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Introduction

By combining the results of Miyamoto [5] and Bannai [1, 2], we have
obtained the following theorem ([2, Main Theorem]) which is an odd prime

version of a theorem of M. Hall [3].

Theorem. Let p be an odd prime. Let G be a 2p-ply transitive permuta-

tion group such that Gj 2 ... 2^ (=the pointwise stabilizer of 2p points) is of

order prime top. Then G is one of Sn(2p<n<3p— 1) and An(2p+2<n<3p— 1),

where Sn and An denote the symmetric and alternating groups of degree n.

The purpose of this paper is to generalize the above theorem. Namely, we
will prove the following theorem.

Theorem 1. Let p be an odd prime. Let G be a 2p-ply transitive permu-
tation group such that either
(i) each element in G of order p fixes at most 2p-{-(p—l) points, or

(ii) a Sylow p subgroup of G1)2>...>2/> is cyclic.

Then G is one of Sn(2p<n<4p-l) and An(2p+2^n<4ρ— 1).

Note that Theorem 1 (i) and Theorem 1 (ii) are some odd prime versions

of a theorem of Nagao [6] and a theorem of Noda and Oyama [7] respectively.

The essential part of the proof of Theorem 1 (i) is picked up as follows:

Theorem A. Let p be an odd prime. Then there exists no (p+3)-ply

transitive permutation group G on a set Ω= {1, 2, , n} which satisfies the following
two conditions :

(1) a Sylow p subgroup P(Φ1) of Glf2>...^+3 fixes at most p—l points in Ω—
{1, 2, •••,/>+ 3}, and P is semίregular on Ω— I(P), where I(P) denotes the set of

the points which are fixed by any element of P.
(2) \Ω

Note that Theorem A generalizes Lemma 1.5 in Miyamoto [5] to some
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extent. We remark that in our proof of Theorem A the idea of Miyamoto and

Nagao ingeniously using the formula of Frobenius (cf. [5, Lemma 1.1]) is es-
sential.

1. Proof of Theorem A

Let G and P be as in the assumption of Theorem A. Then, we will derive
a contradiction.

By the assumptions, and by using Theorem lυ in [1] (if |Ω— /(P)| =0
(mod p2)) we may assume that P is of order p and is generated by the element

a = (i)...(p+3)...(p+3+r)(p+4+r, ..., 2j>+3+r) ,

where I(P)=I(ά)={\, 2, — ,£+3+r} and 0<r<p-l.

By the lemma of Jordan- Witt, we get NG(P)KP^>AKP\ Therefore,
CG(PY^>AKP\ because of \P\=ρ.

First, from (1.1) to (1.4), we only treat the case |Ω— 7(P)| ΐO(mod/>2).
Similar results will be proved later as (l.Γ) to (1.4') for the case |Ω— /(P)| =0

(mod/)2).

(1.1) CG(ά) is transitive on Ω— 7(P).

By the remark following Lemma 1.1 in [5], we get the following formula
for any p-ply transitive permutation groups X on a set Ω :

where ap(x) denotes the number of p cycles in the cylce structure of x, uf ranges
all representatives of conjugacy classes (in X) of elements of order p,y ranges
all //-elements in Cx(ut) and a*(y) denotes the number of the fixed points of
y (acting) on Ω— /(%).

In our situation, let us take X=G. Since we are assuming that |Ω— 7(P) |
ΐ 0 (mod p2), G contains an element of order p which fixes less than | I(ά) \ points.
Hence,

Now, Σrα*(y)> Σ <x*(y)—p Σ (the number of p cycles in j>/cα)). Since
y je00C«) yecσ(.a)

CG(α )JCΛ) > Aκa^ and AIW is p-ply transitive (on I(a)\ we get p Σ (the number
y(=c&w

of p cycles in yκa))— \ CG(a) \ by the formula of Frobenius. On the other hand,

1) Theorem 1 in [1] is stated only for the case r=0. But it is evident that the assertion is also
true for \<>r<p—\.
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Σ a*(y) = t.\CG(a)\9Jsβr^W

where ta is the number of orbits of CG(ά) on Ω— I(ά). Hence, we get

P P

Therefore, fβ=l, and so CG(ά) is transitive on Ω— 7(α).
(1.2) CGl(0) is transitive on £l—I(ά). Moreover, if j is one of 0, 1, 2 and

3 and if />+3+r— j>p-\-2, then CGlf2...ty(iz) is transitive on Ω— 7(#).

