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Overview

In this dissertation, we investigate the roles of interest-rate control in dynamic

economies with capital accumulation. In the theoretical studies on monetary macro-

dynamics, it was usually assumed that the growth rate of nominal money supply is

kept constant. However, the stance of many central banks have recently the shifted

from the base-money targeting to the interest-rate control. Moreover, Taylor (1993)

shows that central bank’s behavior such as the Federal Reserve System can be as-

sumed that it controls the rate of nominal interest by responding to the rate of

inflation and to the income level. Therefore, in the literature, it becomes popular to

specify the interest-control rule as monetary policy When the central bank controls

nominal interest rate, money supply is endogenously determined, and thus the ef-

fects of monetary policy is more complex than the case of constant money growth.

If there are multiple equilibria, the rational expectations equilibrium path of the

economy is indeterminate so that sunspot-driven changes in expectations can gen-

erate economic fluctuations. The interest-control rule may enhance macroeconomic

instability if it is not appropriately implemented. The central concern of this dis-

sertation is a relevant relationship between the interest-rate control and aggregate

stability of the economy.

There has been a large numbers of studies on the issue mentioned above. The ear-

lier studies such as Benhabib et. al. (2001a) focus on the model without investment

and reveal that equilibrium indeterminacy easily emerges under the Taylor-type

interest-rate control. The recent studies consider models including capital accumu-

lation and show that destabilization effect of interest-rate control would be smaller

in models with investment. For example, Dupor (2001) shows that determinacy

does not appear if the policy is active. It is to be noted that many of recent stud-

ies on models with interest-rate control employ New Keynesian frameworks with

sticky prices and monopolistic competition. In fact, Carlstrom and Fuerst (2005)

and Huang and Meng (2007), who analyze a discrete-time version of Dupor (2001),

claim that not only the strength of monetary policy rule but also other factors such

vi
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as the monopolistic distortion affect the uniqueness of equilibrium path. Therefore,

the roles of monetary policy and capital accumulation for equilibrium determinacy

tend to be rather ambiguous in these sticky-price models.

We use only the flexible-price models in this dissertation to clarify the stabi-

lization effect of interest-rate control in economies with capital accumulation. More

specifically, this dissertation focuses on the following issues:

(i) timing and equilibrium determinacy under interest-rate control;

(ii) long-run effects of interest-control rule in endogenously growing economies;

(iii) interaction between fiscal and monetary policy.

Chapters 1 and 3 discuss the issue (i), Chapters 2-4 deal with issue (ii), and Chapter

5 is devoted to issue (iii). Each chapter is summarized as follows.

In Chapter 1, we examine the relation between the types of interest rate rules

and equilibrium determinacy. We construct a money-in-the-utility-function model

that involves a neo-classical production function as in Meng and Yip (2004). We use

a discrete-time model to consider the alternative timings of the real money holdings

in the utility and of the inflation rate in monetary policy rule. It is shown that

the results of determinacy heavily depends on the timing of the inflation rate in

interest-rate control. This is in contrast to endowment economy as in Benhabib et.

al (2001).

Chapter 2 constructs a continuous-time AK growth model. Money is introduced

via a standard money-in-the-utility formulation so that the balanced-growth path

is unique and money is superneutral in the long run. We show that even in this

simple environment the interest-rate feedback rule á la Taylor (1993) may produce

indeterminacy of equilibrium if the monetary authority adjusts the nominal interest

rate in response to the growth rate of real income as well as to the rate of inflation.

In Chapter 3, we re-examine the model in Chapter 2 by use of a discrete-time

formulation. Unlike the continuous-time model in Chapter 2, we can demonstrate

that equilibrium determinacy depends on the timing of money holding of households

as well. The role of timing in the endogenous growth model can be more clearly

seen than in the exogenous growth (Chapter 1).

Chapter 4 also assumes that the central bank adjusts the nominal interest rate in

response not only to the inflation but also to the growth rate of real income. We ana-

lyze an AK model with a cash-in-advance (CIA) constraint in which money balance
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binds not only consumption but also investment so that money is not superneu-

tral on the balanced-growth path (BGP). We first analyze equilibrium determinacy

around the BGP and find that the result is sensitive to the choice of interest-rate

control rule. In the latter half, we focus on the long-run relation between velocity of

money and the rate of nominal money growth. We again confirm that the relation

is closely related to what type of interest-rate control is employed.

In Chapter 5, we study stabilization effects of fiscal and monetary policy rules

in the context of a standard real business cycle model with money. We assume that

the fiscal authority adjusts the rate of income tax subject to the balanced-budget

constraint as in Guo and Lansing (1998), while the monetary authority controls the

nominal interest rate by observing inflation. We demonstrate that whether or not

policy rules eliminate the possibility of sunspot-driven fluctuations critically depends

upon the appropriate combination of progressiveness of taxation and activeness of

interest-rate control.



Chapter 1

Timing, Interest-Rate Control,

and Equilibrium Determinacy

with Capital Accumulation

1.1 Introduction

It has been known that in monetary dynamic models without capital accumulation

(investment), the equilibrium path is uniquely determined if monetary policy rule

á la Taylor (1993) is active in the sense that the monetary authority adjusts the

nominal interest rate in response to the inflation rate more than one for one 1. How-

ever, recent studies have shown that this result may not hold when the economic

model includes capital accumulation. Among others, Meng and Yip (2004) examine

a continuous-time money-in-the-utility-function (MIUF) model with flexible prices

and demonstrate that equilibrium determinacy tends to hold regardless of types of

interest rate control rules. Most of the studies on the relationship between the equi-

librium determinacy and monetary policy rule with investment assume that price

adjustments are sluggish. Using a continuous-time model with monopolistic compe-

tition and sluggish prices, Dupor (2001) shows that equilibrium determinacy holds

if the monetary policy is passive, while determinacy does not appear if the policy

is active. Carlstrom and Fuerst (2005) and Huang and Meng (2007) analyze the

1Benhabib et. al. (2001a) show that in a model without capital determinacy may depend not
only on the types of the policy rule but also on the substitutability of consumption and real money
balances.

1
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discrete-time version of Dupor (2001) 2 . They conclude that not only the strength

of monetary policy rule but also other factors such as the monopolistic distortion af-

fect the uniqueness of equilibrium. Although these findings are interesting, the role

of capital is rather ambiguous in the sticky-price models, because adding a price

adjustment mechanism may alter the dynamic structure of a model economy.

Unlike the mainstream literature mentioned above, this chapter examines the

stabilization role of interest-rate control in a standard neoclassical monetary growth

model with flexible prices and fixed labor supply. We use a discrete-time monetary

growth model in which money is introduced via the MIUF formulation. In a discrete-

time MIUF model with an interest-rate control rule, two kinds of timings would be

critical. First, in discrete-time MIUF models, we should specify the timing of money

holding. The timing of money balance holding can be classified into the cases of

cash-in-advance (CIA) and cash-when-I’m-done (CWID). The CIA (resp. CWID)

timing means that the money balances held for transactions are the stock of money

that household has before entering (resp. after leaving) the goods market trading 3.

Second, in the discrete-time settings, we can easily distinguish the current-looking

rule from the forward-looking interest control rules, according to the difference of the

timing of the inflation rate which is used as an index of monetary policy 4. Therefore,

we can consider the following cases: (i) CIA timing with a forward-looking rule; (ii)

CIA timing with a current-looking rule; (iii) CWID timing with a forward-looking

rule; and (iv) CWID timing with a current-looking rule. In this chapter, we analyze

the relation between equilibrium determinacy and interest-rate control rules in all

of these four patterns of formulations.

The main results of this chapter are as follows. First, we confirm that the equi-

librium path tends to be determinate under the forward-looking rule. Second, under

the current-looking rule, determinacy holds if the policy is active, while indetermi-

nacy can emerge if the policy is passive. Note that these results also generally hold

in the flexible-price economy without capital. Therefore, our finding means that

2Dupor (2001) and Huang and Meng (2007) assume that the instantaneous utility function is
additively separable between consumption and money balances. On the other hand, Carlstrom
and Fuerst (2005) use a non-separable utility function.

3The discrete-time MIUF models usually assume CWID timing as in Carlstrom and Fuerst
(2005) and Huang and Meng (2007). However, as Carlstrom and Fuerst (2001) claim, it is difficult
to justify CWID timing on theoretical grounds, since this assumption means that the money held
at the beginning of t + 1 reduces transaction costs in period t.

4Backward-looking rule as in Carlstrom and Fuerst (2000) can be considered, but it is analyti-
cally difficult and used not so much.
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introducing capital accumulation does not make a remarkable qualitative change in

dynamic behaviors of the model economy. Nevertheless, we can show that deter-

minacy may hold more easily in the economy with capital than in the one without

capital. This is because adding capital stock as a predetermined variable to the

dynamic system reduces the possibility of equilibrium indeterminacy in our flexible-

price economy. Our analysis also demonstrates that the presence of capital makes

the role of timing of money holdings less relevant in equilibrium determinacy.

It is to be noted that Carlstrom and Fuerst (2001) and Meng and Yip (2004)

also discuss stabilization effects of interest-rate control in flexible-price models with

capital accumulation. Carlstrom and Fuerst (2001) utilize a discrete-time model

and focus on the timings of money holdings in a MIUF, but they investigate only

the case of forward-looking interest-rate control 5. In addition, they assume that

labor supply is endogenously determined. Since the assumption of variable labor

could be an additional source of equilibrium indeterminacy, our model with fixed

labor supply is useful for investigating the effects of capital stock in a clear manner.

Meng and Yip (2004) use a continuous-time neoclassical growth model with MIUF

and conclude that the equilibrium path is generally determinate regardless of the

form of interest-rate control rule 6. Our study demonstrates that their conclusion

depends heavily upon their continuous-time formulation in which timings plays no

role.

1.2 The Model

We use the standard Sidrauski-type formulation. The economy consists of a contin-

uum of identical household-firms with a unit mass. The agent maximizes his lifetime

utility
∞∑

t=0

βtu(ct,mt−J), 0 < β < 1, J = 0 or 1, (1.1)

subject to the flow budget constraint

kt+1 − (1− δ)kt + ct + mt + bt + τt = yt +
mt−1

πt

+
Rt−1bt−1

πt

. (1.2)

5The most monetary models that use discrete-time formulation also focus on specific timings
of household’s money holding and interest-rate control.

6Chapter 2 and 3 using an endogenous growth model show that the form of monetary policy
rule can be significant for equilibrium determinacy.
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The instantaneous utility function u(ct,mt−J) is assumed to satisfy uc > 0, um > 0,

ucc < 0, umm < 0, uccum−ucmuc < 0, and ummuc−ucmum < 0. That is, the utility

function is strictly increasing and strictly concave in c and m, and consumption c

and real money balances m are both normal goods. We define J = 1 as cash-in-

advance (CIA) timing, and J = 0 as cash-when-I’m-done (CWID) timing 7.

The production function is given by yt = f(kt), where f(kt) satisfies f ′′(kt) < 0 <

f ′(kt). We assume that labor supply is inelastic. The government budget constraint

is the following:

mt + bt + τt = gt +
mt−1

πt

+
Rt−1bt−1

πt

, (1.3)

where gt = g ≥ 0 is the real government spending which is assumed to be fixed.

From (1.2) and (1.3), we obtain the goods-market equilibrium condition:

kt+1 = f(kt) + (1− δ)kt − ct − g.

We assume that the monetary policy rule follows the Taylor principle, in which

the central bank controls the nominal interest rate by responding to either the

current and expected future inflation rate. The control rule of the gross nominal

interest rate is given by

Rt = R(πt, πt+1), where R1 ≡ ∂Rt

∂πt

≥ 0 and R2 ≡ ∂Rt

∂πt+1

≥ 0. (1.4)

Rt = R(πt, πt+1) is a continuous, nondecreasing, and strictly positive function of

πt and πt+1. We assume that there exists at least one steady-state inflation rate

π̄ > β such that R(π̄, π̄) =
π̄

β
> 1. If R1 > 0 and R2 = 0, the interest rate rule

is current-looking, and it is forward-looking when R1 = 0 and R2 > 0. It means

that the monetary policy is active if βR̄2 > 1 (resp. βR̄1 > 1), and it is passive

7Each variable means the following:
β=the time discounting rate;
ct =real consumption;
mt−J=real money balances at the beginning of period t− J + 1 (J = 0, 1);
kt=(per capita) stock of capital;
δ=the depreciation rate (0 < δ < 1);
Pt=the nominal price level;
bt=real bonds at the end of period;
τt=lump-sum tax;
yt=net income;

πt ≡ Pt

Pt−1
=the gross rate of inflation;

Rt−1=the gross nominal interest rate set at period t− 1.
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if βR̄2 < 1 (resp. βR̄1 < 1) under the forward-looking (resp. the current-looking)

rule.

1.3 Cash-in-advance(CIA) Timing

1.3.1 The Dynamic System

The CIA timing implies that the money balances held for transactions are the money

balances that household has before entering the goods market, and thus the util-

ity function is given by u(ct,mt−1). To derive the optimality conditions for the

household’s consumption plan, set up the following Lagrangian function:

LCIA ≡
∞∑

t=0

βt

{
u(ct, mt−1)+λt

[
−kt+1+(1−δ)kt−ct−mt−bt−τt+f(kt)+

mt−1

πt

+
Rt−1bt−1

πt

]}
.

(1.5)

The first-order conditions for the household’s optimization problem are:

λt = uc(ct,mt−1); (1.6)

um(ct,mt−1) =
λt−1

β
− λt

πt

; (1.7)

λt−1 = βλt[f
′(kt) + 1− δ]; (1.8)

λt =
βλt+1Rt

πt+1

; (1.9)

lim
t→∞

βt+1λt+1kt+1 = 0; (1.10)

lim
t→∞

βtλtmt = 0; (1.11)

lim
t→∞

βtλtbt = 0. (1.12)

The trasversality conditions are equations (1.10)-(1.12).

The complete dynamic system in the CIA timing is described by following:

kt+1 − f(kt)− (1− δ)kt + ct + g = 0; (1.13)

βuc(ct+1,mt)[f
′(kt+1) + 1− δ]− uc(ct,mt−1) = 0; (1.14)

um(ct+1,mt)

uc(ct+1,mt)
− R(πt, πt+1)− 1

πt+1

= 0; (1.15)

R(πt, πt+1)− πt+1[f
′(kt+1) + 1− δ] = 0. (1.16)
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Equation (1.13) is the goods-market equilibrium condition. From (1.6) and (1.8),

we obtain (1.14), which presents the Euler equation. Equations (1.7), (1.8) and

(1.9) yield (1.15) and (1.16), which respectively express the money-demand function

(the relation between the marginal rate of substitution and the opportunity cost

for holding money) and the Fisher equation (the no-arbitrage relationship between

bonds and capital) .

In the steady state, all the real variables remain constant over time, that is, in

the case of CIA, from (1.13)-(1.16) we obtain the following conditions:

f(k̄) = δk̄ + c̄ + g, (1.17)

f ′(k̄) + 1− δ =
1

β
, (1.18)

um(c̄, m̄)

uc(c̄, m̄)
=

R(π̄, π̄)− 1

π̄
, (1.19)

R(π̄, π̄)− π̄[f ′(k̄) + 1− δ] = 0. (1.20)

In the above, z̄ represents the steady-state value of variable z. From (1.18), the

nontrivial steady-state level of capital uniquely exists because of the property of the

production function, f(k). Substituting this steady-state value of capital into (1.17)

and (1.20), we can derive a unique set of the steady-state levels of consumption and

the inflation rate. If we assume that there exists at least one steady-state inflation

rate π̄ > β such thatR(π̄, π̄) =
π̄

β
> 1, then π̄ is uniquely determined by (1.20)

under a given level of k̄. Finally, we obtain a unique steady-state level of real money

holdings from (1.19).

The dynamic system linearized at the steady state consists of the following:

k̂t+1 − 1

β
k̂t + ĉt = 0, (1.21)

βūcf̄
′′k̂t+1 + ūcc(ĉt+1 − ĉt) + ūcm(m̂t − m̂t−1) = 0, (1.22)

π̄S̄cĉt+1 + π̄S̄mm̂t − R̄1π̂t −
(

R̄2 − 1

β
+

1

π̄

)
π̂t+1 = 0, and (1.23)

−π̄f̄ ′′k̂t+1 +

(
R̄2 − 1

β

)
π̂t+1 + R̄1π̂t = 0. (1.24)

In the above, ẑt ≡ zt − z̄ and S(c,m) ≡ um(c,m)

uc(c,m)
, where Sc(c,m) ≡ ∂S

∂c
=

ucmuc − umucc

(uc)2
> 0 and Sm(c,m) ≡ ∂S

∂m
= −ucmum − ucumm

(uc)2
< 0.
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1.3.2 Forward-looking Rule

Under the forward-looking interest rate rule where R̄1 = 0 and R̄2 > 0, (1.23) and

(1.24) are respectively replaced with (1.25) and (1.26) below:

π̄S̄cĉt+1 + π̄S̄mm̂t −
(

R̄2 − 1

β
+

1

π̄

)
π̂t+1 = 0, (1.25)

−π̄f̄ ′′k̂t+1 +

(
R̄2 − 1

β

)
π̂t+1 = 0. (1.26)

From (1.21), (1.22), (1.25) and (1.26), we can eliminate m̂ and π̂ to derive a reduced

form dynamic system in the following manner:

[
k̂t+1

ĉt+1

]
=




1

β
−1

− S̄m

s

(
ūcf̄

′′ +
(

1

β
− 1

)
f̄ ′′X1ūcm

S̄m

)
S̄m

s

(
βūcf̄

′′ +
f̄ ′′X1ūcm

S̄m

)
+ 1




[
k̂t

ĉt

]
,

(1.27)

where X1 ≡ 1 +
1

R̄(βR̄2 − 1)
, and s ≡ ūccūmm − (ūcm)2

ūc

> 0.

Since there is one predetermined variable k̂t and one jump variable ĉt, in the

system (1.27), determinacy of equilibrium in this system, which means that there

is a unique equilibrium path under a given initial capital stock, is satisfied if one

eigenvalue is outside the unit circle and the other is inside the unit circle. There is

more detailed explanation for analytical results and drawing figures in the Appendix

1.A. Then, we have shown the following proposition and Figure 1.1:

Proposition 1.1 In the economy with the CIA timing under the forward-looking

interest rate rule, the equilibrium path is determinate if ūcm(βR̄2 − 1) ≤ 0. When

ūcm(βR̄2 − 1) > 0, the equilibrium path may be determinate or non-stationary (un-

stable).

1.3.3 Current-looking Rule

Under the current-looking rule where R̄1 > 0 and R̄2 = 0, the dynamic system

around the steady state consists (1.21), (1.22), and

π̄S̄cĉt+1 + π̄S̄mm̂t − R̄1π̂t −
(
− 1

β
+

1

π̄

)
π̂t+1 = 0, (1.28)

−π̄f̄ ′′k̂t+1 − 1

β
π̂t+1 + R̄1π̂t = 0. (1.29)
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βR̄2

ρ2(1− σ)

determinate indeterminate

non-stationary

1

0 1-1

Figure 1.1: Determinacy of the CIA timing with forward-looking rule

These equations are summarized as




k̂t+1

ĉt+1

π̂t+1


 =




1

β
−1 0

− f̄ ′′

s
(ūmm − ūcm)

βf̄ ′′ūmm

s
+ 1 − ūcm

π̄2s
(βR̄1 − 1)

−π̄f̄ ′′ π̄f̄ ′′β βR̄1







k̂t

ĉt

π̂t


 . (1.30)

Since the system (1.30) consists of one predetermined variable, k̂t, and two jump

variables, ĉt and π̂t, the equilibrium is determinate if there are two eigenvalues

outside the unit circle and one eigenvalue inside the unit circle. We explain the

more detailed calculation in Appendix 1.A. The graphical result is displayed in

Figure 1.2, and the argument is summarized as the following:
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βR̄1

ρ2(1− σ)

determinate indeterminate

non-stationary

1

0 1-1

Figure 1.2: Determinacy of the CIA timing with current-looking rule

Proposition 1.2 In the economy with the CIA timing under the current-looking

interest rate rule, there generally exists a unique equilibrium path if the policy is

active, while indeterminacy can emerge if the policy is passive. Non-stationarity

might arise when the policy rule is slightly passive and the consumption and real

money balances are highly Edgeworth substitute.

1.4 Cash-when-I’m-done(CWID) Timing

The CWID timing assumes that real money balances aided in transactions are ones

that household holds after leaving the store. In the CWID timing model, the La-



10

grangian function is rewritten as the following:

LCWID ≡
∞∑

t=0

βt

{
u(ct,mt)+λt

[
−kt+1+(1−δ)kt−ct−mt−bt−τt+f(kt)+

mt−1

πt

+
Rt−1bt−1

πt

]}
.

(1.31)

The first-order conditions for the household’s optimization problem are:

λt = uc(ct,mt); (1.32)

um(ct,mt) = λt − βλt+1

πt+1

; (1.33)

(1.8), and (1.9). Equations (1.10)-(1.12) are the transversality conditions.

The complete dynamic system in the CWID timing is described by (1.13), (1.16),

and

βuc(ct+1,mt+1)[f
′(kt+1) + 1− δ]− uc(ct,mt) = 0, (1.34)

um(ct,mt)

uc(ct,mt)
− R(πt, πt+1)− 1

R(πt, πt+1)
= 0. (1.35)

The meaning and derivation of each equation are similar as those in Section 1.3.1.

