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                    SUMMARY 

     This thesis is concerned with estimation problems in 

factor analysis. The paper first specified the random factor 

analysis model and then gave a simpler and more direct proof 

for Anderson and Rubin's theorem on the identifiability of 

parameters. 

     Secondly, the paper reviewed: iterative procedures now 

available and then proposed an algorithmi, the partial~ Gauss-

Newton, algorithme, which can be deal't with both, the least-

squares and maximus liikelihood (ML) methods. AppHed to two 

real data sets, it was shown to. work wetl. The structure of 

improper solutions was clarified analytical~lly for both. MI and 

WLS (weighted Feast-squares) sethods. 

     A Nonte Carlo study was carried out to conpare~ the three 

estimation wethods, SLS (simpte leasjL-squares), WLS and MI. 

11 was-, found that SLS performed better than WLS or MI for a 

small sam,pie size, not exceedi-n-S 30.0. It was, proved in a 

spectat case that all! the three estimatlion, sethods tendedi to 

underestimate the uniquenesses asymptotically. 

     Finally, a new, consistent estimator of the uniqueness 

which can be expressed: as an explicit function of the sample 

covariance matrix was proposed. Applied to real data sets, 

the estimate was shown to be rather close to the ML estimate 

whichis well known to be asaymptotically best.
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                        CHAPTER 0 

                      INTRODUCTION 

      Factor analysis aims to reduce the dimensionality of 

observed multivariate data by explaining the observed inter-

relations among the variates involved in terms of simpler 

relations. The simplification may consist of creating a 

smaller number of latent (unobservable or hypothetical) 

variables, or producing a set of classificatory categories . 

Such an aim is so central to all scientific work that factor 

analysis has become one of the most poputar murttivari ,ate 

statisticat techniques in many/ fields of scientific research, 

as is reviewed in GnanadesikAn and Kettenrina [19841 -

     As a research instrument, factor analysis was developed 

originally by psychologists. Spearwarf, in 1904, be$ "rg in-

terested to prove his psychologilcal theory that all forms of-

intellectual performances spring frow a single general wentat 

capact           developed a proof tlat if a matrix of correlations 

takes a certairt form, then, ther i, niter- re lat . ionships of all the 

variabtes invoived, could be accounted for 15~y a single underl~y-

ing generat ability factor called the common factor, plus a 

factor called the unique factor specific to each performance . 

This mono-factor theory by Spearman [19041 was generalized in 

the next thirty years, principally by Thurstone [19351 , into 

principles for multiple factor analysis. 

     An early theoretical account of the subject was given by 

Anderson and Rubin [19563 and more recent and comprehensive 

treatments are provided by Lawley and Maxwell [19711 and~. 

Okamoto [1986a]



     The application of factor analysis to the real data 

starts off with assuming a statistical model specified by 

parameters to be estimated from the data. The random factor 

analysis model, which is defined in Chapter 1, is the most 

important of all the models for factor analysis. The fixed 

factor analysis model also is important, but it is not dealt 

with in this thesis. 

     The next stage is to estimate the unknown parameters in 

the model under the assumption that the number of common 

factors is known. Among various estimation methods proposed 

so far the teast-squares (LS), and maximum likelihood (ML) 

methods are most popular. We need an iterative procedure if 

we want to use either LS or ML. A great number of computa-

tional algorithms have been described by many authors, since 

Jdreskog [19671 described an, algorithm to determine the ML 

estimates by using the method of Fletcher and Powell [19631 

which is an efficient non-linear Procedure: see Jennrich and 

Rob i nson E 19691 , Jd reskog, [ 1977) Lee and Jennrich [19791 

Lee [19801 and Lee and Poon [19851 anons others. 

     In Chapter 2 we first reviewed these algorithms from the 

points of view of (a) choice of variables, (b) restriction for 

the rotation and (c) optimization method, and then discussed 

a new procedure which was described in Okamoto and lhara 

 [19841 

     When we use an iterative procedure, a solution may be 

obtained on the boundary of the admissible parameter space. 

Such an estimate which corresponds to the above solution is 

called improper solution or Reywood case and various causes of 
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improper solutions have been pointed out by some researchers; 

see Cliff and Pennell [19671 , Pennell [19683 , van Driel 

[19781 , Boomsma [19821 and [19851 and Anderson and Gerbing 

[19841 among others. On the other hand, Jdreskog [19673 

clarified the structure of such an estimate in maximum likeli-

hood factor analysis under the assumption that some unique 

variances are known to be zero. We extended his result to the 

case where the estimates of some unique variances are zero in 

Chapter 2. 

