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Abstract

In his two pioneering articles [9, 10] Jerry Levine introédcand completely de-
termined the algebraic concordance groups of odd dimeakiomots. He did so
by defining a host of invariants of algebraic concordancectvtiie showed were a
complete set of invariants. While being very powerful, thésvariants are in prac-
tice often hard to determine, especially for knots with Adeser polynomials of
high degree. We thus propose the study of a weaker set ofiamtarof algebraic
concordance—the rational Witt classes of knots. Thougkethee rather weaker in-
variants than those defined by Levine, they have the advarthgnding themselves
to quite manageable computability. We illustrate this pdiy computing the rational
Witt classes of all pretzel knots. We give many examples amdige applications
to obstructing sliceness for pretzel knots. Also, we obtiplicit formulae for the
determinants and signatures of all pretzel knots.

This article is dedicated to Jerry Levine and his lastingheatatical legacy; on
the occasion of the conference “Fifty years since Milnor and”Fheld at Brandeis
University on June 2-5, 2008.

1. Introduction

1.1. Preliminaries. In his seminal papers [9, 10] Jerry Levine introduced and
determined the algebraic concordance grofip®f concordance classes of embeddings
of S" into S™2. These groups had previously been found by Kervaire [6] tdriveal
for n even; forn odd, Levine proved that

Ch=Z° DLY DL,

Levine achieved this remarkable result by considering arahhomomorphisnp,: C, —
Z(Q) from the algebraic concordance grogp into the concordance group of isometric
structuresZ(Q) on finite dimensional vector spaces ov@r(we describeZ(Q) in detail
in Section 2.3 below). He constructed a complete set of iamés of concordance of
isometric structures and used these invariants to showZif@} =~ Z* & Z3° @ Z3°.
Moreover, he showed that the map: C, — Z(Q) is injective and that its image is large
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For brevity, we denote the infinite direct su@®2, Z, simply by Z% hoping the reader will not
confuse the latter with the product of an infinite number opies of Z,. Throughout the articleZ,
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enough to itself contain a copy @™ & Z5° @ Z3°, thereby establishing the isomorphism
Ch = Z* ®ZF ® Z3°. In this article we focus exclusively on the casenof 1.

To determine the values of Levine’s complete set of invdsidior a given knot
K, one is required to find the irreducible symmetric factorsttug Alexander poly-
nomial Ak (t) of K. As the question of whether or not a given polynomial is iwred
cible is a difficult one in general, the task of determiningthé irreducible factors of
a given symmetric polynomial can be quite intractable, memeas the degree of the
polynomial grows. To circumnavigate this issue, we cons@eother homomorphism
¢: C1 — W(Q) from the algebraic concordance grodp into the Witt ring over the
rationals W(Q) is described in detail in Section 2.2, for a brief descoptisee Sec-
tion 1.2 below). The isomorphism type &%(Q) as an Abelian group is well under-
stood and is given bW(Q) = Z & Z° @ Zg. The mapsp and ¢; fit into the com-
mutative diagram

7(Q)

N A

W(Q).

From simply knowing the isomorphism types &f and W(Q), it is clear thaty: C; —
W(Q) cannot be injective and a loss of information must occurpdssing fromK e
C1 to ¢(K) € W(Q). The payoff being that one is no longer required to factolypo
nomials. Indeed, to determing(K) for a given knotk C S*® one only needs to use
the Gram—-Schmidt orthogonalization process along withrpk “reduction” argument
(described in Section 4.1). The Gram—Schmidt process isptaiaty algorithmic and
is readily available in many mathematics software packages

To goal of this article then is to underscore the computgbdind usefulness of
the rational Witt classeg(K). Their determination is almost entirely algorithmic and
often straightforward, if tedious, to calculate. We ilkate our point by focusing on
a concrete family of knots—the set of pretzel knots. Thisifans large enough to
reflect a number of varied properties of the invarignand yet tractable enough so
that a complete determination of the rational Witt classepassible. We proceed by
giving a few details about pretzel knots first and then staterain results.

1.2. Statement of results. Given a positive integen and integerspy, pa, ..., Pn,
let P(p1, P2, ..., pPn) denote then-stranded pretzel knot/link. It is obtained by taking
n pairs of parallel strands, introducing half-twists into thei-th strand and capping
the strands off byn pairs of bridges. The signs of thg determine the handedness
of the corresponding half-twists. Our convention is thpat> O corresponds to right-
handed half-twists, see Fig. 1 for an example. We limit oursiderations to knots and
moreover require thah > 3 and thatp; # 0 (the purpose of these two limitations is
to exclude connected sums of torus knots/links). There acat8gories of choices of
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22
=S

Fig. 1. The pretzel knoP (-1, 3,-5, 3, 4).

the parameters, py, ..., pn Which lead to knots, namely

(i) nis odd and all exept one of thg are odd,
) (i) nis even and all exept one of thg are odd,

(i) nis odd and allp, are odd.

As we shall see, these categories exhibit slightly diffeteghavior as far as the formats
of their rational Witt classes. Pretzel knots are invariantler the action oz, by
cyclic permutation, i.eP(p1, P2, ..., Pn_1, Pn) = P(Pn, P1, P2,--., Pn_1). We use this
symmetry to fix the convention that P(ps,..., pn) comes from either category (i) or
(i) above, we letp, be the unique even integer amopg, ..., pn.

To state our results, we need to give a brief description ef rétional Witt ring
W(Q), a more copious exposition is provided in Section 2.2. A®&a\W(Q) consists
of equivalence classes of pairs (-), V) whereV is a finite dimensional vector space
overQ and (-, -}: VxV — Q is a non-degenerate symmetric bilinear form. We say
that a pair (-, -), V) is metabolicor totally isotropicis there exits a half-dimensional
subspaceVN c V such that(-, - )|wxw = 0. We will be adding pairs{(, -)1, V1) and
(-, )2, V2) by direct summing them, thus

(- )uVv)e -, V)=, )1 (-, -)2, V1D Vo).

With this understood, the equivalence relationWi(Q) is the one by which (¢, -)1, V1)
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is equivalent to (-, - )2, Vo) if ((-, -)1, V1) ® (—(-, - )2, V) is metabolic. One proceeds
to check that addition is commutative and indeed well defioerdV(Q), giving W(Q)
the structure of an Abelian group.

It is not hard to obtain an explicit presentation\6f(Q) (see Theorem 2.1 in Sec-
tion 2.2), for now however it will suffice to point out th&¥/(Q) is generated by the
set{(a) e W(Q) | a € Q — {0}}. Here (a) stands for (-, - )a, Q) where(-, ), is the
form on Q specified by(1, 1), = a.

Given a knotK c S, pick an oriented, genug Seifert surfacex c S* and con-
sider the linking pairingk: Hi(Z; Z) x Hy(X; Z) — Z given by

lk(ee, B) = linking number betweer and 8+,

where 8 is a small push-off ofg in the preferred normal direction & determined
by its orientation. Extendindk to Hi(X: Q) linearly and letting( -, -): Hi(Z; Q) x
Hi(2; Q) — Q be («, B) = k(o, B) + Ik(B, @), defines a non-degenerate symmetric
bilinear pairing on the rational vector spatk(Xq; Q). We use this to define

p(K) =((+, ), Hi(2: Q)) € W(Q),

which we refer to as theational Witt class of K According to [9], ¢(K) is well
defined and only depends ¢t (as an oriented knot) but not on the particular choice of
Seifert surfacex. In fact, ¢(K) only depends on the algebraic concordance clad$.of

REMARK 1.1. The determinant dét of a knot K c S° is defined as de =
|[det(v + VT)| whereV is a matrix representative of the linking forth: Hi(X; Z) x
Hi1(Z; Z) — Z. In order for the statements of Theorems 1.2-1.4 to appeae 1sym-
metric, we allow ourselves the freedom to use a signed veisfigche knot determinant.
Thus, the determinant for pretzel knd{s= P(py,..., pn) a@s it appears in the said the-
orems and throughout the article, agrees up to sign with sualudefinition of deK.
This signed version of the determinant may well change siganpassing from a knot
to its mirror.

With these descriptions and conventions out of the way, weenaw ready to state
our main results.

Theorem 1.2. Consider categoryi) from (1), i.e. let n> 3 be an odd integeret

p1, ..., Pn_1 be odd integers and let,p# O be an even integer. Then the rational Witt
class of the pretzel knot (By, ..., pn) IS given by
n-1

e(P(pr,-., ) =EP(s-1-2@(s-2:3) @D (s-(Ipl -1 p )
i=1

@ (—(p1--- Pn-1)-detP(py, ..., Pn-1))
® (detP(pa, ..., pn-1) - detP(py, ..., pn)),
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where $ = — Sign(p;). The determinants of the pretzel kno(gd?, ..., pn) and the

pretzel link Rpy, ..., pn_1) appearing aboveare computed as
n
detP(pr, ..., Pi) =) Pr--- B+ Pa,
i=1
n—1
detP(py, ..., Pr1) = D Pr--- B Poot.
i=1

As is customary in the literature, having a hat decorate @bk in a product
indicates that the factor should be left out. For example f - ps stands forp; - ps.

Theorem 1.3. Consider categoryii) from (1), that is let n > 3 be an even in-
teger let pi, ..., pn_1 be odd integers and let,p# O be an even integer. Then the
rational Witt class of the pretzel knot(By, ..., pn) is

¢(P(pr,....p) =P(s 1-2@(s-2:3 @ (s-(Ipl—1)p))

i=1

@® (—=(p1--- pn) - detP(p, ..., pn)),
where $ = — Sign(p;) and the determinantletP(ps, ..., p,) can again be computed
by the formula

n
detP(pl,..., pn)zzpl.ﬁpn
i=1

To state the next theorem we introduce some auxiliary retdiist: Leto;(ty, ..., tn)
denote the degreg (with 0 < j < m) symmetric polynomial in the variabldsg, . . ., ty.
For example,

o1(ty, ... tm) =t + -+t
while
O’m(tl,...,tm)=t1---tm.

We adopt the convention thab(ty, . .., tn) = 1. With this in mind, we have

Theorem 1.4. Consider categoryiii) from (1). Thuslet n>3 and p,..., pn

be odd integers and let; stand as an abbreviation for the integer(ps, ..., pit1)
Then the rational Witt class of the pretzel kno(gp, ..., pn) is given by
@(P(P1, ..., Pn)) = (00-01) ® (01-02) & -+ D (on-—2-0On-1).

Moreovey the determinant of Bps, ..., p,) equalsdetP(pi, ..., Pn) = on-1.
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REMARK 1.5. To put the results of Theorems 1.2-1.4 into perspectigewould
like to point out that at the time of this writing, the algeloraoncordance orders aren'’t
known yet even for the 3-stranded pretzel knBtg:, p2, ps) from category (i) in (1).
The chief reason for this is that this family contains knoithvAlexander polynomials
of arbitrarily high degree.

In contrast, the algebraic concordance ordersPép;, p., p3s) coming from cat-
egory (iii) in (1) are well understood and follow easily frobevine’s article [10], see
Remark 1.13 below. All non-trivial knots in this family ard Seifert genus 1.

1.3. Applications and examples. While Theorems 1.2-1.4 give(K) in terms
of the generators ofN(Q), in concrete cases one can determigd) as a specific
element iNW(Q) = Z @ Z3* & Z3°. We give a host of examples of this nature next.
Such computations rely on an understanding of the isomsmphietweenw(Q) and
Z ® Z3 ® Z3°. This isomorphism is completely explicit and easily congulitwe ex-
plain it in some detail in Section 2.2. For now we merely pnesthe results of our
computations, the full details are deferred to Section 5.

After presenting a several concrete examples, we turn tergétype corollaries of
Theorems 1.2-1.4. The ultimate goal of course is to have afseimerical conditions
onn, pi, ..., pn Which would pinpoint the order op(K) in W(Q). The obstacle to
achieving this is number theoretic in nature and we have beable to overcome it in
its full generality. However, we are able to give such cdndi for the case oh = 3
and for some special cases wher> 4.