Real money balances which effect the marginal utility of consumption in the current

period are ones held at the end of that period in the CWID timing, while they are

ones held at the end of the previous period in the CIA timing. The opportunity

cost of holding money is discounted by the real rate of interest. The steady-state

conditions are almost the same as those in the CIA model except for

um(c̄, m̄)

uc(c̄, m̄)
= 1− 1

R(π̄, π̄)
, (1.36)

instead of (1.19), which is obtained from (1.35). As well as in the CIA model, it is

easy to show that the nontrivial steady state uniquely exists in the CWID model.

We linearize the complete dynamic system around the steady state. The resulting

linearized system consists of (1.21), (1.24), and the following two equations:

βūcf̄
′′k̂t+1 + ūcc(ĉt+1 − ĉt) + ūcm(m̂t+1 − m̂t) = 0, (1.37)

R̄2S̄cĉt + R̄2S̄mm̂t − R̄1π̂t − R̄2π̂t+1 = 0. (1.38)

In the case of the forward-looking rule (R̄1 = 0 and R̄2 > 0), Figure 1.3 and the

following proposition summarize our finding:
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βR̄2

ρ2(1− σ)

determinate indeterminate

non-stationary

1

0 1-1

Figure 1.3: Determinacy of the CWID timing with forward-looking rule

Proposition 1.3 In the economy with the CWID timing and the forward-looking

interest rate rule, the determinacy of equilibrium generally holds. Indeterminacy

could emerge, if the policy rule is slightly active and consumption and real money

balances are highly Edgeworth substitute.

The result under the current-looking rule (R̄1 > 0 and R̄2 = 0) is described by

Figure 1.4 and it is summarized as:

Proposition 1.4 In the economy with the CWID timing under the current-looking

interest rate rule, active policy rule generates equilibrium determinacy, while inde-

terminacy can be produced under passive policy rule. When consumption and real
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βR̄1

ρ2(1− σ)

determinate indeterminate

non-stationary

1

0 1-1

Figure 1.4: Determinacy of the CWID timing with current-looking rule

money balances are highly Edgeworth complement, the slightly active policy rule

might emerge indeterminacy.

We show the detailed manipulation in Appendix 1.B.

1.5 Discussion

1.5.1 A General Consideration

We claim the general points which may be critical to capture the differences in results

under alternative formulations. To begin with, we consider the role of capital. As a
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Table 1.1: Equilibrium determinacy under forward-looking rule

forward-looking rule CIA CWID

with capital ucm < 0 ucm = 0 ucm > 0 ucm < 0 ucm = 0 ucm > 0

active D D D(, NS) D D D

passive D(, NS) D D D(, I) D D

without capital ucm < 0 ucm = 0 ucm > 0 ucm < 0 ucm = 0 ucm > 0

active I D D I D D

passive D D I D D I

*D=determinate, I=indeterminate, NS=non-stationary(unstable)

Table 1.2: Equilibrium determinacy under current-looking rule

current-looking rule CIA CWID

with capital ucm < 0 ucm = 0 ucm > 0 ucm < 0 ucm = 0 ucm > 0

active D D D D D D(, I)

passive I(, NS) I I I I I

without capital ucm < 0 ucm = 0 ucm > 0 ucm < 0 ucm = 0 ucm > 0

active I D D D D D

passive D I I I I I

*D=determinate, I=indeterminate, NS=non-stationary(unstable)

rule, in the model without capital, production (and thus consumption) is determined

by a given endowment. In this case, the dynamic system consists of two jump

variables, that is, real money holdings and the inflation rate. Tables 1.1 and 1.2

summarize the equilibrium determining results under alternative specifications of

policy rules and the timing of real money balances. As for the model without

capital, we classify the case of CWID according to Benhabib et. al. (2001a), and we

calculate the case of CIA by ourselves. There are some differences between the results

of the models with and without capital. First, the possibility of non-stationary

equilibrium may exist in the model with capital, while it does not exist without

capital. Second, while the property of MIUF such as the timing of money holdings

and the Edgeworth complementarity between consumption and real money balances

may affect equilibrium determinacy in the absence of capital, these effects are mostly
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negligible in the models with capital. The main reason for such a difference is that

capital as a state (non-jumpable) variable works like an anchor. Though this role is

the same as that in the sticky-price models, these models contain other factors such

as monopolistic pricing behavior of firms, so that the meaning of including capital

into the models is less clear.

Next, we examine the difference between the continuous and discrete time for-

mulations. As mentioned in Section 1.1, Meng and Yip (2004) show that in the basic

continuous-time model the equilibrium path uniquely exists regardless whether the

monetary policy is active or passive. Within the discrete-time setting, the result

close to them is derived in the case of the CIA timing under the forward-looking

rule (Section 1.3.2). It generally holds that the discrete-time CIA model converges

to the continuous-time counterpart as the time interval approaches to zero. We

understand the similarity between the continuous-time model and the discrete-time

model with the forward-looking rule by observing the no-arbitrage condition between

capital and bonds. It shows the relation between the current capital and the current

inflation rate in the continuous-time model, while it describes the relation between

these two variables in period t + 1 in the discrete-time model under the forward-

looking rule. The implication is not the same, but both present the intratemporal

relation between capital and the rate of inflation. This point is also mentioned by

Carlstrom and Fuerst (2005) who analyze a discrete-time model with sticky prices.

However, examining numerical examples with plausible parameter values, they show

that the range of the monetary policy rule that generates determinacy is very nar-

row. This is in contrast to the flexible-price discrete-time model in this chapter.

Note that in the sticky price model with monopolistic competition, the marginal

cost (or the markup ratio) is an additional jump variable. We may conjecture that

this enhances the possibility of equilibrium indeterminacy in the model discussed by

Carlstrom and Fuerst (2005).

1.5.2 Intuitive Implications

Now, we consider the mechanism of equilibrium determinacy in this model. We

assume that the instantaneous utility function is additively separable. Then, the

dynamic system consisting of capital and consumption is the same as the standard

Ramsey model, which has a unique equilibrium path under a given capital stock.

In this case, therefore, equilibrium indeterminacy is generated by monetary factors,

that is, the inflation rate and the real money holdings. As a benchmark, we clarify
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the mechanism of determinacy (indeterminacy) under the assumption of separable

utility function. When the utility function is not additively separable between con-

sumption and real balances, behavior of the real money balances affect dynamics

of consumption and capital. However, equilibrium determinacy in the model with

capital is almost unaffected by the property of MIUF, and therefore the analysis of

the separable MIUF can be useful.

Suppose that the economy in period T-1 stays at the steady state, and that

the capital in period T is above (and thus the rate of return in period T is below)

its steady-state level. Under this situation, agents anticipate that consumption in

period T is smaller than its steady-state level. It gives a path such that capital

increases and consumption decreases over time, which is not equilibrium in the

normal model since it violates the transversality condition. We examine whether the

path is equilibrium or not. If it is not, determinacy holds. When it is an equilibrium

path, indeterminacy occurs since another path under this given capital stock in which

capital stock and consumption converge to the steady state is equilibrium.

Under the active forward-looking rule, the inflation in period T is below its

steady-state value for lowering the real interest rate according to the arbitrage con-

dition,
R(πT )

πT

= f ′(kT ) + 1 − δ. Capital in period T+1 is larger than in period

T for the goods equilibrium condition, and thus the inflation and consumption in

period T+1 are smaller than in period T. The path is still violating the transver-

sality condition since the inflation does not converge to the steady state. Therefore,

determinacy holds. On the contrary, the rate of inflation in period T is above its

steady-state level for the arbitrage condition when the central bank adopts the pas-

sive forward-looking rule. The inflation rate is rising over time, and the path violates

the transversality condition as above. Determinacy still holds.

Under the current-looking rule, the nominal rate of interest does not change in

period T-1. Corresponding to lowering the real rate of return, the inflation rate in

period T increases according to the arbitrage condition
R(πT−1)

πT

= f ′(kT ) + 1− δ.

The rate of return is falling over time. When the monetary policy rule is active,

the inflation rate is increasing over time since the nominal interest rate is highly

rising. Then, equilibrium determinacy occurs as before. If the passive rule is carried

out, the nominal rate of interest is not so increasing, the inflation is not needed to

increase over time and is diminishing to the steady-state level. Consumption and

capital also converge to their steady-state values. We can show another equilibrium

path with a standard Ramsey model and thus indeterminacy.
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The timing of money holding may play some role, especially under the non-

separable utility. The opportunity cost of holding money is discounted by the real

rate of interest in the CWID timing. Under the assumption that the all variables

are at their steady-state levels in period T-1, the real money balance at the ending

of period T-1 has already been fixed as a steady-state value in the instantaneous

utility in period T in the CIA timing. On the other hand, the real money balance

at the ending of period T may change the instantaneous utility in period T under

the CWID timing. This may bring a difference of equilibrium determinacy, but as

shown above, the difference is not so large in this flexible-price model with capital.

We can roughly say that the Taylor rule satisfying one at least of the forward-

looking or active property brings a unique path for equilibrium. In this chapter, we

focus on the extreme monetary policy rules in which the central bank respond to

either the forward or current inflation rate. In reality, the monetary authority adopts

a ”mixed” rule in which the nominal interest rate responds to both the forward and

current inflation rates. Under the mixed rule, the result in this chapter may be

overturned. We do not mention a detailed calculation, but we can consider one

example by applying the above-mentioned intuition. We assume monetary policy

such that a reaction to the forward inflation rate is much stronger than the current

rate. When the inflation rate in period T is anticipated to increase, the inflation

rate in period T+1 is not needed to increase so much since the respond to the

forward inflation rate is very strong. As a result, the inflation rate converges to its

steady-state level, and indeterminacy may generate.

1.6 Conclusion

In this chapter, we analyze the relation between the interest-rate control rules and

equilibrium determinacy in the discrete-time, flexible-price economic model with

capital. We have shown that the equilibrium path tends to be determinate under the

forward-looking rule. Under the current-looking rule, determinacy holds if the policy

is active, while indeterminacy may emerge if the policy is passive one. As examined

in Section 1.5.1, this depends on the structural difference and similarity between

the continuous-time model and the discrete-time one, and thus indeterminacy is

generated in contrast to Meng and Yip (2004). In the flexible-price economy, these

results are generally robust. However, we have confirmed that determinacy may

easily (indeterminacy may hardly) hold in the economy with capital in which capital

stock works as a state variable. In this context, we see that neither the timing of
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money holdings nor complementarity between consumption and real money holdings,

is significant for equilibrium determinacy. It is the monetary policy rule that is

critical for equilibrium determinacy in our setting.

As for examining the robustness of our results, we may extend our discussion in

several ways. For instance, we can introduce fiscal rules into the model. As discussed

by Leeper (1991), it would be interesting to consider the interaction between fiscal

and monetary policy rules. Some authors have discussed this issue in dynamic

settings, but most of the existing studies have analyzed models without capital

formation: see, for example, Evans and Honkapohja (2007). It is to be noted that

Benhabib and Eusepi (2005) and Lubik (2003) consider fiscal rules in models with

sticky prices and capital accumulation. Their results can be reconsidered in the

context of our flexible-price setting.

Appendix 1.A: Manipulation of the CIA Timing

Model

Forward-looking Rule

The characteristic equation of (1.27) is

p1(µ) = µ2 −
(

1 +
1

β
− S̄m

s

(
−βūcf̄

′ − f̄ ′′X1ūcm

S̄m

))
µ +

1

β
+

f̄ ′′X1ūcm

s
. (1.39)

Table 1.3 displays the relation between the equilibrium determinacy and the

characteristic equation. Determinacy of equilibrium in this system, which means

that there is a unique equilibrium path under a given initial capital stock, is satisfied

if one eigenvalue is outside the unit circle and the other is inside the unit circle. It

can be easily checked that two roots are real. Since p1(1) = (µ1 − 1)(µ2 − 1) =

− S̄mβūcf̄
′′

s
< 0, determinacy holds if p1(−1) > 0, and non-stationary equilibria,

in which there are no equilibrium path under a given initial capital stock, exist

if p1(−1) < 0, where p1(−1) = (µ1 +1)(µ2 +1) = 2

(
1+

1

β
+

f̄ ′′X1ūcm

s

)
+

S̄mβūcf̄
′′

s
.

It means that we can theoretically reject the possibility of indeterminacy in this case.

We find that X1ucm < 0 is a sufficient condition for p1(−1) > 0, that is,

for equilibrium determinacy, but is not a necessary condition. Similarly, in other

cases, it is difficult to find analytically the necessary and sufficient conditions for
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Table 1.3: Determinacy and the characteristic equation under the forward-looking

rule
p(−1) > 0 p(−1) < 0

p(1) > 0 1)Non-stationary: p(0) > 1 Determinate

2)Indeterminate: p(0) < 1

p(1) < 0 Determinate Non-stationary

equilibrium determinacy. We now specify the following example:

u(ct,mt−J) =
(cρ1

t mρ2

t−J)1−σ

1− σ
, ρ1, ρ2 > 0, σ > 0; (1.40)

f(kt) = Akγ
t , 0 < γ < 1; (1.41)

Rt = R(πt+j) = R̄

(
πt+j

π̄

)α

, α > 0, and j = 0, 1. (1.42)

Note that in the above it holds that

sign(1− σ) = sign(ucm)

and that

R̄j+1 ≡ ∂Rt

∂πt+j

∣∣∣∣
ss

=
α

β
.

Then, p1(−1) is rewritten as

p1(−1) = 2

(
1 +

1

β

)
+ c̄

Aγ(1− γ)

k̄2−γ

{
−2

(
1 +

1

R̄(α− 1)

)
ρ2(1− σ)

π̄

R̄− 1
+ β

}
,

which is a function of ρ2(1− σ) and α. We account the reason why the parameter

ρ2(1− σ) is important in Appendix 1.A. Suppose that A = 1, γ = 0.35, β = 0.99 =
1

R̄
(: π̄ = 1), δ = 0.02, and that g = 0.5. These functional forms and values are

frequently assumed in the literature, and are coordinated to depict an epitome of

the actual economy 8. Using these typical parameter values, the classification of

equilibrium determining in (βR2, ρ2(1− σ)) space is depicted by Figure 9 1.1.
8The steady-state values are

(k̄, c̄, R̄, ȳ) =
([

Aγ
1
β − 1 + δ

] 1
1−γ

, Ak̄γ − δk̄ − g,
π̄

β
,Ak̄γ

)
= (43.572, 2.376, 1.010, 3.747).

These values are the same in the two models except for real money balances, m̄ =
ρ2

ρ1
c̄

π̄

R̄− 1
in

the CIA timing and m̄ =
ρ2

ρ1
c̄

R̄

R̄− 1
in the CWID timing.

9Figure 1.2-1.4 shown below also use those parameter values.
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Table 1.4: Determinacy and the characteristic equation under the current-looking

rule
p(−1) > 0 p(−1) < 0

p(1) > 0 1)Non-stationary Determinate

: p(0) > 1 and q > 0

2)Indeterminate

p(1) < 0 1)Determinate 1)Non-stationary

:(i)q > 0, (ii)q < 0, |A2| > 3 : p(0) < −1 and q > 0

2)Indeterminate 2)Indeterminate

Current-looking Rule

The characteristic equation of (1.30) is

p2(µ) = −µ3 +

(
1 +

1

β
+ βR̄1 +

βf̄ ′′ūmm

s

)
µ2

−
[
βR̄1

(
1 +

1

β
+

βf̄ ′′ūmm

s
+

βf̄ ′′ūcm

π̄s

)
+

f̄ ′′ūcm

s

(
π̄ − β

π̄
+

1

β

)]
µ

+ βR̄1

(
1

β
+

f̄ ′′ūcm

s

)
. (1.43)

The relation between the equilibrium determinacy and the characteristic equation

is shown by Table 1.4. Expressing (1.43) as p(µ) = −µ3−A2µ
2−A1µ−A0, we find

that determinacy holds if one of the following conditions is satisfied:

1. p(1) > 0 and p(−1) < 0

2. p(1) < 0, p(−1) > 0 and q ≡ (A0)
2 − A0A2 + A1 − 1 > 0

3. p(1) < 0, p(−1) > 0, q < 0 and |A2| > 3.

We will check each condition. Note that in this system p2(1) = −βūcf̄
′′S̄m

s
(βR̄1−1),

and therefore p2(1) < 0 (resp. p2(1) > 0) if the monetary policy is active (resp.

passive). The other key values are:

p2(−1) =

[
2

(
1 +

1

β

)
+

f̄ ′′ūcm

s

(
1 +

β

π̄

)
+

βf̄ ′′ūmm

s

]
(βR̄1 + 1)− 2βf̄ ′′ūcm

π̄s
,

p2(0) = βR̄1

(
1

β
+

f̄ ′′ūcm

s

)
,
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q =

[
βR̄1

(
1

β
+

f̄ ′′ūcm

s

)]2

− βR̄1

(
1

β
+

f̄ ′′ūcm

s

)(
1 +

1

β
+ βR1 +

βf̄ ′′ūmm

s

)

+

[
βR̄1

(
1 +

1

β
+

βf̄ ′′ūmm

s
+

βf̄ ′′ūcm

π̄s

)
+

f̄ ′′ūcm

s

(
π̄ − β

π̄

)
+

1

β

]
− 1, and

|A2| =
∣∣∣∣1 +

1

β
+ βR̄1 +

βf̄ ′′ūmm

s

∣∣∣∣.

Appendix 1.B: Manipulation of the CWID Timing

Model

Forward-looking Rule

From (1.21), (1.24), (1.37) and (1.38) with R̄1 = 0 and R̄2 > 0, the reduced dynamic

system is thus given by

[
k̂t+1

ĉt+1

]
=




1

β
−1

−
ūcf̄

′′R̄S̄m + ūcmf̄ ′′X2

(
1

β
− 1

)

sR̄− βūcmf̄ ′′X2

βūcf̄
′′R̄S̄m + ūcmf̄ ′′X2

sR̄− βūcmf̄ ′′X2

+ 1




[
k̂t

ĉt

]
,

(1.44)

where X2 =
βR̄2

βR̄2 − 1
. The characteristic equation is

p3(µ) = µ2 −
(

1 +
1

β
+

βūcf̄
′′R̄S̄m + ūcmf̄ ′′X2

sR̄− βūcmf̄ ′′X2

)
µ

+
1

β

(
βūcf̄

′′R̄S̄m + ūcmf̄ ′′X2

sR̄− βūcmf̄ ′′X2

)
−

ūcf̄
′′R̄S̄m + ūcmf̄ ′′X2

(
1

β
− 1

)

sR̄− βūcmf̄ ′′X2

. (1.45)

The system (1.44) is similar to (1.27) in the case of CIA timing model, so that

Table 1.3 presents the relation between the equilibrium determinacy and the charac-

teristic equation again. It can be easily checked that two roots are real. We obtain

the following values from the polynomial equation (1.45) :

p3(1) = −βūcf̄
′′R̄S̄m + ūcmf̄ ′′X2

sR̄− βūcmf̄ ′′X2

;

p3(−1) = 2

(
1 +

1

β
+

ūcmf̄ ′′X2

sR̄− βūcmf̄ ′′X2

)
+

βūcf̄
′′R̄S̄m

sR̄− βūcmf̄ ′′X2

;
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p3(0) =
1

β
+

ūcmf̄ ′′X2

sR̄− βūcmf̄ ′′X2

.

In contrast to the CIA timing with the forward-looking rule, we cannot reject the

possibility of indeterminacy. From the example as above, Figure 1.3 and Proposition

1.3 show the result in this case.

Current-looking Rule

From (1.21), (1.24), (1.37) and (1.38) with R̄1 > 0 and R̄2 = 0, we obtain 10




k̂t+1

ĉt+1

π̂t+1


 =

[
e1 e2 e3

]



k̂t

ĉt

π̂t


 . (1.46)

The characteristic equation is

p4(µ) = −µ3 +

(
1 +

1

β
+ βR̄1 − f̄ ′′ūcm[β(R̄− 1) + β2R̄1]− βf̄ ′′R̄ūmm

R̄s

)
µ2

−
[

1

β
+ βR̄1

(
1 +

1

β
+

βf̄ ′′

s
(ūmm − ūcm)

)]
µ + R̄1. (1.47)

The system (1.46) is analogous to (1.30) in the case of CIA with current-looking

rule so that Table 1.4 shows the relation between the equilibrium determinacy and

the characteristic equation. p4(1) = −βūcf̄
′′S̄m

s
(βR̄1 − 1) < 0(resp. > 0) if the

monetary policy is active (resp. passive). Since p4(0) = R̄1 > 0, there are no or

two eigenvalues which are negative, so that there is indeterminacy if p4(1) < 0 and

p4(−1) < 0, where p4(−1) = − f̄ ′′ūcm[βR̄1(β(R̄ + 1)) + β(R̄− 1)]

R̄s
+(1+βR̄1)

[
2

(
1+

1

β

)
+

βf̄ ′′ūmm

s

]
. Again, we check the conditions for determinacy of such a system

10 e1≡




1
β

f̄ ′′ūcm[(R̄− 1) + βR̄1]− f̄ ′′R̄ūmm

R̄s
−π̄f̄ ′′


, e2≡




−1
f̄ ′′ūcm[β(R̄− 1) + β2R̄1]− βf̄ ′′R̄ūmm

R̄s
+ 1

π̄f̄ ′′β


,

and e3≡




0

− ūcmR̄1

R̄2s
(βR̄1 − 1)

βR̄1


.
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described in Appendix 1.A.

q =

(
1−β+

β2f̄ ′′ūcm

R̄s

)
(R̄1)

2+

(
− 1

β
+β+

βf̄ ′′

s

[(
1−β− 1

R̄

)
ūcm−(1−β)ūmm

])
R̄1

+
1

β
− 1

|A2| =
∣∣∣∣1 +

1

β
+ βR̄1 − f̄ ′′ūcm[β2R̄1 + β(R̄− 1)]− βf̄ ′′R̄ūmm

R̄s

∣∣∣∣
The result based on the example as above is shown in Figure 1.4 and Proposition

1.4.