     It is well known that ML leads to asymptotically best 

estimators for large samples. It needs the normality assump-

tion with respect to the distributions of all the variables 

in the model, which has-, been questioned whether to be real-

istic or not, especially In the field of psychology. On the 

other hand, there are some researchers like Wold [19821 who 

favor the least-squares approch which does not necessarily 

need the normatity assumption. Therefore we believe that it 

is worth while comparing the performance of LS and ML for a 

small sample. No exact expression to evaluate the sampling 

error, for instance, variance or mean squared error, has yet 

been obtained and we believe that only the Monte Carlo 

approach will be available from now on. Many Monte Carlo 

studies have been carried out with respect to maximum likeli-

hood factor analysis, but LS seems untried so far, much less 

experimental comparison of LS and ML methods: again see Cliff 

and Pennell [19671 , Pennell [19681 , Boomsma [19821 and [19851 

and Anderson and Gerbing [19841 . lhara and Okamoto [19853 

carried out a Monte Carlo study to compare the three methods, 
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the simple (SLS) and weighted (WLS) least-squares methods 

and the ML method, where SLS and WLS are two most important 

members of a family of least-squares methods and defined in 

Chapter 2. In thara and Okamoto [19851 we used only one 

numerical model, so that we carried out additional experiments 

using a new model in order to make the conclusions obtained in 

lhara and Okamoto [19851 more reliable. 

     In Chapter 3 we first discussed experiments and results 

and then prove from the viewpoint of an asymptotic theory that 

the estimators of uniquenesses obtained by each me.thod,, SLS, 

WLS or ML, tend to be negatively biased. This tendency for 

WLS was first indicated by kreskog and Goldberger [19721 and 

after that Boomsma [19821 and [19851 and Anderson and Gerbing, 

[19841 found in their experimental studies that the ML esti-

mators also had such tendency. However, as far as the author 

is aware, any analytic approach has not beenr attempted until 

present. 

     Both the LS and PtL estimates are determined as a solution 

of simultaneous non-linear differential equations, so that we 

can not express the estimates as explicit functions of the 

sample covariance matrix S . In Chapter 4 we proposed an 

entirely new estimators of uniquenesses which can be expressed 

as explicit functions of S and hence can be obtained without 

using any iterative procedures. 

     Chapter 2 is mainly based on Okamoto and lhara [19841 and 

Ihara [19861 and Chapter 3 on lhara and Okamoto [19851 and 

Ihara [19851 The contents of Chapters I and 4 consist of 

Ihara and Kano [19861 
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                CHAPTER I 

        SPECIFICATION OF FACTOR ANALYSIS MODEL 

1.1 DEFINITION OF MODELS 

      In a random factor analysis model an observable random 

vector x of p components is usually represented in the form 

                 x = it + A f + e 

where it is a f ixed vector of p population means , A is a 

f ixed p x k matrix of factor loadings, f is a random vector 

of k ( k < P ) common factors and e is a random vector of p 

un,ique factors (or unique factors plus specific factors) 

We assume that E ( f = 0, E f f ) = I, E ( e ) = 0, 

E ( f e ' ) = 0 and E e e = T, diagonal and non-negative 

definite matrix. Then the covariance matrix Z Of X is 

                  Z = AA' + IP (1-2) 

from, (1.0 and the above assumptions. 

     Let us wr i te Z ( a i j ) , A = ( A i r ) and AP 

  8 j 0 i ) , where 6 stands f or Kronecker's de I ta Then 

from (1.2) we have 

k 
                 z r 2 + (1-3) 

                     r=1 

for each i 0 1, p) In the terminology of factor



analysis, the proportion of the first term in the right-hand 

side of (1-3) to the left-hand side 

k 
           hi i = Z A i r 2 / CF i i 

                     r=1 

is called the communality of the variable x i and the quantity 

I - hii the uniqueness, whereas is called a unique vari-

ance of x i -

     There are problems about the model (1.1) , such as what 

covaiance matrix Z can be represented by (1.2) for a given 

k and, if there is such a representation, what restrictions 

shall be put on A and IV to make them unique. In the way of 

statistical inference, there is the problem of estimating A 

and W, from a set of observations on x ; the principal factor 

analysis method is the simptest, while the teast-squares and 

maximum likelihood methods are most popular. Another problem 

is to test whether k is a given number and thus decide what 

number k is. The above problems with respect to the model 

are discussed in the following sections, whereas the estimat-

ing problem is discussed in the following chapters. However, 

the problem about the number k is nottreated in this thesis. 

