y except some ί, say i=l. Therefore M=
nf

and M! is a maximal submodule of Σθ^iί Hence we may
/!

assume n=l; i.e. 31=ΣΦ ^V'i and N^e^R^JS^ Let τr f be the projection

of Γ onto AT,-. If (̂M) = 0 for some i, M=/(ΛΓ

ί)θΣθA/'y and /(Λ^ ) is a

direct sum of simple modules by the form of N{. Hence M is a direct sum
of hollow modules. Therefore we assume ^(MJΦO for all /. Then we
have the following lemma.

Lemma 18. Let Γ, M and ΛΓ, be as above. If Nl is eithet isomorphic
to eR or eR/eJ, then M contains a non-zero direct summand of Γ.

Proof. Assume that Nl is simple. Since M is maximal, M^Nλ or
ff1=T. Next assume N1=eR. Since ^(AQΦO, M contains a simple sub-
module C such that ^(QΦO. Furthermore every element in HomΛ(WΓ

1, Nf)
is liftable by Lemma 17 for all i. Therefore T contains a direct summand
7\ isomorphic to Nλ such that f1==C by Lemma 4. Since M^J(T)y M^Tλ.

Let 7\ be a direct summand of Γ as in Lemma 18. Then T= Γ10Γ2^M
= Ti0(M Π Γ2) and M Π T2 is a maximal submodule of T2.

i), ii) and iii).
Now {eR, eR/eJ and eR/A^, or {^Λ, ^12/ς/, ^/^j and eRIA2}e is the

representative set of hollow modules, accordingly as {A2=Q or A^A2} or
{A^Az}. Hence it is sufficient to consider the case N—eR/A! or eR\A2

for all i by Lemma 18. Under this assumption we shall show by induction
on I / I that M is a direct sum of hollow modules.

1) A2=0.
Then A1 is a character submodule of eR. Hence T has the lifting pro-
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perty of direct decompositions modulo the radical by [3], Theorem 3 (cf. Lemma

4), and so M »/(#!) 0ΣΘ-N,.
2) |/| = 1. ίφl

This is trivial.

3) |/|=2.
Let ' M be a maximal submodule of D=eR/N1®eR/N2. Then M=aR

for some a^M. Since aR^J(D) and J(D) is semi-simple, aR+J(D)=aR
ΘCΊΘ ΘC,., where the C, are simple. Hence M= O/Z0CΊ0 - 0C, for
M=aR. We shall show the explicit form of aR in the following.

a) A^A2.

Then A! and ^42

 are character submodules.
a) T=eR/Al®eR/A1 or eR/A2®eR/A2.
We have the same situation as in 1).

b) T=eR/A1®eRIA2.

We may assume M == { Λ +/(*) | # e £.R/A> / e Horn* (eRJAl9 ^R/A2) =

HomΛ(e/?/ς/, eR/eJ)}. f is given by the left-sided multiplication of an

element z, where % is in eRe. Take a mapping 0: eR-+T given by setting

5(α)=i'ι(β)+'ϊ'2(^Λ)ι where v{\ eR-^eR/Af is the natural epimorphism for /=!, 2.

Then ker 5=^ D-^^O provided z&eje, and im 0=M. Hence M=im θ^eR
for |Λf | = kΛ|=3. (If areς/^, it is clear that M=eR/A1®eJIA2.)

β) A^A2 and hence eR\A^eR\A^

Let M and # be as above. If z is in Δ^), / is liftable. Hence M&

eR/A^eJIA,. If afφΔ^), r^OΦΛ, and so ̂  n β"1 )̂ = 0. We can
define the θ : eR-*T as in i). Then ker Θ=A, Π r 1(^1)=0. Therefore M^^Λ.

4) |J|=3. α) ΛΦΛ
a) T=eR/Al®eRIA1®eR/A1 or T=eR/A2®eR/A2®eR/A2.

b) T=eRIA1®eR/A1®eR/A2.