Appendix 1.C: The Euler Equation for a Specified

Model

In the example (1.40)-(1.42), the Euler equation in the CIA timing is

β

[
Aγ

k1−γ
t+1

+ 1− δ

]
=

(
ct+1

ct

)1−ρ1(1−σ)(
mt

mt−1

)−ρ2(1−σ)

=

(
ct+1

ct

)1−(ρ1+ρ2)(1−σ)(
(R(πt+j)− 1)/πt+1

(R(πt+j−1)− 1)/πt

)ρ2(1−σ)

.

Similarly, the Euler equation under the CWID timing is given by

β

[
Aγ

k1−γ
t+1

+ 1− δ

]
=

(
ct+1

ct

)1−ρ1(1−σ)(
mt+1

mt

)−ρ2(1−σ)

=

(
ct+1

ct

)1−(ρ1+ρ2)(1−σ)(
(R(πt+j+1)− 1)/R(πt+j+1)

(R(πt+j)− 1)/R(πt+j)

)ρ2(1−σ)

.

When (ρ1 + ρ2)(1 − σ) > 1, the utility displays increasing returns-to-scale in con-

sumption and real money balances. It may effect equilibrium determinacy. This

is pointed out by Guo and Harrison (2008), in which the utility function involves

government expenditure instead of real money balances. They conclude that inde-

terminacy holds if and only if (ρ1 + ρ2)(1 − σ) > 1. We suppose that ρ1 and ρ2

are free parameters to consider this argument. In this example, we can express the

conditions for equilibrium determinacy, such as q, |A2|, and so on, as the functions of

ρ2(1−σ) and α. We can eliminate ρ1 in the process of calculation. If ρ1(1−σ) < 1

and ρ2(1−σ) < 1, that is, 1−σ < min

{
1

ρ1

,
1

ρ2

}
, then the utility function satisfies

strict concavity.
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When we see the figures, we must be careful of the fact that the higher ρ2

is, the broader the plausible range of ρ2(1 − σ) is. For example, in Figure 1.1,

which draws the result of the CIA timing with forward-looking rule, if α = 1.05,

non-stationary happens when 0.92 < ρ2(1 − σ) < 1. Assuming ρ1 = 0.98 and

ρ2 = 0.02, ρ2(1 − σ) < min

{
ρ2

ρ1

, 1

}
= 0.021, must be satisfied for concavity of

utility function, so that non-stationary does not happen under α = 1.05. Now, we

suppose that only ρ2 is changed, ρ2 = 0.92. The area for concave utility function

becomes ρ2(1− σ) < 0.939, and therefore non-stationary under α = 1.05 happens

if 0.92 < ρ2(1 − σ) < 0.939. However, this instance and Figure 1.1-1.4 shows that

whether (ρ1 + ρ2)(1− σ) is higher than 1 or not is little important for equilibrium

determinacy unless we consider the extreme values of ρ1, ρ2, and 1 − σ. It is

contrast to Guo and Harrison (2008).

In Guo and Harrison (2008), the Euler equation is rewritten as 11

β

[
Aγ

k1−γ
t+1

+ 1− δ

]
=

(
ct+1

ct

)1−ρ1(1−σ)(
gt+1

gt

)−ρ2(1−σ)

=

(
ct+1

ct

)1−(ρ1+ρ2)(1−σ)

,

since the marginal utility of government spending is equal to the one of consumption

and thus gt =
ρ2

ρ1

ct. Their Euler equation is the relation between capital and

consumption. Therefore, increasing returns-to-scale of the utility directly effects

equilibrium determinacy in their model. On the other hand, the effect of increasing

returns-to-scale of the utility for equilibrium determinacy is indefinite because our

Euler equation includes the inflation rate, i.e., the opportunity cost of holding money.

11Tax is included in their model. However, this is not critical for the Euler equation. We describe
their Euler equation such that we can compare with that of our model.



Chapter 2

Generalized Taylor Rule and

Endogenous Growth I: A

Continuous-Time Analysis

2.1 Introduction

Many authors have explored whether the interest-rate control rule based on Tay-

lor’s (1993) idea contributes to reducing equilibrium indeterminacy which generates

expectations-driven economic fluctuations. In the literature, it has been well known

that an economy following Taylor’s rule may easily produce multiple equilibria, if

the model economy does not consider capital accumulation. For example, Benhabib

et. al. (2001b) reveal that an active interest-rate control under which the nomi-

nal interest rate is adjusted more than one-for-one with the rate of inflation, the

competitive equilibrium is determinate. Conversely, under a passive interest-rate

feedback rule which controls the nominal interest rate less than one-for-one with

inflation, the competitive equilibrium tends to be indeterminate. At the same time,

Benhabib et. al. (2001a) demonstrate that those results would be reversed if the

production function contains the stock of real money balances as an input.

In contrast to the models without capital, Meng and Yip (2004) confirm that

the possibility of equilibrium indeterminacy under the Taylor rule is significantly

reduced, if the economy allows capital accumulation.1 Technically speaking, intro-

1Meng and Yip (2004) use a neoclassical monetary growth model based on the money-in-the-
utility function formulation.Li and Yip (2004), on the other hand, show that if a cash-in-advance
constraint applies to both investment and consumption so that money is not superneutral in the

24
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ducing capital adds a non-jumpable state variable to the model, which generally

contributes to eliminating multiple converging paths. Meng and Yip (2004) also

show that such a conclusion still holds, even if monetary authority changes the

nominal interest rate by observing the level of real income as well as inflation.2

This chapter reconsiders the issue of equilibrium determinacy under interest-rate

control rules in the context of a simple growth model. We use a standard money-

in-the-utility function model with an AK technology and exogenous labor supply.

In this setting, regardless of interest-rate control rules, money is superneutral on

the balanced-growth path and the long-term growth rate of income is uniquely de-

termined by the technology and preference parameters alone. In addition, if the

monetary authority adjusts the nominal interest rate by observing the rate of in-

flation alone, such a monetary policy only affects the steady-state rate of inflation,

and hence behaviors of consumption and capital will not respond to the monetary

authority’s behavior. However, if the monetary authority adopts Taylor’s (1993)

original proposal and controls nominal interest in response not only to inflation

but also to the growth rate of income, then the balanced-growth path may ex-

hibit indeterminacy: there is a continuum of equilibrium paths converging to the

balanced-growth equilibrium. In this case, although the balanced-growth path sat-

isfies superneutrality of money, the transition process is affected by the monetary

policy. We reveal that, in addition to activeness of interest-rate control, the intertem-

poral substitutability in felicity also plays a key role for the presence of equilibrium

indeterminacy.3

steady state, the interest-rate control rule may generate indeterminacy. See also Dupor (2001).
2Indeterminacy may emerge if the model introduces labor-leisure choice. As pointed out by

Meng and Yip (2004), this possibility, however, requires that labor supply curve has a positive
slope.

3When the nominal interest rate responds to inflation alone in an AK growth model, interme-
diacy would emerge either if labor supply is endogenous or if a cash-in- advance constraint applies
to investment as well: see Mino and Itaya (2004 and 2007) and Suen and Yip (2005). In those
cases, money is not superneutral on the balanced- growth path, which is different from our present
formulation where monetary policy cannot affect long-term economic growth.
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2.2 The Model

We employ a standard money-in-the-utility-function modelling with an AK technol-

ogy. The representative household maximizes a discounted sum of utilities

U =

∫ ∞

0

e−ρtu (c,m) dt, ρ > 0

subject to the flow budget and wealth constraints:

ȧ = ra− c−Rm,

a = k + m,

where c is consumption, m real money balances, k capital stock, a total wealth,

r real interest rate and R denotes nominal interest rate. The initial holding of a

is exogenously given. Here, we specify the instantaneous utility function in the

following manner:

u (c,m) =
(cγm1−γ)

1−σ

1− σ
, 0 < γ < 1, σ > 0, σ 6= 1.

Denoting the shadow value of a as q, we find that the optimization conditions

include the following:
(1− γ) c

γm
= R, (2.1)

γcγ(1−σ)−1m(1−σ)(1−γ) = q, (2.2)

q̇ = q (ρ− r) , (2.3)

together with the transversality condition: limt→∞ e−ρtaq = 0. Equation (2.1) means

that the marginal rate of substitution between consumption and real money balances

equal the nominal interest rate.

We assume that the production function is specified as

y = Ak, (2.4)

where y denotes aggregate output. The commodity market is assumed to be com-

petitive so that the real interest rate is determined by

r = A. (2.5)
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We ignore capital depreciation and thus the market equilibrium condition for com-

modity is y = k̇ + c, which yields

k̇

k
= A− z, (2.6)

where z = c/k.

Following Taylor (1993), we assume that the monetary authority adjusts the

nominal interest rate by observing the level of real income as well as the rate of

inflation. Since we deal with a growing economy in which real income continues

expanding, we consider that the monetary authority changes the nominal interest

rate in response not to the level of income but to the growth rate of income.4 The

monetary policy rule is thus specified as

R = φ (π) + η (g) . φ′ > 0, η′ > 0, (2.7)

where g denotes the growth rate of income. From (4.28) and (2.6) , g is given by

g =
ẏ

y
=

k̇

k
= A− z.

In view of the Fisher condition, the relation and nominal and real interest rates

is described by

r + π = R. (2.8)

From (2.7) we obtain:

A + π = φ (π) + η (A− z) , (2.9)

which yields
dπ

dz
=

η′ (A− z)

φ′ (π)− 1
.

As a result, the relation between π and z is expressed as

π = π (z) , (2.10)

where

sign π′ (z) = sign [φ′ (π)− 1] .

Namely, the equilibrium rate of inflation is positively (resp. negatively) related to

the consumption-capital ratio, z, if the monetary authority actively (resp. passively)

responds to a change in the rate of inflation.

4In our notation, Taylor’s principle is expressed as R = 1.5 (π − π∗)+0.5y (or R = 1.5 (π − π∗)+
1.0y), where π∗ denotes the target rate of inflation.
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2.3 Policy Rules and Aggregate Stability

To derive a complete dynamic system, first note that from (2.1), (2.8) and (2.9) we

obtain
c

m
=

γ

1− γ
[A + π (z)].

Taking the time derivatives of the both sides of the above, we obtain

ċ

c
− ṁ

m
=

π′ (z) ż

A + π (z)
. (2.11)

Using (2.2) and (2.3) , we derive:

[γ (1− σ)− 1]
ċ

c
+ (1− σ) (1− γ)

ṁ

m
= ρ− A. (2.12)

Eliminating ṁ/m from (2.11) and (2.12) yields

ċ

c
=

1

σ
(A− ρ)−

(
1

σ
− 1

)
(1− γ)

π′ (z) ż

A + π (z)
. (2.13)

Since it holds that ż/z = ċ/c − k̇/k, equations (2.6) and (2.13) present the

following:
ż

z
=

1

σ
(A− ρ)−

(
1

σ
− 1

)
(1− γ)

π′ (z) ż

A + π (z)
− A + z.

The above is rewritten as

ż

z
=

1
σ

(A− ρ)− A + z

Γ (z)
, (2.14)

where

Γ (z) = 1 +

(
1

σ
− 1

)
(1− γ)

π′ (z) z

A + π (z)
.

Equation (2.14) gives a complete dynamic equation that summarizes the dynamic

behavior of our economy.

It is easy to see that either if 0 < σ < 1 and π′ (z) > 0 or if σ > 1 and π′ (z) < 0,

then

Γ (z) > 0,

so that a unique balanced-growth path in which z is determined by

1

σ
(A− ρ)− A + z∗ = 0 (2.15)

is unstable. This means that the economy always stays on the balanced-growth path,

which implies that the economy exhibits global determinacy. Notice that both active
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control (φ′ > 1 so that π′ (z) is positive) and passive control (φ′ < 1 so that π′ (z) is

negative) may yield determinacy depending on the magnitude of σ.

In contrast, either if σ > 1 and π′ (z) > 0 or if σ < 1 and π′ (z) < 0, then it is

possible to hold Γ (z) < 0 and thus d (ż/z) /dz < 0 on the balanced-growth path.

In this case, we see that the balanced-growth path is stable and it exhibits local

indeterminacy.

To sum up, we have shown:

Proposition 2.1 Suppose that the interest rate control rule is given by (2.7) . Then

either if φ′ (π) > 0 and 0 < σ < 1 or if φ′ (π) < 1 and σ > 1, the balanced-growth

path satisfies local determinacy.

Proposition 2.2 The necessary and sufficient condition for local indeterminacy is:

1 +

(
1

σ
− 1

)
η′ (A− z) (1− γ) z

[φ′ (π)− 1][A + π (z)]
< 0, (2.16)

where z∗ and π∗ are their steady-state values.5

Intuitive implication of the above results is as follows. Suppose that the economy

is initially in the balanced-growth equilibrium where capital, consumption and real

money balances grow at a common rate of g∗ = (1/σ) (A− ρ) . Suppose further that,

due to a change of sunspot-driven expectations, households anticipate a rise in the

rate of capital accumulation and that the consumption-capital ratio, z, will decline.

Then, for example, if 0 < σ < 1 and φ′ > 1, equation (2.13) indicates that the

growth rate of consumption will decrease.6 This means that consumption growth

is insufficient to meet the output expansion caused by the expected acceleration of

capital formation. Hence, the initial expectations are not self fulfilled, implying that

the balanced-growth path itself is a unique competitive equilibrium and the econ-

omy has no transition process. Conversely, if (2.16) is satisfied, (2.13) indicates that

consumption growth is enhanced. Therefore, there would be enough consumption

demand for the expected increase in production, so that the initial expectations are

self-fulfilled. If this is the case, there exists a infinite number of converting trajec-

tories at least around the balanced-growth equilibrium: the economy can be out

5Global indeterminacy emerges if (2.16) is satisfied for all z ∈ (0, A) , which imposes further
restrictions on φ (π) and η (g) functions.

6In this situation the substitution effect of a change in the nominal interest rate dominates the
income effect, which depresses growth of consumption demand.
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of the balanced-growth equilibrium and monetary disturbances affect the dynamic

behavior of the economy.

To be more concrete, let us specify the policy-rule function in such a way that

R = π∗
( π

π∗

)φ

+ A

(
g

g∗

)η

, φ > 0, η > 0, (2.17)

where π∗ is the target rate of inflation and g∗ denotes the balanced-growth rate

determined by g∗ = (1/σ) (A− ρ) . In this specification, the target rate of inflation

is set by the monetary authority and (2.8) is satisfied on the balanced-growth path

where g = g∗ and π = π∗. Given this specification, equation (2.9) becomes

A + π = π∗
( π

π∗

)φ

+ A

(
A− z

A− z∗

)η

,

which yields

dπ

dz
=

Aη
A−z∗

(
A−z
A−z∗

)η−1

φ
(

π
π∗

)φ−1 − 1
.

When we evaluate the above on the balanced growth path where z = z∗ and π = π∗,

we obtain
dπ

dz

∣∣∣∣
z=z∗

≡ π′ (z∗) =
1

φ− 1

[
σAη

A− ρ

]
.

Using the above, we find that

Γ (z∗) = 1 +

(
1

σ
− 1

)
(1− γ)

π′ (z∗) z∗

A + π (z∗)

= 1 +
(1− σ) (1− γ) Aη

σ(A + π∗) (φ− 1) (A− ρ)

[
A− 1

σ
(A− ρ)

]
. (2.18)

Therefore, Γ (z∗) is strictly negative, if and only if

η(1− σ)

φ− 1
< − σ(A + π∗) (A− ρ)

A (1− γ)
[
A− 1

σ
(A− ρ)

] (< 0) (2.19)

The necessary conditions to hold this inequality are (i) σ < 1 and φ < 1 or (ii)

σ > 1 and φ > 1. If one of these conditions are met, the possibility of indeterminacy

increases as η has a larger value, that is, the monetary authority is more sensitive to

a divergence between the actual growth rate and the long-run target rate of income

expansion.

As an numerical example, let us set:

A = 0.07, ρ = 0.04, γ = 0.7, π∗ = 0.02.



31

Then the relation between φ, σ and η that satisfies Γ (z∗) = 0 in (2.18) is given by

φ = 1 +
7.77 (σ − 1) [0.07 (σ − 1) + 0.04]

σ2
η. (2.20)

Panels (a) and (b) in Figure 2.1 depict the graphs between φ and η under given

levels of σ. Figures 2.1 (a) assumes that σ = 2.0 so that the balanced growth rate

is g∗ = (1/σ) (A− ρ) = 0.015, while Figure (b) sets σ = 0.5 and thus g∗ = 0.06. As

these figures demonstrate, in both cases the region of the value of φ under which

indeterminacy emerges is enhanced as η increases. Figure 2.2 shows the graph of

(2.20) with a given η. Since in this figure z∗ has a negative value for 0 < σ < 0.428,

we focus on the region where σ > 0.428. Again, the graph means that an increase

in η enhances the region of indeterminacy in the (φ, σ) space.

2.4 Conclusion

In this chapter, we re-examine whether the interest-rate feedback rule according to

Taylor (1993) eliminates expectations-driven fluctuations in an endogenously grow-

ing economy. To focus on the role of monetary policy rule, we have used an AK

model with fixed labor supply in which money is superneutral on the balanced-

growth path. Even in such a simple setting, the interest-control rule may generate

indeterminacy of equilibrium, if the monetary authority adjusts the nominal interest

rate in response to the growth rate of income as well as to the rate of inflation. It

is shown that the key elements for indeterminacy conditions are the sensitivity of

nominal interest to inflation and the intertemporal rate of substitution in felicity.

For expositional simplicity, this chapter examines the issue in a continuous-time

model. As is well known, in discrete-time settings, both the timing of money holding

and the time perspective of the monetary authority (for example, forward-looking

vs. current-looking rules) are also relevant for determinacy of equilibrium.7 Exam-

ining the role of generalized Taylor rule in alternative formulations of discrete-time

monetary growth models deserves further investigation. We approach this problem

in the next chapter.

7Chapter 1 explores equilibrium determinacy in a discrete-time neoclassical growth model under
alterative formulations of money holding and interest-rate feedback rule.
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Figure 2.1: (2.20) given σ

Figure 2.2: (2.20) given η



Chapter 3

Generalized Taylor Rule and

Endogenous Growth II: A

Discrete-Time Analysis

In Chapter 2, we use an AK growth model with a generalized Taylor rule to demon-

strate that equilibrium indeterminacy may emerge more easily than in the exogenous

growth models. The discrete-time setting in this chapter can provide us with a richer

set of results concerning equilibrium determinacy.

3.1 Introduction

Taylor (1993) proposes a monetary policy rule for economic stabilization under which

the central bank adjusts the nominal interest rate in response to real income as well

as to the rate of inflation. However, the existing theoretical studies on the interest

control rules often assume that the interest rate responds to inflation alone 1. The

purpose of this chapter is to explore the efficacy of the original Taylor rule in the

context of a model of endogenous growth. We introduce money into the basic AK

growth model via the money-in-the-utility-function formulation. In such a simple

environment, money is superneutral on the balanced growth path. In our setting,

however, money is not superneutral in the transition process and, hence, the selection

of monetary policy rule may have relevant effects on determinacy of equilibrium path

leading to the balanced-growth equilibrium.

1In models of endowment economy as in Leeper (1991) or Benhabib et. al. (2001a), real income
cannot be used as an index of monetary policy.
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We construct our model in a discrete-time setting, which enables us to consider

alternative timings of households’ money holdings and of the inflation rate used for

controlling nominal interest rate. As for money holding of the household, we can

distinguish the cash-in-advance (CIA) timing from the cash-when-I’m-done (CWID)

timing. The CIA (resp. CWID) timing means that real money balances in the

utility function is the stock of money the household holds before entering (resp.

after leaving) the final goods market 2. Moreover, in our discrete-time model we

find that the main results are also sensitive to the assumption whether the central

bank’s control rule is current-looking or forward-looking. Therefore, in a discrete-

time modelling, we can analyze four patterns of formulations: (i) CWID timing

with a forward-looking rule, (ii) CIA timing with a forward-looking rule, (iii) CWID

timing with a current-looking rule, and (iv) CIA timing with a current-looking rule.

