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Introduction

By combining the results of Miyamoto [5] and Bannai [1, 2], we have
obtained the following theorem ([2, Main Theorem]) which is an odd prime
version of a theorem of M. Hall [3].

Theorem. Let p be an odd prime. Let G be a 2p-ply transitive permuta-
tion group such that G,, . ,, (=the pointwise stabilizer of 2p points) is of
order prime to p. Then G is one of S,(2p<n<3p—1)and 4,(2p+2<n<3p—1),
where S, and A4, denote the symmetric and alternating groups of degree 7.

The purpose of this paper is to generalize the above theorem. Namely, we
will prove the following theorem.

Theorem 1. Let p be an odd prime. Let G be a 2p-ply transitive permu-
tation group such that either
(1) each element in G of order p fixes at most 2p+(p—1) points, or
(i1) a Sylow p subgroup of G, ,,.....» is cyclic.
Then G is one of S,(2p<n<4p—1) and A,2p+2=<n<4p—1).

Note that Theorem 1 (i) and Theorem 1 (ii) are some odd prime versions
of a theorem of Nagao [6] and a theorem of Noda and Oyama [7] respectively.
The essential part of the proof of Theorem 1 (i) is picked up as follows:

Theorem A. Let p be an odd prime. Then there exists no (p-+3)-ply
transitive permutation group G on a set Q= {1,2,---,n} which satisfies the following
two conditions : ‘

(1) a Sylow p subgroup P(F1) of G, , .. pis fixes at most p—1 points in Q—
{1,2, -+, p-+3}, and P is semiregular on Q—I(P), where I(P) denotes the set of
the points which are fixed by any element of P.

(2) 19—L(P)| = p (mod p?).

Note that Theorem A generalizes Lemma 1.5 in Miyamoto [5] to some

*) Supported in part by the Sakkokai Foundation.



124 E. BANNAI

extent. We remark that in our proof of Theorem A the idea of Miyamoto and
Nagao ingeniously using the formula of Frobenius (cf. [5, Lemma 1.1]) is es-
sential.

1. Proof of Theorem A

Let G and P be as in the assumption of Theorem A. Then, we will derive
a contradiction.

By the assumptions, and by using Theorem 1" in [1] (if |Q—I(P)| =0
(mod p*)) we may assume that P is of order p and is generated by the element

a = () (ph3)(p+ 347 (P47, -, 2p+347),

where I(P)=I(a)={1,2, ---,p+3+r} and 0<r<p—1.

By the lemma of Jordan-Witt, we get Ng(P)!®>A"P, Therefore,
Co(P)'P>> AP, because of |P|=p.

First, from (1.1) to (1.4), we only treat the case |Q—I(P)|=0(mod p?).
Similar results will be proved later as (1.1°) to (1.4’) for the case |Q—I(P)|=0
(mod p?).

(1.1) Cg(a) is transitive on Q—I(P).

By the remark following Lemma 1.1 in [5], we get the following formula
for any p-ply transitive permutation groups X on a set Q:

1] _ XL 1
p BUEE e F O

where ay(x) denotes the number of p cycles in the cylce structure of «x, u; ranges
all representatives of conjugacy classes (in X) of elements of order p,y ranges
all p’-elements in Cx(u,) and a*(y) denotes the number of the fixed points of
y (acting) on Q—I(x;).

In our situation, let us take X=G. Since we are assuming that |Q—1I(P)|
=0 (mod p*), G contains an element of order p which fixes less than | I(a)| points.
Hence,

G _ = 1G] |1 svx
p AT @ FCO)

Now, >Va*(y)> Z‘( a*(y)—p- D) (the number of p cycles in ). Since
y ’ECG a) JEG’G(a)
Cs(a)fP > A7 and A is p-ply transitive (on I(a)), we get p- > (the number
JEUG(‘)
of p cycles in y'®)=|Cg(a)| by the formula of Frobenius. On the other hand,

1) Theorem 1 in [1] is stated only for the case r=0. But it is evident that the assertion is also
true for 1<r<p—1.
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23 a¥(y) = t|Cs(a)] ,

’ECG(“)
where #, is the number of orbits of Cg(a) on Q—I(a). Hence, we get
Gl 21,16
p T p "

Therefore, t,=1, and so Cg(a) is transitive on Q—I(a).
(1.2) Cg,(a) is transitive on Q—1I(a). Moreover, if j is one of 0, 1, 2 and
3 and if p+34r—j> p+2, then Cyg,,..., (a) is transitive on Q—I(a).