As we shall see in Section 2.2, a necessary conditiop{&) to be zero inW(Q)
is thato(K) = 0 and |detK| = m? for some odd integem. If only the first of these
conditions holds, thew(K) is at least of order 2 iW(Q). With this in mind the next
examples testify that the rational Witt classes carry $icgmtly more information than
merely the signature and determinant. We start with a ustihition

DEFINITION 1.6. If p is an odd integer, we shall say that the knot

P(py, ..., Pi-t, P, Piv ooy Pj=1, =P, Pj, .., Pn)
is gotten fromP(pa,..., pn) by anupward stabilization(or conversely thaP(pa,..., pn)
is obtained fromP(py,..., pi—1, P, Pi, ..., Pj—1, —P, Pj, ..., Pn) by adownward sta-
bilization).

ExAMPLE 1.7. LetKq, K, and K3 be the knots

Ky = P(21, 13,-17,-15, 12), K, = P(-3,-3,-7, 5, 2),
Ks =P(-3,-5,7,9, 6)

from category (i) and leK = K1 # K, #K3z. The o(K) = 0 but ¢(K) has order 4 in
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W(Q). ThusK has concordance order at least 4. The same hol#s i replaced by
a knot gotten fromK; by any finite number of upward stabilizations.

ExAMPLE 1.8. LetK; and K, be the knots

Ky = P(7,3,-5,2), K,= P(-19,—15, 21, 10)

from category (ii) and leK = K;#K,. Theno(K) = 0 but¢(K) has order 4 inV(Q)
and therefore also in concordance group. The same is trife i$ replaced by a knot
gotten fromK; by any finite number of upward stabilizations.

ExamMPLE 1.9. LetK be a knot obtained by a finite number of upward stabi-
lization from either

P(-3,9,15-5-5) or P(=3,-5,—11, 15, 15)

from category (iii). Then the signature &f is zero, the determinant df is a square
but ¢(K) # 0 € W(Q). Consequently, no sucK is slice.

ExamMPLE 1.10. LetKq, K, and K3 be the knots

Ky = P(21, 13,-17,-15, 12), K, = P(-19, 15, 21, 10),
Ks = P(-15,-7,—7, 13, 11)

from the categories (i), (i) and (iii) and leK = K; # K, # K3. Theno(K) = 0 but
¢(K) is of order 4 inW(Q). The same holds under replacement Kof by upward
stabilizations.

The details of the above computations can be found in Se&idVe now turn to
more general corollaries of Theorems 1.2-1.4.

Theorem 1.11. Consider a3-stranded pretzel knot k= P(p, g, r) with p,q,r
odd. Then the order ap(K) in W(Q) is as follows
e ¢(K) is or order 1 in W(Q) if and only if detKk = —m? for some odd ne Z.
e ¢(K) is of order2 in W(Q) if and only ifdetK < 0, —detK is not a square and
no primegp = 3 (mod 4)dividesdetK with an odd power.
e ¢(K) is of order4 in W(Q) if and only if detK < 0 and there exists a prime
¢ = 3 (mod 4)dividing detK with an odd power.
e ¢(K) is of infinite order WQ) if and only if detK > 0.
Recall thatdetK = pg+ pr +qr.



984 S. ABUKA

Theorem 1.12. Consider again K= P(p, q,r) but with p g odd and with r# 0
even. Therp(K) is of finite order in WQ) if and only if

p+q=0
or

p+q=42 and detK > 0.

The order ofp(K) in W(Q) in these cases is as follows

e If p4+qg =0 theng(K) has orderl in W(Q).

e If p4+qg=+42anddetK > 0 then
—  @(K) is of order1 in W(Q) if detk = m? for some odd integer m.
—  @(K) is of order2 in W(Q) if detK is not a square and no primg = 3
(mod 4) dividesdetK with an odd power.
—  @(K) is of order4 in W(Q) if there is a primegp = 3 (mod 4)that divides
detK with an odd power.

Here toq detK = pq+ pr +qr.

A slightly more general version of this theorem is given inedlem 6.2.

REMARK 1.13. As already mentioned in Remark 1.5, the algebraic @alance
orders of the knotsP(p, g, r) with p, q,r odd are known by work of Levine [10]
and agree with the orders @f(P(p, g, r)) in W(Q). The analogues of the results of
Theorem 1.12 are not known for the algebraic concordancepgrblowever, according
to Theorem 1.16 below, it is clear that whenis even, the order ofp(P(p, g, r)) in
W(Q) and the order ofP(p,q,r) in C; are different in general. We point the interested
reader towards [14] for a discussion of finite order elemémts;.

REMARK 1.14. The condition on the congruency class mod 4, appearibhgth
Theorems 1.11 and 1.12, is reminiscent of a similar condiippearing in a beautiful
(and much stronger) theorem by Livingston and Naik [13]KIfis a knot with deK =
@B whereg is a prime congruent to 3 mod 4 and ged@) = 1, thenK has infinite
order in the topological concordance group.

Theorem 1.15. Consider a pretzel knot k= P(py, ..., pn) from category(i) in
(1), i.e. assume that,np, ..., pn_1 are odd n > 3 and p, # 0 is even. Additionally
suppose that thep..., pn—1 are all mutually coprime. Thep(K) =0 e W(Q) if and
only if 0(K) = 0 and detK = +m? for some odd ne Z.

Seeing as the torsion subgroups @f and W(Q) are isomorphic, one can’t help
but speculate whethes|roc,y: Tor(C1) — W(Q) is injective. Unfortunately this is not
the case as the next theorem testifies.
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Theorem 1.16. Consider the knot K= P(5, —3, 8). All Tristram—Levine signa-
tures o0,,(K) vanish but K is not trivial inC;. On the other handthe rational Witt
classp(K) is zero. ThusK is a nontrivial element of Kép) N Tor(Cy).

REMARK 1.17. We would like to point out that for knot& with 10 or fewer
crossingsK is algebraically slice if and only ip(K) is zero inW(Q). This follows by
inspection, using Knotlnfo [Z] and relying on the fact that if(K) = 0 theno(K) =0
and detk = +n?.

As a byproduct of our computations we obtain closed formditaethe signature
and determinants of all pretzel knots. The formulae for te&edninants have already
been stated in Theorems 1.2-1.4, the signature formulaghareontent of the next
theorem. While these are not directly relevant to our disicus we list them here in
the hopes that they may be useful elsewhere.

Theorem 1.18. Let K = P(py,..., pn) be a pretzel knot from either of ticat-
egories(i)—(iii) from (1). As usual we assume that & 3. Then the signature (K) of
K can be computed as follows
1. Ifn, p1,..., pno1 are odd and p # 0 is even then

n-1
o(K) = —(Z Sigr(pi) - (Ipi| — 1)) — Sigr(py -+ - Pa—1- detP(py, ..., Pn-1))
i=1

+ Slgr(detp(pl! LR pn—l) : detP(p11 sy pn))

The determinantsletP(py, ..., pn) and detP(py, ..., pn—1) are computed as iMhe-
orem 1.2.
2. If n, py are even py, ..., ph—1 are odd and p # 0, then

o(K) = —<Z Sigr(pi) - (Ipil — 1)) — Sigr(py- - - pn -detP(py, ..., pn)),

i=1
wheredetP(py, ..., pn) IS as computed imheorem 1.3.
3. Ifn, pg,..., pn are all odd then

n-1

o(K) =) Signoi 1-a),

i=1

whereoi = 0i(pP1, ..., Pi+1) as in Theorem 1.4.

2A web site created by Chuck Livingston and maintained by ®Hiicingston and Jae Choon Cha.
The site contains a wealth of information about knots witlw larossing number. It can be found at
http://ww. i ndi ana. edu/ ~knot i nf o.
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For example, ifK = P(py,..., pn) With n, p1,..., py odd andp; > O for all i,
theno; > 0 for all i also and therefore(K) = n— 1. As another example consider
the case oh, p, even andpy, ..., pn_1 0dd and agairp; > 0 for all i. Theno(K) =
N—1-(ps+--+ pn).

1.4. Organization. Section 2 provides background on the three flavors of alge-
braic concordance grougs, Z(Q) and W(Q) encountered in the introduction. The re-
lationships between these groups are also made more transph Section 3 the first
steps towards computing(P(p1, ..., pn)) are taken in that specific Seifert surfaces are
picked for the knots along with specific bases for their firsinelogy. These choices
allow us to determined a linking matrix for the knots. Sewti explains how one can
diagonalize the linking matrices found in Section 3, legdio proofs of Theorems 1.2,
1.3 and 1.4. More detailed versions of these theorems aradgebvn Theorems 4.8,
4.11 and 4.13 respectively. Section 5 is devoted to comipatabf examples and shows
how Theorems 1.2-1.4 imply the results from Examples 1I0-ktated above. The
final section provides proofs for Theorems 1.11, 1.12, 11i&% h16.

2. Algebraic concordance groups

In this section we describe the three algebraic concordgnoeps mentioned in
the introduction, namely
C, — The algebraic concordance group of classical knot§%in
Z(F) — The concordance group of isometric structures over the He
W(F) — The Witt ring of non-degenerate, symmetric, bilineamisroverF.
We provide a generous amount of details of the constructasnthese groups but we
omit proofs. The interested reader may consult [1, 4, 7, 2]1,fdr more details and
additional background.

2.1. The algebraic concordance grougl;. This section largely follows the ex-
position from [9] with a slight bias towards a coordinateefréescription.

Our explanation of the algebraic concordance gréypuns largely in parallel to
the description of the Witt ringV(Q) from the introduction. Thus, we shall consider
pairs (-, -), L) whereL is a finitely generated free Abelian group of even rank and
(-, -): LxL — Z is a bilinear pairing with the property thdt-, -) — (-, - )7 is
unimodular. Following Levine [10], we shall call such pamdmissible pairs Here
(-, -)* denotes the bilinear form

(X, ¥)" = (y, ).

Note that(-, -) is not required to be symmetric nor non-degenerate. We wajll that
((-, -), L) is metabolicor totally isotropicif there exists a splitting- =~ L1 & L, with
rkL =2(kLi) and (-, -)|L,x, = 0. We shall add pairs(, -)1, L1) and (-, -)2, L2)
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by direct summing them, i.e.
(- Ly, L) =, 1@ (-, -)2 L1® L2).

With these definitions understood, we define #igebraic concordance grou@; to be
the set of pairs{((-, -), L) as above, up to the equivalence relationby which

(-0 ) L)~ (- -2 L2)
if and only if

(-, ), L)@ (—(-, -)2 L) is metabolic.

We shall refer to this equivalence relation as thaglgfebraic concordanceUnder the
operation of direct summing;; becomes an Abelian group. An easy check reveals that
the inverse of (-, -), L) is (—(-, -), L). The groupC; was introduced by Jerry Levine
in [9] and its isomorphism type was completely determinedhby in [10].

The relation ofC; to knot theory is as follows: LeK be a knot inS® and let
¥ C S® be an oriented genug Seifert surface forK. We shall view the orientation
on ¥ as being given by an normal nowhere vanishing vector fietth . Recall from
the introduction that the linking pairintk: Hi(X; Z) x Hi(X; Z) — Z is defined by

Ik(x, y) = linking number ofx andy™,

where, by a customary blurring of viewpoints, we interpxeand y as simple closed
curves onx. With this in mind,y* is a small push-off ofy in the normal direction of
¥ determined byn. It is well known (see e.g. [17]) thatk; H1(Z;Z)) is an admissible
pair and therefore the assignmemt,(X) — (Ik, Hi(Z; Z)) € C; is well defined. As
Levine shows in [9], the algebraic concordance clasdioiH1(X;Z)) is independent of
3 and by abuse of notation, we shall denote it simplykoyhoping that no confusion
will arise. Levine also shows that K; and K, are (geometrically) concordant as knots
then their linking forms are algebraically concordant. sTktatement applies to both
smooth and topological (geometric) concordance.