We obtain two main findings. First, the response of the interest rate to the

growth rate of income may play a significant role for equilibrium determinacy. In

fact, if the monetary authority controls interest rate in response to inflation alone,

we obtain the standard results: equilibrium determinacy holds under the forward-

looking and active current-looking monetary rule, while the passive current-looking

interest-control rule generates equilibrium indeterminacy. If the interest rate re-

sponds to the growth rate of income as well, the possibility of emergence of equi-

librium indeterminacy may be enhanced. Second, the efficacy of the generalized

Taylor rule for macroeconomic stability depends upon the timings of money holding

of the households. We can easily show that the timing of households’ money does

not affect equilibrium determinacy in an AK growth economy when the central bank

does not responds to the rate of inflation alone. The discrete-time analysis in an

AK model becomes significant due to the generalization of the interest-rate control.

These findings demonstrate that the monetary authority should carefully select a

specific interest rate control rule in order to attain stability even if the economic

environment is simple enough to hold superneutrality of money in the long run.

Several studies are closely related to this chapter. As for the equilibrium deter-

minacy in monetary growth model with an AK technology, Suen and Yip (2005)

and Chen and Guo (2008a) introduce money into the model in the form of cash-in-

advance (CIA) constraint. Those authors show that the balanced-growth path may

2The discrete-time monetary models usually assume the CWID timing of the money holdings.
However, as Carlstrom and Fuerst (2001) claim, it is difficult to justify CWID timing on theoretical
grounds, because this assumption means that the money held at the beginning of t + 1 reduces
transaction costs in period t.
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be indeterminate under a constant money growth rule if the CIA constraint applies

not only to consumption but also to investment so that money is not superneutral

on the balanced growth path 3. Indeterminacy is generated by this form of the CIA

constraint rather than by monetary policy rule.

Li and Yip (2004) and Meng and Yip (2004) investigate the effect of Taylor-type

interest rate control in the neoclassical growth (i.e. exogenous growth) models. The

main message of these studies is that in the neoclassical growth models equilibrium is

mostly determinate regardless of the form of interest rate control rules. In contrast,

the sticky-price models with capital utilize exogenous growth settings and conclude

that forward-looking interest rate controls to generate equilibrium indeterminacy:

see, for example, Dupor (2001) and Huang and Meng (2007). In this chapter, using a

discrete-time endogenous growth model, we demonstrate that the stabilization effect

of interest-rate rules with capital formation shown by the existing literature critically

depends on their assumption under which continuing growth is not sustained in the

long-run equilibrium.

3.2 The Model

3.2.1 Households

The economy consists of a continuum of identical households with a unit mass. The

agent maximizes her lifetime utility

∞∑
t=0

βtu(ct,mt−J), 0 < β < 1, J = 0, 1 (3.1)

subject to the flow budget constraint such that

kt+1 − (1− δ)kt + ct + mt + bt + τt = yt +
mt−1

πt

+
Rt−1bt−1

πt

, 0 < δ < 1. (3.2)

Each variable means the following: β=time discounting rate; δ=capital depreciation

rate; ct =real consumption; mt−J=real money balances at the beginning of period

t − J + 1; kt=(per capita) stock of capital; bt=real stock of bonds at the end of

period; τt=lump-sum tax; yt=real income; πt ≡ Pt/Pt−1=gross rate of inflation;

3Chen and Guo (2008a) generalize Suen and Yip (2005) in a way that the CIA constraint applies
to consumption and to a certain fraction of gross investment.
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Pt=nominal price level; Rt−1=gross nominal interest rate in period t − 1. In this

chapter, we specify the utility function as follows:

u(ct,mt−J) =
(cρ1

t mρ2

t−J)1−σ

1− σ
, ρ1 + ρ2 = 1, σ > 0,

where σ is the inverse of intertemporal elasticity of substitution 4. This felicity

function satisfies sign(ucm) = sign(1 − σ), so that consumption and real money

balances are Edgeworth complements if 0 < σ < 1, while they are Edgeworth

substitutes if σ > 1. We define J = 1 as cash-in-advance (CIA) timing, and J = 0

as cash-when-I’m-done (CWID) timing.

We assume that the production function of the representative firm is given by a

simple AK technology, yt = Akt. Thus the competitive rate of return on capital is

fixed at A.

To derive the optimality conditions for the household’s consumption plan, set up

the following Lagrangian function:

L ≡
∞∑

t=0

βt

{
u(ct,mt−J)+λt

[
−kt+1+(1−δ)kt−ct−mt−bt−τt+Akt+

mt−1

πt

+
Rt−1bt−1

πt

]}
.

The first-order conditions for the household’s optimization problem are:

λt = uc(ct,mt−J) = (cρ1
t mρ2

t−J)(1−σ)ρ1

ct

; (3.3)

um(ct,mt) = (cρ1
t mρ2

t )(1−σ) ρ2

mt

= λt − βλt+1

πt+1

when J = 0; (3.4)

um(ct+1,mt) = (cρ1

t+1m
ρ2
t )(1−σ) ρ2

mt

=
λt

β
− λt+1

πt+1

when J = 1; (3.5)

λt−1 = βλt(A + 1− δ); (3.6)

λt =
βλt+1Rt

πt+1

; (3.7)

lim
t→∞

βt+1λt+1kt+1 = 0; (3.8)

lim
t→∞

βtλtmt = 0; (3.9)

lim
t→∞

βtλtbt = 0. (3.10)

4This instantaneous utility function satisfies uc > 0, um > 0, ucc < 0, umm < 0, uccum −
ucmuc < 0, and ummuc−ucmum < 0. That is, the utility function is strictly increasing and strictly
concave in c and m, and consumption c and real money balances m are both normal goods.
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Equations (3.8)-(3.10) are the transversality conditions.

From (3.6) and (3.7), we obtain the following Fisher equation:

Rt

πt+1

= A + 1− δ. (3.11)

This represents the non-arbitrage condition, under which the real interest rate of

bond is equal to the net real rate of return on capital. Moreover, we acquire the

following equations showing that the marginal rate of substitution between consump-

tion and real money holdings is equal to the opportunity cost of holding money:

um(ct,mt)

uc(ct,mt)
=

ρ2

ρ1

ct

mt

=
1

A + 1− δ

Rt − 1

πt+1

when J = 0; (3.12)

um(ct+1, mt)

uc(ct+1,mt)
=

ρ2

ρ1

ct+1

mt

=
Rt − 1

πt+1

when J = 1. (3.13)

3.2.2 Capital Formation

The government budget constraint is

mt + bt + τt =
mt−1

πt

+
Rt−1bt−1

πt

. (3.14)

From (3.2), (3.14), and the production function yt = Akt , we obtain the goods-

market equilibrium condition:

kt+1 = Akt + (1− δ)kt − ct. (3.15)

Denoting zt ≡ ct

kt

, we can rewrite the condition (3.15) as

kt+1

kt

= A + 1− δ − zt. (3.16)

3.2.3 Policy Rules

We consider the Taylor-type monetary policy rule under which the central bank

controls the nominal interest rate in response to the growth rate of income as well

as to the rate of either current or expected inflation. Formally, we assume that

Rt = R(πt+i, gt+i),
∂Rt

∂πt+i

≥ 0,
∂Rt

∂gt+i

≥ 0, i = 0 or 1, (3.17)

where gt+i ≡ yt+1+i

yt+i

=
kt+1+i

kt+i

= A+1−δ−zt+i is the gross rate of real income growth.

If i = 0 (resp. i = 1), the interest rate rule is said to be current-looking (resp.
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forward-looking), in which monetary authority uses the current (resp. expected)

values of economic variables as indices to stabilize economy. Since we deal with

a growing economy in which real income continues expanding, our formulation of

interest-rate control rule is a natural extension of Taylor’s (1993) original proposal.

For analytical simplicity, we specify (3.17) as

Rt = π∗
(

πt+i

π∗

)φ

(A + 1− δ)

(
gt+i

g∗

)η

, φ ≥ 0, φ 6= 1, η ≥ 0. (3.18)

In the above, x∗ is the balanced-growth value of a variable xt, and π∗ is the target

rate of inflation. If φ > 1, the nominal interest rate rises more than one for one

in response to a change in the rate of inflation. Then, the interest control rule is

said to be active as to inflation. Conversely, the rule (4.12) with φ < 1 is defined as

passive monetary policy.

From (3.11), (3.18) and gt = 1 + A− δ − zt, the equilibrium rate of inflation is

πt+1 = πF (zt+1) = π∗
(

1 + A− δ − zt+1

1 + A− δ − z∗

)− η
φ−1

for i = 1,

πt+1 = πC(πt, zt) = (π∗)−(φ−1)(πt)
φ

(
1 + A− δ − zt

1 + A− δ − z∗

)η

for i = 0,

where

sign[πF
′(zt+1)] = sign

[
η

φ− 1

]
,

∂πC(πt, zt)

∂πt

> 0, sign

[
∂πC(πt, zt)/πt

∂πt

]
= sign(φ− 1), and

sign

[
∂πC(πt, zt)

∂zt

]
= sign

[
∂πC(πt, zt)/πt

∂zt

]
= −sign(η).

Let us consider these properties to understand the role of the interest-rate control

in the AK growth economy. When the growth rate of income in which monetary

policy rule targets increases, the central bank raises the nominal interest rate to

stabilize economy. Since the net real rate of return on capital is constant due to the

assumption of AK technology, the real interest rate also should be kept constant

by controlling the rate of inflation to satisfy non-arbitrage condition. This process

added by a generalization of Taylor rule is important for macroeconomic stability

as shown in the following sections. Due to the absence of the process, the timing

of money in the felicity does not have an impact on equilibrium determinacy in the

AK model with Taylor rule which responds only to the rate of inflation.
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If monetary policy is forward-looking and active (resp. passive) , this is achieved

by lowering (resp. increasing) the rate of inflation. Under the active (resp. passive)

current-looking interest-rate control, the growth rate of inflation is usually positive

(resp. negative) when the rate of inflation today rises. However, the nominal interest

rate becomes much higher for a positive response to the growth rate of income so

that the growth rate of inflation may be positive, even if the interest control rule is

passive.

Using the functions of the inflation rate, we obtain the following:

Rt − 1

πt+1

= A + 1− δ − 1

πF (zt+1)
= oF (zt+1) for i = 1, (3.19)

Rt − 1

πt+1

= A + 1− δ − 1

πC(πt, zt)
= oC(πt, zt) for i = 0, (3.20)

where

oF
′(zt+1) =

πF
′(zt+1)

[πF (zt+1)]2
: sign[oF

′(zt+1)] = sign

[
η

φ− 1

]
,

∂oC(πt, zt)

∂πt

=
∂πC(πt, zt)

∂πt

1

[πC(πt, zt)]2
> 0,

∂oC(πt, zt)

∂zt

=
∂πC(πt, zt)

∂zt

1

[πC(πt, zt)]2
< 0.

Hence, the opportunity cost of holding money is positively related to the equilibrium

rate of inflation 5.

3.3 Forward-looking Rule

3.3.1 CWID Timing

When we assume CWID timing of money holding and forward-looking monetary

policy rule, a complete dynamic equation is given by the following :

zt+1 = [θ∗θFW (zt+2, zt+1)− A + δ + zt]zt, (3.21)

5We consider the special case in which the nominal interest rate is pegged (φ = η = 0). From
the non-arbitrage condition (3.11), the rate of inflation is also fixed in the case of AK technology.
Therefore, the dynamics of zt is the same as in the standard AK model regardless of the timing of
money in the utility and, hence, equilibrium determinacy around the balanced-growth path always
holds.
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Figure 3.1: The CWID timing with forward-looking rule

where θ∗ ≡ {β(1+A−δ)} 1
σ = 1+A−δ−z∗ and θFW (zt+2, zt+1) =

(
oF (zt+2)

oF (zt+1)

)− 1−σ
σ

ρ2

.

In the following, we focus on equilibrium determinacy around the balanced-growth

path with a positive growth rate, assuming that 0 < z∗ < A − δ. We linearize a

dynamic system in each case 6. We summarize the result in the following proposition

and Figure 3.1.

Proposition 3.1 Consider the economy with the CWID timing under the forward-

looking interest rate rule. Then, regardless of the sign of (1− σ), equilibrium inde-

terminacy tends to hold if
η

|φ− 1| is high.

6A derivation of the dynamics of zt and the linearized system around the balanced-growth in
each case are shown in Appendix 3.A. This is also the basis for drawing Figures 3.1-3.4.
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Figure 3.2: The CIA timing with forward-looking rule

3.3.2 CIA Timing

In the case of CIA timing, we can derive a complete dynamic system as a single

equation such that

zt+1 = [θ∗θFI(zt+1, zt)− A + δ + zt]zt, (3.22)

where θFI(zt+1, zt) =

(
oF (zt+1)

oF (zt)

)− 1−σ
σ

ρ2

. The following proposition and Figure 3.2

summarize the result in this case.

Proposition 3.2 In the economy with the CIA timing under the forward-looking

interest rate rule, equilibrium path is determinate if
(1− σ)ρ2η

φ− 1
≥ 0. Otherwise,

equilibrium indeterminacy may emerge.

3.3.3 Intuitive Implication

Under the forward-looking interest control rules,
(1− σ)ρ2η

φ− 1
> 0 is a sufficient

condition for equilibrium determinacy in the case of CIA timing, while it is not
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in the case of CWID timing. We investigate the role of the timing of households’

money.

For example, we consider the case under which agents have a preference with σ >

1 and forward-looking monetary policy rule is passive (φ < 1) so that
(1− σ)ρ2η

φ− 1
>

0 is satisfied. Suppose that the economy initially stays in the balanced-growth

equilibrium and that a rise of the growth rate of economy is anticipated. According

to this anticipation, each agent increases capital accumulation and thus the ratio of

consumption to capital z becomes lower (zt < z∗). If z can be higher again, it is also

equilibrium path and thus equilibrium indeterminacy holds. We assume zt < zt+1.

Then, the rate of inflation falls (πt > πt+1) over time under the passive interest

control rule. As shown in Section 3.2.3, this effect results from the generalization of

the interest control rule.

When the timing of money holdings is CIA, the growth rate of consumption

corresponds to that of the opportunity cost of holding money at the same periods.

This is the reason why the result shown in Proposition 3.2 is close to the finding

in Chapter 2 which constructs a continuous-time formulation. If consumption and

real money balances are substitutes, decreasing the opportunity cost means a fall

of consumption, which contradicts to a rise of z. Therefore, z should diminish

over time so that determinacy holds. In the CWID timing, this mechanism is not

effective, because the timing of the growth rate of the opportunity cost of holding

money which affects the rate of consumption growth is different from the case of

CIA. Therefore, a higher z can be realized and indeterminacy may be generated.

3.4 Current-looking Rule

3.4.1 CWID Timing

A complete dynamic system in the case of CWID consists of the following difference

equations:

πt+1 = (π∗)−(φ−1)(πt)
φ

(
1 + A− δ − zt

1 + A− δ − z∗

)η

, (3.23)

zt+1 = [θ∗θCW (πt, zt+1, zt)− A + δ + zt]zt, (3.24)

where θCW (πt, zt+1, zt) =

(
oC(πt+1, zt+1)

oC(πt, zt)

)− 1−σ
σ

ρ2

, because πt+1 = πC(πt, zt). The

results for equilibrium determinacy around the balanced-growth path are summa-

rized in the propositions below and Figure 3.3.
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Figure 3.3: The CWID timing with current-looking rule

Proposition 3.3 Suppose that money holding satisfies the CWID timing and that

the interest-rate control is active (φ > 1) and current-looking. Then, the equilibrium

path is determinate either if η is small or if (1−σ)ρ2η = 0. If η is sufficiently large,

indeterminacy may emerge.

Proposition 3.4 In the case of the CWID timing and the passive current-looking

monetary policy rule (φ < 1), equilibrium indeterminacy is generated.

3.4.2 CIA Timing

Since oC(πt−1, zt−1) = A+1−δ− 1

πt

, a complete dynamic system in this case consists

of (3.23) and

zt+1 = [θ∗θCI(πt, zt)− A + δ + zt]zt, (3.25)

where θ∗θCI(πt, zt) =

(
oC(πt, zt)

oC(πt−1, zt−1)

)− 1−σ
σ

ρ2

. The main results obtained in this

system are summarized as the following propositions and Figure 3.4.
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Figure 3.4: The CIA timing with current-looking rule

Proposition 3.5 Assume that the money holdings satisfies the CIA timing and that

the interest-rate control is active current-looking (φ > 1). Then equilibrium determi-

nacy holds if (1− σ)ρ2η ≥ 0. Otherwise, the equilibrium path can be indeterminate

when η is large.

Proposition 3.6 Assume that the economy with the CIA timing under the passive

current-looking interest-rate control rule (φ < 1). If (1−σ)ρ2η ≥ 0, balanced growth

path is a saddlepoint so that indeterminacy emerges. Otherwise, the equilibrium path

is determinate when η is large.

3.4.3 Intuitive Implication

Under the current-looking monetary policy rule, we also should consider the dynam-

ics of inflation as well as that of z. The result for equilibrium determinacy seems to

be more complex than under the forward-looking rule. We roughly discuss intuition.

Suppose the rates of both inflation and income growth rise. If monetary policy is

passive (φ < 1), the inflation converges to the target rate. However, when nominal

interest rate responds to the growth rate of income much strongly, inflation can
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deviate from the target rate, as well as the active monetary policy 7. Therefore,

generalization of the Taylor rule might be a source for equilibrium determinacy in

this case.

However, this change affects the dynamics of z, and the timing of the money-in-

the-utility may play a significant role as shown in the previous section. For instance,

if inflation and thus the opportunity cost of holding money are higher over time, the

growth rate of consumption rises when consumption and real money balances are

substitutes (σ > 1), that is, z can be larger. Under the CWID (resp. CIA), passive

interest control and σ > 1 does not (resp. could) generate equilibrium determinacy,

due to the difference as shown in Section 3.3.3. Macroeconomic stability depends

on the total effects.

3.5 Endogenous vs Exogenous Growth

We summarize the results for equilibrium determinacy in Table 3.1. We have shown

that the generalized Taylor rule has a pivotal effect on economic stability in the AK

growth model. Furthermore, the generalization gives the discrete-time AK model

the role of the timing of the money in the utility. In contrast, Meng and Yip (2004)

claim that a generalized Taylor rule may not yield indeterminacy in the standard

neoclassical growth model.

To see the reason for the presence of such a difference, we consider a continuous-

time model for simplicity 8. Substituting the interest-rate control rule R = R(π, f(k), g)

into the non-arbitrage condition, R − π = f ′(k) − δ, and linearizing it around the

steady state, we obtain:

(R1 − 1)π̂ +R2f
′k̂ +R3ĝ = f ′′k̂. (3.26)

Suppose that R1 > 1, that is, monetary policy rule is active.

In an exogenous growth model, it holds that R3 = 0 and f ′′ < 0 < f ′, so that

(3.26) becomes π̂ =
f ′′ −R2f

′

R1 − 1
k̂, which satisfies

dπ̂

dk̂
< 0, regardless whether R2 is

zero or positive. We describe this result more intuitively. Assume that capital is

7Of course, the rate of inflation always deviates from the target rate under the generalized active
monetary policy. Such an asymmetry between active interest-rate control and passive one implies
that of the result concerning equilibrium determinacy.

8Notations are the same in the model of Section 3.2, and time index is omitted. x̂ means a
deviation from the steady state as in Appendix 3.A.
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Table 3.1: Equilibrium Determinacy

CWID, FL (3.3.1) σ < 1 σ = 1 1 < σ FL with η = 0 CWID CIA

φ > 1 D, I D D, I φ > 1 D D

φ < 1 D, I D D, I φ < 1 D D

CIA, FL (3.3.2) σ < 1 σ = 1 1 < σ CL with η = 0 CWID CIA

φ > 1 D D D, I φ > 1 D D

φ < 1 D, I D D φ < 1 I I

CWID, CL (3.4.1) σ < 1 σ = 1 1 < σ φ = η = 0 σ < 1 σ = 1 1 < σ

φ > 1 D, I D D, I CWID D D D

φ < 1 I I I CIA D D D

CIA, CL (3.4.2) σ < 1 σ = 1 1 < σ

φ > 1 D D D, I

φ < 1 I I I, D

FL=forward-looking rule, CL=current-looking rule

D=determinate, I=indeterminate

ex)”D, I”=determinate for low η, and indeterminate for high η

increasing from the steady state. In the case of neoclassical production, it lowers

the real rate of return on capital. Therefore, the real interest rate should fall for

the non-arbitrage condition. If the interest-rate control rule is active, the rate of

inflation must be lower. Fall width of the inflation rate becomes bigger as much as

nominal interest rate rises for the generalization of the Taylor rule, but there is not

a qualitative change so that equilibrium determinacy still always holds.

On the other hand, when the AK technology is assumed, the property of equi-

librium rate of inflation is dramatically changed for the generalization of the Taylor

rule. With R2 = 0 and f ′′ = 0 < f ′, (3.26) is rewritten as π̂ =
−R3

R1 − 1
ĝ. Hence,

π̂ = 0 if R3 = 0 and
dπ̂

dĝ
< 0 if R3 > 0. Intuition is similar as in Section 3.3. There-

fore, the generalization of interest-rate control may affect macroeconomic stability.

A difference of the structure in the real rate of return on capital is the main reason
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for a stark contrast in equilibrium determinacy conditions between the neoclassical

and AK growth models.

