|

) <

The University of Osaka
Institutional Knowledge Archive

Title Construction of a Fault Tree Using
Prolog(Welding Mechanics, Strength & Design)

Author(s) |Fukuda, Shuichi

Citation |Transactions of JWRI. 1984, 13(1), p. 115-119

Version Type|VoR

URL https://doi.org/10.18910/4324

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Construction of a Fault Tree Using Prolog |

Shuichi FUKUDA *

Abstract

This paper shows that the programming language Prolog provides a very useful and versatile tool for constructing
a fault tree for the purpose of preventing fractures. As Prolog does not discriminate between program and data and is
furnished with quite a strong pattern-matching function, the use of Prolog in constructing a fault tree greatly reduces the
time and trouble and a very good man-machine interface is provided.

KEY WORDS:

1. Introduction

First of all, the concept of Fault Tree Analysis (FTA)
is explained briefly. FTA is a kind of graphical representa-
tion of the failure logic. In FTA, an undesired event
(system failure) is selected as the Top Event, and this Top
Event is connected through logic symbols with the lower
rank events which are immediate causes of the Top Event.
These lower rank events are further connected through
logic symbols with the one rank lower events. These
operations are repeated rank after rank until they reach
Basic Events which cannot be developed any further. In
FTA, the Top Event and Intermediate Events are rep-
resented by rectangles and Basic Events are represented by
circles.

Fault Tree Analysis is known to be one of the most
versatile and useful tools for analyzing failures of quite
complicated systems, but to apply an FTA to prevent
fractures, there are such difficulties as
(1) It is not so straightforward to develop a fault tree as

in the case of control systems for mechanical failures,
since the structure of the problem is not so well
defined mathematically. Hence, a trial and error
method has to be used more often than not for
developing a fault tree.
To describe the structure of the problem with ac-
curacy, it is often necessary to give a detailed account
of a node content. Therefore, symbolic manipulation
is most essential in this field.
This paper points out that the adoption of Prolog
eliminates the above difficulties in constructing a fault
tree for this purpose.

)]

2. Construction of a Fault Tree using Prolog: Simple
Ilustration

The following knowledge provides the basic tool for
constructing a fault tree using Prolog. The relations on the

(Fault Tree Analysis) (Fracture Prevention) (Prolog)

left hand side are expressed correspondingly in Prolog on
the right hand side.

If B occurs, then A occurs.
.......... (ASSERT (A) (B))
If B and C occur, then A occurs.
.......... (ASSERT (A) (B) (C))

If B or C occurs, then A occurs.
.......... (ASSERT (A) (B))
(ASSERT (A) (C))

And the fact that the event B really happens is expressed:
(ASSERT (B))

We will illustrate how the conversation is carried out
on a computer by taking a simple electrical circuit shown
in Fig. 1as an example. The graphical representation of
this fault tree is given in Fig. 2.

: (ASSERT (NO-LIGHT) (NO-CURRENT-IN-A))
: (ASSERT (NO-LIGHT) (NO-CURRENT-IN-B))
: (ASSERT (NO-CURRENT-IN-A) (SWITCH-1-

SWITCH 2
SWITCH 1

__—

= SWITCH 3 :®

A B — 4
LAMP

Fig. 1 Sample system

+ Received on April 30, 1984
* Associate Professor

115

Transactions of JWRI is published by Welding Researcﬁ Institute
of Osaka University, Ibaraki, Osaka 567, Japan

(116)

NO LIGHT

1 B |

Transactions of JWRI

NO CURRENT
INA

IN B

NO CURRENT -

=

Fig. 2 Fault tree for sample system

FAILURE))
: (ASSERT (NO-CURRENT-IN-B) (SWITCH-2-
FAILURE) (SWITCH-3-FAILURE))

Now, the fault tree of Fig. 1 is constructed on a com-
puter. We will start asking.

: (ASSERT (SWITCH-1-FAILURE))
: (NO-LIGHT)
(NO-LIGHT)

Thus, the computer returns the “TRUE” answer to the
question whether it is true or not if the switch 1 fails, the
light will not be on. We will examine another case. But
before we start another question, we have to withdraw the
assertion that the event “Switch 1 fails” occurs. Otherwise
this assertion is still valid and unintentionally we will be
examining the case we do not wish to analyze. The as-
sertion is easily withdrawn as follows.

: (RETRACT (SWITCH-1-FAILURE))
And then another case is examined.