2.2. The Witt ring over the field F. For an excellent introduction to Witt rings
we advise the reader to consult [8], but see also [5] and [IBg first half of this sec-
tion is a re-iteration of the description for the Witt ringy(Q) over the rational num-
bers extended to arbitrary fields.

Let F be a field and consider pairg-(, - ), V) whereV is a finite dimensional
F-vector space and-, -): V xV — F is a symmetric, hon-degenerate bilinear pairing.
By “non-degenerate” we mean that the map> (-, v) provides an isomorphism from
V to V*. We call a pair (-, ), V) metabolicor totally isotropic if there exists a
subspaceN C V with dimg V = 2dimg W and such tha{ -, - )lwxw = 0. As in the
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case ofF = Q, we define addition of {(-, - )1, V1) and (-, - )2, V2) by direct sum
(Ve V)=, hh® (-, )2, V1 ® V),

and we proceed to define the equivalence relation ()1, V1) ~ ({-, - )2, V2) to mean
that (-, -)1, Vi) ® (—(-, - )2, V2) is metabolic. The set of equivalence classes of pairs
((-, -), V) is denoted byW(F) and called thewitt ring of F. It becomes an Abelian
group under the direct sum operation and a commutative riitg the operation of
multiplication given by tensor products

(- ) V) (-, ) Vo) =((+, “)a- (-, " )2 Vi ®F V2).

The Witt ring W(IF) was introduced by Witt in [20] and has found renewed promin-
ence in the theory of quadratic forms over fields through tlekwof Pfister (see for
example [15, 16]).

As is usual in the literature, we will denole— {0} by I¥. Let us recall the notation
(a) already used in the introduction: Givene F we let (a) denote the non-degenerate
symmetric bilinear form (-, -)a, F) specified by(1, 1), = a. Note that

() (a)=(a-b?) e W), VbeF and (b)@® (-b)=0eW(), VbeF.

The first of these follows from the fact thdt ((a), F) — ((a-b?),F) given by f(x) =
X -b is an isomorphism of forms. The second form is clearly mdtakand thus zero
in W(F). These “harmless” observations are incredibly usefuldmputations and we
will rely on them substantially in our sample calculatiomsSection 5. With this no-
tation in mind, the next theorem can be found in [8].

Theorem 2.1. Let (-, -) be a non-degenerate symmetric bilinear form on a finite
dimensionalF-vector space V of dimension n. Then there exist scalgrs.d, d, € F
such that

(«, )= () ®--- @ (ch) € W(F).

Said differently W(F) is generated by the sd{a) | a € F}. A presentation of \(F)

(as a commutative ringis obtained from these generators along with the relators

(R1) 1& (-1),

(R2) (a)- (b) ® (—a-b), a,b e F,

(R3) (@a+b)-(1+ (a-b)) & (—a) ® (~b), a,be F.

In other words W(IF) is isomorphic to quotient of the free commutative ring gatest

by the set{(a) | a € '} moded out by the ideal generated by elements of the form as
in (R1)—(R3) In (R1), the symboll denotes the multiplicative unit of ).
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REMARK 2.2. We shall adopt the use of the symhwlas the inverse operation
of addition @ in W(F). For example, the relations (R1)—(R3) from the precedhns t
orem can be rewritten with the sign as
(R1) 1o (1),
(R2) (a)- ()& (a-b), a, b eF,
(R3) (a+ b) @ (ab(a + b)) © (a) © (b), a, b e F.

With this understood, we turn to studying some specific Whttys. We will chiefly
be interested in the cases whéfeis eitherQ or F,, where the latter will be our no-
tation for the finite fieldZ/oZ of characteristicp > 2. The next result can again be
found in [8] and also in [5].

Theorem 2.3. Let p € Z be a prime. Then there are isomorphisms of Abelian
groups

Zz; P = 2,
W(F,) = {Z,®Zp; =1 (mod 4),
Ly; =3 (mod 4).

The generators oZ, =~ W(F,) and of Z, = W(F,,) with » = 3 (mod 4)are given
by (1) while the two copies oZ, in W(F,) in the case wherp = 1 (mod 4) are
generated by(1) and (a) where ac IF — 2 is any non-square element.

The origins of the proof of the next theorem go back to Gausskvwon quadratic
reciprocity, it was re-discovered by Milnor and Tate [5].

Theorem 2.4. There is an isomorphism of Abelian groups

cdWQ -2 | P WE) |

»eN
p=prime

whereo: W(Q) — Z is the signature function whilé: W(Q) — ®,W(F,,) is the dir-
ect sum of homomorphisndg: W(Q) — W(F,) (with o ranging over all primep de-
scribed on generators of ¥,,) as follows Given a rational numben # 0, write it
as A = p' - B where | is an integer ang a rational number whose numerator and
denominator are relatively prime tgp. Then

0; | is even

@ ot 0= {0 | e oo

Corollary 2.5. As an Abelian groupW(Q) is isomorphic toZ & Z3°* & Zy°.
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2.3. The concordance group of isometric structures. For more details on this
section, see [10].

Let F be a field, then ansometric structure oveff is a triple (-, -), T, V)
consisting of a non-degenerate symmetric bilinear fotm-(, V) and a linear operator
T:V — V which is an isometry with respect to, -}, i.e.(Tv, Tw) = (v, w) for all
v,we V. Atriple ((-, -), T, V) shall be callednetabolicor totally isotropicif there is
a half-dimensioinalT -invariant subspac&®/ c V for which (-, - }|wxw = 0. Much as
in the case of the algebraic concordance gr@ypand the Witt ringW(F), isometric
structures too are added by direct s@n We define two triples{((-, - )1, T1, V1) and
((+, *)2, T2, Vo) to be equivalent if

(-0 )T V)@ (—(-, -)2, —Ta, V),

is metabolic. With these definitions understood, we defirecthncordance group of
isometric structure<Z(F) as the set of equivalence classes of triples, (-), T, V) as
above. Not surprisinglyZ(F) becomes an Abelian group under the operation of direct
summing.

2.4. Maps between the algebraic concordance groupsHaving defined(;,
W(F) and Z(F), we turn to describing some natural maps between them ircéise
whenF = Q. We start by a lemma proved by Levine in [10].

Lemma 2.6. Let({-, -), L) be an admissible paifas in Section 2.1) Then there
exists an admissible paif(-, -)’, L) algebraically concordant tq(-, -), L) and such
that (-, -): L’ x L" — Z is a non-degenerate bilinear form.

With this in mind, consider an admissible non-degenerate (ga, - ), L). Given
any basisB = {1, ..., an} of L, let A be the matrix representing-, -), that is, set
8,j = (i, «j) and letA = [g; j]. We define the mapg: C1 — W(Q), ¢1: C1 — Z(Q)
and v : Z(Q) - W(Q) as in [10]

(p((v )vL)z((v >+(1 ')Ty L®ZQ):
or(-, ) L) =(A+ A, —ATAT, L ®2 Q),
v+, ) T V) =((-, ), V).

It is not hard to verify that the definition af; is independent of the choice of the
basisB of L. It is also easy to verify that, with respect 1, the matrix —A~1A*
defines an isometry oh ®z Q. Is should be clear that = v o 95, as already pointed
out in the introduction. We leave it as an (easy) exercisettierreader to check that
these maps are well defined. This requires one to show thatbolét elements from
any one group map to metabolic elements in the other groups.
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We conclude this section by reminding the reader of the igpiism types ofC,
W(Q) and Z(Q) stated in the introduction:

CL2Z® QLY ®LY -

I(Q) = Z° ® Z3° & Z

@ 14
WQ) = Z & ZF & LY.

As already mentioned, Levine showed to be injective. Clearly injectivity cannot hold
for ¢. However, given the above diagram, one cannot help but ad&w"“much loss of
information is there if one restricig to the torsion subgroup af;?” As Theorem 1.16
shows, the restriction op to the torsion subgroup af; is unfortunately not injective.
Nevertheless, Examples 1.7-1.10 show taphyc,) contains significantly more infor-
mation than just the knot determinant.

3. The linking matrices

In this section we compute the linking matrix f& = P(ps,..., pn) associated to
a choice of oriented Seifert surfage for K along with a concrete basis fot,(Z; Z).
The details of these computations for the three casesi{))f¢m (1) proceed in slightly
different manners.

3.1. The case ofn, p1,..., pn—1 0dd and p, even. For the remainder of this
subsection, we shall assume the conditions from its titlén wie additional constraints
thatn > 3 and p, # 0.

We start by recalling Fig. 1 in which we chose a particularjgmtion for the pret-
zel knot P(py, ..., pn)- We choosex; to be the Seifert surface fa obtained from
that projection via Seifert's algorithm (see for exampl&]]1 Specifically, X; consists
of n—1 disks Dy, ..., D,_1 of which D; and D;,; are connected withp;| bands, each
carrying a single half-twist whose handedness is deteminbethe sign ofp; (in that
the band obtains a right-handed twistgf < 0 and a left-handed twist ifyy > 0). The
disks D,_; and D; are similarly connected withp,_;| bands. Finally, there is a band
with | p,| half-twists (right-handed ifp, > 0 and left-handed ifp, < 0) both of whose
ends are attached ;. Note that the genus af; is |py|+ |p2| +- -+ |Pnz| +3—n.
We label the bands connectirig; to D, by Bil, R B“m and we label those con-
necting Dn_; to Dy by B2, ..., Blnr;n}ll. The unique band withp,| twists is labeled
B". All of our conventions and labels are illustrated in Fig. 2.

With these preliminaries in place, we choose our basis

_ 1 1 2 2 n—1 n-1
4) Bi=f{oy, ..., Oy =1y Os - o Oy g - -5 07 e, O g, ¥, 6}

for Hi(Zq; Z) in the following way:
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1. We Ieta to be the simple closed curve passing through the szjdand B]+1

2. We plcky to be the simple closed curve passing over the bajd$?,..., Bl 1.

3. The remaining curvé passes once through the baBd.

These curves, along with our orientation conventions, #e depicted in Fig. 2. The
orientation ofx; is determined by the normal vector field which points outwafrdm
the page (and towards the reader) on all difks D3, Ds, ... and into the page (and
away from the reader) on the disk®,, D4, Ds, .... These conventions are indicated
by the symbols® and & respectively in Fig. 2.

With these definitions in place, we are ready to start comgudintries in the link-
ing matrix £ = [l; j] wherel; j = Ik(x;, Xj). Herex; is thei-th element of the basis
B1 andIk(x;, x;) is the linking number of; and xj+. The latter is a small push-off of
X;j in the direction of the normal vector field 0B, determined by its orientation, as
already previously indicated.

Seeing as the loops), and alb are disjoint for any choice off # j, we find that
K(crl, adh) = Ik(ath, o) = O for any choices of, j, k, m with i # j. For the same
reason, one also obtairig(e}, §) = Ik(8, o) = O for any choices of, k.

The contribution of the subsét, . . ., a;m_l} of By to the linking form £, only
depends orp;. To see how, let us introduce tmex n matricesX,, and Y, = Xp + X},
by the formulae

1 00 0 0 2 11 11

110-.-- 00 121 --- 11

111 -- 0O 112 --- 11
(5) Xn= . . . . . . and Yn=

111 -- 10 111 --- 21

111 ... 1 1] 111 ... 1 2]

By consulting Fig. 2, one finds that

Ik(cd, a m)_{o t:: if p>0 and iis even,

k<m

0 K=m if pp<O0 and iis even,

IK(ety, tfy) =
(6)

o

; k>m

0; kK<m

k(e o) = o

k(o - { KEM ¢ 5 =0 and iis odd,
{ if p<O0 and iis odd.
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Fig. 2. Our choice of Seifert surface; for P(py,..., pn) for the
case whem, pg,..., pn_1 are odd andp, is even. This example
shows the knotP(—1, 3,5, 3, 4). The choices of generators for
H1(Z4; Z) along with their orientations are indicated.
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Fig. 3. This figure computes the linking(c}, o) wheni is even.
The two push-offsey ™ and e, ™ of o and o, respectively, are
shown in the bottom two pictures. The linking of the two isdea

ily computed from these.