This difference may affect the analysis of the discrete-time models. Chapter 1,

a discrete-time version of Meng and Yip (2004) 9, shows that the timing of house-

holds’ money could be a little more significant even though the interest-rate control

responds only to the inflation rate, in contrast to the AK model in which it is not

effective at all if the Taylor rule is not generalized. However, when the monetary

policy rule is generalized, while the result in Chapter 1 cannot be expected to change

drastically due to the structure of the equilibrium rate of inflation as shown above,

the importance of the timing of money in the utility becomes clear in this chapter.

3.6 Conclusion

By use of a discrete-time AK growth model with money, we have investigated the

stabilization effect of a generalized Taylor rule under which the nominal interest

rate responds to the growth rate of income as well as to the rate of inflation. The

central messages of our study are as follows. First, if the interest-rate control is

sensitive to the growth rate of income, monetary policy rule may play a pivotal role

for economic stability even in a simple environment in which money is superneutral

in the balanced growth equilibrium. Second, our discrete-time modelling clearly

demonstrates that the timings of money holding of the households and the time

perspective of the monetary authority critically affect the efficacy of interest control

rules. This aspect cannot be considered in the foregoing studies on equilibrium

determinacy of monetary AK growth models in continuous-time settings and on the

interest-rate control in which the nominal interest rate responds only to the rate of

inflation.

Appendix 3.A: Calculation

In all four cases of Sections 3.3 and 3.4, we use the same step for obtaining the

reduced dynamic system. First, using (3.12), (3.13), (3.19) and (3.20), we derive

the demand for real money balances in each case. Second, we substitute this money

9For example, Carlstrom and Fuerst (2001) also analyze the discrete-time model, but the timing
of the nominal interest rate is different from the models in Chapter 1 and this chapter.
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demand function into (3.3), which gives the Euler equation. The growth rate of

consumption in each case consists of two parts: a common balanced growth rate of

consumption obtained in the standard AK growth model, θ∗ ≡ {β(1+A−δ)} 1
σ , and

the part related to the growth rate of the opportunity cost of holding money. Note

that the timing of the growth rate of the opportunity cost of holding money is one

period ahead in the case of CIA than that of CWID. Using these Euler equations

and the capital dynamics (3.16), we obtain the dynamics of zt in each case.

We linearize the equations of the system in each case around the balanced-growth

path to examine local equilibrium determinacy.

Forward-looking Rule and CWID Timing (Section 3.3.1)

We show the step formally in the case of CWID with forward-looking rule (Section

3.3.1). From (3.12) and (3.19),

mt =
ρ2

ρ1

(1 + A− δ)
ct

oF (zt+1)
. (3.27)

Substituting this into (3.3), we obtain

λt = ρ1

{
ρ2

ρ1

(1 + A− δ)

}ρ2(1−σ)
oF (zt+1)

−ρ2(1−σ)

cσ
t

. (3.28)

Thus the Euler equation can be expressed as

ct+1

ct

= {β(1 + A− δ)} 1
σ

(
oF (zt+2)

oF (zt+1)

)− 1−σ
σ

ρ2

= θ∗θFW (zt+2, zt+1). (3.29)

From (3.21), we obtain the linearized equation

ẑt+2 =

(
1− 1

z∗θ∗θ̄FW
z

)
ẑt+1 +

1 + z∗

z∗θ∗θ̄FW
z

ẑt, (3.30)

where ẑt ≡ zt − z∗ and

θ̄FW
z ≡ ∂θFW

∂zt+1

∣∣∣∣
ss

= −∂θFW

∂zt+2

∣∣∣∣
ss

=
1− σ

σ

ρ2η

[π∗(1 + A− δ)− 1](φ− 1)θ∗
.

Equation (3.30) is derived from ẑt+1 = z∗θ∗θ̄FW
z (ẑt+1 − ẑt+2) + (1 + z∗)ẑt. In this

dynamic system, there are two jump variables, zt+1 and zt. Thus equilibrium de-

terminacy holds if the two roots of the characteristic equation of (3.30) are out of

the unit circle. When θ̄FW
z = 0, equation (3.30) becomes ẑt+1 = (1 + z∗)ẑt, which

implies that there is a unique equilibrium path 10.
10The generalization of the Taylor rule is not effective alone. If (1 − σ)ρ2 = 0 is satisfied, we
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Forward-looking Rule and CIA Timing (Section 3.3.2)

The Euler equation in this system is

ct+1

ct

= {β(1 + A− δ)} 1
σ

(
oF (zt+1)

oF (zt)

)− 1−σ
σ

ρ2

= θ∗θFI(zt+1, zt). (3.31)

Linearizing the system (3.22), we obtain

ẑt+1 =

(
1 +

z∗

1 + z∗θ∗θ̄FW
z

)
ẑt. (3.32)

To derive (3.32), we use ẑt+1 = (1 + z∗)ẑt − z∗θ∗θ̄FW
z (ẑt+1 − ẑt). Since zt is a jump

variable, the condition for indeterminacy is

(
1 +

z∗

1 + z∗θ∗θ̄FW
z

)2

< 1, that is,

z∗(z∗ + 2 + 2z∗θ∗θ̄FW
z )

(1 + z∗θ∗θ̄FW
z )2

< 0.

Since z∗ > 0, the condition can be rewritten such that z∗ + 2 + 2z∗θ∗θ̄FW
z < 0. This

can be satisfied when θ̄FW
z < 0.

Current-looking Rule and CWID Timing (Section 3.4.1)

Using πt+1 = πC(πt, zt) in (3.33), we obtain the Euler equation in this system:

ct+1

ct

= {β(1 + A− δ)} 1
σ

(
oC(πt+1, zt+1)

oC(πt, zt)

)− 1−σ
σ

ρ2

= θ∗θCW (πt, zt+1, zt). (3.33)

The system (3.23)-(3.24) linearized at the balanced-growth path is

[
π̂t+1

ẑt+1

]
=


 φ −ηπ∗

θ∗
Xπ Xz




[
π̂t

ẑt

]
, (3.34)

where

Xπ = −φ

η

z∗

π∗
(θ∗)2θ̄CW

z (φ− 1)

(φ− 1)− z∗θ∗θ̄CW
z

and Xz =
(1 + z∗ + z∗θ∗θ̄CW

z )(φ− 1)

(φ− 1)− z∗θ∗θ̄CW
z

.

obtain the standard results in the AK growth model with the Taylor rule under which the nominal
interest rate responds to inflation alone, even though η > 0. Two factors neutralizing the effect of
the opportunity cost of holding money eliminate the efficacy of the generalized Taylor rule. The
first is ρ2 = 0, which means no need for money. Secondly, when the utility is additively separable
(σ = 1), the optimal consumption is independent from the demand for real money holdings.
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The linearized dynamic equation of zt in (3.34) is derived from

(
1− z∗

φ− 1
θ∗θ̄CW

z

)
ẑt+1 = (1 + z∗ + z∗θ∗θ̄CW

z )ẑt − φ

η

z∗

π∗
(θ∗)2θ̄CW

z π̂t,

where

θ̄CW
z ≡ ∂θCW

∂zt

∣∣∣∣
ss

=
1− σ

σ

η(φ− 1)

(π∗(1 + A− δ)− 1)θ∗

= (φ− 1)
∂θCW

∂zt+1

∣∣∣∣
ss

= −ρ2η

φ

π∗

θ∗
∂θCW

∂πt

∣∣∣∣
ss

= (φ− 1)2θ̄FW
z .

There are two jump variables, πt and zt, in this system so that equilibrium determi-

nacy emerges when two roots of the characteristic equation of (3.34) are out of the

unit circle.

Current-looking Rule and CIA Timing (Section 3.4.2)

The Euler equation in this case is given by

ct+1

ct

= {β(1 + A− δ)} 1
σ

(
oC(πt, zt)

oC(πt−1, zt−1)

)− 1−σ
σ

ρ2

= θ∗θCI(πt, zt). (3.35)

We use oC(πt−1, zt−1) = A + 1− δ − 1

πt

.

Linearizing (3.23) and (3.25) yields

[
π̂t+1

ẑt+1

]
=




φ −ηπ∗

θ∗

−φ− 1

ηπ∗
(θ∗)2θ̄CI

z z∗ 1 + z∗ + z∗θ∗θ̄CI
z




[
π̂t

ẑt

]
, (3.36)

where

θ̄CI
z ≡ ∂θCI

∂zt

∣∣∣∣
ss

=
1− σ

σ
ρ2

η

(π∗(1 + A− δ)− 1)θ∗

= − η

φ− 1

π∗

θ∗
∂θCI

∂πt

∣∣∣∣
ss

=
θ̄CW

z

φ− 1

= (φ− 1)θ̄FW
z .

There are two jump variables πt and zt in this system so local equilibrium determi-

nacy requires that the balanced-growth equilibrium is a source.



Chapter 4

Growth, Velocity, and Equilibrium

Determinacy in a

Cash-In-Advance Economy

In this chapter, we introduce money as the cash-in-advance (CIA) constraint and

analyze a role of generalized Taylor rule in an AK growth model. We assume that

the CIA constraint applies to investment as well as to consumption, and thus money

is not superneutral even on the balanced-growth path. This is in marked contrast

to the monetary endogenous growth models discussed in the previous two chapters

where money fails to affect long-term growth. In what follows, we focus on the

two issues. In Part A of this chapter, we examine equilibrium determinacy of the

balanced-growth path. In Part B, we consider a general CIA constraint and discuss

the long-run relation between velocity of money and monetary expansion.

Part A: Growth and Determinacy

4.1 Introduction to Part A

This part examines the stabilization role of interest-rate control in an AK model of

endogenous growth with a cash-in-advance (CIA) constraint. We assume that the

liquidity constraint applies not only to consumption spending but also to a part of

investment expenditure, so that money is not superneutral on the balanced growth

path (BGP). It is also assumed that the monetary authority may adjust the nominal

interest rate in response to the growth rate of income control as well as to the rate

51
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of inflation 1.

Using a rather simple setting mentioned above, we obtain two main findings.

First, if the monetary authority controls the nominal interest rate in response to

the rate of inflation alone, then the BGP is uniquely given and it satisfies global

determinacy. This conclusion is in contrast to the result claimed by Suen and Yip

(2005) and Chen and Guo (2008a) who show that in an AK growth model with

CIA constraint on investment there may exist dual BGPs and one of them is locally

indeterminate, if the intertemporal elasticity in consumption of the representative

household is less than one 2. Since they assume that the money growth rate is kept

constant, our discussion reveals that indeterminacy found by Suen and Yip (2005)

and Chen and Guo (2008a) critically depends on their assumption of monetary

supply rule.

Our second finding is that if investment is subject to the CIA constraint and if the

nominal interest rate responds to the growth rate of income as well, then the unique

BGP may be indeterminate if the interest rate responds either more or less than

one for one to inflation. This result is substantially different from Meng and Yip’s

(2004) result claiming that the generalized Taylor rule we use does not produce

indeterminacy in a neoclassical (exogenous) growth model 3. Our study suggests

that, as well as in short-run models (e.g. Benhabib et. al. (2001a)), the form

of Taylor-type interest control rule should be carefully selected in an endogenous

growth setting.

4.2 The Base Model

The economy is populated by a continuum of identical infinitely-lived households

with a unit mass. Each household has perfect foresight and maximizes a discounted

stream of utilities ∫ ∞

0

c1−σ

1− σ
e−ρtdt, σ > 0, 0 < ρ < 1, (4.1)

1This assumption is according to Taylor (1993), but the response to the growth rate of income
is often ignored in economic models.

2Suen and Yip (2005) consider a CIA constraint in which all consumption purchases and all
gross investment are financed by real money holdings.

3Using a neoclassical growth model with a generalized CIA constraint, Li and Yip (2004) show
that a passive interest control may generate indeterminacy even if the nominal interest rate does
not respond to the level of income. The difference between their conclusion and our finding relies
on the difference in the assumption on production technology.
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where c is consumption, ρ denotes the time discount rate, and σ is the inverse of

the intertemporal elasticity of substitution in consumption. The budget constraint

for the representative household is

ṁ = y − πm− c− ν + τ, (4.2)

where ν is gross investment, y is output, π ≡ Ṗ

P
is the rate of inflation, P the price

level, and m denotes the real money balances that equal the nominal money supply

M divided P . The seigniorage is returned to households from the government as a

lump-sum transfer so that τ = ṁ + πm.

The production function is given by

y = Ak, A > 0, (4.3)

where k is the household’s capital stock. Capital stock changes according to

k̇ = ν − δk, 0 < δ < 1, k0 : given (4.4)

where δ is the capital depreciation rate.

The representative household also faces the following generalized CIA constraint:

c + ψν ≤ m,ψ ∈ [0, 1]. (4.5)

Namely, all consumption purchases and a fraction ψ of gross investment must be

financed by the household’s real money balances; and the remaining fraction (1−ψ)

of investment goods are credit goods.

The representative household maximizes (4.1) subject to (4.2)-(4.5). The first-

order conditions are

c−σ = λ + ζ, (4.6)

µ− λ = ψζ, (4.7)

µ̇ = (ρ + δ)µ− Aλ, (4.8)

λ̇ = (ρ + π)λ− ζ, (4.9)

ζ(m− c− ψν) = 0, ζ ≥ 0, m ≥ c + ψν, (4.10)

together with the transversality conditions lim
t→∞

e−ρtλtmt = 0 and lim
t→∞

e−ρtµtkt = 0,

where λ and µ are the utility values of real money balances and capital, respectively,
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and ζ represents the Lagrange multiplier for the CIA constraint (4.5). In the fol-

lowing, we assume that the CIA constraint (4.5) is strictly binding in equilibrium,

and thus ζ > 0 for all t.

The market equilibrium condition for commodity is y = k̇ + δk + c, which yields

k̇

k
= A− δ − z, (4.11)

where z ≡ c

k
.

Following Taylor (1993), we assume that the monetary authority adjusts the

nominal interest rate by observing the level of real income as well as the rate of

inflation. Since we deal with a growing economy in which real income continuously

expands, we assume that the monetary authority changes the nominal interest rate in

response not to the level of income but to the growth rate of income. The monetary

policy rule is specified as

R = R(π, g) = π∗
(

π

π∗

)φ

+ (A− δ)

(
g

g∗

)η

, φ ≥ 0, φ 6= 1, η ≥ 0, A > δ,

(4.12)

where R is the nominal interest rate, g =
ẏ

y
=

k̇

k
= A− δ − z is the growth rate of

income, g∗ is the balanced-growth rate of income and π∗ > 0 is the target rate of

inflation. If φ > 1, the nominal interest rate rises more than one for one in response

to a change in the rate of inflation. In this case, the interest control rule is said

to be active as to inflation. Conversely, the rule (4.12) with φ < 1 is defined as a

passive monetary policy.

Combining (4.12) with the Fisher equation, R − π = A − δ, which implies that

the real interest rate equals to the real rate of return to capital, we see that the

equilibrium rate of inflation depends on z and thus it is expressed as π = π(z). This

function satisfies that sign[π′(z)]=sign(φ− 1) if η > 0 around the BGP, because

dπ

dz

∣∣∣∣
BGP

=
A− δ

A− δ − z∗
η

φ− 1
. (4.13)

When the growth rate of income increases, the central bank should raise the nominal

interest rate to stabilize economy. However, since the net real rate of return to

capital is constant due to the assumption of AK technology, the real interest rate

also should be kept constant by controlling the rate of inflation to satisfy the Fisher

equation. This is achieved by reducing inflation if the monetary policy is active,

because the fall in nominal interest rate is larger than that in the inflation rate.
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4.3 Balanced Growth Path and Equilibrium De-

terminacy

We focus on the economy’s BGP on which output, consumption and capital grow at

a common, positive constant rate. Denoting p ≡ µ

λ
and using (4.6) through (4.9),

we obtain the following dynamic equations:

ċ

c
=

1

σ

[
l(p)

ṗ

p
+

A

p
− ρ− δ

]
, (4.14)

µ̇

µ
= ρ + δ − A

p
, (4.15)

λ̇

λ
=

(
ρ + π(z) +

1

ψ

)
− p

ψ
, (4.16)

where l(p) = − 1− ψ

p− (1− ψ)
. Equations (4.11), (4.14), (4.15) and (4.16) give (4.17)

and (4.18) as below:

ż =

{
1

σ

[
l(p)

ṗ

p
+

A

p
− ρ− δ

]
− A + δ

}
z + z2, (4.17)

ṗ =
p2

ψ
+

(
δ − π(z)− 1

ψ

)
p− A. (4.18)

It is obvious that the BGP is realized when both z and p stay constant over time so

that the balanced growth rate is

θ =
1

σ

[
A

p∗
− ρ− δ

]
= A− δ − z∗, (4.19)

where p∗ and z∗ are the steady-state values of p and z

(
=

c

k

)
.

We first consider the case of ψ = 0 in which money is required only for real

purchases of the consumption goods. Then, from (4.7), a relative price of capital to

money p always equals one. Therefore, the dynamic equation is

ż =

[
A− ρ− δ

σ
− A + δ

]
z + z2. (4.20)

As we can see from this equation, the interest-rate control rule is not functional even

if it is generalized. Assuming that σ >
A− ρ− δ

A− δ
to satisfy z∗ > 0, we find that the



56

BGP is uniquely determined. As usual, in this case money is superneutral on the

BGP and the feasible BGP with a positive z satisfies global determinacy 4.

Next, consider the generalized case in which ψ 6= 0. In this case, the BGP is

uniquely determined and it holds that p∗ > 1 − ψ. To show this, note that the

following facts:

ṗ(p = 0; z = z∗) = −A < 0,

ṗ(p = 1− ψ; z = z∗) = −A− (1− ψ)[1 + π∗ − δ] < 0, and

ṗ(p = 1; z = z∗) = −(A− δ)− π∗ < 0.

Hence, the number of nontrivial BGP that satisfy p∗ > 1 > 1 − ψ > 0 is only one,

implying that the corresponding z∗(> 0) is also uniquely given. Moreover, we can

prove that
∂p∗

∂ψ
> 0,

∂z∗

∂ψ
> 0 and

∂θ

∂ψ
< 0.

We linearize the dynamic system (4.17) and (4.18) around the BGP to obtain:

[
ż

ṗ

]
=

[
żz żp

ṗz ṗp

][
ẑ

p̂

]
= J

[
ẑ

p̂

]
, (4.21)

where ẑ ≡ z − z∗ and p̂ ≡ p− p∗. The elements of matrix J are:

żz =
∂ż

∂z

∣∣∣∣
BGP

=

[
l(p∗)ṗz

σp∗
+ 1

]
z∗ =

(
−π′(z∗)l(p∗)

σ
+ 1

)
z∗,

żp =
∂ż

∂p

∣∣∣∣
BGP

=
z∗

σ(p∗)2
[l(p∗)ṗpp

∗ − A] = − z∗

σp∗
p∗(1− ψ) + Aψ

ψ[p∗ − (1− ψ)]
,

ṗz =
∂ṗ

∂z

∣∣∣∣
BGP

= −π′(z∗)p∗,

ṗp =
∂ṗ

∂p

∣∣∣∣
BGP

=
A

p∗
+

p∗

ψ
> 0.

Thus, the trace and determinant of J are respectively given by:

trJ = żz + ṗp =

(
−π′(z∗)l(p∗)

σ
+ 1

)
z∗ +

A

p∗
+

p∗

ψν

, (4.22)

detJ = żzṗp − żpṗz =
z∗

p∗

[
Aψν + (p∗)2

ψν

− Aπ′(z∗)
σ

]
. (4.23)

4By use of a money-in-the-utility-function model of endogenous growth in which money is
superneutral on the BGP, Chapters 2 and 3 reveal that indeterminacy may hold if the interest rate
responds to the growth rate of income. Thus, superneutrality of money may not always establish
determinacy of equilibrium in endogenous growth models.
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Since z and p are jump variables, if trJ > 0 and detJ > 0, then the BGP is totally

unstable so that the economy always stays on the BGP, that is, the equilibrium

path is determinate. Otherwise, the equilibrium path is indeterminate. Note that if

π′(z∗) = 0, that is, if the interest-control is controlled by the rate of inflation alone,

then the equilibrium path is determinate since both trJ and detJ are positive even

if money is not superneutral. Note that if η = 0, then detJ > 0, implying that the

equilibrium path is determinate even if money is not superneutral. If
η

φ− 1
> 0,

detJ may be negative from (4.23), so that equilibrium path might be indeterminate.

On the contrary, detJ > 0 when
η

φ− 1
< 0, but trJ may be negative.

To sum up, we have obtained the following results:

Proposition 4.1 Either if η = 0 or if ψ = 0, the equilibrium path is determinate.

Proposition 4.2 In the case of 0 < ψ ≤ 1 and η > 0, equilibrium path may be

indeterminate under low |φ− 1|.

In the above, we have shown that the generalization of the CIA constraint has

a pivotal effect on equilibrium determinacy. If the CIA constraint is not effective

to investment, the utility value of real money balances equals that of capital due to

the monetary superneutrality and thus the relative price of capital is one over time.

Therefore, even if the Taylor rule is generalized, it fails to affect dynamic behavior

of the economy.

When real purchases of both consumption and investment are subject to the

CIA constraint, economic stability depends on two forces. The first is the portfolio

substitution effect. Suppose that agents expect a rise of the rate of economic growth

without fundamentals and thus they anticipate that the consumption-capital ratio

z decreases. As shown in Section 4.2, the rate of inflation falls if monetary policy

is active. This diminishes the relative value of capital p due to the decrease in the

need of capital. Then, the growth rate of income increases. When the interest-rate

control is not generalized, the rate of inflation is fixed at the target rate. Therefore,

the portfolio substitution effect described above is not effective.