Since τ?3(M)Φθ, M contains a simple submodule C contained in eR/A^

eR/Alt Then eR/A^eR/Ai contains a direct summand Tλ of T1 such that

f^CbySJ-a). ThenM2Γ l β Let Γ=Ϊ1

1ΘΓ2Θ^/^23M=Γ1Θ(M n(Γ20

eR/A2)). Then M is a direct sum of hollow modules by 3).

β) A^A2 and hence [Δ: A(Al)]=2.

Let T=eR/A1®eR/A1®eRIA1^M be as above. Then M contains a

direct summand of T1 by Proposition 6.

From the above argument we obtain the following lemma.

Lemma 19. Let D=Σθ-Wί and Ni=eR/Ai as above such that \Nf\
1 = 1

=2 for i=l, 2, 3, α/ίJ β a primitive idempoΐent. Then under the conditions of

Theorem 12, every maximal submodule of D contains a direct summand I>1 of D

with |AI=2.
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We note that if τ?i(M)= 0, M=J(N1)®N2®N3y and so M contains the
direct summand ΛΓ2 of D. We shall show by induction on t that the content
of Lemma 19 is true for t direct summands £>3.

Let Ni be as in Lemma 19 and Z)=20^f Assume ί>4. Let M be
» = 1

a maximal submodule of Zλ As is well known, M contains a maximal sub-

_ _ _ _ *" _ _
module Ml in N1®N1®N2®^'Nt=D0. Hence M contains a maximal sub-

i
module Ml in Nl@N2@^'®Nt=DQ. Since Mx contains a direct summand
Z)0 of Dλ by the induction hypothesis, M contains a direct summand D1 of D
with IDJ =2. Thus we can show, by 1)^4), Lemma 19 and induction on the
number of direct summands of D, that every maximal submodule is a direct
sum of hollow modules.

Now let P be a submodule of D and let M be a maximal submodule of
D containing P. Then M is also a direct sum of hollow modules. Repeating
this manner, we can show that P is a direct sum of hollow modules.

iv) We shall show the "If" part for | ej \ =3.
Put Δ(f, k)={x<=Δ\x(A1®A2®' 'ξ&Ai)^(A1ζ&A2® ''®Ak)} for i<k.

Lemma 20. We assume that i) eRI(Al@A2® ••• (BA^eR/B for any

right ideal B in ej with \eRIB\=n—i+I, where n=\ej\ and it) [Δ: Δ(Aλ®A2

0...φ^.)]=:n— ί+1. Then [Δ(ί, k): Δ(Al®A2®"'®Ai)]=k~ι+ί as a right

A(Al®A2Φ" ®Aiymodulefor k>i (cf. Proposition 6).

Proof. Put .JS0=Aθ θ^f-ι, B = B0®Af. Then there exists a unit
M

element #,-+,• in eRe such that Λ7ί+yJS=JS00-4ί+<;. by i). Since J3+Σ #/# is an
/ = / + !

irredundant sum, (Δ(#)+Σ XA(B)) is a direct sum. Hence Δ=Δ(β)0Σ
ξ&xtΔ(B) by ii). Let x=80+J£xt8t be an element in Δ(ί, )̂, where the δ,
are in Δ(JS). Note that xi+j8i+j(B)=B0(&Ai+j. Then δ/=o for /<ft, and so
^eΔ(β)0Λ:,+1Δ(JB)Θ...Θ^Δ(β)eΔ(ί, Λ).

For the latter use, we assume that \ej \ =n and B1=Al(& ~(&An_2. Then
the following cases 1) and 2) are trivial from the remark of case \ej\=2.

1) D=eR/B1®eR/B1.
Let M be a maximal submodule of D and cί1=(eί a), a basis of M. If 5

is in ΔΛ_2=
:Δ(β1) ([Δ: Δn_2]=3), M contains a direct summand of D by Lemma

4. If a is not in ΔM_2, a'1BlΠBί=C9 where |*J?/C | =4 or 5. Then M con-

tains an isomorphic image M1 of eR/C with M=Mίm Hence M=Ml®M2y

where M2 is simple.