The case ofp; > 0 andi even is singled out.in Fig. 3. From this we find thgt, the
restriction of the linking formZ to the Sparfey, . . ., O‘;pil—l)’ with respect to the basis

{3, ..., a,_,) takes on one of 4 possible forms:

—Xjpl-1; if pi >0 and i is even,

X"mfl; if p<O0 and iis even,
L =
—X"m_l; if p>0 and iis odd,

Xip|-1: if p<O0 and iis odd.



RATIONAL WITT CLASSES OFPRETZEL KNOTS 995

Even so, the matrix representiny + £ in each of the four cases above, can then
be expressed with a single relation as

@) Li + L7 = —Sigr(pi)Yp -1
Having worked out all of the linking numbetk(a{(,ar‘ﬁ), we now turn to exploring

how y andé contribute to£. Their linking numbers with the various other curves from
the basisB; are easily read off from Fig. 2:

k(y,v) = —%(Sigr(pl) + Sign(pz) + - - + Sigr(pn-1)),

k(y, 8) = 0,
ks, v) = 1,
8) Ik(s, 8) = %

while the linking numbers of, with the variousa) are

-1, if p>0 and i is even,
: 0; if p<O0 and iis even,
y
kb @) =10 i p>0 and iis odd,
1; if p<O and iis odd,
) _ .
0; if pp>0 and iis even,
i )L if pp<O0 and iis even,
k@) =321, i p >0 and iis odd,
0; if pp<O0 and iis odd.

As earlier, we see that whillk(c, ¥) andIk(y, o)) depend on a number of cases, the
quantity [k(y, ol) + Ik(ed, ¥) always equals- Sigr(p;). We are thus in a position to
assemble all the pieces.

Theorem 3.1. Letn, py,..., pn—1 be odd integers with & 3 and let p, # 0 be
an even integer. To keep notation below at,day us also introduce the abbreviations

s =-Sigrp), s=s+---+s-1, p=|pl-1

Then the symmetrized linking forfh+ L* of the pretzel knot Bp,..., pn) associated
to the oriented Seifert surfacE; and the basis

1 1 2 2 n-1 n-1
Bl—{0‘1!-~-vo‘\p1|—110‘11~~~!“|p2\—1’~-~10‘1 '-~~’a|pn,1\711715}
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of Hy(X21:Z) as chosen abovésee specificallyFig. 2), has the form

s | O
s1Y,, 0 0 :
s |0
s | O
0 Y, 0 :
0
L+ L= >
S-1| 0
0 0 Sr1Yo s :
S-1] 0
S - S |S - S| | St Sh_1 S 1
. 0 .-~ 0]/0 --- Of---] O 0 1 |pn |
The matrices Y are as introduced in(5).
3.2. The case oh even,pi,..., pn—1 0dd and p, even. We turn to the next

case of choice of parities aof, ps,..., pn and pick it for the remainder of this section to

be as listed in the title. We also keep our additional assiomptofn > 3 and p, # 0.
The Seifert surfac&, that we choose foP(pa,..., pn) and the preferred basis,

for Hi(X2; Z) are very much like in the case considered in Section 3.1.ciSgaly,

we let X, be obtained fromx; (X; is the Seifert surface from Section 3.1) by sim-

ply deleting its unique ban@" with and even number of half-twists and allowing the

number of bands which connect the disRg and D; to be an even number, namley

|pn|. We then arrive at a surfacE, as in Fig. 4. The same figure also indicates our

choice of basis

1 1 2 2 n n
By = {oy, ..., O =10 OTs - o0 Oy s e vy Oy ey O, v}

for Hi(X2; Z) which is identical toB; from (4) safe that we are presently no longer
requiring the generata¥. The orientation convention is as in the previous sectioth an
is again indicated by & and & in Fig. 4.

The linking numbers between the varioas and o and indeed between the,
and y are identical to those found in Section 3.1. We thus immetliaarrive at the
analogue of Theorem 3.1:

Theorem 3.2. Let n> 3 be an even integer and let;p.., p,—1 be odd integers
and p, # 0 an even integer. Let us re-introduce the abbreviations

s =-=Signp), s=s+ - +s-1, p=|pl-1
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Fig. 4. Our choice of Seifert surface, for P(py,..., pn) for the
case whem is even,py, ..., pn_1 are odd andp, is even. Our
example shows the knd®(3,—5, 3, 2). The choices of generators
for Hi(X,; Z) with their orientations are indicated.
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Then the symmetrized linking forth+ £* of the pretzel knot Bpy, ..., pn) associated
to the oriented Seifert surfacE, and the basis

1 1 2 2 n n
Bz = {0(1, [ O(‘pll_l, 0(1, e vey Ollpz‘_l, e vey 0(1, ey a‘pnlil, y}

of Hy(X2; Z) as chosen abovésee specificallyFig. 4), takes the form

S

sY,, 0 0 :

S

S

0 Yy, 0 :

L+ L = e S

S

0 0 S Yy, :

S

The matrices Y are again as defined i5).

3.3. The case oh and py,...,pn 0dd. In this section we consider the remain-
ing case where all of, py,..., py are odd withn > 3. We start by picking a Seifert

surfaceXs for P(py, ..., pn) Which is this time obtained by taking two disks and con-
necting them byn bandsB?,..., B", each with|p;| half twists (right-handed twists if
pi > 0 and left-handed twists iy < 0). The thus obtained surface looks as in Fig. 5.
We next choose a basis

Bz = {ot1, ..., otn_1}

of Hi(Zs3: Z) by letting ; be the curve orzs which runs through the bandd’ and
Bi+1. The orientation conventions for the and indeed the orientation fat, itself
(indicated again by @& and ae) are depicted in Fig. 5.

The linking form in this basis is rather easy to determineteNwst thatlk(c;, o) =0
wheneveli — j| > 2. On the other hand, by inspection from Fig. 5, it followsttha

2 L

piy1+1
2 i

piy1—1

||((Oti, Oli) = 2

k(i) @if1) = — k(i1 o) = —

With this in place, here is the analogue of Theorems 3.1 aRd@®.the present case.

Theorem 3.3. Let n> 3 be an odd integer and let;p.., p, be any odd integers.
Then the symmetrized linking forth+ £* of the pretzel knot Ppy,..., p,) associated
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Fig. 5. Our choice of Seifert surface; for P(py,...
case whem and pq,..., p, are odd. This example shows the knot
P(5,—3,3,-3,—1). The choices of generators fbt;(X3;Z) with
their orientations are indicated.

, pn) for the

to the oriented Seifert surfacE; and the basisB; = {ay, . .
chosen abovéseeFig. 5) takes the form

., apn-1} of Hy(X3; Z) as

L+ LT
[+ —p2 0 0 0 0 0 ]
—p2 p2t+ps —ps 0 0 0 0
B 0 —P3 P3+Ps —ps4 0 0 0
0 0 0 o - —Pn—2 Pn—2+ P2 —Pn-1
i 0 0 0 o .- 0 —Pn-1 Pn-1+ Pn |

4. Diagonalizing the linking matrices

In this section we show how one can diagonalize the matriceis £L* obtained
in Theorems 3.1, 3.2 and 3.3. We do this essentially usingGitean—Schmidt process
on ((-, -), Hi(2; Q)) with (x, y) = Ik(x, y) + lk(y, X). We need to exercise a bit of
care since, whilg -, -) is non-degenerate, it is by no means definite and square zero
vectors do exist.
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Once £ + L has been diagonalized, it is an easy matter to read off thenedt
Witt class of £ + L in terms of the generators &V(Q).

4.1. The Gram-Schmidt procedure and reduction. We start by reminding the
reader of the Gram—Schmidt process on an arbitrary finiteedgional inner product
space (-, -), V). By convention, such an inner produgt, -) is assumed to be positive
definite. We then address the issue of square zero vectors jn {, Hi(Z; Q)).

Theorem 4.1 (Gram-Schmidt). Let {fy,..., fy} be a basis for the inner product

space({-, -), V) and let{ey, ..., e} be the set of vectors obtained as
e = fi,
_ (f2, 1)
€ 2 (e )
fa, fa,
& f3_(3ez> _<3e1>el,
(2, &) (e1, €1)
fn, €n fn,
e = f,— (fn, €n1) en—l_"'—( n» €1)
(el"l—ll en—l) <el’ el)

Then{ey,..., &} is an orthogonal basis for V and Spg,...,g} = Spar fy,..., fi}
for each i<n.

REMARK 4.2. In order to keep the scalars in our computations integagher
than rational and non-integral), we will often use the dligimodified Gram—-Schmidt
process by which we set

fi,e_ fi,
g =di . (fI _ﬁa_l_..._ ( ! el)el),
(6-1, €-1) (€1, €1)
whered; is some common multiple ofe, 1), ..., (6_1,€_1). Clearly the conclusions

of Theorem 4.1 remain valid for the s@dy, ..., e,} for any choice ofd, # O.

The next theorem addresses the failure of the Gram—-Schmadegure in the pres-
ence of square zero vectors (on non-definite inner prodwattes). The result should be
viewed as an iterative prescription to be applied as manggim the Gram-Schmidt
process as is the number of square zero ve@oecountered.

Theorem 4.3. Let({-,-), V) be a pair consisting of a finite dimensiorBtvector
space V and a non-degenerate bilinear symmetric form-). Let {f;,..., f,} be a
basis for V and letfor some m< n, {ey, ..., &y} be obtained from{f,,..., f,} as
in Theorem 4.1 @r alternatively as inRemark 4.2) Assume thate, ) # 0 for all
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i < m but that (e, en) = 0. Additionally suppose also thatey, fmi1) # 0 (which
can always be achieved by a simple reordeyifighecessaryof fqi1,..., fn).
Then(({-, -), V) is equal to({-, -)’, V') in the Witt ring WF) where

V' = Sparey, ..., en1, frip-.., f) and (-, <) = (-, - )vxv,
with
m—1
’ (fm+l1 eJ)
f =f —j,
m+1 — 'm4+1— 121 (ej, ej) ]
T (fmes &)
o= fnk— Y —— g,
m-+k m+k ]2_; © e) €j
’ = //k_<fr%+k' >f/
- / 1
A
. (fr;;+k’ fn/1+1> (fn/1+1' ) (fr;;+k' ) (fr/n+1' fr41+1>
(g &m) - (frip €m) '

where the last two equations are valid for>k2.

Proof. Let A be the symmetric non-degenerate< n matrix representing -, -)

with respect to the basige, ..., én_1} U {en, fme1, ..., fn}. Then A is of the form
(€1, €1) - 0 0 (er, fmia) -+ (e, fn)
0 <o+ {€m-1, €m-1) 0 (€&n-1, fms+1) -+ (€m-1, fn)
A= 0 0 0 (en, fms1) -+ (em fn)

(fmes ) o (fogrs €m) [ {(fness €m) (Fgers Toer) o0 (fngns Ta)

(fme) o (s | (fovem)  (fm fost) ooc (for fo)

Fork=>1, let f . , be given by
m-1
(fm+k, &)
e = Tmik— ——g,
4k — Im+ le (eJ, ej) ]

so that(f,..&) =0 foralk>1 and alli <m-1. Thus the matrixA” representing
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L + LT with respect to the basiey, ..., en 1} U{em, .., ..., f7} looks like
(€1, €1) --- 0
A// — . )
0 oo {€m-1, €m-1)
0 (emv fm+1> e (em1 fn)
(fnes, @m)  (fopn foa) 0 (Foas f0)
(fn, €n) (f, fr) - (fr, £/

Note that(em, fr,,) = (ém, fmek) for all k > 1. To simplify the second summand, we
introduce a further change of basis by setting

’ _f ( r;;-‘rk' em) £
m+k — 'm+k T (f// X ) m+1
m+1
_ (fr;':_H(a fr::hLl) : (fr‘:"/|+ll em) - (fr;/H-k! em) : (fr;;+11 fr;':+1>

(fre1r @m) - (fri1s €m)

for all k > 2 and for convenience, sdt, , = f;, ;. A quick check reveals that now

( r;1+k! em) =0 and ( r‘/n+k’ fr;1+1> =0, Vk>2

Therefore the second summand Af above, when expressed with respect to the basis
{em, fpad Ulfnio .o, f}, takes the form
f/

m+2) fa

(o n)

m+2?