Proof is quite similar as in (1.1). Here we have only to notice that
CGI,~. X<0/W~C1'2 ..... Λ^ΛP< >-cι.2 ..... /> and so is p*pfy transitive.

Since CG(d) is transitive on Ω— I(a\ a normal subgroup Cσ lf2f...fj+3+r(Λ) *s

half transitive on Ω— 7(α). Let Δ1? Δ2, •••, ΔΛ be the orbits of CtG1>2,...,i+3+r(«) on
Ω-7(α).

(1.3) k<2.
Since CGlt2f...^+8+f.(«) acts trivially on the set {Δx, Δ2, •••, Δ/J, CG(ά)κa^ acts

on the set {Δj, Δ2, •••, ΔΛ} transitively. Let Y be the subgroup of CG(a) which

fixes Δx. Then, \CG(a)κ">: Yκ^\=k. Since CGl(α) is also transitive on
Ω— 7(β), |CGl(0)/CΛ): F/w| is >k. But, in order that this holds, Y must be
transitive on I(a). Similarly, if r>l, then | CGl)2(«)/w : yι>2

/(Λ)|>* by (1.2),
and so, Y must be doubly transitive on 7(α). On the other hand, we may as-
sume without loss of generality that y/CΛ) contains an element of just a p cycle.
If r> 1, then since there exists no nontrivial doubly transitive permutation group
of degree p-\- 3 +r containing an element of ap cycle we get γ^a^AIW (cf. [8,
Theorem 13.9]). On the other hand, if r=Q, then y/(β) becomes triply transitive
by a lemma of Livingstone and Wagner [4, Lemma 6]. So, in any way, we get
yκ«)>^/c«) Hence A < 2.

(1.4) CG1j.....pΛp+ltp+9j.p+99....p+t+r(a) is transitive on Ω— I(a).
If CG(ά)κ^=Aκa\ thenk= 1 and CGl>2t...tP+z+r(ά) is transitive on Ω— I(ά),

so we have the assertion. If CG(ά)κa:>=Sκa\ then &=1 or 2. In anyway,
CGlι2,..tp>{P+ίtp^tp+3,..>P+3+r(ά) is transitive on Ω-7(α).

Next, let us assume that |Ω— 7(P)| =0 (mod/)2). Then the order of a
Sylow/) subgroup of C? l f2 f8 is p2 by the assumption and Theorem 1 in [1].

(1.1') If p+3+r>2p, then CG(α) is either transitive or has two orbits on
Ω— I(ά). If (p+2<)p+3+r<2p— 1, then CG(a) has two orbits on Ω— I(a).

If pjr3+r>2p, and if G contains an element of order p which fixes less
than |7(#)| points, then the same argument as in (1.1) proves the assertion. If
p-}-3+r<2p—l, then every element in G of order/) fixes \I(d)\ points because
of I Ω-7(/)) I = 0 (mod p2). Therefore,

' ' and



126 E. BANNAI

Σ'α*Cv) = ('•-!)• I CΌ(β) I,

where ta denotes the number of orbits of CG(ά) on Ω—I(ά). Hence, ta=2 (and

all elements of order p in G are conjugate).

(1.2') Let; be one of 0, 1, 2 and 3. If />+3+r—j>2p, then Cclf2i..../e)
is either transitive or has two orbits on Ω—I(ά). If 2/>— !>/>+3+r—j>p+29

then CGlt2t,..tj(a) has two orbits on Ω—/(α).

Proof is similar as in (1.1') (i.e., as in (1.1)).
(1.3') Let Δj, Δ2, •••, ΔΛl and Γ\, Γ2, •••, Tkz be the partition of Ω into the

orbits of Cσlf8f....,+s+P(«) on Ω—/(α), such that {Δ^Δ,,---^} and {Γ1,Γ8, -.Γ^}
are fixes by CGlt2t...t.(a) with p+3+r—j being the greatest integer not exceeding

2p— 1. Then ^<2 and &2<2.

Proof of (1.3') Let Δx, •••, Δ* be the ste of orbits of CGl>2t...tP+3+r(ά) on
Ω-/(α). Then CGlt...tJ(a)IW(j=09 1, •• ,/>+3+r) acts on the set {Δ19 •••, Δ*}.