2) D=eRIB@*RI(Bl®AH-1), where B-Si or JB=51θΛ-ι
Let M and α be as above. If aB^B^An^ M contains a direct summand

of D. Assume aB^B&A^. If B=B1®Aa.1, a^B&A,^) Π (J51Θ-4II-1)=C,
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where C is a submodule of Bϊ®An,1 with \C\=d—2. Then M contains an
isomorphic image of eR\C, and hence M^eR/C. If B=B19 B^a^B^A^)
and so \B1Γia~1(B1(&An-.1)\ =n— 3. Then M contains an isomorphic image

ofeR/C', where \C'\=n-l, and hence M^eR/C'.
3) D=eR/B1®eR/B1®eRIBl.
Let M be a maximal submodule of D. We shall show that M contains

a non-zero direct summand of D. We may assume that M has a basis
{^=(3', o, e), c£2=(b', e, ό)} with a'b'^po. Assume a', b' and e are dependent

over Δn_2=Δ(-B1). Then there exist X and y in ΔM_2 such that a'x-{-b'y^Δn__2

and #Φo or J>Φ0. Θ=a1x+a2y=(tΰ9 %, 50 is in M, where w^β'tf+δ' y. Since
all components of θ modulo ej belong to Δw_2, M contains a direct summand
M! with M=ΘR by Lemma 4. Next assume a1 ', &' and £ are independent
over Δw_2. We consider special elements /?!, β2 in Z). Let βλ=(ά9 %, y) and
β2=(b9 %'y y') be two elements in Z), where neither a nor 6 belongs to ΔM_2.

( XΛ ΛΛ\ ^ _ _

_ _ J is a unit matrix in (ΔΛ_2)2. Then β1 and β2 are independent

over Δ. First we consider the following case: α(-β1)Qβ10^4w_1 and b(Bl)^:

B&AU. Since Bl@An.i=Bl-^a(B^ and B1®An=B1+b(B1)> a(B^f\Bl=Cl

and b(B1)Γ\B1=C2 are of length n— 3. We shall define a homomorphism φλ

of £/? to D by setting φ1(r)= (άr, %ry $r). Let r be in ker^. Then
xr^Bl and yr&B^ Since Λ and J> are in Δw_2 and x^=o or jyφo, reBi Π fl"
=a~1(C1).Hence 9?! induces a monomorphism of eRja~l(C^) to Z). Similarly,
we obtain a monomorphism <p2 of eRlb~\C^ to Z). Next we shall show that
βlR+β2R=Mf is a maximal submodule of D. βB = (άBl9 0, 0)=(J?lf 0, 0),
where a(Bl)=Cl@El and £Ί is simple and /S2S1=(5S1, 0, 0)=(£r

2> 0, 0), where

C'2Θ£I2. sίnce βι+Λ(βι)=JB1φ^[ll_1Φβ102ίίl=β1+4(β1), J^Φ^. Let
and ϋ be any elements in An.λ®An. Then βlu-\-β2v = (άu-\-bv, %u+%'v,

( x x'\
_ _, j is a unit, βlu-{-β2V=o if and only if u=v=o. Hence

M'a/ίMOΞίAβθAβθAίΛ-iθΛJΘAίΛ-iθΛ^andso Mf^J(D) for
|/(Z>) I =6. Since M'=β1R+β2Rί M' is a maximal submodule of Z). Hence
|Λf'|=8. On the other hand, we have an epimorphism <PιΦ<p2:

eRlb-\C2}-*Mr. \eR/a-\C1)®eR/b-1(C2)\=8 for \ιτ1(C1)\ = \l-l

Hence φι@Φ2 is an isomorphism and M' is a direct sum of hollow modules.
Now we shall come back to the beginning. Assume 5', br and e are indepen-
dent over ΔΛ_2. There exist a", I" in Δ such that af'(E^=Al®'"®An^@An.λ