Proof is quite similar as in (1.1). Here we have only to notice that
Coy,.7, (@)@ W2 id > I®O-G02273 and so is p-ply transitive.

Since Cg(a) is transitive on Q—I(a), a normal subgroup Cég,,.... s+3+,(a) is
half transitive on Q—1I(a). Let A,, A,, -+, A, be the orbits of Cg, ,.....p+s+,(@) On
Q—I(a).

(1.3) k2.

Since Cg, ;... p+3+,(@) acts trivially on the set {A,, A,, -+, Az}, Cg(a)'® acts
on the set {A,, A,, -*+, A,} transitively. Let Y be the subgroup of Cg(a) which
fixes A,. Then, |Cg(a)’®: Y'®|=k. Since Cg,(a) is also transitive on
Q—1I(a), |Cg(a)’®: Y,)®| is >k. But, in order that this holds, ¥ must be
transitive on I(a). Similarly, if »>1, then |Cg, (a)'®: Y, | >k by (1.2),
and so, Y must be doubly transitive on I(@). On the other hand, we may as-
sume without loss of generality that Y7® contains an element of just a p cycle.
If r>1, then since there exists no nontrivial doubly transitive permutation group
of degree p+3-+r containing an element of a p cycle we get Y7“> AT (cf. [8,
Theorem 13.9]). On the other hand, if »=0, then Y7 becomes triply transitive
by a lemma of Livingstone and Wagner [4, Lemma 6]. So, in any way, we get
YIO> A4, Hence k<2.

(1.4)  Cey,,....ppr1,p+23,043,.p+3+,(@) 18 transitive on Q—I(a).

If Cg(a)!=A"®, then k=1 and Ce,,... 5.5.,(a) is transitive on Q—I(a),
so we have the assertion. If Cg(a)’®=S"®, then k=1 or 2. In any way,

Next, let us assume that [Q—I(P)|=0 (mod p?). Then the order of a
Sylow p subgroup of G, , , is p* by the assumption and Theorem 1 in [1].

(1.1) If p-+3-+r>2p, then Cg(a) is either transitive or has two orbits on
Q—1I(a). If (p+2<L)p+3+r<2p—1, then Cg(a) has two orbits on Q—I(a).

If p+3+47r>2p, and if G contains an element of order p which fixes less
than |I(a)| points, then the same argument as in (1.1) proves the assertion. If
p+3+r<2p—1, then every element in G of order p fixes |I(a)| points because
of |Q—I(p)| =0 (mod p?). Therefore,

161 _ Gl 1 sv
p B g FOk
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SYa*(y) = (ta—1)- |Ce(@)] ,

where ¢, denotes the number of orbits of Cg(a) on Q—I(a). Hence, f,=2 (and
all elements of order p in G are conjugate).

(1.2") Letjbeoneof0,1,2 and 3. If p43+4r—j>2p, then Cg,,,.. ()
is either transitive or has two orbits on Q—I(a). If 2p—1> p+3+r—j=>p+2,
then Cg, ..., (@) has two orbits on Q—1I(a).

Proof is similar as in (1.1’) (i.e., as in (1.1)).

(1.3") Let A, A,, =+, Ay, and T, T, -+, T, be the partition of  into the
orbits of Ca, ,.... p+3+,(a) on Q—I(a), such that {A,, A, -+, Ay} and {T'}, Ty, -++,Ts,}
are fixes by Cg, ..., (@) with p+3-4r—j being the greatest integer not exceeding
2p—1. Then k,<2 and k,<2.