(o

m+2?

|: O (em! fm+l) ] @
(fmi1, €m) (fr:1+1’ fr;w+1)

(for frg2) o (fon £2)

Since the first summand is metabolic and therefore equats ineW(F), the claim of
the theorem follows. 0J

We shall refer to the passage frorfr (-), V) to ({-, -}, V'), as described in The-
orem 4.3, ageduction seeing as the dimension df gets reduced by 2 in the process.

4.2. The case ofh, p1,..., pn—1 0dd and p, even, revisited. The goal of this
subsection is to diagonlize the symmetrized linking maifix- £* obtained in The-
orem 3.1. Specifically, we want to find a regular matRxof the same dimension as
L + L7 such thatP*(£ 4+ L7)P is a diagonal matrix. By way of shortcut of notation,
we will write (x, y) to denotelk(x, y) + Ik(y, x).
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As the matrix£ + £* from Theorem 3.1 consists of a number of matrix blocks
of the form Y, (see (5) for the definition ofY;,), we first take the time to apply
the Gram—-Schmidt process to the latter. We Rgt denote the upper triangulan x m
matrix given by

1 -1 -1 -1 -~ -1 -1

0 2 -1 -1 ... -1 -1

o o 3 -1 .- -1 -1
(10) Pm =

O 0 O oo m=—1 -1

0 0 0 o0 m |

Lemma 4.4. Consider the inner product spadé-, -), Z™) where the inner prod-
uct (-, -) with respect to the standard basfa, ..., am} of Z™M is given by

(i, j) = (i, j)-th entry of the matrix ¥ from (5).

Then defining a= o3 and @ =iy —j_1 —@j_2—---—ay for 2<i <m, yields an
orthogonal basis for((-, -), Z™) with (a, &) =i(i + 1). Said differently

Py YmPm = Diag(1- 2, 2-3, 3-4,..., m-(m+ 1)).

Proof. This is a straightforward application of the Gramk@it process. Leg;
be as stated in the lemma and assume fhat..., g} is an orthogonal set for all
i < k <m with the stated square&;, &) = i(i + 1) (the case of = 1 being clearly
true). We prove that the statement remains true i chosen to be&. Note that

(ak, &) = (o, loj —j_1—---—ag) =1 —1—-1—-.-—1=1,

for any choice ofi < k. Using the Gram—-Schmidt process gives

- oy, &
T S B T
(Bk-1, Ak-1) (a1, &)
1
=0lk_m((k_l)ak—l_Olk—2_"'_al)_“'_al
1
= R(kak — 01— Ok 2= — o).

Proceeding as in Remark 4.2, we bt be equal to

& = kax —o—1 —ok—2— -+ —o

SHere and in the remainder of the article, we let Diagks, . . ., X,) denote them x m square
matrix whose off-diagonal entries are zero and whose diaigentries are given by, . .., Xm.
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which already showes thdty, ..., a} is orthogonal. To complete the proof of the
lemma, we need to comput@y, ax):

(e, ax) = (kax —okeg — -+ — o, Kok — gy — -+ - — 1)

=~
=
T
-

= K (ak, ak) — 2K{o, o1+ ) + Y (i, ai) + Y (o, @)

i =1

Il
=
Il

i#]

=2k — 2k(k — 1) + 2(k — 1) + ((k — 1> — (k — 1))

= k(k + 1),
which is as claimed. O

We proceed by defining vectos, as
ol = ke, ~ ol — -~

for eachi = 1,...,n—1, and where the variouss{( are the elements of the badil
defined in (4) from Subsection 3.1. Lemma 4.4 then shows thiae&ch such index
i, the set{a;, ..., &, _;} is an orthogonal set with respect {a, -) = £ + £* and

(@, ai) = — Sigr(pi)k(k + 1). Moreover, since(al, ah) = 0 wheneveri # j, we see
that in fact the set

L _ 1 1 2 2 n-1 n-1
(11) By prelim = (@0, -+ -y &p -1 5, -y @0 A e A0 )

is also an orthogonal set.
We then turn to finding two additional vectors (related jtoand §), which we

shall label X and Y, needed to complet#; ., to an orthogonal basis foB; for

H1(21; Q). We find X using again the Gram—Schmidt process.

Lemma 4.5. Setting X equal to

X = [Py poaly —il(( ﬁ 'pkl) %laik)’

i=1 \ \k=1, ksi k=1

makes the seﬁfpre"mu {X} an orthogonal set. Additionallythe square of X is

n-1
(X, X) = —=(P1-+ Pn1) - (Z Pro-e e pnl)-
i=1
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Proof. An easy induction argument ¢p;| shows that

Ipil-1

el

1 .
N W(all oyt ).

]

=

=1

Letting X be given by the Gram—-Schmidt formula applied to the lineamyependent
set By preim U {71, 1-€.

-1 [pi|-1 i
S (v,

=1 k=

=

leads, in conjunction with the preceding formula, to
[pil

T T

To keep coefficients integral (see Remark 4.2) we multiply tight-hand side of the
above by|p; --- pn-1] and setX instead equal to

X = [p1--- Prtly —ri(( ﬁ kal) lpilo{{(),

i=1 \ \k=1, ke k=1

as in the statement of the lemma. Th@pre”mu {X} is indeed an orthogonal set.
We next compute X, X):

n-1 2/lpl=1 Ipl=1
(X, X) = (pr--- Pn-1)?(y, ¥) + Z[(]‘hm) < > e Y a'k>]
i=1 k=1 k=1

ki

2 Ipil-1
_ZZ (P2 - |pr|)n 1) <y, 3 oq'(>.

k=1

In the second term of the right-hand side, we relied on the tfeat (ak,a| ) = 0 when-
everi # j. Using the linking form£ from Theorem 3.1, it is easy to see that (for
example by induction onp;|)

PI-L Ipll
< T Y OlL> = —Sigr(p)|pi[(Ipi] — 1),

[pil-1 ‘
<% aL> = —Sign(p)(Ipi| — 1),
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which in turn shows that

() [ B o5 o B

ki k=1
_ (pl P-1)® = ( P1)?
Zslgr(p. Tum 1)+2) Sign(p) | i Uel=D)
i=1 i=1 '
n-1 . 2
sigr(p) P p - 1)
i=1 pil
n-1
=P pnal ) Sigr(n)(]_[lpkl)(lpil - 1.
i=1 ki

Finally, recalling (see Theorem 3.1) thgt, y) = —(Sign(p1) + - - - + Signpn_1)), we
are able to assemble all the pieces to comgte X):

1 . .
(X, X} = —|p1- - Pa-1/(Sigr(p1) + - - - + Sigr(pn-1))
[P1- - Pnotl
n—-1
+ ZSigr(pi)<1"[|pk|>(|pi|— 1)
i=1 ki
= —ZSIgr(p.)]_[ | oxl
ki
and so
1 1
X, X) = — _2.(_+...+ ),
( ) (P1-- Pn-1) o .
as claimed in the statement of the lemma. O

In the final step, we would like to find a vectdte Hy(£1:Q) such that3;- prelimY
{X, Y} is an orthogonal basis. Whilga}, al) # 0 for any choice ofi, k, and thus the
Gram—-Schmidt process worked well for finding it is possible, and it does happen,
that (X, X) = 0. This of course obstructs us from finding by means of the Gram-—
Schmidt process, calling instead for an application of Teen4.3. We proceed by
treating the two case&X, X) # 0 and (X, X) = 0 separately.

Lemma 4.6. Let X € Hi(21; Q) be as defined inemma 4.5and assume that
(X, X) # 0. Define Ye Hi1(21; Q) as

Y=]|p p |(1+ + 1)5+X
- 1 n—1 pl pn—l .
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ThenB; = Bf U {X, Y} is an orthogonal basis and

1,prelim

n-1 n
(Y, Y) = <Z pl---ﬁ---pn_l)-<z pl---ﬁ---pn).
i=1 i=1

Proof. Our assumptioffX, X) # 0 allows us to use the Gram—-Schmidt process
to find Y as

Since (4, oz,i() = 0 for all i, k it follows that (3, aj() = 0 also, reducing the above for-
mula to
(8, X)

YZ(S—(X,X)

With (X, X) already computed in Lemma 4.5, the same lemma (using alsoetst
of Theorem 3.1) implies that

(8, X) =1p1--* Pn-al,

showing that
1

Y =6+ X.
[P~ Pn-1|(L/pPy+ -+ 1/pn-1)

To keep our coefficients integral (see Remark 4.2) we inssead

Y=|p p |(1+ + ! )8+X
B ! " P1 Pn-1 ,

showing thatB; = B

1,prelim
remains to calculatéy, Y):

U {X, Y} is an orthogonal basis for (, - ), H1(Z1; Q)). It

2
<Y,Y>=(p1---pn1>2(é+---+ L ) (5. 8)

Pn-1
1

Pn-1

+2|p1---pn1|(%+---+ )(8,X)+(X,X)

1 1)\
2
= eer Do —
(pl Pn 1) (pl pnl) Pn

1 1 1 1
+2 S o 2(_+...+ )_ R o 2(_+..._|_ )
(P1--- Pn-1) o o (P1-++ Pn-1) o .

1 1 1 1

2
— e Dol e T +1]. 0J
(Py=Pn 1)(pl pnl)[(pl pnl)p” }
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Lemma 4.7. Let X € Hy(X1; Q) be as defined inLemma 4.5and assume that
(X, X) = 0. Then in the Witt ring WQ), the equality

(- +), Hi(Z1: Q) = ((+, Hvxv, V)

holds where V= SpanB;

1,prelim

(where the latter is as defined i{11)).

Proof. This is a direct consequence of Theorem 4.3 and carbalserified directly.
Namely, observe that the format gf+ £* as calculated in Theorem 3.1 shows that

(-0 ) H(Z Q) = ({+, v, VI B (- - Hwxw, W),
where W = Spar{X, é}. But since(-, -)|wxw is represented by the matrix

0 |p1“'pn—l|:|

<"'”W*W=[|p1---pn_1| .

with respect to the basisX, 8}, we see that-, -)|wxw iS metabolic and thus equivalent
to zero inW(Q). ]

We summarize our findings in the next theorem:

Theorem 4.8. Let P be the upper triangular matrix

i PLp2 - Pret PLp2- - Prt i
Ppi-1
Pip2- - Pt Pip2: - Pt
P — p1p2- - Pho1 p1p2- - Pho1
Pipn -1
P1pP2- - P PPz - P
[p1--- Pn-al [p1--- Pn-al
n-1 1
0 |P1"'pn—1|'<z—_)
L - b |
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where R, is as defined in(10) and let £ be as computed iTheorem 3.1 Then if
(X, X) # 0, one gets

PT(L + L7)P

n—1
= (@ Diag(- Sign(pi) - 1- 2, — Sign(pi) - 2-3,. . ., — Sign(pi) - (Ipi| — 1) - [pi |)>

i=1

@ Diag((X, X), (Y, Y)).