: (ASSERT (SWITCH-2-FAILURE))

: (NO-LIGHT)

3 (STANDARD-ERROR-HANDLER “UNDEFINED
PREDICATE” SWITCH-1-FAILURE))

S:C

3 (STANDARD-ERROR-HANDLER “UNDEFINED
PREDICATE” SWITCH-3-FAILURE))

S:C

116

Vol. 13, No. 1 1984

SYMBOLS

TOP EVENT

INTERMEDIATE
EVENT

UNDEVELOPED
EVENT

BASIC
EVENT

‘OR' GATE

‘AND' GATE

<>
A
-
-

The first message after (NO-LIGHT) means that (SWITCH-
1-FAILURE) is not asserted. As the event is already re-
tracted, we input C for the prompt S: to continue the
search. Although the event (SWITCH-2-FAILURE) is
asserted, the event (SWITCH-3-FAILURE) is not asserted
yet. Therefore, we obtain the second message that
(SWITCH-3-FAILURE) is not asserted. As “NIL” is re-
turned to the input C for the prompt S:, it'is known that
the event “NO-LIGHT” will not occur even if the switch
2 fails.

: (ASSERT (SWITCH-3-FAILURE))

: (NO-LIGHT)

3 (STANDARD-ERROR-HANDLER “UNDEFINED
PREDICATE” SWITCH-1-FAILURE)

S:C

(NO-LIGHT)

This means that as the assertion “SWITCH-2-FAILURE”
is still valid, the event “NO-LIGHT” will occur if the
switch 2 and 3 fail.

Thus, we can construct a fault tree, change its structure,
and study what will happen under the given situation
quite easily without any difficulty or trouble if we use the
Prolog predicate function (ASSERT) and (RETRACT).

3. Application to Transverse Weld Crack: An Illustrative
Example

As an example of a practical application, we will con-

Construction of a Fault Tree Using Prolog 117)

117

(118)

Table 1

Transactions of JWRI

Top event and basic events

TOP EVENT=TRANSVERSE WELD CRACKING

1=HOLD TIME AT PEAK TEMPERATURE
2=HEATING RATE

3=CARBON

4=MANGANESE

5=NICKEL

6=CHROMIUM -

7=MOLYBDENUM

8=0THER HARDENABLE ELEMENTS
9=WIRE

10=FLUX

11=WELDING SPEED

12=WELDING CURRENT

13=WELDING VOLTAGE

14=THICKNESS '

15=NUMBER OF LAYERS OR PASSES
16=DEPOSITION OR WELDING SEQUENCE
17=TYPE OF GROOVE

Table 2

X1=HARDENING OF HAZ
X2=INTENSITY OF RESTRAINT
X3=HYDROGEN

X4=WELDING THERMAL CYCLE
X5=HARDENABILITY OF MATERIAL
X6=INTERNAL CONSTRAINT
X7=EXTERNAL CONSTRAINT

sider the construction of a fault tree for weld cracking
which occurs during the manufacturing process of a pres-
sure vessel.

Very strict control is carried out in welding a very
thick section of a low alloy steel such as 2 1/4 Cr — 1 Mo
steel to prevent the initiation of a transverse weld crack.
This is because the structural integrity of a pressure vessel
is greatly endangered by the presence of this kind of
crack. Therefore, an immediate post weld heat treatment
is usually carried out to prevent the occurrence of such a
crack, although it requires a great amount of time and
energy.

Fig. 3 shows an example of a fault tree for this case.
The contents of the Top Event and the Basic Events are
shown in Table 1 and the contents of the Intermediate
Events are shown in Table 2 respectively.

It can easily be observed from the figure that once a
fault tree becomes very large, it is quite difficult to follow
what is happening, although it is generally said that a fault
tree provides good visibility. Furthermore it is quite dif-
ficult to write the content of each event in the figure
because visibility will be impaired more, although the
description of the content is necessary in such a fault
tree for failures,

18=USAGE OF FIXTURE

19=BOUNDARY CONDITIONS OF JOINT
20=DIMENSIONS OF MEMBERS

21=TYPE OF JOINT

22=PREHEATING

23=INTERLAYER-OR INTERPASS TEMPERATURE

- 24=POSTHEATING

25=INITIAL TEMPERATURE.OF STEEL
26=THERMAL RADIATION FROM SURFACE
27=HUMIDITY IN WELDING ENVIRONMENT
28=SPECIFIC HEAT

29=THERMAL CONDUCTIVITY

30=DENSITY

31=STRUCTURAL DISCONTINUITY
32=GRAIN BOUNDARY

33=NONMETALLIC INCLUSION
34=LATTICE DEFECT

Intermediate events

X8=HYDROGEN DIFFUSION IN WELD ZONE
X9=HYDROGEN CONTENT IN WELD ZONE
X10=COOLING RATE

X11=PEAK TEMPERATURE

X12=DEFECT

X13=LOCAL STRESS

X14=THERMAL PROPERTIES OF MATERIAL

The Prolog version of this fault tree is as follows;