1.2 IDENTIFICATION PROBLEM 

     Among various problems with respect to the model, the 

most important problem may be what covariance matrix Z can 

be represented in the form of (1.2) ; given a p x p positive 
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definite matrix Z , can it be expressed as AA' + A119. 

However, since our main subject i,n this thesis is to compare 

the performance of estimation methods in factor analysis, we 

shall no more consider the problem. 

     On the other hand, when we want to construct a numerical 

model in a Monte Carlo study, it is the most important problem 

to confirm whether the population covariance matrix Z can be 

expressed uniquely as A A ' + IP or not, so that we need 

consider the problem what restrictions shall be put on A and 

qf to make them unique. This is called the identification 

problem and various conditions have been proposed so far by 

many authors: see, for example, Albert [1944a] and [1944b] 

Anderson and Rubin [19561 , Tumura and Fukutomii [19681 , 

Tumura and Sato [19801 and [19851 Williams [19811 and Kano 

[19861 . Here we will present only a condition called 

Anderson and Rubin's sufficient condition [19561 on the iden-

tifiablity, for which we develop the proof by thara and Kano 

[19861 because it is a simpler and more direct proof than 

that provided by Anderson and Rubin [19561 . 

     THEOREM 1.1 (Anderson and Rubin [19563 

     When any row vector of the matrix A in (1-2) is deleted, 

if there remain two disjoint non-singular submatrices of order 

k then the matrix q; is uniquely determined. 

     PROOF. It is sufficient only to prove that the 0 , can 

be uniquely determined from the matrix Z . 

     Partition the matrices Z , A and q, as follows: 
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Substituting 

(1.2) , we

the 

have

E , A and 41 i n the form of (1-4) into

a II = A I A I
P + tb 

I , a 1 2 = X iA2 ' ,

(1.5)

aa, = AaA i .. and Z 32 = A3A2' -

Under the assumption we can suppose 

A2 and A3 are non-singular. Using

that 

the

the two submatrices 

non-singulality of
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the matrix Z 32 = A3A2 ' and relations in 1.5) we have 

      9 12 Y- 32- ' 9 31 1 A 2 A3 A 2 -IA3A i 

Substituting this into a i i A 1 A i ' + 0 1 yields 

                             (F 1 1 9 12 Z 32-1 CF 31 - (1-6) 

     Now, let Z =AA'+1V =AA'+V, and partition A 

and, V into the sase fashion as irt (1-4) Then the 

noni-singularity of the matrix 2: 3 2 = A3Az' leads to that of 

the two s-uhmair I ces A 2 and A 3 Thus we Can obta i 0 V, 

by going along the same, lines as the derivation of (1-6) 

This completes the proof. [Q-E-D1 

1.3 ROTATION OF FACTORS 

     Suppose that given a p x p positive definite matrix E, 

we can express it as A A ' + W and the T is unique. If the 

number of common factors k is equal to 1, then A reduces to 

a column vector of p components. It is unique, apart from 

a possible change of sign of all its components, which 

corresponds merely to changing the sign of the factors. Such 

sign changes are merely trivial and we shall ignore them 

through this thesis. 

     Whe n k > 1, there is an infinity of choices for A For 

equations (1-1) and (1.2) are still satisfied if we replace 

f and A by Tf and A T' , respectively, where T is any 
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orthogonal matrix of order k . In the terminology of factor 

analysis, this corresponds to a rotation of the factors . 

To eliminate the indeterminacy of the solution A due to the 

arbitrariness of the rotation, we need to put a restriction 

on A . Among various restrictions proposed so far we shall 

use the restriction that 

     For a given positive definite matrix R of order p 

     A ' B A is a diagonal matrix . 

For other restrictions see Anderson and Rubin [19563

-10-



                      CHAPTER 2 

       COMPUTATIONAL ALGORITHMS FOR FACTOR ANALYSIS 

2.0 GENERAL REMARKS 

     In this chapter we first review computational algorithms 

which are available for determining either the LS or ML esti-

mates of the factor loading matrix A and the unique variance 

matrix %P, and then discuss a new algorithm which was proposed 

in Okamoto and lhara [19843 

     Suppose that a random sample x X n is drawn 

from a population according to a random factor analysis model 

and the probleo is to estimate the unknown parameters In the 

model, 1i , A and W under the assumption that the number of 

common factors is known. The population mean # can be easily 

estimated by the sample mean so that our probiew is only to 

estimate (A %P by using the sample covariance matrix S -

This is usually accomplished by minimizing a suitable function 

which measures the degree of descrepancy between S and the 

population covariance matrix 2;; that is, the estimates (.;~ j ) 

are determined as a solution which minimizes the function 

subject to the condition (1.2) . Since the derivatives of 

the function are usually non-linear with-respect to (A 1P 

we need an iterative procedure in order to obtain the solution 

             Therefore, we first review computational algor-

ithms proposed so far. 