First assume that CG(ά)r^ and CGl(tf)/(Λ) are both transitive on {Δj, •••, Δ^}.

Let F be the stabilizer of Δx in CG(#). Then y/w is transitive. Moreover, F

satisfies the following condition: for any three points i19 i2y /3 in /(#), a Sylow />

subgroup of CciJ^3 fixes just r points on I(a)— {ilyi2,Q and semiregular on the
remaining points. Using this fact, we get y/(β) primitive. Because if r=p— 1,

then for y=2,/>+3+r—/>2pandso CGl>2(α)/CΛ)-{1'2> is transitive on {Δ^ ^Δj,
hence y/cβ) is doubly transitive. If r<p— 1, we easily get Y/cα) primitive, by

noticing that the number of blocks is at most 2. Hence Yκa:>>AI( a\ Hence

k=2. But this is a contradiction, because (ΔJ is dividsible by^>2 as |Ω—/(P)|

= 0 (mod/)2) but CG1,...^+3+r(α) is not divisible by p2. Next assume that both

CG

/(Λ) and CGl(0)/(Λ) have two orbits on {Δ1? -- ,ΔJ (say, {Δlf —, ΔΛl} and

{Γ^ —, Γ^}, Λ1+A2=A). Let Y(Δ) be the stabilizer of A1 in CG(a) and let Y(Γ)
be the stabilizer of T1 in CG(ά). Then the same argument as above shows that

Y(AY^>A^a\ and F(Γ)/(β)>^/cα). So, Λ,<2 and A2<2. Finally, if CG(α)/(Λ)

is transitive and CGl(α)7(α) has two orbits on {Δj, •••, Δ^} (say, {Δj, •••, ΔA.J and
{I\, •••, ΓΛJ), then CGl>2(α)/<:α) has the same two orbits on {Δ!, •••, ΔΛ}. (Because

this is true if r> 1, and if r=Q we get YKΛ) 3-transitive on I(ά) and γκ ^AIW

and we get a contradiction.) Now the same argument as before shows that
Y(^y^-^>Aκa^^ and Y(γ)w-^>Aκ°^\ So, we completed the proof

of (1.30-
(1.4') CGί>2t...>pt{p+ltp+2j>p+^.iP+3+r(a) has two orbits on Ω—I(ά).

Proof is similar as in (1.4).
(1.5) Completion of the proof of Theorem A.

The method in this step is owing to Miyamoto [5, Lemma 1.5]. Let b be

an element of order p in CG(ά) such that

b = (1, 2, ...,i)(p+l)...(/>+3+r)(p+4+r)-(2j>+3+r)...
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and ab fixes the points 2/>+4+r, ...? 2p+3+r (this is possible because of the
assumption (2)). Now, let us set

Then, (C^tf): C^fl) | =/>, and since CL(ά) and C^β) has m orbits on Ω— I(ά),
where m— 1 or 2 according as |Ω— /(P) \ ̂ O(mod^)2) and |Ω— I(P) \ ==0(mod/>2),

we have m ^~ \ CL(ά) \ — ^ <2*Cv) Let $ be the number of orbits of
p J'eC'^OO-C'gXΌ

length p of <#, i> on Ω— /(P). Then in our case, s>2. The s(p— 1) elements
αV (ί are s of 0, 1, •••,/>— 1 (which depend on j ) such that |/(α'iy) | = \I(a) \ and
.7=1, 2, •••,/>—!) are not conjugate to each other. Clearly, a*V and ci'W' are not
conjugate if j^pf. a*bj and α'V are not conjugate if ί=t=zv, because otherwise
there exists an element of order p in CL(ά) Π NL((ay by) which does not centralize
<α, i>, and this contradicts the fact (assumption) that <#, ό> is a Sylow ^> sub-
group of (?! 2,3. Thus we have s(p— 1) conjugacy classes in CL(ά)—Cκ(ά) re-
presented by the elements β'V (ί are ί of 0, 1, •••,/>— 1 (which depend on/) such
that \I(aΨ} I = |/(«) | and/=l, 2, •••,/>—!), and any of which has p fixed points
on Ω— /(α). Since the restriction on any orbit of <<z, by of length /> is self-
centralizing, we have

= s(p-\) p. \CL(a): CL«a,

Therefore, m'(P~l). \ CL(a) \ > s(f~1^. \ CL(a) \ . But this is a contradiction,
P P

because m=l and s>2 if \r— I(p)\ ί 0 (mod p2) and »z=2 and ί=p>3 if

Thus we have completed the proof of Theorem A.