If (X, X) =0, let Q be the matrix obtained from P by setting its last columd aow
equal to zerp safe the diagonal entry which should be set equal.ta’hen

QUL+ L)Q

n-1
= (@ Diag(— Sign(pi) - 1- 2, — Sigr(pi) - 2-3, ..., — Sign(p;) - (| pi| — 1) Ipi|)>

i=1

@[ 0 |pl"‘pn1|i|_
[P1- - Pt Pn

Recall that(X, X) and (Y, Y) have been computed iremmas 4.5and 4.6.

Before continuing on, we take a moment to express the giemtiX, X) and
(Y, Y) in more familiar terms involving determinants of knotsin

Lemma 4.9. Assume thatnps,..., p,—1 are odd integers with & 3 and that p, #
0 is an even integer. Consider the pretzel kndipE . . ., p,) and the pretzel linKof 2

componenfsP(ps, ..., pn_1) and recall our sign conventions froRemark 1.1.Then
n
detP(py, ..., pn) =) Pr---f - Pn,
i=1
n—1
detP(py, ..., Pro1) = ) Pre-- B+ Paoa.
i=1

In particular, we can re-write(X, X) and (Y, Y) as

(X, X) = —=(p1- -+ Pn-1)-detP(pa, ..., pn-1),
(Y,Y) =detP(p1,..., pn)-detP(ps, ..., Pn1).
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Proof. We shall calculate d&(ps, ..., pn) by relying on the formula
detP(py, ..., pn) = |detC + L7)]

with £+ £* as in Theorem 3.1. Because of our sign convention from Rerhdrkwe
shall ignore the absolute value sign in this relation.

If (X, X) # 0, we simply apply the determinant to the relatién= P*(£ + L7)P
from Theorem 4.8 (where we l&k denote the first diagonal matrix from that theorem):

det(C +L7)
_ detA
(detP)?
_ (TR ID/1R ) (Pare Pren)*(3/ Pat -+ 41/ Poo)® [(1/ Py 4+ 1/ o) Pa+ 1]
(IT= 1|p.|'/|p.) (P Pr—1)*- (1/pr+---+1/pn-1)?

| (5t o ]
B PrPn-1 P1 Pn-1 Pn

=—Signp;y--+ Pn-1)- <Z Pre- oo pn)-

i=1

If (X, X) = 0 a similar argument applies. Namely, applying the deteamirto the
equationQ™ (L + £7)Q from Theorem 4.8, yields the desired result, the detailslefte
as an easy exercise.

The computation of de®P(py, ..., pn_1) follows along the same lines with only
minor modification. We focus on these differences rathen tfegpeating the entire cal-
culation.

The reader should first note that the Seifert surfagefor P(py,..., pn) displayed
in Fig. 2, becomes a Seifert surface (py,..., pr—1) after removing the unique band
with p, half twists. We shall call the resulting surfadg. Its linking form £’ differs
from £ only in the last row and column (which are removed frdhto obtain£’). In
particular, the computation of deX(+ £'*) is identical to that of delf + L") safe the
contribution ofY to the latter. Thus,

det(’ + L)
(coefficient of§ in Y)?

(y,Y)
. ik (Z. TP B P 1)
- _S e DPne
ign(pL--- P 1)<i§=1 ] )(Z. Do P po 1) (Zi:l P B Pn)

n—1
= —Sigr(p; - pn1)<Z P o pn1>.
i=1

= det(C+L7)

>
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This formula applies in both the cases wheX, X) = 0 and (X, X) # 0. With this
observation, the proof of the lemma is complete. []

4.3. The case ofn, p, even andp,..., pr—1 0dd, revisited. In this section
we turn to diagonalizing the symmetrized linking forfn+ £° with £ this time being
as computed in Theorem 3.2. The work has largely been donkeimprevious section
and we focus our attention only on the minor differences.

Lemma 4.10. Let n and B be even integers with & 3 and p, # 0 and let
P1, ..., Ppr1 be odd integers. LeL be the linking matrix associated to the Seifert
surface X3 of P(py,..., pn) and the basis3; of H;(X3; Q) as defined inFig. 4. Then
the determinant of Bpy,..., pn) is

n
detP(pl,..., pn)zzpl.ﬁpn
i=1

Proof. Recall that de®(py, ..., pn) = det(£ + L£7) but that we allow ourselves
the freedom of choosing the sign of the determinant, see Refna.

The determinant off + L is computed in analogy to the computation from
Lemma 4.9. Specifically, leP’ be the matrix obtained from the matriR from The-
orem 4.8 by deleting its last row and column, and Kt be the diagonal matrix
P*(L + L£L7)P from Theorem 3.1, again with its last row and column deletéden
(P (L + L)P" = A’ so that

det( + L7)

B det A
"~ (detP)?

(TP D2/ )Py - - Pr)(X/p1 + -+ + 1/pn)
(TTalpi /1 1) - (Pa- - - pn)?

. 1 1
=Si =+ 4+ —
grn(pn)[pa- -+ Pnl (pl pn)

n
=Sigr(p1---pn_1)-<z P B ---pn),
i=1

= Sigr(pn)

as needed, up to sign. O

We have thus proved the following theorem:
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Theorem 4.11. Let n and B be even integers with & 3 and p, # 0 and let

P1, ..., Pno1 be odd integers. Let P be the matrix
i Pip2--- Pn ]
Pp-1 A :

Pip2- - Pn

P= G

P1P2 - Pn

Plp-1 5 .

PiP2:: Pn

and let £ be as computed iTheorem 3.2.Then

PY(L+LT)P = (@ Diag(- Sign(pi)-1-2,..., —Sign(p) - (Ipi| —1)- [P I))

i=1

® Diag(—(py--- pn) -detP(py, ..., pn)).

The determinantetP(py, ..., pn) has been computed ibemma 4.10.

4.4. The case ofh, p1,...,pn all odd, revisited. The goal of this section is to
diagonalize the symmetrized linking matrix + £* from Theorem 3.3. Here too we
would like to utilize the Gram—Schmidt process inasmuch @ssible. Recall that the
basisB3 for Hi(23; Q) is Bz = {a1, ..., an_1} With ; as in Fig. 5. We wish to create
an orthogonal basi§3f = {&,..., a1} by means of the formalism from Theorem 4.1
(see also Remark 4.2). Towards that goal, we prove a simpiene after reminding
the reader of some notation which was already mentioneddnirtttoduction.

For an integeri > 1, let oj(ty, ..., tn) be thei-th symmetric polynomial in the
variablesty, . . ., tn. For examplegi(ty, ..., tn) =t1 + -+t andoa(ty, . . ., tn) =
titp + tit3 + -+ + tm_1tyy and so on. By convention, we define the 0-th symmetric
polynomial to beoo(ty, - . ., tn) = 1. We shall writeo; for oi(p1, ..., Pit1)-

Lemma 4.12. Seta =«7 and a1 =ojj11+ Pir1a € Hi(Z3;Q) and Ietlia’3L =
{ag, ..., an_1}. Thenl’5‘3L is an orthogonal set and

(&, q) = oi_1- 0.

Before proving this statement, we would like to point outtthemma 4.12 does
not claim, indeed this would be false in certain cases, E@ais a basis forH;(X3; Q).
Some elements 0By may be zero.
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Proof. We proof this lemma by induction dn the cases of = 1, 2 are easily
seen to hold. Proceeding to the step of the induction, weidenghe vectorg ;. Pick
first an indexj with j < i, then we get

(@+1, @j) = (0idit1, @) + (P18, @) =0,

since in this caséw;.1,a;) =0 (as follows by inspection of the linking matrig from
Theorem 3.3). On the other hand,

(@1, &) = (oici+1, &) + (P&, &)
= —0i*0i—1* Pi+1+ Pi+1°0i-1"0i
=0.
To finish the induction argument, we next determi@e, 1, & 1):

(&+1, @41) = (Oidtit1 + Pi+1&, Oitiz1 + Pir1&)
= (01)*(Pi+1 + Pis2) + P10i-107 — 2P 101011
= 0i[oi(Pi+1 + Piv2) — PP10i-1]

= 0i0j+1-
In the second to last line, we relied on the easy to verify tities

o) = Pj+10j-1+oj(P1, ..., Pj)s

041 = Pj+1Pj+20j-1 + (Pj+1 + Pj+2)oi (P, - - ., Pj)- O

As the proof of Lemma 4.12 shows, the Gram—-Schmidt algorittreaks down
whenevero; vanishes for somé > 1.

Theorem 4.13. Letn, py,..., pn be odd integers with & 3. Let £ be the linking
matrix for the pretzel knot @y, ..., pn) as described inTheorem 3.3.Let P be the
upper triangular matrix

oo b1’2 b1,3 s bl,n—l
0 o1 bpz -+ bopaa i
P=[0 0 o - bani| with by=ocs- [] b

Do SRS : J=k+l
0 O 0 -+ on1
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Then
P*(L + L")P = Diag(oo - 61,0102, ..., On_2*On_1).

The rational Witt class ofZ + L* is given by

n—1

o(P(p1, .-, Pn) = Ploi1-ai).

i=1

Proof. The claim about the form & (£ + £7)P follows directly from Lemma 4.12.
The fact that the integefs,; take the form described, can be proved by inductiori on
by using the formulae (the first two lines being the defingiafb, . as change of basis
parameters, the third line being from Lemma 4.12)

Q41 =0i0iy1+ by + b_gipa0i1 + - Do,
8 = o105 +bi_gioi1 + bigioio+ - by,

8it+1 = 0i®+1 + Pi+18.

The claim of the theorem about Witt classes follows immedyafrom Lemma 4.12
in the case when none of the numbersvanish since in that case the s@gt from the
said lemma is actually a basis fot;(23; Q). We thus need to address the case when
some of thes; equal zero. We shall prove the theorem by inductiormon

Whenn = 3 the symmetrized linking matrixC + £* looks like

£+U=[m+m -ﬂz}
—P2 P2+ Ps

If o1 = p1 + p2 vanishes therC + £ is metabolic and thus zero W(Q). Con-
versely, if p1 + p2 = 0 then (opo1) @ (0102) = 0 € W(Q). If on the other hand
02 = pP1P2+ P1Ps+ p2ps vanishes (butp; + p; does not), then the matrix representing
(-, -) with respect to the basigy, ay} is

pr+p2 O
0 0

}=mw@+mﬂx

so that in this cas& + £ equals(p; + pz) in W(Q). But, with the same vanishing
assumption, we also gébtgo1) @ (0102) = (0001) D (0} = (p1 + p2) € W(Q). This
proves the theorem for the case of= 3.

To address the step of the induction, lebe the smallest index for whick; van-
ishes and consider the bage, ap, ..., &, ®it1,...,@n-1}. Note that thena, a) = 0.
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With respect to this basis, the intersection fofm -} is represented by the matrix

Diag(aoal, 0102, ..., O'i_g(fi_j_)
0 —Pi+10i-1 0 0
—Pi+10i-1  Pi+1+ Pit2 —Pi+2 0
® 0 —Pis2 Pir2 + Pis3 —Pis3

0 0 —Pit3 Piy3+ Pita

Consider the second of these two matrix summands. Add theréive multiplied by
—pi+2/(pPi+10i—1) to the third row and likewise add the first column multipliég
—pi+2/(pi+10i_1) to the third column (this simply corresponds to anotherngeaof
basis). Thus we see thd + L* is represented by the matrix

Diag(()'oal, 0102, ..., Ui_zai_l)
Pi+2 + Pi+3 —Pi+3
® [ 0 —Pi+10i-1 :| ® —Pis3 Pi+3 + Pita
—Pi+10i-1 Pi+1+ Pit2 : :

The second summand is metabolic and therefore zel/(®). On the third summand
however can apply the induction hypothesis and we conclbee t

(p(P(p]_, ey pn)) = Diag(aoal, 0102, . - ., O’i_zdi_l)
n—1
® < @ (oj—i—2(Pit2s .-y P)oj—i—1(Pis2, - -, pj+1)))-
j=i+2

It remains to compare this to the result claimed by the thworEor this purpose we
observe that fok > i, the equality

ok(PL -y Prt1) = 01 (P, - -+ Pian)ok—i (Pis2s - - s Prr1)

+0i+1(P1 - - Pi41)Ok-i-1(Pit2, - -y Prt1)
holds. Thus in the event whefn = 0 we get that
ok(P1r -+ -y Per1) = 0i41(Pry - - -y Pitn)ok-i-1(Pit2, - - - Prt):
Therefore, fork > i + 2 we also get

(0k-10k) = (i +1(P1, - - -+ Pis1)’0kciz2(Pit2s - - s PR)Oki—1(Pis2, - - - Prs1))

= (ok-i—2(Pi+2, - -+ Per1)Ok—i—1(Pis2s - s Prs1)),

while of course fork =i,i +1 we get(ox_10k) = 0 € W(Q). This completes the proof
of the induction step and thus of the theorem. [
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Lemma 4.14. Assume that nps,..., p, are all odd with n> 3. Then the deter-
minant of Kp4,..., pn) iS given by

n
detP(py, ..., pn) =D Pr-- P Po =001
i=1

Proof. LetL be the linking matrix (from Theorem 3.3) fdP(ps, ..., pa) asso-
ciated to the Seifert surfacE; and the choice of basi8s as in Fig. 5.