     The principal factor analysis method is the simplest 

of all. This method is obtained by applying the notion of 

principal component analysis to factor analysis. It is 
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well known that in difficult situations the iterative process 

needs a great number of iterations before attaining the 

convergence so that a prescribed number gives rise to stop the 

iteration earlier for other stopping criteria. Such a dis-

advantage is seen also in the iterative methods described by 

Lawley [19401 and Hemmerle [19631 to obtain the ML estimates. 

     Jdreskog [19671 was a breakthrough which presented an 

efficient algorithm to determine the ML estimates. Three 

more papers dealing with the subject appeared after it: 

Jennrich and Robinson [19691 , Clarke [19701 and Lee and 

Jennrich [19791 - On the other hand, after Harman and Jones 

[1966) described an algorithm called PIINRES (itinimizing re-

siduals) for a least-squares method, there appeared five more 

algorithms to deal with a family oi least-squares methods: 

Derflinger [19691 and [19793 , Jdreskog and Goldberger 

[19721 , Jdreskog [19771 and Okamoto and lhara [1983b], 

They may be reviewed from the following points of view. 

      (a) Choice of variables. There are two choices for the 

variables in which the iteration proceeds: 41 or (A and T ) -

For the former case, only the diagonal elements of W are used 

in the iteration, whereas for the latter case all elements of 

%P jointed with A are used. 

     (b) Restriction on A . As a positive definite weight 

matrix B in Section 1.3, Jdreskog [19671 , Clarke [19701 and 

Jdreskog and Goldberger [19721 chose B = 4f Derf linger 

[19691 used B = I and Jennrich and Robinson [19691 adopted 
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B = S-1 for thefirst time. 

      (c) Optimization method. As an algolithm to maximize 

the likelihood function, Jdreskog [19671 used the method of 

Fletcher-Powell [19631 which is generally called the Davidon-

Fletcher-Powell method (in short DFP) Jennrich and Robinson 

[19691 , Derflinger [19691 and [19791 Clarke [19701 and 

kreskog and Goldberger [19721 used the Newton-Raphson method 

(NR) which needs second order derivatives. Lee and Jennrich 

[19791 used the Gauss-Newton method (GN) and stated that the 

performance of GN is better than that of NR. In maximum like-

lihood context, GN is usuatly called Fisher's scoring method 

in the statistical community. On the other hand, the algor-

ithms used by Harman and Jones [19661 and Okamoto and lhara 

[1983b] are the Gauss-Seidel method (GS) and the method of 

Marquardt [19631 , respectively. 

     The algolithm described by Okamoto and lhara [19841 is 

characterized by the triplet (%P,W GN) in order to (a) , (b) 

and (c) withW = S-1 or= D~-2, where DS-2 =(D.2) -1 

and D s2 is a diagonal matrix whose diagonal elements are the 

sample variances of the observed variables. These considera-

tions are summarized in Table 2.1. 

2.1 LEAST-SQUARES AND MAXIMUM LIKELIHOOD METHODS 

     In the least-squares approach in factor analysis it is 

required to determine the value of (A %P) which minimizes 

the function 
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I 
       L ( A , IP - tr S W 2 (2 -1) 2 

subject to the condition (1.2) where W is a positive defi -

nite weight matrix of order p. 

      Choices of W give rise to a family of least-squares 

methods and two most important members of the family are the 

simple (SLS) and weighted (WLS) least-squares methods which 

correspond to the choices W = D ~-2 and W = S -1 respective-

ly. On the other hand, the maximum likelihood method (ML) 

attempts to maximize the likelihood function or equivalently 

mininize the function 

        M ( A W = tr ( S -1 Z log I S Z P (2 -2) 

again subject to the condition (1.2) , where we need the 

normality assumption with respect to the distribution of the 

observable variables. 

     Let us use the letter F in general to mean either the 

function L or M. Lee and Jennrich [19791 considered to mini-

mize the function F ( A %P ) with respect to ( A T ) directly 

by using the Gauss-Newton method. Here the minimization of 

F (A W is done in two steps, as was initiated by Jareskog 

[19671 

     First F is minimized with respect to A for given AP. 