The intertemporal substitution effect is the second one. Under active policy,

nominal growth rate may be negative and it can make investment lower, which has

a negative effect on economic growth.

If the interest-rate control is passive, converse discussion holds. Totally, opti-

mistic expectations may be self-fulfilling under active interest-rate control, and thus
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equilibrium indeterminacy can emerge. When

∣∣∣∣
η

φ− 1

∣∣∣∣ is high, the equilibrium rate

of inflation should be more larger so that instability may emerge easily.

Part B: Growth and Velocity of Money

4.4 Introduction to Part B

In this part, we examine the long-run effects of an endogenous monetary expansion

via the interest-rate control on income growth and on the velocity of money in the

context of an AK growth model with a cash-in-advance (CIA) constraint.

In the existing literature, Suen and Yip (2005) and Chen and Guo (2008a) also

study the AK growth model with a CIA constraint. The main finding of those studies

can be summarized as follows. First, if the interetemporal elasticity of substitution

in consumption is less than one, the balanced growth path is unique and determinate,

while there may exist dual balanced growth paths if the interetermporal elasticity

of substitution in consumption is higher than one. In the latter case, the balance-

growth path (BGP) with a higher growth rate is locally indeterminate and there is a

positive relation between the growth rate of nominal money supply and the velocity

of money. Such a positive relationship is, however, empirically implausible. Chen

and Guo (2008b) overcome this problem by assuming that the CIA constraint is

more effective on investment than on consumption. They justify this assumption

based on the recent increases in the consumer credit and in the cash holdings of

firms.

These foregoing studies mentioned above assume that the central bank keeps

the growth rate of nominal money supply constant. However, many central banks

have shifted their policy stance from the base-money targeting to the interest-rate

control, we re-examine the long-run relation between monetary growth and velocity

of money under interest-rate control rules. Except for the monetary policy rule, we

employ the same analytical framework as Chen and Guo (2008b) use.

The present part reveals that the relation between money growth and velocity of

money around the BGP depends on the stance of the monetary policy as well as on

the form of CIA constraint. When the nominal interest rate responds to the current

rate of inflation alone, the velocity of money is negatively related to the growth rate

of nominal money supply around the unique BGP, if the CIA constraint is more

binding for investment than consumption. However, if the interest rate responds to
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the growth rate of income as well and it responds to inflation more than one for

one, then a lower velocity of money may be associated with a higher money growth

under the normal CIA constraint which is more effective for consumption spending

than for investment expenditure.

4.5 An Extension of the Base Model

The representative household’s problem is to maximize a discounted stream of util-

ities ∫ ∞

0

c1−σ

1− σ
e−ρtdt, σ > 0, ρ > 0, (4.24)

subject to

ṁ = y − πm− c− ν + τ, (4.25)

k̇ = ν − δk, 0 ≤ δ ≤ 1, k0 : given, (4.26)

ψcc + ψνν ≤ m, 0 < ψc ≤ 1, 0 ≤ ψν ≤ 1, (4.27)

where c is consumption, ρ denotes the time discount rate, k is the household’s capital

stock, δ denotes the capital depreciation rate and σ is the inverse of the intertem-

poral elasticity of substitution in consumption. Moreover, ν is gross investment,

y is output, π ≡ Ṗ

P
is the rate of inflation, P the price level, and m denotes the

real money balances that equal the nominal money supply M divided by P . The

household follows the budget constraint (4.25) and the dynamics of capital stock

(4.26). The generalized CIA constraint (4.27) means that parts of consumption and

gross investment must be financed by the household’s real money balances. The

seigniorage is returned to households from the government as a lump-sum transfer

so that the government’s budget constraint is τ = ṁ + πm.

The production function is given by

y = Ak, A > 0, (4.28)

and thus the market equilibrium condition for commodity, y = k̇ + δk + c, yields

k̇

k
= A− δ − z, (4.29)

where z ≡ c

k
.

Following Taylor (1993), we assume that the monetary authority controls the

nominal interest rate by observing the real income as well as inflation. Since we
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deal with a growing economy in which real income continuously expands, we assume

that the monetary authority changes the nominal interest rate in response not to

the level of income but to the growth rate of income. Specifically, we assume the

following control rule:

R = R(π, g) = π∗
(

π

π∗

)φ

+ (A− δ)

(
g

g∗

)η

, φ ≥ 0, φ 6= 1, η ≥ 0, A > δ,

(4.30)

where R is the nominal interest rate, and g denotes the growth rate of real income

given by

g =
ẏ

y
=

k̇

k
= A− δ − z. (4.31)

In addition, g∗ > 0 represents the balanced-growth rate of income and π∗ > 0

denotes the target rate of inflation. If φ > 1, the nominal interest rate rises more

than one for one in response to a change in the rate of inflation. In this case, the

interest control rule is said to be active as to inflation. Conversely, the rule (4.30)

with φ < 1 is defined as a passive monetary policy.

We focus on the economy’s BGP on which income, capital, consumption and

real money balances grow at a common rate. Combining (4.30) and (4.31) with the

Fisher equation,

R− π = A− δ, (4.32)

which implies that the real interest rate equals to the real rate of return to capital,

we obtain

A− δ + π = π∗
(

π

π∗

)φ

+ (A− δ)

(
A− δ − z

g∗

)η

. (4.33)

Therefore, we see that the equilibrium rate of inflation depends on z, that is, π =

π(z).

We consider the case in which ψν is non-zero 5. Denoting λm and λk as the

shadow prices of real money balances and capital, we define p ≡ λk

λm

. As shown in

Appendix 4.A, we obtain the following dynamic system:

ż =

{
1

σ

[
l(p)

ṗ

p
+

A

p
− ρ− δ

]
− A + δ

}
z + z2, (4.34)

ṗ =
p2

ψν

+

(
δ − π(z)− 1

ψν

)
p− A. (4.35)

5Since money is superneutral when ψν = 0, interesting result cannot be obtained even if ψc > 0.
Technically, p = 1 for all t so that the dynamic system is consisted by z alone and it does not
depend on ψc.
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where l(p) = − ψc − ψν

ψcp− (ψc − ψν)
. Note that sign[l(p)] = −sign[ψc − ψν ], since p > 1

from the assumption that the CIA constraint is strictly binding in equilibrium.

4.6 Velocity of Money

In the BGP where ż = ṗ = 0 in (4.34) and (4.35), we obtain

g∗ =
1

σ

[
A

p∗
− ρ− δ

]
= A− δ − z∗ > 0, (4.36)

p∗

ψν

+ δ − π∗ − 1

ψν

− A

p∗
= 0. (4.37)

As above conditions show, the BGP is uniquely determined 6, regardless of the

magnitude of σ, which is in a marked contrast to the model with a fixed growth rate

of nominal money supply. Moreover, from (4.33),

π′(z∗) =
dπ

dz

∣∣∣∣
BGP

=
A− δ

A− δ − z∗
η

φ− 1
, (4.38)

and therefore sign[π′(z∗)]=sign

[
η

φ− 1

]
is satisfied around the BGP.

From now on, we investigate the relation between the velocity and the monetary

expansion rate. Defining
Ṁ

M
= µ, and using (4.27), (4.28) and ν = y − c, we can

represent the growth rate of money as following 7:

µ = µ(z, p) = q(z)
ż

z
+ A− δ − z + π(z), (4.39)

where q(z) ≡ (ψc − ψν)z

(ψc − ψν)z + ψνA
is positive (resp. negative) if ψc > ψν (resp. ψc <

ψν). Under the interest-control rule, the nominal growth rate of money supply is

endogenously determined. Since the growth rate of real money supply equals that

of real income around the BGP, that is,
ṁ

m
= g∗, we derive

µ∗ = A− δ − z∗ + π(z∗). (4.40)

6From (4.35), we have two p∗s, but one of them is negative, while another is positive and satisfies
p∗ > 1 since ṗ(p = 1; z = z∗) = −(A− δ)− π∗ < 0. Therefore, the number of plausible p∗ is only
one. Under the unique p∗, we can give the nontrivial unique z∗. Determinacy of this unique BGP
is detailed in Appendix 4.A.

7Substituting
ṁ

m
= µ− π and

ż

z
=

ċ

c
− k̇

k
into m = (ψc − ψν)c + ψνAk, we can obtain (4.39).
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Table 4.1: The Relation between Velocity and Money Supply

ψc > ψν ψc < ψν ψc = ψν

η > 0, φ > 1, high A−δ
g∗ − + 0

η > 0, φ > 1, low A−δ
g∗ + − 0

η > 0, 0 < φ < 1 + − 0

η = 0 + − 0

As a result, we can obtain

dµ∗

dz∗
= π′(z∗)− 1 =

A− δ

A− δ − z∗
η

φ− 1
− 1, (4.41)

and thus

sign

(
dµ∗

dz∗

)
= sign

(
η

φ− 1
− A− δ − z∗

A− δ

)
. (4.42)

Note that g∗ = A − δ − z∗. The income velocity of money around the BGP is

represented by

V ∗ =
y∗

m∗ =
A

(ψc − ψν)z∗ + ψνA
, (4.43)

implying that

sign

(
dV ∗

dz∗

)
= −sign[ψc − ψν ]. (4.44)

Combining (4.42) and (4.44), we can describe the effect of money supply on

velocity around the BGP as in Table 4.1. In this table, + means a positive relation,

− means a negative relation and 0 indicates that there is no relation.

Now, we consider intuitive implication of the results. From (4.41), two effects

of economic growth on the nominal expansion rate of money supply can be seen.

First, a decrease z∗ yields a higher balanced-growth rate g∗. The second is the

change of the inflation rate via the interest-control rule. When the growth rate of

income increases, the central bank should raise the nominal interest rate to stabilize

economy. However, since the net real rate of return to capital is constant due

to the assumption of AK technology, the real interest rate also should be kept

constant by adjusting the rate of inflation to satisfy the Fisher equation 8. This

is achieved by depressing inflation if the monetary policy is generalized and active,

because the decline in nominal interest rate is larger than that in the inflation rate.

Therefore, the expansion rate of nominal money supply may fall. Otherwise, the

8When the interest rate is controlled by the rate of inflation alone, this channel is not effective.



63

rise of economic growth does not generate the fall of the inflation rate so that the

nominal growth rate of money supply increases.

We consider the result in (4.44). In light of AK technology, decreasing z∗ gener-

ates the same magnitude of positive movement in the investment-capital ratio
ν∗

k∗
.

Therefore, if ψc > ψν , velocity of money which means the ratio of capital to real

money balances becomes larger. Conversely, when ψc < ψν , the negative relation

between the velocity and the growth rate of income is produced.

Taylor (1993) suggests that the observable policy stance of the Federal Reserve

may be described by setting φ = 1.5 and η = 0.5. Moreover, it is plausible to

consider that real investment expenditures for machines, factories and housing are

less constrained by cash holdings than consumption spending. Therefore, we focus

on the case under which η > 0, φ > 1, and ψc > ψν . When the ratio of the net real

rate of return on capital A− δ to the balanced-growth rate g∗ = A− δ− z∗ is higher

enough to satisfy 0 <
φ− 1

η
<

A− δ

g∗
, the negative relation between the nominal

money expansion and the income velocity of money holds, regardless of whether

or not the economy displays sunspot-driven fluctuations around the BGP. Since

A − δ > g∗, the condition 0 < 1 =
φ− 1

η
<

A− δ

g∗
holds for φ = 1.5 and η = 0.5.

This result is different from Chen and Guo (2008b), who show that the negative

relation emerges only on the determinate BGP if ψc > ψν . Consequently, we can

conclude that both the form of the CIA constraint and the central bank’s policy

stance are important for the relation between and velocity and money expansion.

Appendix 4.A

The first-order conditions of the household’s maximization problem are

c−σ = λm + ψcζ, (4.45)

λk − λm = ψνζ, (4.46)

λ̇k = (ρ + δ)λk − Aλm, (4.47)

λ̇m = (ρ + π)λm − ζ, (4.48)

ζ(m− ψcc− ψνν) = 0, ζ ≥ 0, m ≥ ψcc + ψνν, (4.49)

together with the transversality conditions lim
t→∞

e−ρtλmtmt = 0 and lim
t→∞

e−ρtλktkt =

0, where λm and λk are the shadow prices of real money balances and capital,
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respectively, and ζ represents the Lagrange multiplier for the CIA constraint (4.27).

In the following, we assume that the CIA constraint (4.27) is strictly binding in

equilibrium, and thus ζ > 0 for all t. Using (4.45) through (4.48), we obtain the

following dynamic equations:

ċ

c
=

1

σ

[
l(p)

ṗ

p
+

A

p
− ρ− δ

]
,

λ̇k

λk

= ρ + δ − A

p
,

λ̇m

λm

=

(
ρ + π(z) +

1

ψν

)
− p

ψν

.

From these equations and (4.29), the dynamics equations (4.34) and (4.35) are

derived.

We linearize the dynamic system (4.34) and (4.35) around the BGP to obtain:

[
ż

ṗ

]
=

[
żz żp

ṗz ṗp

][
ẑ

p̂

]
= J

[
ẑ

p̂

]
, (4.50)

where ẑ ≡ z− z∗ and p̂ ≡ p− p∗. The elements of matrix J (4.50) are the following:

żz =
∂ż

∂z

∣∣∣∣
BGP

=

[
l(p∗)ṗz

σp∗
+ 1

]
z∗ =

(
−π′(z∗)l(p∗)

σ
+ 1

)
z∗,

żp =
∂ż

∂p

∣∣∣∣
BGP

=
z∗

σ(p∗)2
[l(p∗)ṗpp

∗ − A] = − z∗

σp∗
p∗(ψc − ψν) + Aψcψν

ψν [ψcp∗ − (ψc − ψν)]
,

ṗz =
∂ṗ

∂z

∣∣∣∣
BGP

= −π′(z∗)p∗,

ṗp =
∂ṗ

∂p

∣∣∣∣
BGP

=
A

p∗
+

p∗

ψν

> 0.

The trace and determinant of J are respectively given by:

trJ = żz + ṗp =

(
−π′(z∗)l(p∗)

σ
+ 1

)
z∗ +

A

p∗
+

p∗

ψν

, (4.51)

detJ = żzṗp − żpṗz =
z∗

p∗

[
Aψν + (p∗)2

ψν

− Aπ′(z∗)
σ

]
. (4.52)

Since z and p are jump variables, if trJ > 0 and detJ > 0, then the BGP is totally

unstable so that the economy always stays on the BGP, that is, the equilibrium

path is determinate. Otherwise, the equilibrium path is indeterminate. That is,
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the economy always stays on the BGP, or endogenous income fluctuations driven

by sunspots are generated. Inspecting (4.51) and (4.52), we can find the following

proposition, which shows that the generalization of the Taylor rule and the most

generalized CIA constraint play a significant role in macroeconomic stability.

Proposition 4.3 In the case of 0 < ψc, ψν ≤ 1, equilibrium determinacy holds

either if (i) monetary policy rule responds only to the rate of inflation. or if (ii) ψc ≤
ψν and monetary policy is passive. Otherwise, BGP could be locally indeterminate.



Chapter 5

Income Taxation, Interest-Rate

Control and Macroeconomic

Stability with Balanced-Budget

5.1 Introduction

Income taxation under balanced-budget rule and interest-rate control have been

considered most effective tools for establishing macroeconomic stability. If it is

appropriately selected, each policy rule may stabilize the economy by mitigating

income fluctuations. It is, however, rather unclear whether or not those fiscal and

monetary policy rules strengthen their stabilizing effects each other, if the fiscal

authority and the central bank adopts specific actions simultaneously. Although

stabilization effects of policy rules have been discussed extensively, the main stream

literature has investigated the stabilization roles of income taxation and interest

control rules separately. Therefore, these studies fail to answer the relevant question

mentioned above.

The purpose of this chapter is to explore the interactions between income tax-

ation and interest rate control rules under the balanced-budget discipline in a pro-

totype model of real business cycle theory. Unlike most of the foregoing studies,

this chapter treats both fiscal and monetary policy rules in a single model. More

specifically, we introduce money into the baseline real business cycle model with

flexible price via a cash-in-advance constraint. We assume that the fiscal authority

adjusts income tax endogenously in each moment subject to the balanced-budget

rule. In the main part of the chapter, we follow the taxation scheme assumed by

66
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Guo and Lansing (1998) in which the rate of income tax depends on the individual

income relative to the average income in the economy at large. The key distinction

in this policy rule is whether taxation on individual income relative to the average

income is progressive or regressive. Given such a fiscal action, the monetary author-

ity adopts an interest-control rule under which the nominal interest rate responds to

the current rate of inflation relative to the target level of inflation. As usual, the ef-

fect of interest rate control on macroeconomic stability depends on the sensitivity of

interest rate to a change in inflation. Introducing those fiscal and monetary actions

into the baseline model, we examine the dynamic behavior of the model economy.

Our study presents three main findings. First, if progressive income taxation is

combined with active interest rate control rule (i.e. nominal interest rate responds

to inflation more than one for one), then the economy exhibits equilibrium deter-

minacy, so that we will not observe expectations-driven fluctuations. Second, if the

interest rate control is passive, equilibrium indeterminacy could emerge even under

progressive income taxation. Third, if income taxation is regressive, then the inter-

est rate control rule may play a pivotal role for establishing macroeconomic stability.

In this case, indeterminacy may emerge under both active and passive interest rate

control rules. However, if the interest rate is relatively insensitive to inflation, then

equilibrium indeterminacy can be eliminated even in the presence of strong regres-

siveness of income taxation. Those findings claim that in the general equilibrium

settings with money and capital, it is critically relevant to find appropriate combi-

nations of fiscal and monetary policy rules. Even though the balanced-budget rule

and progressive income taxation may contribute to establishing aggregate stability,

it is still important to select a suitable monetary policy rule to avoid depressing

stabilization power of fiscal actions.

In the existing literature, Guo and Lansing (1998) show that progressive tax may

eliminate the possibility of equilibrium indeterminacy even in the presence of strong

degree of external increasing returns. Schmitt-Grohé and Uribe (1997) and Guo

and Harrison (2004) examine the interrelationship between balanced-budget rule

and determinacy of equilibrium. While Schmitt-Grohé and Uribe (1997) emphasize

that the balanced-budget with a fixed government spending and endogenous taxa-

tion may generate sunspot-driven fluctuations, Guo and Harrison (2004) claim that

such an unstable behavior can be eliminated if the balanced budget is maintained

by adjusting government expenditure under fixed rates of income tax. These stud-

ies utilize the baseline real business cycle models without money. As for monetary

policy rules, there has been a large body of literature that investigates stabilization
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effect of interest-rate control rule à la Taylor (1993). Although many authors (e.g.

Benhabib et. al. (2001a)) point out that the interest control rule may easily produce

expectations-driven fluctuations in the economies without capital, more recent stud-

ies show that the role of interest rate rules for aggregate stability is less relevant in

an economy with capital formation: see, for example, Carlstrom and Fuerst (2005)

and Meng and Yip (2004). These studies, however, ignore the role of fiscal policy.

The present chapter integrates these two lines of research on the stabilization roles

of taxation and interest control.

It is to be noted that several authors have examined interactions between fiscal

and monetary policy rules in the context of new Keynesian models with sticky price

adjustment. Following Leeper’s (1991) modelling, Kurozumi (2005), Linnenmann

(2006) and Lubik (2003) consider the effects of interest rate rule when the fiscal

authority adjusts the rate of income tax to maintain a target level of the government

debt. Those studies, therefore, do not assume the balanced-budget rule in its strict

sense. Edge and Rudd (2007) explore how the presence of distortionary taxation on

interest income affects the sensitivity of interest rate control to inflation and income

necessary for avoiding equilibrium indeterminacy. Although Edge and Rudd (2007)

utilize a sticky price model with fixed rates of income tax, the primary concern of

their study is close to ours.

5.2 The Base Model

5.2.1 Households

There is a continuum of identical, infinitely lived households with a unit mass. The

flow budget constraint for the household is

Ṁ = (1− τ) py + pT − pc− pv,

where M nominal stocks of money, p price level, y real income per capita, c con-

sumption, v gross investment for capital, τ rate of factor income tax, and T is the

real transfer from the government (or lump-sum tax if it has a negative value). Since

we have normalized the number of household to unity, M, y, T, c and v represent

their aggregate values as well. Real income consists of rent from capital and wage

revenue:

y = rk + wl,
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where r is real rate of return to capital, w is real wage rate and l denotes labor

supply. Denoting real money balances m ≡ M/p and the rate if inflation π ≡ ṗ/p,

we rewrite the household’s flow budget constraint as

ṁ = (1− τ) (rk + wl) + T − c− v − πm. (5.1)

The stock of capital changes according to

k̇ = v − δk, (5.2)

where δ ∈ (0, 1) denotes the rate of capital depreciation. In addition, a cash-in-

advance constraint applies to consumption spending so that pc ≤ M or

c ≤ m (5.3)

in each moment of time. In this chapter, we assume that investment spending is not

subject to the cash-in-advance constraint.

The instantaneous utility of the representative family depends on consumption

and labor supply. Following the standard specification, we assume that the objective

function of the household is

U =

∫ ∞

0

e−ρt

(
log c−B

l1+γ

1 + γ

)
dt, γ > 0, ρ > 0, B > 0.