Proof of (1.3). Let A,, -+, A, be the ste of orbits of Cg, ... s+s+,(@) ON
Q—I(a). Then Cg,,. (a)"®(j=0,1, -+, p+3+7) acts on the set {A,, -+, Ag}.
First assume that Cg(a)’® and Cg,(a)™ are both transitive on {A,, -, Az}.
Let Y be the stabilizer of A, in Cg(a). Then Y is transitive. Moreover, Y
satisfies the following condition: for any three points ,, ,, 7, in I(@), a Sylow p
subgroup of Cg, X% fixes just r points on I(a)— {i,,,,7;} and semiregular on the
remaining points. Using this fact, we get Y primitive. Because if r=p—1,
then for j=2, p-+3+r—j>2p and so Cg, ,(a)"® P is transitive on {A,, -, Az},
hence Y7 is doubly transitive. If r<p—1, we easily get Y/® primitive, by
noticing that the number of blocks is at most 2. Hence Y?““> 47, Hence
k=2. But this is a contradiction, because |A,]| is dividsible by p*? as |Q—I(P)|
=0 (mod p®) but Cq,,... ,:5+,(a) is not divisible by p*>. Next assume that both
Ce' and Cg,(a)"® have two orbits on {A,, -+, A} (say, {A,, =, Ag} and
{Ty, ==+, T}, ki +k,=Fk). Let Y(A) be the stabilizer of A, in Cg(a) and let Y(T")
be the stabilizer of T, in Cg(a). Then the same argument as above shows that
Y(AY“>A4'®, and Y(T)°> A", So, k, <2 and k,<2. Finally, if Cg(a)'®
is transitive and Cg,(a)’*® has two orbits on {A,, --+, A.} (say, {A,, =+, Ag} and
{Ty, ==+, T'4,}), then Cg, ,()"® has the same two orbits on {A,, ---, A,}. (Because
this is true if r>1, and if =0 we get Y/® 3-transitive on I(a) and Y/ > 4"®
and we get a contradiction.) Now the same argument as before shows that
Y(A),/P-> 4103 and Y(T),/ @~ 01> 47®-03 So, we completed the proof
of (1.3%).

(14) Ceyp,....pipr1,pr2).0+3,,0+3+,(@) has two orbits on Q—1(a).

Proof is similar as in (1.4).

(1.5) Completion of the proof of Theorem A.

The method in this step is owing to Miyamoto [5, Lemma 1.5]. Let b be
an element of order p in Cg(a) such that

b= (1,2, -, p)(p+1)+(p+3+7)(p+4+7)-(2p+3+7)--
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and ab fixes the points 2p+4-7, .-+, 3p+ 3+ (this is possible because of the
assumption (2)). Now, let us set

K= Gl,z,...,p,(ﬁ+1,p+2},,+3 ..... p+3+4 ) and

L=<{>K.

Then, |Cy(a): Ck(a)|=p, and since C(a) and Cx(a) has m orbits on Q—I(a),
where m=1 or 2 according as |Q—I(P)|=%=0(mod p*) and |Q—I(P)| =0(mod p?),
we have m-p—__llCL(a) = >  a*@y). Lets be the number of orbits of
P €0, @0, @

length p of <a, > on Q—I(P). Then in our case, s>2. The s(p—1) elements
a’b’/ (i are s of 0, 1, -+, p—1 (which depend on j) such that |I(a’d’)|=|I(a)| and
j=1,2,---,p—1) are not conjugate to each other. Clearly, a’b? and ai’b’’ are not
conjugate if j=j'. a'b’ and @b’ are not conjugate if <7, because otherwise
there exists an element of order p in C(a) N N(<a, b>) which does not centralize
<{a, b>, and this contradicts the fact (assumption) that {a, b> is a Sylow p sub-
group of G,,,. Thus we have s(p—1) conjugacy classes in Cy(a)—Cg(a) re-
presented by the elements a’d’ (i are s of 0, 1, -+, p—1 (which depend on j) such
that |[(a’b?)| = |I(a)| and j=1,2, -, p—1), and any of which has p fixed points
on Q—I(a). Since the restriction on any orbit of <a, b> of length p is self-
centralizing, we have

a*(y) = s(p—1) p- |Cr(a): Cr(<a, b)) |- | {yEC(La, b)) | p ¥ o(y)} |

JECL(R) ‘Ok(“)
= s(p—1)- p- | Co(a): Co(<a, b)| - | Co(<a, BY): <a, B
- ‘-(f’p;l)- 1CL(@)] -

Therefore, —"Lg;n |Cr(a)] 2‘(—1’;_1)- [Cr(a)|. But this is a contradiction,

because m=1 and s>2 if |r—I(p)| %0 (mod p*) and m=2 and s=p>3 if
|7—1($)| =0 (mod p7).
Thus we have completed the proof of Theorem A.