The minimizer A (W) is determined by the equation 

          F A = 0 (2-3) 
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Then the function

G ( T ) = F ( A ( lp ) , P ) (2-4)

is minimized 

    Since

w i t h respect to %P.

aL / aA = -2W (S - Y- ) WA,

a N / aA = -2E -1 (S - Z ) Y- - I A

( see 

tion

9 

(2

e.g. , 

.3) i

equations 

written

(8) 

as

and (9) in Ij reskog E 19771 ) ,equa-

(S - 2: ) WA = 0 (2-5)

with W = Ds-21. S-1 and Z-1 for SLS, WLS and ML, resecp-

tiveiy. 

     Now, equation (2-5) for W Z-1 is shown to be equiva-

lent to equation (2-5) with W S-1 (see, e.g., equation (6) 

in Jennrich and Robinson [19691 so that we have

W = D !3 - 2 f o r SLS,

(2-6)

= S -1 f o r WLS and ML

as far as equation (2-5) is concerned.

_15-



     Substitution of (1-2) into (2 .5) yields 

           S AP ) W A = A A W A 

or equvalently 

W 1 12 ( S qF W 1 12 (W 1 /2A Wl-2A (A '* WA) (2 -7) 

To eliminate the degree of freedom of the rotation for A , we 

can postulate that 

          A ' WA is a diagonat matrix, 

which was explained in Section 1 .3. Then (2-7) means that 

diagonal elements of the matrix A W A are eigenvatues of 

the matrix 

         W112 ( S - q1) W112 S say 

whereas column vectors of the matrix Wl-2 A are eigenvectors 

of S*- If we denote by Fi the diagonal matrix determined by 

the k largest eigenvalues of S* and by ,V, the p x k matrix 

with the associated orthonormal eigenvectors as columns , then 

                         A = W-1/2V,1'11.12. (2 .8)

-16-



  2.2 PARTIAL GAUSS-NEWTON METHOD 

        We shall first develop a general methodology and later 

   discuss the three particular cases, SLS, WLS and ML. Before 

  attempting minimization of the function G (111) in (2-4) , let 

   us change the notations. Let A be the pk x I vector consist-

   ing of all elements Air of A (i = 1, p; r I . . . . 

   ,k) and 0 be the p x I vector of diagonal elements of 

   q/ (i = 19 . . . . p) Instead of F A ( %P W ) A xP 

  and G (4r) , we write F A 7, and G 

   respectively. 

        Assume that we need an interative procedure to minimize 

  G For each cycle of interations, let 0~ be an initial 

  value and A 0 an increment of iP minimizing G (zP ) approxisa-

  tely, which will be determined later. Corresponding to A 0 , 

  the function X (iP increases, up to the first order, by the 

   increment

where J = A A / A A 

matrix called Jacobian matrix. By Taylor's ex 

the second order we have 

G + F A + + Kb 

F 
              F X + 

                 1 2 F 
+ 
              2 Z)

(2-9)

  is a pk x p 

  pansion up to

F 

     2F

-17-



                          j) 2 F 3 2 F 
            + - - - - Alp +AX, 

                       a X a 0 ' a A 

Jijreskog [19771 used the Newton-Raphson method to minimize 

C. (0 + A 0 ) , whereas we use the Gauss-Newton method . As 

was shown in Lee and Jennrich [19791 it is equivalent to 

approximating the matrix 

                   F -I 
                      2 F 2 F 

                     2 F 2 F 

L 

by its expectation, which will be denoted by 

F 
                         U I I U 12 

U 

                         U 21 U 22 
L 

Thus, using (2-3) and (2-9) the last expression of 

G + A can be approximated by 

  G + A g + H (2.10) 
2

_18-



where g and H are the gradient vector of F and pseudo 

Hessian matrix of G defined by 

         aF 
                and H = U I I + U 12 J + J ' U 21 + J ' U 22 J 

          Ek 0 

respectively. The expression (2.10) is minimized at 

                                     -H -1 

provided that the matrix H is positive definite. Thus, we 

need the vector g and two matrices U and J in order to 

determine the increment A 0 by (2-11) . This method was 

called the partial Gauss-Newton method in Okamoto and lhara 

[19841 , since the Gauss-Newton method is applied only to 

the parameter not to the whole parameters (A + as in 

Lee and jennrich [19791 In case the iteration should di-

verge, a suitable constant multiple of the unit matrix might 

be added to H in (2.11) by the up-and-down Marquardt 

algorithm described in Okamoto and lhara [1983a] or [1983b] 

     Now, we turn to the particular cases, SLS, WLS and ML. 