Given the initial holdings of k0 and m0, the household maximizes U subject to (5.1) ,

(5.2) and (5.3) under given trajectories of {rt, wt, τt, Tt}∞t=0 .

To derive the optimization conditions for the household, we set up the current-

value Hamiltonian function:

H = log c−B
l1+γ

1 + γ
+ λ [(1− τ) (rk + wl) + T − c− v − πm]

+ µ (v − δk) + ζ (m− c) ,

where λ and µ respectively denote the costate variables of m and k, and ζ is a

Lagrange multiplier corresponding to the cash-in-advance constraint on consumption

spending. In what follows, we assume that the rate of tax, τ, depends on the level

of individual income. The rate of income tax is thus given by

τ = τ (y) = τ (rk + wl) .

Considering such a taxation rule, we find that the necessary conditions for an opti-

mum involve the following:

∂H/∂c = 1/c− (λ + ζ) = 0, (5.4)
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∂H/∂l = −Blγ + λ [1− τ (y)− τ ′ (y) y] w = 0, (5.5)

∂H/∂v = −λ + µ = 0, (5.6)

ζ (m− c) = 0, m− c ≥ 0, ζ ≥ 0, (5.7)

λ̇ = λ (ρ + π)− ζ, (5.8)

µ̇ = (ρ + δ) µ− λ [1− τ (y)− τ ′ (y) y)] r, (5.9)

together with the transversality conditions, limt→∞ ktµte
−ρt = 0 and limt→∞ mtλte

−ρt =

0 as well as the initial conditions on m and k. In conditions (5.4) and (5.5) , τ (y) +

τ ′ (y) y represents the marginal tax rate perceived by the household. As in Guo and

Lansing (1998), we assume that each household takes the proportional tax rule into

account when deciding their optimal consumption plan.

In this chapter we focus on the situation where the cash-in-advance constraint

is always effective, so that c = m holds for all t ≥ 0. First, (5.6) means that µ = λ

so that from (5.8) and (5.9) we obtain:

ζ = λ {[1− τ (y)− τ ′ (y) y] r + π − δ} . (5.10)

Thus (5.4) is written as

1

c
= λ {1 + [1− τ (y)− τ ′ (y) y] r + π − δ} . (5.11)

As a result, (5.5) and (5.10) yields:

clγB =
[1− τ (y)− τ ′ (y) y] w

1 + [1− τ (y)− τ ′ (y) y] r + π − δ
. (5.12)

The left-hand side of the above is the marginal rate of substitution between con-

sumption and the labor and the right-hand side expresses the effective, after-tax

rate of real wage rate. Since we assume that the cash-in-advance constraint always

binds, additional consumption generates an additional opportunity cost of holding

money, which is given by the after-tax, net rate of return to capital plus the rate of

inflation. Thus the right-hand side of (5.12) expresses the real wage rate in terms

of the effective price including the cost of money holding.

5.2.2 Firms

The production side of the model economy follows the standard formulation. There

are identical, infinitely many firms and the total number of firms is normalized to

one. The production function of an individual firms is given by

y = Akαl1−α, 0 < α < 1, A > 0. (5.13)
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In a competitive economy we consider, α represents the income share of capital.

We focus on the case where α has an empirically plausible value, so that in what

follows, we assume that α is less than 0.5. The commodity market is assumed to

be competitive and thus the rate of return to capital and the real wage equal the

marginal products of capital and labor, respectively:

r = αAkfα−1l1−α = α
y

k
, (5.14)

w = (1− α) Akαl−α = (1− α)
y

l
. (5.15)

5.2.3 Policy Rules

The fiscal and monetary authorities respectively control the rate of income tax, τ,

and the nominal interest rate, R, according to their own policy rules. As assumed by

Schmitt-Grohé and Uribe (1997) and Guo and Lansing (1998), the fiscal authority

follows the balanced budget discipline. To emphasize this assumption, we assume

away government debt. The flow budget constraint for the government is thus given

by

τy + ṁ + πm = g + T,

where g denotes the government’s consumption spending. A key assumption of

our analysis is that under the balanced-budget rule the fiscal authority cannot use

seigniorage income to finance the government consumption.1 This means that

g = τy (5.16)

holds in each moment. As a consequence, the real seigniorage income, Ṁ/p, is

transferred back to the households, so that ṁ + πm = T.

Given the general principle mentioned above, the monetary authority is assumed

to follow an interest rate control rule such that

R (π) = π + r∗
( π

π∗

)η

, r∗ > 0, π∗ ≥ 0, (5.17)

where r∗ > 0 is the steady-state level of net rate of return to capital and π∗ expresses

the target rate of inflation. We assume that the target rate of inflation is positive so

that π∗ is a positive constant set by the monetary authority. Under given r∗ and π∗,

we see that R′ (π) > 1 (resp. R′ (π) < 1) according to η > 0 (resp. η < 0) . Hence,

if η > 0, then the monetary authority adopts an active control rule under which it

1Hence, fiscal policy is ’passive’ in the sense of Leeper (1991).
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adjusts the nominal interest rate more than one for one with inflation. Conversely,

when when η < 0, the interest rate control is passive in the sense that the monetary

authority changes the nominal interest rate less than one for one with inflation.

When η = 0, the monetary authority controls the nominal interest rate to keep the

real interest rate at the rate of r∗. Notice that the Fisher equation gives the relation

between the nominal and real interest in such a way that

R = r + π. (5.18)

Therefore, (5.17) and (5.18) yield:

π =
( r

r∗

) 1
η
π∗, (5.19)

which gives the relation between the equilibrium rate of inflation and the real rate

of return to capital. This means that in our setting the nominal interest rate control

is to adjust the rate of inflation tax according to a specified rule.2

As for the fiscal rule under balanced budget, we consider two alternative regimes.

One is the taxation rule use the formulation by Guo and Lansing (1998). In this

regime, the government consumption is adjusted to keep the balanced budget and

the rate of income is determined by the following taxation rule:

τ (y) = 1− (1− τ0)

(
y∗

y

)φ

, −1− α

α
< φ < 1, 0 < τ0 < 1, (5.20)

where y∗ denotes the steady-state level of per capita income.3 Given this taxation

rule, the after-tax income is written as

[1− τ (y)] y = (1− τ0) y∗φy1−φ.

As a result, if we denote the after-tax real income by I (y) ≡ [1− τ (y)] y, we obtain

I ′ (y)

I (y) /y
= 1− φ.

2In the presence of distortional income taxation, the Fisher equation may be modified: see, for
example, Feldstein (1976). For example, the non-arbitrage condition (5.18) may be replaced with
(1− τ)R = (1− τ) r +π so that R = r +π/ (1− τ) . If this is the case, we assume that the central
bank adopts an interest control rule such that

R =
π

1− τ
+ r∗

( π

π∗

)η

,

which is compatible with the modified Fisher equation in the long-run equilibrium where π = π∗.
As a result, we obtain (5.19) even in the case of modified Fisher condition.

3As shown in Section 5.3.2. the restriction φ > − (1− α) /α ensures that the steady state level
of consumption has a positive value.
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Since I (0) = 0, the above equation means that if 0 < φ < 1, then I ′ (y) < I (y) /y

so that the after-tax income is strictly concave in taxable income y, that is, income

taxation is progressive. Conversely, when φ < 0, function I (y) is strictly convex

and hence, income taxation is regressive. When φ = 0, we obtain the linear taxation

rule under which the rate of income tax is fixed as τ0. It is also to be noted that in

the steady state where y = y∗, the rate of tax is also fixed at τ0.
4

The alternative fiscal rule, which is assumed by Schmitt-Grohé and Uribe (1997),

is to keep the government spending fixed and the rate of income tax is adjusted to

balance the budget. In this case, the rate of income tax is determined by

τ =
g

y
,

where g is fixed at a certain level. Obviously, income taxation in this regime is

strongly regressive, because a higher income reduces the tax rate. While this chapter

mostly focus on the first rule, we briefly discuss this second rule in Section 5.4.

5.2.4 Capital Accumulation

Combining the flow budget constraints for the household and the government yields

the commodity-market equilibrium condition: y = k̇ + δk + c + g. Under the first

fiscal rule the government consumption is endogenously determined, and thereby

the market equilibrium is written as

k̇ = (1− τ) y − c− δk. (5.21)

5.3 Policy Rules and Macroeconomic Stability

In this section we assume that the fiscal authority uses the taxation rule given by

(5.20). We first derive the dynamical system that describes the equilibrium dynamics

of the model economy and explore the stability condition around the steady state

equilibrium.

4Individual tax payment is T (y) = τ (y) y. Given (5.20) , we have T ′ (y) = 1 −
(1− τ0) (1− φ) y∗φy−θ. In the steady state where y = y∗, we see that T ′ (y) = φ (1− τ0) + τ0.

Hence, if
φ > − τ0

1− τ0
,

then the total tax payment increases with income y. Since income share of capital, α, is less than
0.5 in reality, when φ satisfies φ > −α/ (1− α) , it in general holds that φ > −τ0/ (1− τ0) .
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5.3.1 Dynamic System

In order to derive a complete dynamic system that summarizes the model displayed

above, we focus on the behaviors of capital stock, k, and the shadow value of real

money balances, λ. First observe that (5.20) gives

1− τ (y)− τ ′ (y) y = (1− τ0) (1− φ)

(
y∗

y

)φ

.

Using the above equation, together with (5.5) and (5.15) , we may express the equi-

librium level of employment in the following way:

l =

[
(1− τ0) (1− φ) (1− α)

B

] 1
1+γ

y∗
φ

1+γ y
1−φ
1+γ λ

1
1+γ .

Inserting the above into the production function (5.13) and solving it with respect

to y, we obtain

y = Âk
α(1+γ)

∆ λ
1−α
∆ ≡ y (k, λ) , (5.22)

where

∆ = α + γ + φ(1− α),

Â = A
1+γ
∆

[
(1− τ0)(1− φ)(1− α)

B

] 1−α
∆

y∗
φ(1−α)

∆ .

Equation (5.22) represents the short-run production function under a given level of

y∗. Similarly, the real interest rate is expressed as

r = α
y

k
= αÂk−

(1−α)(γ+φ)
∆ λ

1−α
∆ ,

implying that the after-tax marginal rate of return to capital is

(1− τ − τ ′y) r = α (1− τ0) (1− φ) y∗φÂ1−φk
αγ(1−φ)−(γ+φ)

∆ λ
(1−φ)(1−α)

∆

≡ r̂ (k, λ) .

For determining the equilibrium rate of inflation, in view of (5.14) , (5.19) and

(5.22) , we may express π as a function of k and λ in such a way that

π = π∗
(

αÂ

r∗

) 1
η

k
− (1−α)(γ+φ)

η∆
λ

1−α
η∆ ≡ π (k, λ) . (5.23)
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Hence, using (5.23) , we see that the optimal consumption depends on k and λ in

the following manner:

c =
1

λ[1 + r̂ (k, λ) + π (k, λ)− δ]
≡ c (k, λ) . (5.24)

Summing up the above manipulation, we find that the dynamic equation of

capital stock is expressed as

k̇ = (1− τ0)y
∗φy(k, λ)1−φ − c (k, λ)− δk, (5.25)

and the shadow value of real money balances changes according to

λ̇ = λ [ρ + δ − r̂ (k, λ)] . (5.26)

A pair of differential equations, (5.25) and (5.26) , constitutes a complete dynamic

system under the interest rate control and the taxation rule with endogenous gov-

ernment expenditure. Note that y (k, λ) and r̂ (k, λ) satisfy

r̂ (k, λ) = α (1− τ0) (1− φ)
(y∗)φy (k, λ)1−φ

k
, (5.27)

π (k, λ) = π∗
( r

r∗

) 1
η

= π∗r∗−
1
η

(
αy (k, λ)

k

) 1
η

. (5.28)

5.3.2 Steady-State Equilibrium

In the steady state where k and λ stay constant over time, it should hold that

π = π∗, r = r∗ and y = y∗. It is to be noted that in the steady state, we obtain:

1− τ (y∗)− τ ′ (y∗) y∗ = (1− τ0) (1− φ) .

We should also notice that from (5.22) the production function in the steady state

is given by

y∗ = Ā
∆

α+γ k∗
α(1+γ)

α+γ λ∗
1−α
α+γ , (5.29)

where

Ā = A
1+γ
∆

[
(1− τ0)(1− φ)(1− α)

B

] 1−α
∆

, (5.30)

and the values of k, c and λ satisfy the following conditions:

y∗

k∗
=

ρ + δ

α (1− τ0) (1− φ)
, (5.31)
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c∗

k∗
= (1− τ0)

y∗

k∗
− δ =

ρ + δ [1− α (1− φ)]

α (1− φ)
, (5.32)

λ∗k∗ =
k∗

c∗ (1 + ρ + π∗)
, (5.33)

In the above, k∗, c∗ and λ∗ denote their steady-state values. Equation (5.31) is the

modified Golden-rule condition corresponding to λ̇ = 0, while (5.32) comes from the

long-rum market equilibrium condition: k̇ = 0. The modified golden-rule condition

(5.31) determines the income-capital ratio, y∗/k∗, which gives the consumption-

capital ratio, c∗/k∗ by (5.32) . Then the steady-state implicit value of capital, k∗λ∗,

is given by (5.33) . The last condition yields

λ∗ =
α (1− φ)

(1 + ρ + π∗) [ρ + δ(1− α (1− φ))] k∗
=

β

k∗
,

where β denotes the coefficient of 1/k∗. Using the above relation, together (5.29)

and (5.31) , we find that the steady-state level of capital is uniquely determined such

that:

k∗ = A
1

1−α

[
α (1− τ0) (1− φ)

ρ + δ

] α+γ
(1−α)(1+γ)

[
(1− α) (1− τ0) (1− φ)

B

] 1
1+γ

β
1

1+γ . (5.34)

Therefore, the steady-state value of k and λ are uniquely expressed by all the pa-

rameters involved in the model. Once k∗ and λ∗ are given, the steady-state levels of

c (= m) and l are determined uniquely as well.

The steady-state value of capital given by (5.34) demonstrates that policy pa-

rameters, τ0, φ, η and π∗ affect the long-run levels of capital, income, employment

and consumption in a complex manner. However, it is rather easy to derive intuitive

implications of the effects of a change in policy parameters. First, observe that the

degree of activeness of interest-rate control, η, fails to affect the steady-state levels

of capital, employment and income. Second, regardless of progressiveness of income

tax (i.e. the sign of φ) , the steady-state capital decreases with τ0, φ and π∗. Third,

(5.31) and (5.32) show that a change in π∗ will not affect y∗/k∗ and c∗/k∗, so that

it alters k∗, y∗ and c∗ proportionally. Additionally, (5.32) also shows that a rise in

φ increases c∗/k∗, while τ0 does not affect c∗/k∗.

Finally, by use of (5.12), (5.14) , (5.15) , (5.31) and (5.32) , the steady-state rete

of employment satisfies the following relation:

l∗γ+1 =
(1− α) (ρ + δ) (1− φ)

(1 + ρ + π∗) {ρ + δ [1− α (1− φ)]} ,
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Table 5.1: Policy Impacts on the Steady-State Values of Key Variables

k∗ l∗ y∗ y∗/k∗ c∗/k∗ c∗/y∗

τ0 - 0 - + 0 -

φ - - - + + +

π∗ - - - 0 0 0

implying that l∗ decreases with φ and π∗, while τ0 does not affect l∗.

Inspecting the steady-state conditions derived above, we may summarize the

comparative statics results in the steady state equilibrium as follows:

Proposition 5.1 The degree of activeness of interest rate control, η, does not affect

the steady state levels of capital, income, consumption and employment. The impacts

of changes in policy parameters τ0, φ and π∗ are shown as Table 5.1.

5.3.3 Equilibrium Determinacy

In order to examine the equilibrium dynamics near the steady state, let us con-

duct linear approximation of (5.25) and (5.26) at the steady-state equilibrium. The

coefficient matrix of the approximated system is given by

J =

[
(1− τ0) (1− φ) yk (k∗, λ∗)− ck (k∗, λ∗)− δ (1− τ0) (1− φ) yλ (k∗, λ∗)− cλ (k∗, λ∗)

−λ∗r̂k (k∗, λ∗) −λ∗r̂λ (k∗, λ∗)

]
.

Since the shadow value of capital, λ, is an unpredetermined variable, if J has one

stable root, the converging path under perfect foresight is at least locally unique.

Thus determinacy of equilibrium is established when the determinacy of J has a

negative value. In contrast, when det J > 0 and the trace of J is negative, there

exists a continuum of equilibria around the steady state. As shown in Appendix

5.A, using the steady-state conditions, we find that the partial derivatives in J can

be expressed by the given parameter values. The trace and determinant of J are

respectively written as:

trace J = ρ− 1

(1 + π∗ + ρ)∆

ρ + δ[1− α(1− φ)]

α(1− φ)
(5.35)

×
{

[φ(αγ + 1) + γ(1− α)](ρ + δ) + (1− α) (γ + φ)
π∗

η

}
,
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det J = −ρ + δ [1− α (1− φ)]

α (1− φ)

ρ + δ

∆

[
(γ + 1)(1− α(1− φ)) +

φ(1− α)π∗

η(1 + π∗ + ρ)

]
.

(5.36)

where ∆ = α + γ + φ (1− α) .

First of all, it is easy to see that if the target rate of inflation, π∗, is non negative,

income taxation is progressive (φ > 0) and the interest rate control is active (η > 0) ,

then det J has a negative value, so that the steady-state equilibrium is locally de-

terminate. Similarly, if −α+γ
1−α

< φ < 0 (so that ∆ > 0) and η < 0, then det J < 0.

Thus in this case indeterminacy of equilibrium will not emerge either. In addition,

if φ = 0 and the rate of tax is fixed at τ0, then

det J = −ρ + δ(1− α)

α2
(ρ + δ) (γ + 1)(1− α) < 0,

implying that, regardless of the monetary policy rules, the dynamic system exhibits

equilibrium determinacy. To sum up, a set of sufficient conditions for equilibrium

determinacy are the following:

Proposition 5.2 (i) Given a positive rate of target inflation, either if income tax-

ation is progressive and interest-rate control is active or if income taxation is re-

gressive to satisfy −α+γ
1−α

< φ < 0 and interest-rate control is passive, then the

steady-state equilibrium is locally determinate. (ii) If income tax is flat (φ = 0) ,

local determinacy holds regardless of monetary policy rules.

To focus on the other possibilities of equilibrium (in)determinacy, as clear as

possible, let us assume that the elasticity of labor supply is zero: γ = 0. This

case corresponds to the real business cycle model with indivisible labor analyzed by

Hansen (1985). Given this assumption, we obtain

trace J = ρ− ρ + δ [1− α(1− φ)]

α(1− φ)(1 + π∗ + ρ)

[
ρ + δ + (1− α)

π∗

η

]
φ

∆
, (5.37)

det J = −{ρ + δ [1− α (1− φ)]} (ρ + δ)

α (1− φ)

[
1− α (1− φ) +

φ(1− α)π∗

η(1 + π∗ + ρ)

]
1

∆
.

(5.38)

where

∆ ≡ α + φ (1− α) .

First, assume that income taxation is progressive (φ > 0) . In this case ∆ > 0

and, hence, the necessary and sufficient condition for determinacy is

1− α (1− φ) +
φ(1− α)π∗

η(1 + π∗ + ρ)
> 0.
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Table 5.2: Stability Properties under Progressive Taxation

φ > 0

η > 0 D

η̂ < η < 0 U

η < η̂ D

D:determinacy, I:indeterminacy, U:unstable

η̂ = − (1−α)π∗φ
[1−α(1−φ)](1+ρ+π∗) (< 0)

The above condition implies that if π∗ ≥ 0, equilibrium determinacy is established

under the following conditions:

η > 0 or η < − (1− α)π∗φ
[1− α (1− φ)] (1 + ρ + π∗)

. (5.39)

If η satisfies

− (1− α)π∗φ
[1− α (1− φ)] (1 + ρ + π∗)

< η < 0, (5.40)

then we see that det J > 0. It is easy to see that in this case we obtain ρ + δ +

(1− α) π∗
η

< 0, and, hence, from (5.37) the trace of J has a positive value. Therefore,

if η satisfies (5.40) , the steady state is a source and there is no converging path

around it. Table 5.2 summarizes the patterns of dynamics under progressive tax.

It is to be pointed out that, as shown by numerical examples presented in Section

5.3.5, when 0 < φ < 1, condition (5.40) may not be satisfied for plausible parameter

values. Therefore, the steady state is mostly unstable for the case of −η̂ < η < 0.

To sum up, in the case of progressive taxation we obtain:

Proposition 5.3 If income taxation is progressive and the target rate of inflation

is non-negative, the perfect-foresight competitive equilibrium is locally determinate,

either if the interest-rate control is active or it is sufficiently passive. Equilibrium

indeterminacy may not emerge in this regime.