To compute det + £7) we proceed by induction on. Whenn = 3, the explicit
form of £ 4+ £* from Theorem 3.3 shows that dét@- £7) = p1p2 + p1ps + P2ps as
claimed by the lemma. When > 3, let Y, = Yn(p1,---, Pn) denote the matrix + L£*
from Theorem 3.3 but temporarily allowing to also be even. A first row expansion
of detY, with a repeated use the induction argument vyields:

detYn(p1, .-, Pn)

= (P1 + P2) - detYn_1(Pz, - .., Pn) — P3 - detYn_o(ps, . . ., Pn)

= (P1+ P2) - 0n-2(P2, - - -+ Pn) = P5 - 0n-3(P3, - -, Pn)

= (P + P2) - (P2 on-3(Ps, - -, Pn) + Pz~ Pn) — P5-0n-3(Ps, - .., Pn)
= P1-P2-0n-3(Ps,-- -, Pn) + (P + P2)- P3- - Pn

= on-1(P1, - .-, Pn),

completing the proof of the lemma. ]

5. Computations

In this section we use the results from Theorems 1.2, 1.3 a#dtdl explicitly
evaluate the Witt classes of the knots from Examples 1.D-Mle start with an easy
observation.

Proposition 5.1. If K is a knot obtained from Bpy, ..., pn) by a finite number
of upward stabilizationgsee Definition 1.6),then

9(K) = ¢(P(p1, ..., Pn))-

Moreover the signatures of K and @i,..., p,) are the same and there exists an
integer m such thatletK = m?-detP(py, ..., pn).

This follows easily from Theorems 1.2, 1.3 and 1.4 by insipectlt follows even
quicker from observing that the kno8(p, —p, p1,..., Pn) and P(py, ..., pn) are
smoothly concordant (see for example [3]) and thus in paeicalso algebraically con-
cordant. This of course implies that their Witt classes & sgame and in particular
that they have the same signature. Moreover, the determofaatWitt class is well
defined up to multiplication by squares.
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We now turn to a more detailed analysis of the examples froeti@e 1.3. The
numerical data presented has already been somewhat sadgifi relying on the two
relations (2) which we use freely and tacitly throughout.

ExaAMPLE 1.7. LetK;, K, and K3 be the knots

K, = P(21, 13,-17,-15, 12), K, = P(-3,-3,-7, 5, 2),
Ks = P(-3,-5,7,9, 6),
from category (i) in (1) and leK = K1 #K,#K3. Theno(K) = 0 but ¢(K) has order
4 in W(Q). ThusK has topological and smooth concordance order at least 4.
The signatures oK, K, and K3 can be computed by a use of Theorem 1.18 and
are o(Ky) = =2, o(Ky) = 8 ando(K3) = —6 showing thato(K) = 0. The rational
Witt classes ofKq, K, and K3 are
o(K1) = (—34) & (—38) @ (—95) @ (—105 ¢ (182 & (210 ¢ (510510 ¢ (—5607§,
p(K2) = (2) & (6) & (2) & (6) & (30) b (42) ® (105 & (23),
p(K3) = (-30) & (42 & (-3) & (-5) & (-30) & (—42) & (-14) & (-2)
@ (770 & (4686.

Thus, for exampled71(K) = (—1) € W(F;1) = Z4 showing thatK has order 4 in

W(Q). Similarly, d23(K) = (1) € W(IF23) = Z4. As a curiosity we note thalbs oK) =
(1) € W(F2549) = Z> @ Zo.

ExAmMPLE 1.8. LetK; and K, be the knots

K. = P(7, 3,-5, 2), K, = P(-19,-15, 21, 10),

from category (ii) in (1) and leK = K;#K,#K,#K,. Theno(K) = 0 but ¢(K) has
order 4 inW(Q) and therefore also in the topological and smooth concaelamoup.

The signatures oK; and K, are found from Theorem 1.18 agK;) = —6 and
o(Ky) =2 and soo(K) = 0. The rational Witt classes df; and K, are

p(K1) = (-30) & (—42) & (-2) & (-6) & (-2) & (34230,
o(Ky) = (—95) @ (—105 @ (110 @ (33) @ (39) @ (182 @ (210 @ (—450870.
From this one then finds that, for exampbg(K) = (1) € W(F3) =~ Z4 (asd3(Ky) =0

and 33(K2) = (—1)) Likewise, 8163(K) = (—1) € W(]F]_63) >~ Zia while 3113(K) = (a) €
W(F113) = Z, ® Z, wherea € Fy13— 2, is any element.
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ExAamPLE 1.9. LetK be a knot obtained by a finite number of upward stabiliza-
tion from either

K, = P(-3,9,15-5-5) or K,= P(-3,-5,—11, 15, 15),

from category (i) in (1). Then the signature &f is zero, the determinant & is a
square buip(K) # 0 € W(Q). Consequently, no sucK is slice.

Note that according to Proposition 5.1, it suffices to prdwve tlaims for the two
given pretzel knots. From Theorem 1.18 we find

o(K1) =0, detk; =75 and o(Ky) =0, detK; =135
and the rational Witt classes &; and K, are
9(K1) = (6) ® (42) & (—35) & (—5),
w(K2) = (—2) & (—206) & (35535 & (345.
This shows that for each= 1, 2 one obtaing;(K;) = (1) & (1) € W(F3) =~ Z4 and
similarly 95(K;) = (1) & (2) € W(Fs) = Z, & Z, implying that both knots are non-slice.
ExamMpPLE 1.10. LetKi, K, and K3 be the knots
K, = P(21, 13,-17,-15, 12), K, = P(-19,-15, 21, 10),
K3 = P(-15,-7, -7, 13, 11)
from the categories (i), (ii) and (iii) from (1) and I& = K;#K,#K3. Theno(K) =0
but ¢(K) is of order 4 inW(Q).
The signature oK is easily found from Theorem 1.18. The rational Witt classes

of K; and K, have already been computed in Examples 1.7 and 1.8 above vitel
rational Witt class forKs is

o(K3) = (—22) @ (—5698 & (3478 & (260474.

From these one arrives at(K) = (—1) € W(F;) =~ Z4 and alsodie3(K) = (1) €
W(F163) =~ Z4. Both of these shows th& has order 4 inW(Q).

6. Proofs of Theorems 1.11, 1.12, 1.15 and 1.16

This section is devoted to the proofs of theorems listed entithe. We start with
a useful lemma to be used in the subsequent arguments.

Lemma 6.1. Let oo be a prime number and p 0 an odd integer. Write p=
@' - B with | > 0 and gcd(p, ) = 1. Then

0; if | is even

2@ @y o (-0 = | e
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whered,,: W(Q) — W(F,,) is the homomorphism between Witt rings fr@action 2.2.

Proof. Assume for the moment that > 3. If o divides some integek with
2 <k < p then, by writingk = ™ -y with gcd(p, y) =1 andm > 1, we obtain (by
a use of (3) from Theorem 2.4)

B _ (=)@ (y); if mis odd,

9p(((k = Dk} & (kk + 1)) = {O; if mis even.

This line uses our assumption that> 3 so thatp does not divide either ok + 1. Of
course,(—y) & (y) also equals zero iW(Q). This shows that ifp does not divide
p, thend,((1-2) @ --- @ ((p — 1)p)) = 0. On the other hand, if> divides p, say
p=g' B, thenp doesn't dividep —1 so that

0; if | is even,

¥p((1-2)®--- @ ((pP—1)P) = 9 (((P—1)P)) = {(—ﬁ): it 1is odd.

If » = 2 the result follows in the same manner by pairing {Ip 2) & (2 - 3),
(3-4) & (4-5) etc., recognizing that(((2k — 1)2k) & (2k(2k + 1))) = O for every
integerk > 1, and using the fact thap is odd. []

Proof of Theorem 1.11. LeK = P(p,q,r) be a 3-stranded pretzel knot with
p, g, r odd. Recall from Theorem 1.4 that the rational Witt classkois given by

@(K) = (p+a) @ ((p + q) detK),

where deK = pq+ pr + qr. Before proceeding, we first re-write this Witt class in a
more symmetric manner using the relations from Theorem Phls

+a) @ ((p+9)’r + pa(p + q))
@ ((p+a)’r) @ (pa(p + ) © ((p + )" par detK)
a) © (pa(p +a)) & (r) & (pa(p + a)) © (pqr detK)
q) @ (r) © (pqr detK).
We shall rely on both of these representationsp(K).
e Using the first representation far(K) above, it is easy to see that the rational
Witt class ofK is zero precisely when d&t = —m? for some odd integem. Namely,
¢(K) = 0 implies that the signature &€ vanishes and(K) = Sign(p+q) + Sign(p+
q) detK) showing that deK < 0. If detK # —m? for some odd integem, then we

could find an odd primeo that divides deK with an odd power. But thed,,(¢(K)) #
0, a contradiction. Conversely, if d&t = —m? then

o(K)=(p+a) ® (-m*(p+q)) = (p+0a) & (—(p+q)) = 0.
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e Assume now that dé&t < 0 and that there exists a pringe congruent to 3 (mod 4)
that divides deK with an odd power. Let us write dit = 2 +18 and similarly write

p =1, q =26, andr = plB; with gcd@;, p) = 1 = gcd(B, p) andl, ; > 0.
According to the parities of; we have
(I1, 12, 13) = (odd, odd, odd}=> 9a (¢(K)) = (B1) © (B2) © (Ba),
(I1, 12, 13) = (odd, odd, eveny=> 95 (¢(K)) = (B1) @ (B2) © (B1B2P3B),
{
{

tcte

(I1, 12, 13) = (odd, even, everns= 3, (¢(K)) = (B1),
(11, 12, I3) = (even, even, everj= 9, (¢(K)) = (B1B2B3p).
Sincep = 3 (mod 4) we know thaW(F,,) = Z, and so the sum/difference of any 3
generators is again a generator. Thus, in all cage®(K)) is a generator ofV(F,,)
and is therefore of order 4 (the fact tha{K) = 0 follows from the assumption that
detK < 0).
e Consider the case of dét< 0 and suppose that every primecongruent to 3 (mod 4)
divides detk in an even power. For a fixed such primpe write again deK = p? 8,
p="p1, q =Bz andr = 33 with ged(g;, ) = 1 = ged(B, ). Then
(I3, 2, 13) = (odd, odd, odd}=> 95,(¢(K)) = (B1) ® (B2) ® (B3) © (B1B2B3B),
(11, 12, Is) = (odd, odd, eveny=> 9, (¢(K)) = (B1) & (B2),
(11, 12, I3) = (odd, even, everg=> 0, (¢(K)) = (B1) © (B1B2B3B),
(11, I2, I3) = (even, even, every= 3, (¢(K)) = 0.
Thus 9, (¢(K)) is of order 0 or 2 inW(Fy,).

e ¢(K) is of infinite order inW(Q) if and only if o(K) % 0 which in turn occurs
if and only if detK > 0. ]

The following is a slightly more detailed version of Theordni2.