andft//(J31)=^[1Θ 0-4ll-3θ-4» by assumption. Then e, a" and b" are inde-
pendent over Δw_2, for e(B1)-{-ύ//(B1)-\-b//(B1) is an irredundant sum. There

exist ΛT, y, % and x',y', &' in Δw_2 such that Λ//=e5r+^/^+5/3; and δ//=£#/+
- /jε j6'\

a'x'-\-b'y' by the assumption [Δ: ΔM_2]=3. It is clear that ί _ _, j is a unit

matrix in (Δn_2)2. Then M contains βl=alx-\-ct2y=(&// — ez, %, 5) and β2=
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8*f, X',y'). It is clear that _(a"-ez)(B1)^B1®An.ly

ι® A and neither (α"—ez) nor ψ' — ez') belongs to ΔM_2.
Hence, as was shown in the initial part, M=β1R+β2R is a direct sum of
hollow modules M, with |M f-|— 4.

4) D=eRIBl®eRIBl®eRI(Bl®AΛ.1).
We may assume that the maximal submodule M has the basis {α1=(ey 0, #),

cί2=(oy ey δ)}. Now [Δ/Δ(n— 2, n— 1): ΔM_2] = 1 by Lemma 20 and the as-

sumptions in Theorem 12. Hence there exists an element z in ΔΛ_2 such that

α+bz^Δ(n— 2, /z— 1). Then fl^αj+c^^^, £, #+?#) is an element in M.
Therefore M contains a direct summand of D by Lemma 4.

5) D=eRIBl®eRI(Bl®An-ύ®eRI(Bl®An^
Let {#!=(#, o, e), &2=(b, e, o)} be the basis of M. Then there exist x, y

in Δn_1=Δ(JS10^4ll_1) such that #Φo or j φo and αx-^-by^^^ by the assump-

tions in Theorem 12. Since each component of θ=αιX-\-α2y—(άx+ίy, 5, #)
modulo e] belongs to Δn_j, M contains a direct summand of D (consider two

cases &x-\-by=o and &x-}-by=%=o).

6) D=eRI(B1®AΛ-l)®eRI(B1®An-l)®eRI(B1®A._J.
Every maximal submodule M of D contains a direct summand Mλ of D by

Lemma 5.
7) D=eR/Bl®eRIBlφeRIBl®eR/B1.

This is similar to 6).

8) D=eRIBl®eRIBl®eRIBl®eRI(Bl®Au.1) and

They are reduced to 4) or 5) (cf. the proof of Case \ej\ —2).

9) Z)=^/B1θ^/(fiιθΛ-ι)θ^/(βι0Λ-ι)θ«R/(JϊιθΛ-ι).
This is reduced to 6).

10) Let D=iz@eRICi9 where Ci=Bl or B&A,^. If ί>6, every

maximal submodule M of D has a direct summand of D by the assumptions
of Theorem 12 and Proposition 6. Hence M is a direct sum of hollow modules
from 1)̂ 9) and by induction. Therefore R satisfies Condition I for \ej\=3

from the similar argument to Case \ej \=2.

v). We assume \ej \ =4 and that the conditions of Theorem 12 are satis-

fied. We have many situations similar to those in Case iv), and so we shall

give only some remarks in those cases. Let {N{} be a set of hollow modules

such that N^eR/Cf for some right ideal C. in ej. Put Z) = Σ0ΛΓ,.. We

shall show that every maximal submodule M of D is a direct sum of hollow

modules. We shall do this by induction on 1 1 \ .

1) |/|<2.

This is clear from the remark given in Case \ej\=2

Put B^A&A* Cl=Al®Aa®AΛ A1=A(A), Δ2=Δ(J?0 and Δ3=Δ(C,).
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2) 1/1-3.
a) D=eR/A1®eR/A1®eRIA1.