Next, consider the case of regressive taxation (φ < 0) . In this case the necessary

and sufficient condition for local determinacy is

[
1− α (1− φ) +

(1− α)π∗φ
η(1 + π∗ + ρ)

]
1

∆
> 0. (5.41)
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Table 5.3: Stability Properties under Regressive Taxation

− α

1− α
< φ < 0 −1− α

α
< φ < − α

1− α
−η̂ < η D I or U

0 < η < −η̂ U D

η̄ < η < 0 D I or U

η < η̄ D I

D: determinate, I: indeterminate, U: unstable

η̂ ≡ − (1−α)π∗φ
[1−α(1−φ)](1+ρ+π∗)(> 0), η̄ = − (1−α)π∗

ρ+δ
(< 0) ,

This condition is fulfilled, either if

− α

1− α
< φ < 0 (⇐⇒ ∆ > 0) and η > − (1− α)π∗φ

[1− α (1− φ)] (1 + ρ + π∗)
≡ η̂ (> 0)

or if

φ < − α

1− α
(⇐⇒ ∆ < 0) and 0 < η < − (1− α)π∗φ

[1− α (1− φ)] (1 + ρ + π∗)
≡ η̂ (> 0) .

In words, if a relatively low degree of regressiveness taxation, coupled with a high

degree of passive interest-rate control, may produce indeterminacy.

In contrast, the necessary conditions for equilibrium indeterminacy are the fol-

lowing:
[
1− α (1− φ) +

(1− α)π∗φ
η(1 + π∗ + ρ)

]
1

∆
< 0, (5.42)

[
ρ + δ + (1− α)

π∗

η

]
φ

∆
> 0. (5.43)

When −α/ (1− α) < φ < 0 (so ∆ > 0) , then both (5.42) and (5.43) are satisfied, if

and only if

−(1− α) π∗

ρ + δ
< η < −(1− α) π∗φ

1 + π∗ + ρ
.

Note that the above condition is necessary but not sufficient for establishing equilib-

rium indeterminacy: if trace J > 0 in (5.37) , the steady state is a source (unstable).

In contrast, if −1−α
α

< φ < − α
1−α

(so ∆ < 0) , we find that indeterminacy may

emerge more easily. Table 5.3 gives a classification of dynamic patterns in the case

of regressive taxation.

The following proposition summarizes our finding.
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Proposition 5.4 (i) Suppose that income taxation is mildly regressive and the tar-

get rate of inflation is positive. Then the steady state is locally determinate, either

if interest rate control is sufficiently active or if it is passive. (ii) Suppose that in-

come taxation is sufficiently regressiveness and the target rate of inflation is positive.

Then the steady state holds equilibrium determinacy only when interest-rate control

is mildly active.

5.3.4 Discussion

To obtain intuitive implication of determinacy/indeterminacy conditions displayed

in Propositions 5.2-5.4, let us inspect the optimization condition (5.12) in detail.

Using w = (1− α)y/l, this condition is rewritten as

clγB =
(1− τ0) (1− φ) (1− α) y∗φA1−φkα(1−φ)l(1−α)(1−φ)−1

1 + r̂ + π
. (5.44)

Under a given level of consumption, c, the left-hand side of (5.44) represents the

labor supply curve and the right hand side is considered the labor demand curve.

Given c, r̂ and π. If we assume that γ = 0 for expositional simplicity, the labor

supply curve becomes a horizontal line. Hence, if (1− φ) (1− α)−1 = −∆ < 0, the

labor demand curve has a negative slope and thus less steep than the labor supply

curve. In contrast, if ∆ < 0, then the labor demand has a positive slope and is

steeper than the labor supply curve.

Now suppose that the economy initially stays at the steady-state equilibrium.

Suppose further that a sunspot-driven shock makes agents optimistic and households

anticipate that the output and employment will expand. This raises consumption

demand and the labor supply curve shifts upward and, hence, the equilibrium em-

ployment decreases, as long as the labor demand curve does not shift. Remember

that the after-tax rate of return, r̂, and the rate of inflation, π, are respectively

expressed in the following manner:

r̂ = α (1− τ0) (1− φ) y∗φA1−φkα(1−φ)−1l(1−α)(1−φ),

π = r∗−
1
η π∗y∗φA

1
η k

α
η
−1l

1−α
η .

These expressions show that an expected increase in l raises r̂. It also increases

inflation, if η > 0. As a result, the anticipated increase in employment shifts the

labor demand curve downwards. Then the equilibrium employment decrease further,

implying that the initial, optimistic expectation will not be self-fulfilled, because
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product will contract rather than expand. Consequently, such an expectation driven

fluctuations cannot be realized so that equilibrium is determinate.

Notice that if η is negative and its absolute value is small, a rise in employ-

ment yields a sufficiently large decrease in inflation. This may reduces the after-tax

nominal interest rate, r̂ + π, and therefore, the labor demand curve may shift up.

If such a shift large enough to enhance the equilibrium level of employment, the

initial optimistic expectations can be self-fulfilled. Hence, as Table 5.2 shows, if the

interest rate control is mildly passive, there may exist multiple converging paths. In

contrast, if the interest-rate control is strongly passive so that the absolute value of

η is large enough, a decrease in the after-tax nominal interest rate, r̂ + π, is small.

As a result, an upward shift of the labor demand curve cannot cancel a reduction

of employment due to an upward shift of labor supply curve. Consequently, if η

is small enough to fulfill η < −η̂φ, the possibility of equilibrium indeterminacy is

eliminated.

Next, assume that ∆ < 0 so that the labor demand curve has a positive slope.

If the after-tax nominal interest rate, r̂ + π, is constant, then the initial shift of

labor supply curve due to an increase in consumption raises the equilibrium level of

employment. If we consider the effective real wage, labor demand curve may have

negative slope even if ∆ < 0. In particular, when η has a small positive value, a rise

in l yields a large increase in π so that the labor demand curve may have a negative

slope. In this case, the initial expectation cannot be self fulfilled. At the same

time, if η > 0, both r̂ and π are increased by an expansion of employment, which

yields a downward shift of the labor demand curve. Since the labor demand curve

is steeper than the labor supply curve, this shift produces a further enhancement of

the employment level. As a consequence, the initial expectation can be self-fulfilled

and equilibrium indeterminacy emerges. In contrast, if η < 0 and η is close to zero,

a higher employment may lower the after-tax nominal interest rate, implying that

the labor demand curve shifts upward. If this is the case, the equilibrium level

of employment may not increase, which means that the initial expected change in

economic condition cannot be realized. Thus indeterminacy may not emerge in this

situation.

5.3.5 A Numerical Example

To focus on the roles of key policy parameters, φ and η, more clearly, let us inspect

a numerical example. In so doing, we first depict the graphs of the conditions for
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det J = 0 and trace J = 0 in (φ, η) space. In what follows, we still focus on the case

of indivisible labor (γ = 0).

Remembering that ∆ ≡ α + φ (1− α) and defining

φ̃ ≡ − α

1− α
,

we see that sign ∆ = sign
(
φ− φ̃

)
. Note that

sign det J = sign

{
(1− α + αφ)η +

φ(1− α)π∗

(1 + π∗ + ρ)

}
if ∆η > 0,

sign det J = −sign

{
(1− α + αφ)η +

φ(1− α)π∗

(1 + π∗ + ρ)

}
if ∆η < 0.

and that det J = 0 holds when the following condition is fulfilled:

η = − φ(1− α)π∗

(1 + π∗ + ρ)(1− α + αφ)
≡ ηd (φ; π∗) . (5.45)

Equation (5.45) shows that, given a positive rate of the target inflation, π∗ (> 0), η

decreases as φ rises. In addition η decreases (resp. increases) with π∗, if φ is positive

(resp. negative).

To consider the sign of trace J, define

C(φ; π∗) ≡ ρα(1− φ)(1 + π∗ + ρ)∆

ρ + δ[1− α(1− φ)]
− φ(ρ + δ).

Then it holds that

sign {trace J} = sign

{C(φ; π∗)η − (1− α)φπ∗

∆η

}
.

This condition is rewritten as

sign {trace J} = sign {η − ηtr(φ; π∗)} if
C(φ; π∗)

∆η
> 0,

sign {trace J} = −sign {η − ηtr(φ; π∗)} if
C(φ; π∗)

∆η
< 0,

where the locus of trace J = 0 is given by

ηtr(φ; π∗) =
(1− α)φπ∗

C(φ; π∗)
.

We set the conventional magnitude for each parameter:

time discount rate (ρ) = 0.04, income share of capital (α) = 0.4,

capital depreciation rate (δ) = 0.05.
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Given those parameter values5, φ ∈
(
−1− α

α
, 1

)
= (−1.5, 1). Assuming that the

target rate of inflation is π∗ = 0.03, we obtain the following:

φ̃ = −0.67,

ηd(φ; 0.03) = − 18φ

107(6 + 4φ)
.

ηtr(φ; 0.03) =
180φ(7 + 2φ)

−12072φ2 − 2876φ + 6848
.

Using the numerical results displayed above, we depict the graphical results in

Figure 6 5.1. This figure first reveals that in our numerical example equilibrium

indeterminacy may not emerge as long as φ exceeds −0.67 and, hence, progressive

taxation ensures determinacy regardless of interest control. Second, in the case of

progressive taxation (φ > 0), even though there is a region in which the steady state

is totally unstable (so the equilibrium path is nonstationary), such a region in (φ, η)

space is considerably small. Third, the steady state would be totally unstable if η

is positive and sufficiently small for the case of φ ∈ [−0.67, 0]. Finally when income

taxation is regressive enough to satisfy φ < −0.67, the interest control, i.e. the

magnitude of η, critically affects the stability property of the economy.

5.4 Alternative Policy Rules

In this section, we briefly discuss alternative fiscal and monetary policy rules that

would modify our main findings shown in the previous sections.

5.4.1 Fixed Government Spending

So far, we have assumed that the government consumption is endogenously de-

termined to satisfy the balanced-budget rule. The second scheme of fiscal rule is

that the fiscal authority fixes the government expenditure, g, by adjusting the rate

5The parameters A and B are not needed to derive the steady-state ratios, but needed to obtain
the steady-state value of each variable.

6When depicting graphs in Figure 5.1, we use the following facts. First, note that C(·) > 0 for

φ ∈ (φL, φH) , where φL and φH respectively satisfy −1− α

α
< φL < φ̃ and 0 < φH < 1. Second,

ηtr(·) is an increasing function of φ with a positive value of π∗ > 0. Moreover, ηtr(·) may move
around the origin in the (φ, η) plane in the clockwise (resp. counterclockwise) as π∗ rises when

−1− α

α
< φ < φL (resp. φL < φ < 1).
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of tax, τ, to balance its budget. Schmitt-Grohé and Uribe (1997) assume such a

balanced-budget rule. If this is the case, the rate of average tax is determined as

τ (y) =
g

y
. (5.46)

Unlike the first rule, when deciding its optimal plan, the household takes the tax

rate τ as given, because y in (5.46) represents the aggregate income rather than an

individual income. In equilibrium, the after tax income is simply given by I (y) =

[1− τ (y)] y = y − g and
I ′ (y)

I (y) /y
=

y

y − g
> 1,

implying that income tax is regressive. In this case the after-tax factor prices are

given by

r̂ = (1− τ (y)) α
y

k
= α

y − g

k
, (5.47)

ŵ = (1− τ (y)) (1− α)
y

l
= (1− α)

y − g

l
. (5.48)

Since the household considers that τ is exogenously determined, two of the the

first-order conditions for an optimum shown in Section 5.2.1 are replaced with the

following:

∂H/∂l = −Blγ + λ [1− τ (y)] w = 0, (5.49)

µ̇ = (ρ + δ) µ− λ [1− τ (y)] r, (5.50)

where τ (y) = g/y and g (> 0) is given. From (5.48) and (5.49) ,the instantaneous

equilibrium level of employment satisfies

Blγ+1

(1− α) λ
+ g = Akαl1−α.

There are at most two values of l satisfying the above. In the following we ignore the

smaller level of l because it produces unconventional results (for example, a higher

government consumption increases employment). The higher equilibrium level of l

can be written as

l = l (k, λ; g) , lk > 0, lλ > 0, lg < 0. (5.51)

Using (5.51) , we find that the equilibrium level of output, the after-tax rate of

return are written as

Akαl (k, λ; g)1−α = y (k, λ; g) , yk > 0, yλ > 0, yg < 0,
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(
1− g

y

)
α

y

k
= α

(
y (k, λ, g)− g

k

)
= r̂ (k, λ; g) , r̂λ > 0, r̂g < 0.

Note that the after-tax rate of return to capital may increase with capital if a higher

k sufficiently reduces g/k. Consequently, the reduced dynamic system is given by

k̇ = y (k, λ; g)− c (k, λ; g)− δk − g,

λ̇ = λ [ρ + δ − r̂ (k, λ; g)] ,

where

c (k, λ; g) =
1

λ [1 + r̂ (k, λ; g) + π (k, λ; g)]
,

π (k, λ; g) = π∗r∗−
1
η

(
y (k, λ; g)

k

) 1
η

.

The following discussion is essentially the same as that in Sections 5.3.2 and

5.3.3. The key for the analysis is the behavior of the after-tax levels of rate of return

and real wage. In this fiscal policy regime, equation (5.12) is written as

clγB =
(1− α) (Akαl−α − g/l)

1 + r̂ + π
, (5.52)

where

r̂ = α
(
Akα−1l1−α − g

k

)
,

π = π∗r∗−
1
η
(
αAkα−1l1−α

) 1
η .

Notice that
∂ ((1− τ) w)

∂l
= l2 (g − αy)

so that the government consumption is large enough to satisfy g > αy, the labor

demand function represented by the right-hand side of (5.52) increases with l. Again,

assume that γ = 0. According to the discussion in Section 5.3.4, if g > αy, then

indeterminacy of equilibrium is easy to be observed. In addition, if η > 0, a higher

employment caused by a sunspot driven disturbance increases the after-tax nominal

interest rate, r̂+π. Hence, the labor demand curve shifts downward, which enhances

the possibility of indeterminacy. If g < αy, then the labor demand curve is negatively

sloped. Even in this case, if η is negative and its absolute value is small, a higher

employment reduces the after-tax nominal interest rate. As a consequence, the labor

demand curve shifts up, under which emergence of multiple equilibrium can remain.
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5.4.2 Factor Specific Taxation

If capital and labor income are taxed separately, we may set the following tax

functions:

τk (rk) = 1− (
1− τ k

0

) (
r∗k∗

rk

)φr

, τw (wl) = 1− (1− τw
0 )

(
w∗l∗

wl

)φw

,

where 0 < τ k
0 , τ r

0 < 1. Notice that in the case of Cobb-Douglas production function,

we obtain
r∗k∗

rk
=

y∗

y
,

w∗l∗

wl
=

y∗

y

Again, the equivalence between labor demand and supply is described by

clγB =
ŵ

1 + r̂ + π
,

where

ŵ = (1− τw
0 ) (1− φw) (1− α) y∗φw l∗−φwA1−φwkα(1−φw)l(1−α)(1−φw)

r̂ = α (1− τ r
0 ) (1− φr) y∗φA1−φkα(1−φ)−1l(1−α)(1−φr)

Therefore, it is easy to see that indeterminacy tends to emerge more easily, if wage

income taxation is regressive (φw < 0) and capital income taxation is progressive

(φr > 0) .

5.4.3 Taylor Rule

Taylor (1993) originally proposes the interest rate control rule under which the

nominal interest rate responds to real income as well as inflation. In our notation,

the original Taylor rule can be formulated as

R (π) = π + r∗
( π

π∗

)η
(

y

y∗

)ξ

, ξ < 1. (5.53)

In this case, the Fisher equation, R = r + π, gives

π = π∗
( r

r∗

) 1
η

(
y

y∗

)− ξ
η

.

Since r = αy/k, the above is rewritten as

π = α
1
η A

1−ε
η π∗r∗−

1
η y∗

ξ
η k

α−1−ε
η l

(1−α)(1−ε)
η

. (5.54)



88

When ξ = 0, the equilibrium rate of inflation is π = π = A
1
η r∗−

1
η π∗y∗φk

α
η
−1l

1−α
η .

Therefore, if the interest-rate control is active with respective to real income, i.e. ξ

has a positive value, then a change in labor employment, l, has a smaller impact

on the rate of inflation under (5.53) than under (5.17) . Hence, when η < 0, a

rise in l yields a smaller decrease in π in the case of ξ > 0. Therefore, in view of

the discussion in Section 5.3.4, the Taylor type control rule given by (5.53) may

contribute to reducing the possibility of equilibrium indeterminacy.

5.5 Conclusion

We have analyzed the stabilization roles of fiscal and monetary policy rules in a

monetary real business cycle model with flexible price adjustment. In this chapter,

we have assumed that the rate of income tax is endogenously adjusted to balance the

government budget, while the monetary authority uses the Taylor-type interest-rate

control scheme. Our investigation reveals that in the context of a simple real busi-

ness cycle model we use, equilibrium determinacy depends heavily on the taxation

rule rather than on monetary policy rule. In particular, as suggested by our numer-

ical example, progressive taxation under balanced-budget rule tends to eliminate

the possibility of equilibrium indeterminacy regardless of activeness of interest-rate

control. On the contrary, if income taxation is regressive, whether interest-rate rule

is active or passive may be pivotal to hold equilibrium determinacy. Since the effects

of regressive income tax are close to those generated by increasing returns to scale,

our finding suggests that the role of interest-rate control would be more relevant in

the non-standard situation like regressive taxation or increasing return to scale.

It is, however, to be noticed that our main results emphasized above may partly

come from the simplicity of our model. Our conclusion would be modified, if we

assume more general settings. Possible generalization of the model includes non-

separable utility between consumption and labor as well as a more general form of

money demand (for example, distinction between cash goods and credit goods or

cash-in-advance constraint on investment),.and more general form of interest rate

rule in which the nominal interest rate responds to real income as well as to inflation.

Re-examining our discussion in those extended frameworks deserves further research.
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Appendix 5.A: Detailed Calculation of the Base

Model

The coefficient matrix is expressed as

J =

[
(1− τ0) (1− φ) yk (k∗, λ∗)− ck (k∗, λ∗)− δ (1− τ0) (1− φ) yλ (k∗, λ∗)− cλ (k∗, λ∗)

−λ∗r̂k (k∗, λ∗) −λ∗r̂λ (k∗, λ∗)

]
.

Note that from (5.22) , (5.27) and (5.28) all of the functions y (.) , r̂ (.) and π (.) are of

Cobb-Douglas forms. Thus we find that the partial derivatives in J are respectively

given by the following:

yk (k∗, λ∗) =
α (1 + γ)

∆

y∗

k∗
,

yλ (k∗, λ∗) =
1− α

∆

y∗

λ∗
,

r̂k (k∗, λ∗) = −φ(αγ + 1) + γ(1− α)

∆

r̂∗

k∗
,

πk (k∗, λ∗) = −(1− α) (γ + φ)

η∆

π∗

k∗
,

πλ (k∗, λ∗) =
1− α

η∆

π∗

λ∗
,

r̂λ (k∗, λ∗) =
(1− φ) (1− α)

∆

r̂∗

λ∗
,

ck (k∗, λ∗) = −c∗
r̂k (k∗, λ∗) + πk (k∗, λ∗)

1 + ρ + π∗
,

cλ (k∗, λ∗) = −(c∗)2[1 + π∗ + ρ + λ∗(r̂λ(k
∗, λ∗) + πλ(k

∗, λ∗))].

As a result, using

y∗

k∗
=

ρ + δ

α (1− τ0) (1− φ)
,

c∗

k∗
=

ρ + δ [1− α (1− φ)]

α (1− φ)
and r̂∗ = ρ + δ,

we express the trace and determinant of J in the following way:

trace J =
ρ + δ

∆
((1 + γ)− (1− α)(1− φ))− δ

− c

1 + π∗ + ρ

(
φ(αγ + 1) + γ(1− α)

∆

ρ + δ

k∗
+

(1− α) (γ + φ)

η∆

π∗

k∗

)

=

[
ρη − 1

(1 + π∗ + ρ)∆

ρ + δ[1− α(1− φ)]

α(1− φ)

× {[φ(αγ + 1) + γ(1− α)](ρ + δ)η + (1− α) (γ + φ)π∗}
]
1

η
.
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det J = − [(1− τ0) (1− φ) yk (k∗, λ∗)− ck (k∗, λ∗)− δ] [λ∗r̂λ (k∗, λ∗)]

+ [(1− τ0) (1− φ) yλ (k∗, λ∗)− cλ (k∗, λ∗)] [λ∗r̂k (k∗, λ∗)]

= λ∗[−c∗
r̂k (k∗, λ∗) + πk (k∗, λ∗)

1 + ρ + π∗

(
(1− φ) (1− α)

∆

r̂∗

λ∗

)
+ (c∗)2[1 + π∗ + ρ + λ∗(r̂λ(k

∗, λ∗)

+ πk(k
∗, λ∗)]

[
−φ(αγ + 1) + γ(1− α)

∆

r̂∗

k∗

]
− δλ∗

(1− φ) (1− α)

∆

r̂∗

λ∗

= −(1− φ)(1− α)

∆
(ρ + δ)

c∗

k∗
− c∗

k∗
ρ + δ

∆

(
φ(1− α)π∗

(1 + π∗ + ρ)η
+ φ(αγ + 1) + γ(1− α)

)

= −ρ + δ [1− α (1− φ)]

α (1− φ)

ρ + δ

∆

[
(γ + 1)(1− α + αφ) +

φ(1− α)π∗

(1 + π∗ + ρ)η

]
,
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Figure 5.1: Equilibrium Determinacy
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