2. Proof of Theorem 1 (i)

Let p be an odd prime, and let G be a 2p-ply transitive permutation group
which satisfies the assumptions of Theorem 1 (i). Let P be a Sylow/) subgroup
of G! 2 ... 2/>. If P— 1, then we have already shown that G is one of Sn(2p<
n<3p—l) and An(2p+2<n<3ρ— 1). Suppose that PΦ1 in the following.
Then |/(P)|=2^+rwithO<r^-l.

We divide our proof into the following two cases:
Case 1 \Ω-I(P)\=ρ (mod p2)
Case 2 \ fl-/(P) | =1= p (mod p2)
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First let us assume that Case 1 holds. Assume that |Ω| >4p. Then there
exist two elements a and b of order p which commute to each other such that

a = (l) (2p)(2p+ί). (2p+r)(2p+l+r, -, 3p+r)(3p+r+ί,

...,4p+r)

b = (\ p)(p+l, ...,2p)(2p+l)...(2p+r)(2p+l+r).. (3p+r) (4p+r) .

Then <#, by has p+3 orbits of length p because of the assumption that |Ω—
/(P) I Ξ=p (mod/)2). Since <α, ό> fixes the set {/>+!, — , 2p, 2p+l+r, •••, 3p+r}
of 2p points as a whole, there exists an elemten c of order p such that c^CG

«tf, by) and c fixes the 2p points £,£+1, •••, 2p— 1, 2p+r+l, •••, 3/)+r point-
wisely. Since c must have zp cycle on the set {1, 2, •••, 2p-{-r} of 2p+r points,
and since |Ω— /(P)| =p (mod/)2), the group <#, £> has at least p+2 orbits of
length p. But this clearly contradicts the assumption of Theorem 1 (i). Thus
|Ω| <4p— 1, and G is one of Sn and An, with n<4p— 1.

Secondly, let us assume that Case 2 holds. Then the permutation group
Glj2,...yp-3 on Ω— {1,2, •••,/)— 3} satisfies the assumptions of Theorem A, and
so we get a contradiction. Thus, the proof of Theorem 1 (i) is completed.

3. Proof of Theorem 1 (ii)

Let G satisfy the assumption of Theorem 1 (ii), and let P be a Sylow p
subgroup of Glf2...t2p which is cyclic. If P=l, then we have already shown
that G is one of Sn(2p<n<3p—l) and An(2p+2<n<3p— 1). Suppose that
PΦ1. Then \I(P)\=2p+r with 0<r</)-l, because NG(P)KP> Ίsa2p-ply
transitive group whose stabilizer of 2p points is of order prime to p. If P is
semiregular on Ω— /(P), then G is one of Sn and An, with 3p<n^4p— 1.
Henceforth, we assume that P is not semiregular on Ω— /(P), and we will derive
a contradiction. We assume moreover that G is of the least possible degree
among them. Clearly, |P | >p2. Let a be an element of order p in P. Since
P is cyclic and is not semiregular on Ω — /(P), NG((ay)I(ia:> is 2p-ply transitive
group such that Λ^«Λ»[^.. >2P has a cyclic Sylow p subgroup which is nontrivial.
Therefore, ΛfG«fl>)7(β) is one of Sn and An with 3p<n<4p— 1 by the minimal
nature of G. Thus, we may assume that P is generated by the element b of the
form

b = (l)..-(2p+r)(2p+l+r, •», 3p+r)(3p+l+r9 -, Λp+r, •••)- .

Clearly CG(P)KP^>A1^ and each element of order/) in NGl^(P) centralizes P.
Therefore, let c be an element of order p such that

and that |/(^)| =3/)+r. Then we may assume (by rechoosing P) without loss
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of generality that c normalizes P and therefore centralizes P. Since c fixes p
or 2p points on Ω— {1,2, * ,3/>+r} and since P is semiregular on the set of fixed
points of c in Ω— {1,2, « ,3/>+r}, we have \P\=ρ. But this is a contradiction,
and so the proof of Theorem 1 (ii) is completed.
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