From relevant expressions given in Lee.'and Jennrich [19791 

Section 6 and (3.5) elements of g U11, U21 and U22 can 

be written as 

         g i = EW Z S ) W3 

           U j W i j 2, 

                                    _19-



         U A j) 2W i j (W A) j,, 

         U A X it) 2W (A' WA) 

                         + 2 (W A) it (W A) j,, 

for i, j = 1, - p; r, t = 1, - - , k, where the symbol 

Aii stands for the O,j) element for any matrix A and 

W = D -2, S -1 and Z -1 for SLS, WLS and ML, respectively. 

It is noted that the matrix U for ML is twice the Fisher 

information matrix per sample element. 

     Ve have f inally to calculate L e t r i 

be the eigenvalues of the matrix S and let V he the orthog-

onal matrix of order p with the associated orthonormat eigen-

vectors as columns. Then it will, be shown in Appendix that 

the elements of J are given by 

  11 r 

p 
=r 1-, 2 E ( T t - T r) W 1-12 V it W 1,,2 V it W 1 ,2 V ir 

     t= I 
    t# r 

- - r r- 1,'2 (W-l-,2 V ir E (W1,2 V jr j 2, (2.12) 
2 

where W D 2 f or SLS and W = S - I f or WLS and ML by 

(2-6) 
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2.3 COMPARISON OF PERFORMANCE 

      We want to see how efficient the new method is in ana-

lyzing the real data as compared with the Newton-Raphson 

method. Let us use the two data sets from Rao [1956, P-1101 

and Harman [1960, p.3731 which were used by jennrich and 

Robinson [19691 to evaluate their algorithm based on the 

Newton-Raphson method. 

     The iterative processes for these data are shown in 

Tables 2.2 and 2.3, where the solutions obtained by Rao and 

Harman were chosen as the starting values in each case . The 

terms RMS (g) and RMS (A denote the root mean square of 

the components g i "s and "s, respectively. The stopping 

rule of iterations was that at least one of then is less than 

10-*. The A i's are defined to be square roots of the 0 i's. 

     The new method is readily seen to be very efficient by 

comparing these tables with Tables I and 3 in Jennrich and 

Robinson [19691 - It has also another advantage as follows. 

Starting fro* Harman's solution A 8 = 0.451, they failed: to 

attain the convergence but we arrived at the same solution as 

before at the seven cycle, only one cycle more than in Table 

2.3. 

     The superiority of the partial Gauss-Newton method to 

the Newton-Raphson method was anticipated by us, since the 

direct Gauss-Newton method due to Lee and Jennrich [19791 was 

found better than the Newton-Raphson method.
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2.4 STRUCTURE OF IMPROPER SOLUTION 

      As we can see in Tables 2.2 or 2.3, sometimes we arrive 

at a solution (,&,+ ) in which some diagonal elements of + 

are zero. Such a solution which is obtained on the boundary 

of the admissible parameters space is called improper 

solution or Heywood case. Many Monte Carlo studies have been 

carried out in order to investigate causes of improper solu-

tions in maximum likelihood factor analysis. Jdreskog [19673 

attempted to clarify the structure of such a solution in maxi 

mum likelihood factor analysis and obtained a structure under 

the assumption that the first m (:-!:-: k) uniquenesses are equal 

to zero. 

     In this section we extend his result to the case where 

the estimates of the first m k) uniquenesses are equal to 

zero. 

    THEORK 4.1 (Ihara [19861 

     Assume that the first m (;9i k) diagonal elements of the 

matrix + , the ML estimator of,'P,, are equal to zero and 

part i t i on the matr i ces S the ML est i mator of A , and 

as follows: 

                    F F -I 

                I sil S12 m Ali A12 m 

S 

               I S21 S22 p-m &21 &22 p-m 
                L L j 

                        m p-m a k-m 
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               0 0 

   and (2-13) 

                     0 ~Y 2 P-M 

                          m P-M 

Then the ML estimators obtained under the restriction that 

    S -',& is a diagonal matrix are given as follows: 

      (a) the submatrix &,2 becomes zero, 

       b) the two submatr i ces & i i and k 2 1 are deterai ned by 

                  ,& i i = S i i Q andi ~& 21 = S 21 Q , (2-14) 

        where Q is an m x m matrix such that Q Q S 

        and 

      (c) the two submatrices &22 and i 2 are determined as 

          a solution which minimizes the function 

            M* 2 2 , 2 tr S22 - 1 2 22-1 ) + I og                                                                           S2 2 - 1 2 2 

                  (p

subject to 

where

the condition Z 22 = A22A22' + 'P2,
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    PROOF 

values of 

by V the 

vectors as 

by

S 22 -1 = S 22 - S21 S

. Let di :-5 . :5 

the matrix S-1-12j S -

p x k matrix with the 

columns. Then the k

I I-' S 12 -

dk be the 

l,'2 ( = N 

associated 

 in (2.5)

k smallest eigen-

  say) , and denote 

orthonormal eigen-

is shown to be given

           S 1 2 V D) (2 -15) 

where D is a diagonal matrix consisting of the di's . See, 

for example, (60) in Jdreskog [19771 . 