_ Assume that M has a basis {^^(a, e, o), a2=(ϊ>, o, e) with tf&Φo}. If
Λ, 6 and e are dependent over Δj, M contains a non-zero direct summand of
D as in Case iv). Assume #, 5 and e are independent over Δlβ Then 2^+
α(^41)+δ(y!1)=^1φ<2(yl1)0δ(^l1), since the sum is irredundant and A1 is simple.
We obtain a homomorphism 9?: eR@eR-*M given by setting 95(^1+^2)=

£VΊ+α2r2=(^r\Jr^r2y ?ι> ^2)- It is clear from the above direct sum that φ is

an isomorphism. Since im φ=M, M=im φξ&M2y where M2 is simple.
b) D^
This is Case 3) of iv).
c) D^

Since [Δ: Δ3]=2, M contains a direct summand of D by Lemma 5.
d) D^N&eRIA&eRlAi, where N^eR/B, or ̂ /Cx.
Since [Δ:ΔJ = 4 and [Δ(l, 2): ΔJ = 2, [Δ/Δ(1, 2): ̂ ] = 2. Let Z) =

eR/B^eR/A^eR/A^ We shall use the same notations as in 3) of iv). Let

βι=(δ, %> 30 and β2=(ϊ>, £', 5'), where (* ̂  is a unit matrix in (Δ^, a(Aλ]

^B^A3 and ^A^B^A^. We define a homomorphism φ: eR®eR-*D
by setting φ(r+s)=βίr+β^=(δr+ls9 %r+%'s, $r+$fs). Assume ^tr+5tfs^Al

SXΛ Φf\

and yr+y's&A^ Since ( _ _, J is a unit matrix in (Δ ,̂ r and s belong to Alu

Further ar-\-fis=π3(ar)+π4(l>s)^A3ξ&A4, where π{ is the projection of e]
onto Af. Hence ker<p is equal to one of the following: (0), (^^(O)) and
(A^Aj). Therefore, for a maximal submodule M* containing β1 and β2,
M*=((eR+eR)/kerφ)®M1®M2@- J where the M,- aie simple or zero. Now
let M be any maximal submodule of D and {#!=(#', £, o), a2—(&', o, )̂} a

basis of M. First we consider the elements &' and b' in Δ/Δ(1, 2). If α' and

ΐ ' are dependent over Δj, there exist Λ and j> in ΔA such that a'x+b'y^A2 and

^Φo 01 j/φo. ^—α1Λ:+^23; is in M and #/? is a direct summand of D by Lemma

4. Next we assume that «', i' are independent over Δ:. There exist #", 5"
in Δ such that a//(Bl)=A1®A3 and έ//(β1)=^410J4 by assumption. Then

a" and ΐ/x are independent over Δx. Since [Δ/Δ(1, 2)]=2, there exists a unit

matrix (*, ?,) in (Δx)2 such that S'̂ S'Λ+S'.y and b"=a"x'+b'y'. Then M

contains y81=a^+a2j=(«//+^i, *, y) and /32=αX+α2^
/=(6//+w)2> «', y')9

where wl and M72 are in Δ(l, 2). Hence M is a direct sum of hollow modules
by the beginning of d). If N3=eR/Cl9 the above argument is valid, for C^B^

e) D=eR/BlφeR/B1®eR/A1.

We need the following lemma.

Lemma 21. Assume E n d ^ j — Δ ^ i αwrf that there exists a unit element
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x in Δ such that xA1=A for any simple right ideal A in ej. Let Sλ and S2 be
simple submodules of eR and eR/Aly respectively. Then every f in HomΛ(51, #2)
is extendible to an element in HomR(eR,

Proof. Let v be the natural epimorphism of eR onto eR/A^ Then we
may assume from the assumption that / is given by the left-sided multiplication
of an element x in Δ. Then vx induces/.