2. Proof of Theorem 1 (i)

Let p be an odd prime, and let G be a 2p-ply transitive permutation group
which satisfies the assumptions of Theorem 1 (i). Let P be a Sylow p subgroup
of G,,..,p. If P=1, then we have already shown that G is one of S,(2p<
n<3p—1) and A4,2p+2<n<3p—1). Suppose that P+1 in the following.
Then |I(P)|=2p+r with 0<r=<p—1.

We divide our proof into the following two cases:

Case 1 |Q—I(P)|=p (mod p?

Case 2 |Q—I(P)| = p (mod p°)
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First let us assume that Case 1 holds. Assume that |{Q]>4p. Then there
exist two elements a and b of order p which commute to each other such that

a = (1)-(2p)(2p+1)+(2p+7)(2p+1+7, -, 3p+7)3p+7r+1,
b= (1p) (1, -, 20) 2p+1)-+(2p+7) 2o+ 14 7)-w-(Bp+-1)--(4ptr)

Then <a, b> has p+3 orbits of length p because of the assumption that [Q—
I(P)| =p (mod p?). Since {a, b fixes the set {p+1,--+,2p,2p+1+r7, -+, 3p+71}
of 2p points as a whole, there exists an elemten ¢ of order p such that ceCq¢
(<a, b>) and c fixes the 2p points p, p+1, -+, 2p—1, 2p+r+1, +--, 3p+7 point-
wisely. Since ¢ must have a p cycle on the set {1, 2, :++, 2p+7} of 2p+7 points,
and since |Q—I(P)|= p (mod p?), the group <a, ¢ has at least p+2 orbits of
length p. But this clearly contradicts the assumption of Theorem 1 (i). Thus
|Q| <4p—1, and G is one of S, and 4,, with n<4p—1.

Secondly, let us assume that Case 2 holds. Then the permutation group
G...p-50on Q—{1,2, -+, p—3} satisfies the assumptions of Theorem A, and
so we get a contradiction. Thus, the proof of Theorem 1 (i) is completed.

3. Proof of Theorem 1 (ii)

Let G satisfy the assumption of Theorem 1 (ii), and let P be a Sylow p
subgroup of G, ,..,, which is cyclic. If P=1, then we have already shown
that G is one of S,(2p<n<3p—1) and A4,2p+2<n<3p—1). Suppose that
P=1. Then |I(P)|=2p+r with 0<r<p—1, because Ng(P)'® is a 2p-ply
transitive group whose stabilizer of 2p points is of order prime to p. If P is
semiregular on Q—I(P), then G is one of S, and 4,, with 3p<n=<4p—1.
Henceforth, we assume that P is not semiregular on Q—I(P), and we will derive
a contradiction. We assume moreover that G is of the least possible degree
among them. Clearly, |P|>p? Let a be an element of order p in P. Since
P is cyclic and is not semiregular on Q—I(P), Ng({ap)'® is 2p-ply transitive
group such that Ng(<aD){ .. , has a cyclic Sylow p subgroup which is nontrivial.
Therefore, Ng(<a>)"® is one of S, and 4, with 3p<n<4p—1 by the minimal
nature of G. Thus, we may assume that P is generated by the element & of the
form

b= (1)2p+r)2p+ 147, oo, 3pFr)BpA- 147, oo, dptr, )

Clearly Co(P)"®> A" and each element of order p in Ng;(,,(P) centralizes P.
Therefore, let ¢ be an element of order p such that

¢c=(1,2, -, p)(p+1)(2p+7)-

and that |I(c)| =3p+r. Then we may assume (by rechoosing P) without loss
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of generality that ¢ normalizes P and therefore centralizes P. Since ¢ fixes p
or 2p points on Q— {1,2,:++,3p+7} and since P is semiregular on the set of fixed
points of cin Q— {1,2,-++,3p-+7}, we have | P|=p. But this is a contradiction,
and so the proof of Theorem 1 (ii) is completed.
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