     Partition the matrices D, V, S--2L and S -2L as follows:

D =

F ' -1 
 Di 0 

 0 D2 
L 

        k-m

0

k-m

91 V (VI, 

a

V 2) 

k-w

(2.16)

S -1/2 =

F

Ail A 12

-I

' A2i A22 
L 

   m P-0

m

P-M

and S 1 -2 "-

F

L

B it B 12

--I

m

B2 1 B22 p-m 

 0 P-2

Then f rom the assumption we have
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                      N Vi = ViDi = 0 (2-17) 

and 

                      N V2 = V2D2-

     Premultiplication of (2-17) by the matrix B 21 , B 22) 

and then by 2-1 leads to 

                 (A 2 1 , A 2 2 ) V 1 0 

which implies that the matrix V is represented as 

                V i = ( B i i , B 21 ) Q (2.19) 

with an m x m matrix Q . Substitution of (2-19) into 

Vi' V, =1 and then using (Bli' B21'* ) (Bli' B21' 

= S 1 1 Y i e I ds Q Q ** = S 1 1 - I - . Thus we have ( b) f rom 

(2.15) , (2.16) and (2.19) . 

     On the other hand, premultipling (2.18) by (B ii, B 12) 

and then using (Bil, B12) (A12' A22** 0, (2-15) 

and (2.16) , we obtain (a) . 

     The ML estimator + is then given by 

                          F -I 
                     S11 S 12 

                                                      (2-20) 

                    S 21 S 21 S 1 1 S 12 + j 22 
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Partition S -1 and ~ as

S -1 =

f-

Sil

I S 21 
L

S 12

S 22 

P-m

-I

m

P-m

and

F

L

  2 1

0

  1 2 

  22 

P-M

m

P-M

Noting that S22 

respectively, we

and 

can

i 22 are 

show that

equal to S 22 - 1 -1 and ~ 22-1 ,

L-

I

0

S11- ' 12

  22

( I - S 22- 1 -1 ~ 22)

. 1-1 ~ 22

-I

I
I

and

     tr S tr S 22 -1 22 22-1 

Using these results at the function M in (2-2) reduces M to 

the function M* and we obtain (c) [Q.E.D.] 

     Now, the generalized least-squares estimators 

are defined as a solution which minimizes the function

GL (A, W )
I 
 -tr 

2
(S - Z ) S -1] 2
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subject to the condition 

given j is represented 

estimator & in (2.15) 

by going along the same 

theorem.

(1.2) and thus the 

as the same form as 

  Therefore we can 

lines as the proof

solution & for 

 that of the ML 

prove the following 

for the first

are 

(2 

by

 THEOREM 4.2 (Ihara [19861 

  Assume that the first m (:-!-I- k) 

zero and partition the matrices 

.13) Then the submatrices

diagonal elements of ~-

S , Jk and j simi larly as 

91 &,2 and K 21 are given

~L 11 = S I i Q and JAL 2 1 = S21 0

respectively, Q being an m 

and the two submatrices &22 

solution which minimizes the

x m matrix such as Q Q 

 and i 2 are determined 

 function

  = S 

as a

1 1 - I ,

GL* ( A 2 2 , 41 2 )
I 
 -tr 

2
( S 22 . I - Z 22) S 2p_ 1-1 ] 2

I

subject to the condition Z 2 2 = A 22A2-2 " + 4F 2 -

2.5 CONCLUDING REMARKS

that 

than

it 

the 

the

was found in the aspect of computational performance 

 Gauss-Newton method, partial or direct, is better 

 Newton-Raphson method. Moreover, it will be found at
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the next chapter that SLS is better than WLS or ML at least 

for a small sample size, not exceeding 300. 

     The author believes that these two findings result from 

the same reason that a simpler method performs better than a 

more complicated method does. In fact, for the former issue, 

the Newton-Raphson method utilizes second order derivatives 

and hence is more complicated than the Gauss-Newton method 

which does with only first order derivatives. For the latter 

issue, the weight matrix W = D r,-2 used in SLS is far simpler 

than the we i ghts W = S or Z - I wh i ch appear f or WLS or ML. 

The more complicated a quantity is, the more sensitive it 

seems to be to random fluctuations at earlier and unstable 

stages in an iterative process. 