Theorem 6.2. Let K= P(p,q,r) with p,q odd and with r# 0 even. Therp(K)
is of finite order in WQ) if and only if

p+q=0
or

p+q=42 and detK > 0.

The order ofp(K) in W(Q) in these cases is as follows
e If p+ g =0 theng(K) has orderl in W(Q).
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e If p+g==+2anddetK > 0 then dx(¢(K)) = 0 and 9,,(¢(K)) = 9,({2 detK))
for every odd primep. Consequently
—  ¢(K) is of order1 in W(Q) if detk = m? for some odd integer m.
—  ¢(K) is of order2 in W(Q) if and only ifdetK < 0, —detK is not a square
and no primegp = 3 (mod 4)dividesdetK with an odd power.
—  @(K) is of order4 in W(Q) if and only if detK < 0 and there exists a prime
g = 3 (mod 4)dividing detK with an odd power.
Recall thatdetK = pg+ pr +qr.

Proof. From Theorem 1.2 we find that the rational Witt cka@s) of K = P(p,q,r)
is given by

p(K)=(8p:1-2) @+ @ (sp-(Ipl —1)-Ipl)
®(q-1-2)D--- D (g (lal —1)-[q])
@ (—pa(p + q)) ® ((p + q) detK),

wheres, = — Signp), 4 = — Sigr(q) and detk = pqg + pr + gr. From this the
signature ofK is computed as

a(K) = (Ipl = Dsp + (|9 — L)sq + Sign—pd(p + d)) + Sign((p + q) detK).

Thus, if |p+q| > 2 theno(K) # 0 so thatp(K) is of infinite order inW(Q). On the
other hand, if|p + g| < 2, then the signature oK is zero if and only if one of the
next two cases occurs:

e p+qg=0.

e p+q==+2 and deK > 0.

In all other cases(K) is of infinite order inW(Q). If p+ g = 0 then Theorem 1.2
shows thatp(K) = 0 without any condition on de.

Turning to the case op+q = +2 and deK > 0, we first assume, by passing to
the mirror image ofK if necessary, thap + q = 2. By interchanging the roles gb
and q if needed, we additionally assume that> 0. Note that these changes do not
affect the sign of deK. The conditionp + g = 2 implies thatp > 0 andg < 0 with
the exception ofp = 1 = . We single out this special case first. Theorem 1.2 shows
that the rational Witt class oK in the case ofp=q=1is

@(P(1,1,r)) = (-2) & (2 detK).
Thus 32(¢(P(1, 1,r))) = 0 andd,(¢(P(1, 1,r))) = 9,,((2 detK)) for any odd primep.

We proceed by keeping our assumptions- g = 2, p > 0 and consider the more
general case off < 0. Note that the rational Witt class ¢ now takes the form

p(K)=(-1-22@--a((p-1)-p)O(1-2®---&((pP—3)-(P~2))
@ (2p(p— 2)) ® (2 detK)
= {(=(p=2)(p-1) & (=(p-1)p) ® (2p(p - 2)) & (2 detK).
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Let p be a prime number and consider the following cases.
1. lfp>2andp|(p—2), sayp—2=g'-B with gcdp, g) = 1, then

_ [0,((2 detK)) if | is even,
9 (¢ (K)) = {(i(p —1)B) ® (2pB) ® 9, ({(2detK)) if | is odd.

Butif p—2=0 (modg) thenp=2 (modg) andp—1=1 (mod g) so that
(=(p—1)B) ® (2pB) = (—B) @ (48) = (—=B) ® (B) = 0 € W(Fy,).

Therefored,, (p(K)) = 9, ((2 detK)).
2. lfp>2andp|(p—1), sayp—1=g'-B with gcd@p, g) = 1, then

_ [0,({2 detK})) if | is even,
9 (¢ (K)) = {(i(p— 2)B) ® (—pB) ® 9,((2detK)) if | is odd.

But p—1=0 (modg) implies thatp—2 = —1 (mod ) and p =1 (mod ) so that
(—(p—2)B) & (—pB) = (B) ® (—B) = 0. € W(Fy,).

Thus we get again thet,(¢(K)) = 9,((2 detK)).
3. Ifp>2andgp|p, sayp=g'-B with gcdp, B) = 1, then

_|9,({2 detK})) if | is even,
9 (¢ (K)) = {(ﬁ(p— 1)B) ® (2(p—2)B) ® 0,((2detK)) if | is odd.

But p= 0 (mod ) implies thatp—2 = —2 (mod g) and p—1 = —1 (mod g) so that
(=(p=1)B) ® (2(p— 2)B) = (B) & (—4B) = (B) ® (—B) = 0 € W(Fy,).

Thus we obtain once mor&,(¢(K)) = 9,((2 detK)).

4. If p > 2 andgp doesn’t divide either ofp—2, p—1 or p thend,(¢(K)) is trivially
equal t0d,((2 detK)).

5. If ¢ =2, then sincep and p — 2 are odd, it is easy to see that the determinant
detp(K) is of the form (2p — 1))? - B for some oddp. But then d,(¢(K)) = 0 by
definition.

The upshot of this discussion is that

9 (p(K)) = {%((2 detK)); >3,

for all prime integergp. Given this, it is now an easy matter to verify the stated wde
of p(K) in W(Q). For example, if deK = m? then d,,((2 detK)) = 0 for all primes
g and thusp(K) = 0 € W(Q). If there is a primep = 3 (mod 4) that divides de
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with an odd power, therd,, ({2 detK)) yields a generator oWW(F,,) = Z, and hence
o(K) is of order 4 inW(Q). We leave the remaining case as an easy exercise for the
interested reader. O

In preparation for the proof of Theorem 1.15, we state a @uwblauxiliary lem-
mas first.

Lemma 6.3. Consider odd integers,ps,..., pr_1 With n> 3 and let p, # 0 be
an even integer. Lep be an odd prime which doe$mlivide any of p,..., p,_1 and as-
sume thatdetP(py, ..., pn) = £m? for some integer m. Thed),(¢(P(p1,..., pn))) = 0.

Proof. There are two cases which we consider separatelyelgahe case whegp
divides detP(pa, ..., pn) and the case when it doesn'’t. Let us write Bépy, ..., pn) =
¢ -m? for some choice of € {+1}.

Assume firstly thatp is a divisor of detP(ps, ..., pn). By Lemma 6.1 and The-
orem 1.2 we find that

9p(@(P(P1, - - ., Pn))) = p({(—(P1- - - Pn-1) - detP(py, ..., Pn-1)))
@ 9, ((detP(py, - . ., Pn-1) - €)).

Since

(12) detP(py, ..., Pn) = Pn-detP(py, ..., Pn-1) + P1- - Pn-1,

and g divides detP(pa, ..., pn) but does not dividep; - - - pn_1, We see thag cannot
divide pn-detP(py,..., Pan—1). Thusd,(e(P(ps ..., pn))) = 0.

Next, suppose thab does not divide deR(py,..., pn). Write detP(py,..., pn_1) =
© - B for some integed > 0 and someg with gcd, B) = 1. If | is even then
dp(e(P(p1, - - -, pn))) vanishes trivially. Else, ifl is odd, and using (12) again, we
see thate - p;-- - pp—1 IS @ square modulg. Therefore,

dp(P(P(P1, - - -» Pn))) = (=(P1- - Pn-1) - B) ® (e - B)
(—e-B) @ (e-B)
0.

O]

Lemma 6.4. Consider again odd integers, s, ..., pn_1 With n > 3 and let
pn # 0 be an even integer. Legp be an odd prime which divides exaclty one e
{P1,..., Pr_1}). Assume again thadetP(py, ..., pn) = =m? for some integer m. Then

9p(@(P(p1, ..., pn))) =0.

Proof. For concreteness assume thativides p; and that therefore gegh( p;) =
1forall j=2,...,n—1. Since the assumptions and the statement of the lemma are
not affected by replacing?(pa, ..., pn) with its mirror image, we may assume, merely
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for convenience, thap; > 0. The hypothesis d&®(py, ..., pn) = £m? along with
Lemma 6.1 and Theorem 1.2, implies that

Ip(p(P(p1, . . -, Pn)))
= p({(—=(p1— 1)+ p1)) ® o ({(—(P1 -+ Pn-1) - detP(py, ..., Pr-1)))
® 9, ((+ detP(py, ..., pn-1)))-

Since

n-1

detP(py, ..., Pr-1) = Pr- (Z (RN IR pn1> + P2 Po-1s
i=2
we see thatp cannot divide deP(py, ..., pn-1), in fact,

det P(pl ~~~~~ pn—l) = p2 e pn_]_ (mOd 60)

Let us write p; = ' - B for somel > 0 and with gcdgé, B) = 1. If | is odd, then

Ip(@(P(P1, .., Pn))) = (B) ® (=B - P2+ Pr-1-detP(py, ..., Pr-1))
=(8) ® (—B- (P2 Pn-1))
= (B) ® (-B)

=0.

On the other hand, if is even, therd,,(¢(P(pa, .. ., pn))) = 0 on the nose. O
The results from Lemmas 6.3 and 6.4 imply the statement obrgme 1.15.

Proof of Theorem 1.16. We start by finding the linking maifiof K = P(5,-3, 8)
as in Section 3.1. The formulae provided there easily imipht t

~1 -1 -1 -1]0 0o]-1 0O

0 -1 -1 -1|0 0|-1 0

0 0 -1 -1/0 0|-1 0
s_| 0 0 0 -1/00/-10
|0 0o 0 0|1 1|1 o
0O 0 0 0/0 1|1 0
0O 0 0 0|00/ 0 O

. 0 0o o o0 0|1 4]

Pick w =a+ib € S' c C (so thata? 4 b? = 1) and form the matrixA, = (1—w)L +
(1 — w)L". By definition, the Tristram—Levine signature,(K) of K equals the sig-
nature of A,. It is well known that the signatures,(K) are constant away from the
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Fig. 6. The graph of3- Aps 3 g(t).

unit roots of the symmetric Alexander polynomialk (t). We thus turn to computing
the latter.

The Alexander polynomialA (t) = dettY/?L — t=2£7) of K = P(5, -3, 8) is
given by A (t) =t -2t -t +5—-t71 - 2t=2 +- t~2. Its graph is depicted in Fig. 6.
Clearly visible on the graph, the two real rodts of Ak (t) are not of unit norm. The
4 complex roots are approximately

t34 = 0.528853+ 0.269329 and ts s = 1.50147+ 0.764653,

showing that the approximate norms tgfy andts ¢ are

lts.4| = 0.352223 and |ts ¢/ = 2.83911.

Thus Ak (t) has no roots ors* so thato,(K) = o(K) for all w € St. But 6(K) =0
as is easily computed from Theorem 1.18. This implies tKais of finite algebraic
concordance order, cf. [12].

On the other hand, iK were algebraically slice, then we could factai (t) as
f(t)- f(t~1) for some f(t) € Z[t]. This however is not the case. An easy way to see
this is to note that the mod 2 reduction Afi (t) looks like

Ak) =t +t+1+t71+t72 (mod 2)
=@t+ 1+t +t+1+t71+t7%) (mod 2).
Now, t + 1+t~ is irreducible inZ[t, t=1] but t> +-t + 1+ t~1 +t~2 is not divisible
by t + 1+ t~1. Thus Ak (t) could not have factored a(t) - f(t~!) and soK is not

algebraically slice. In fact, using MHEMATICA one finds thatAk (t) is irreducible
over Z[t, t71].
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Finally, the fact thatp(K) = 0 € W(Q) follows from Theorem 1.12 since d¢t= 1,
5+ (=3) = 2 and, as already mentioned(K) = 0. ]
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