Let M be a maximal submodule and {δ?ι=(#, ey o), o£2— (6, o, e)} the basis
of M. If b(A1)^Bl9 M contains a direct summand Mλ of D such that M1=cί2R
by Lemma 4. Hence we assume b(A^^B^.

e-1). a(B1)Πb(A1)=0 and eJ=Bl®a(Bl).
Then b(A1)=X(f)={x+f(x)\x£ΞX}^Bl®a(B1), where X is a simple

submodule of a(Bl) and f^HomR(X, Bλ). Let φ: eRφeP-^aίR+a2R be
an epimorphism given by setting φ(r-\-s)=aιr-\-a2s= (άr-\-bs, r, s). Ker^>—
ίrι+$ι \r1Ga~1(X)9 ^A and er1+/(er1)=6i1}. Hence we obtain an isomor-
phism^: A1-^a~1(X) such that ^(βj)^^. Therefore a1R+a2R^(eR@eR)/ker φ
^eRφ(ePIA1) by Lemma 21, [7], Lemma 2.1 and [2], Theorem 2.5 (cf.

Lemma 4). Accordingly, M^eR®eR/A1 for |M|=9= I
e-2) a(B1) Π 6(^0 = 0 and Bλ Π ̂ 0 =X is simple.

Let a(B^=X®Ύ. Since Λ(β1)θ&(A)=-y θ Y 0έ(Λ), B^=X®Z9 where
Z=jB1n(F06(-4i)). For « in Z, ^=y+b(a1) ί y^Y and a^A,. b(A^Bl

implies that the mapping: g(y):=^ι is an isomorphism of Y onto A^ Let
φ be as above. Then k^τ φ=(a-\X)®G)®Al(k\ where &: ^-^α^Y) is
given by Λ(β1)=α"1^~1(Λ1). Hence a1R+a2R^eR/a~\X)®eRIA1 by Lemma
21. Since M=σ1/Z0σ2JR, M^eRla"\X)®eRlAl®Ml9 where Λfx is a simple
submodule.

e-2.2) Λί^JθftίΛJΦ-Bi
Then ς/= a(Bl)®b(Al)@Z=X@Y®b(Al)®Z= Y® b(AJ ®B,. Hence

e-3) a(B1)l^b(A1) and eJ=a(Bί)®B1.
Then we have an isomorphism a-16 of ^4j onto a simple submodule X

of JBlβ Hence M^eR/A&eR by [7], Lemma 2.1.

e-4). a(BJ Z) δ(^0 and α
This is contained in Case
e-5). a(B^b(A^ and α(S1)n51=-X' is a simple module not equal to

Let ^βO^^θY. Since B^b(A,\ b(A1)^Y(f) for some /: Y-+X.

Hence M^eRla-\X)®eRIA1®M1 by Lemma 21.

e-6). ^(fiOlDfi^!) and ̂ 0=^1-
Then M contains a direct summand M! of D such that Ml=alR by

Lemma 4.
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f) D=eR/C1®N2®eRIAι, where N^eRfB, or eR/C,.
Let {&!=(a, e, o), σ2 = (5, o, e)} be the basis of M. Since [Δ/Δ(1, 3):

ΔJ = 1 by Lemma 20 and assumption, there exist x and y in Δx such that

ax+by^Δ(ly 3). Put (9=altx;-f α2^=(^4-fry, *, y). Then M contains a direct
summand Ml of D such that M1=ΘR by Lemma 4.

3) 1/1=4.
a). D=eR/A1®eRIA1®eRIA1®eR/A1.
Since |Z)|=16, |Λf |=15. Hence M contains a direct summand of Z),

which is isomorphic to eR®eR by the similar argument to 3) of Case \ej \ =3.
b) Other cases.
Since [Δ/Δ(1, 2): ΔJ = 3 and [Δ/Δ(2, 3): ΔJ = 2, we can use the same

argument as above.
4). The remaining part is similar to Case \ej\=3.

Thus we have completed the proof of Theorem 12.

4. Rings with | ej \ > 5

We shall study the ring R with \/eJ\ >5 under the assumption: J2=Q.

Theorem 22. Let R be a right artinian ring with J2=0. Then
(*)2 Every maximal submodule of a finite direct sum of serial modules is

a direct sum of hollow modules if and only if, for each primitive idempotent e,
i) eJ=A1@A2, A^A2 or A,=09 or

ii) eJ=A2@A2®-®Au; A^AJor alii (»>2),
a) [Δ:Δ(ΛθΛθ-ΘΛ-ι)]=2αitt/
b) there exists a unit x in Δ, for any right ideal B in ej with \B\=n—l9

such that B=x(A1®A2® ~®An_1); i.e. eR/A^eR/B.