: (ASSERT (TRANSVERSE-WELD-CRACK)
(EXCESSIVE-HAZ-HARDENING))

: (ASSERT (TRANSVERSE-WELD-CRACK)
(EXCESSIVE-STRESSES))

: (ASSERT (TRANSVERSE-WELD-CRACK)
(EXCESSIVE-HYDROGEN))

: (ASSERT (EXCESSIVE-HAZ-HARDENING)
(IMPROPER-THERMAL-CYCLE)
(MATERIAL-HARDENABILITY))

: (ASSERT (EXCESSIVE-STRESSES)
(EXCESSIVE-INTERNAL-CONSTRAINT)
(EXCESSIVE-EXTERNAL-CONSTRAINT))

: (ASSERT (EXCESSIVE-HYDROGEN)
(HYDROGEN-DIFFUSION)
(EXCESSIVE-HYDROGEN-CONTENT))

: (ASSERT (ovvoervrenn)

: (ASSERT (EXCESSIVE-HYDROGEN-CONTENT)
(IMPROPER-FLUX) (EXCESSIVE-HUMIDITY))

Thus, a fault tree is defined. And such predicates as

118

Vol. 13, No. 1 1984

Construction of a Fault Tree Using Prolog

(MATERIAL-HARDENABILITY), (HYDROGEN-DIFU-
SION), etc. means that such problems related with mate-
rial hardenability or hydrogen occur.

Suppose we wish to know what fault events trigger the
fault event (IMPROPER-THERMAL-CYCLE). The answer
will be immediately and easily given by the input
(LISTING).

: (LISTING IMPROPER-THERMAL-CYCLE)
(ASSERT (IMPROPER-THERMAL-CYCLE)
(HOLD-TIME-AT-PEAK-TEMP)
(RAPID-COOLING-RATE) (PEAK-TEMP-TOO-HIGH)
(HEATING-RATE)

And further let us suppose that some engineers say that
hold time at peak temperature and heating rate are not
so influential we better eliminate these factors from the
fault tree. Then we simply input (RETRACT) as follows;

: (RETRACT (IMPROPER-THERMAL-CYCLE))
Then the above assertion is retracted so we assert again.

: (ASSERT (IMPROPER-THERMAL-CYCLE)
(RAPID-COOLING-RATE)
(PEAK-TEMP-TOO-HIGH)

In this manner or by utilizing the Prolog editor which
is provided with a quite powerful pattern-matching func-
tion, we can easily add, eliminate or change any relation
at any hierachical level, and by using (LISTING), good
visibility is provided, and furthermore we can understand
at once what each node represents because its content is
fully described. And it should be pointed out that in com-
municating with a computer, we do not have to worry
about the addressing problem as is the case with FORT-
RAN, BASIC or PASCAL and all we have to do is just

119

(119)

simply to input the sentences as we do on a typewriter.
Once the situation or the condition is given, the computer
carries out the pattern-matching and returns an appro-
priate answer.

4. Summary

It is discussed that the programming language Prolog
provides a very useful and versatile tool for constructing a
fault tree for the purpose of preventing fractures, where
the process of developing a fault tree often requires a
trial and error approach and full descriptions of the con-
tents of nodes are more often than not necessary. As Pro-
log does not discriminate between data and program,
addition, delection or change of data and/or data structure
is quite easy and further as Prolog is furnished with a
strong pattern-matching function, the program can be
greatly reduced. Thus the advantage of using Prolog is that
it not only reduces the time and trouble in developing a
fault tree, but it also provides us with a good conversa-
tional tool, since we can program easily and communicate
with a computer more freely without worrying about any
detailed aspects of programming rules or grammars.

References

1) H. Nakashima: A Knowledge Representation System: Prolog/
KR, Technical Report METR 83-5, Department of Mathemat-
ical Engineering, University of Tokyo.

2) S. Fukuda: An Application of Fault Tree Analysis to Weld
Cracking. Trans. JWS, Vol. 11 (1980), No. 1, 57—-61.

3) S. Fukuda: An Application of Graph Theory to the Safety and
Reliability of a Pressure Vessel. Proc. 4th Int. Conf. Pressure
Vessel Technology, London, 1980, 33-36.

4) S. Fukuda: Improvement of the Safety and Reliability of a
Welded Structure: an FTA Approach. Proc. Int. Conf. Weld.
Res. in the 1980’s, 89—94.