Proof. "Only if" part. Put B=A1®A2®- ®An_1^eJ. Then [Δ: Δ(J3)]
<2 by Lemma 3 and Corollary to Lemma 5. Assume Δ=Δ(J5). Then «<2
by Lemma 8 and hence A2=0 or A^A2 by Lemma 8. ϋ)-b) is obtained from
Proposition 6.

"If" part. Let Z)=Σθ^V, be a direct sum of serial modules. Then
Ni is isomorphic to either eR/eJ or eR/B (or eR if eJ=A1). Let M be a maxi-
mal submodule of D. Then, from Proposition 6 and the proof of Theorem 12,

M is isomorphic to either K^VOθΣθ^. or MiθΣθNy, where M1 is a maxi-
j>2 y>3

mal submodule of 7VΊ0ΛΓ2. It is clear from the proof of 3) of Case \ej\=2
in Theorem 12 that Ml is isomorphic to N^NJ^N^, NlIJ(Nl}®N2 or eR\C,
where | eR/C | — 3. Thus M is a direct sum of hollow modules.

Theorem 23. Let R be as above. Then

(*)3 Every maximal submodule of a finite direct sum of hollow modules whose

length is equal to or less than three is a direct sum of hollow modules if and only if
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R satisfies (#)2 and
i) f/ς/i^iS^φ ® ,̂ and A^AJor all i (w>3), then

a) [Δ: Δ(AθΛθ -θΛ-2)]-3, ami
b) for a right ideal B with \B\ =n— 2, ίAtfrtf £,mfa a unit x in Δ

Proof. Since the proof of Theorem 12 for Case | ej \ =3 is given in a general
form, we have the theorem from Theorem 22.

Theorem 24. Let R be a right artinian ring with J2=0. Then R satisfies
Condition I and ej is simple or contains a proper character submodule for each
e if and only if eJ=Al®A2 and A

Proof. Assume that R satisfies the first two conditions in the theorem.
If \ej\ >3, by Proposition 11 eJ=eRAl for any simple submodule Aλ. If B
is a proper character submodule containing A1 of ej, eJ=eReB—B9 which is
a contradiction. Hence |ζ/|<2. Further, if A1^A2y A2=xAλ by Lemma 8.
Therefore | ej \ = 1 or A^A2.

Similarly, by Lemma 5 and Proposition 6, we have the following:

Proposition 25. Let R be a right artinian ring with J2= 0. Assume the
conditions i)-a) and b) in Theorem 23. Then the following condition is satisfied.

4

(**)3 Every maximal submodule of a direct sum Z)(4)=2j®^» °f hollow

modules N; with |JV f | =3 contains a non-zero direct summand of D. Conversely,
if Z)(4) satisfies (**)3 and D(3) does not, then i)-a) and b) in Theorem 23 are
satisfied.

Proposition 26. Let R be as above. Assume R satisfies (*)3. If \ej \ >3,
eRe\e]e is not commutative for a primitive idempotent e.

Proof. Assume |ς/|>3 and eJ=A1® ®An-2®An_1®Anί where the A{

are simple. Put B=A1ξ& ~®An_2. Then there exist unit elements x, y in Δ
such that xB=A1ξ$' ζ&An_3G)An-1 andyB=B, yAn^ = An (mod B) by Lemma
8 and Theorem 23. xyB=A1® — ®AH-3®AH-1&B(&Anc:yxB. Hence ocy^pyx.

Corollary 1. Let R be a commutative artinian ring or an algebra of finite
dimension over an algebraically closed field. Then R satisfied Condition I if and
only if i) or ii) in Theorem 12 is satisfied.

Proof. This is clear from Proposition 26 and Lemma 8.

Corollary 2. Let R be as in Corollary 1 (not necessarily J2=0). Assume
R/J is a simple ring. Then R is a right serial ring if and only if R satisfies Condi-

tion I.



FINITE DIRECT SUM OF HOLLOW MODULES I 669

Proof. This is clear from Corollary 1 and Proposition 1.

5. Examples

Proposition 26 suggests us very much the possibility of \ej\<2. We

shall study this situation. Let D1 and D2 be two division rings and V a left

D1 and right D2 vector space. For a right Z)2-subspace V of Vy we denote

the dimension by | V'\ D2. Put n=\V\D2 and consider the following conditions.

a) // \Vλ\ DZ= \V2\D2 for subspaces V±, V2 of V, then there exists an element

d in D1 such that d¥1= V2.

b) [A: A(Fι)]r=»- I Fιk+1, ah** D^V^dtΞD^dV^V,}.
c) Let d be a fixed non-zero element of V. There exists a monomorphism

σ of D2 into Dl such that dx=σ(x)dfor xEΞD2.

Theorem 27. There exists an artίnian ring R with J2=Q satisfying the
conditions iv) (resp. v)) in Theorem 12 if and only if there exists a vector space
V as above satisfying 1) \V\D2=3 (resp. 11^1^=4), 2) a) and b) are satisfied

for any Vl πiΐh |FΓ

1|Z?2<2 (resp. \Vι\Dίt<t3)9 (resp. 3) c) is satisfied).

Proof. If there exists a D1—D2 vector space V9 then R=( Λ 1 /) ) satisfies

Condition I by Theorem 12. Conversely, assume that there exists an artinian
ring R satisfying Condition I. Let eJ=A1φA2®A3 (resp. Al®A2®Az@A^).
Since A1 is simple and Jf? may be assumed basic, A1^fRlfJ=fRf/fJf for a primi-
tive idempotent /. Put D1=eRe/eJe and D2=fRf/fJf. Then ej is a left Dl

and right D2 vector space. Hence ej satisfies 1), 2) (resp. 1)̂ 3)) by Theorem
12.

We note that if such a D1 — D2 vector space exists, D1 should be non-com-
mutative. Finally let R be an algebra of finite dimension over a field K. As-
sume R satisfies Condition I and put Δ=eRejeJe for a primitive idempotent e.

Proposition 28. Let R and Δ be as above. Then [Δ : K] is divisible by

\ej\ provided \ej\ >3. If [Δ: K] is not divisible by 2 or 3, then \ej\<2.

Proof. This is clear from Lemmas 13 and 15.

EXAMPLES 1. Let L~DK be distinct fields and put

Then enR/enJ
2 is serial but euR is not serial.

2. Let T be a field and x an indeterminate. Let L=T(x) and K= T(x").
Then we have an isomorphism σ of L onto K given by setting σ(x)=x". Put
R—R(ri)=L@Lu a vector space over L. R is a ring by the following product:
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(X1+x2u)(y1+y2u)^=x1y1+(x1y2+x2σ(y1))u. Then J(R) = Lu and Lu=Ku@
Kocu® ••• Q)Kxn~lu. Every simple right ideal is isomorphic to Ku via the
left-sided multiplication of an element in L. Hence {R, R/J, R/Ku} is the
representative set of hollow modules if n=2. Therefore R(l) and R(2) satisfy
Condition I (note that J=A1ΦA2 and A^A2 for R(2)), but Λ(n) does not
for n>3 by Theorem 12. R(3) satisfies (**)3 by Proposition 25.

3. Let LϋK be as in Example 1. Put

Then enj=(0y L, 0)®(0, 0, L) and R satisfies Condition I (note that enj=
• and A^Az).

4. Let Dλc:D be division rings with [D: D^r=2. Then

(D i

satisfies Condition I. If [D: Z>J,>3, R is not of right local type (see [7]).
5. Put

Then enJ=K®K and (K, 0)^(0, K)^enJ. Hence R does not satisfy Condi-
tion I.
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