     An application of the up-and down Marquardt algorithm 

described by Okamoto and lhara [1983a] or [1983b] to the 

partial Gauss-Newton method is advised for a practitioner of 

factor analysis in dealing with only one sample, since it may 

be more likely to lead to a proper solution with a moderate 

loss in computing time. 

                       APPENDIX 

            Calculation of the Jacobian matrix 

     In order to prove (2-12) , we generalize the argument in 

Jennrich and Robinson [19691 which dealt with only the maximum 

likelihood method. Def i ne K = W -2L and 17 =diag(?-,, r 2 

       r the eigenvalue matrix of the matrix S 
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Then I- and 

equations

the matrix V are determined by the simultaneous

K ( S - q/ ) K V = V F ,

V, V = I

as 

and

functions of AP. 

 V , respectively,

Let A I' 

 when AV

and AV 

increases

he 

by

the increments of F 

A 41 . Then

K ( S - 4F - A AP ) K ( V + AV ) = ( V + A V ) (r + Ar )

(V + A V )   (V + AV) = I -

Def i Ding 

that

AQ = V ' - A V , we have f rom the f irst equation

(A Q ) tr = ( r t - T ') p 
E 
j=l

- I ( K V ) jt ( K V ) jrAoj, ( t* 
(A-1)

A 'r
p

( K V ) j , ] 2 A 4) j (r = 1, - . . p) (A.2)

and from the second equation that

(A Q ) rr = 0 ( r = I, . - . p) - ( A-3)
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The relation AV V -AQ, which is equivalent to the 

definition of AQ yields that 

p       A V 
Z V A Q ) t for any m and r. (A.4) 

                     t=1 

Expression (2-8) or A K-IV 11' 11~2 implies that 

I              A 
A = K -I (AV, - Ill .12 + - V 1 f' 11 12 - A I' I 

2 

or elementwise 

p    A 
A Y- ( K - I A V + - V m r ?- r I x2A r I 

             M=I 2 

Using (A.1) through (A.4) , we obtain 

p 
   A i r Z ( K i Y V Mt 1 .12 t r -1 

         M=I t# r 

          Z ( K V ) j t ( K V r 

I 
                - V r 7- r 2 Z K V r 2 
2 
             2 r t 1, K - V ) i t K V j t K V 

           1/ 2 ( K - I V r K V ) j r 2 j 
2 

This implies (2.12) [Q.E.D.] 
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                       CHAPTER 3 

    EXPERIMENTAL COMPARISON OF LEAST-SQUARES AND MAXIMUM 

           LIKELIHOOD METHODS IN FACTOR ANALYSIS 

3.0 GENERAL REMARKS 

      In this chapter three popular methods to estimate the 

unknown parameters in the factor analysis model , the simple 

 (SLS) and weighted (WLS) least-squares methods and the max-

imum likelihood method (ML) , are compared by a Monte Cairo 

study. 

      The most popular estimation methods in factor analysis 

way be ML proposed by Lawley [19401 under the normality 

assumption and the generalized least-squares method (GLS) 

being equivalent to WLS,by Jdreskog and Goldberger [19721 

For it is well known that ML leads to asymptotically best 

estimators for large samples and it is shown by Jareskog and 

Goldberger [19721 that under the normality assumption the GLS 

estimators have the same asymptotic properties as the ML esti-

mators. Here there are two problems . One problem is that 

the situation where the sample size is infinitely large is 

only hypothetical so that the actual sample size is always 

finite and usually less than a few hundreds . Another problem 

is that the normality assumption has been questioned in ana-

lyzing the real data whether to be realistic or not . In such 

circumstances, the computatinal simplicity may change to the 

good performance for small samples and thus SLS which is 

asymptotically less efficient than ML or WLS way perform most 

favorably for small samples. Therefore the author believes 
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that it is worth while comparing the three estimation methods, 

SLS, WLS and ML. 

     We used the following three criteria to compare these 

three methods. The first criterion is the frequency of 

occurence of improper solutions or nonconvergent solutions. 

The second is the number of iterations before attaining the 

convergence and the third.is the estimation error of the 

solution from the true value of the parameters. It is very 

difficult to deal with any of these criteria analytically. 

No exact expression to evaluate the sampling error, for 

instance, variance or mean squared error, has yet been ob-

tained. Thus we have decided to carry out experimental 

comparison in terms of these three criteria. 

     In thara and Okamoto [19851 we used only one numerical 

model based on Emmett's data [19491 so that we carried out 

an additional experiment to make the conclusions in thara 

and Okamoto [19851 more reliable. 

3.1 ALGORITHM 

     We want to compare the three estimation methods, SLS, 

WLS and ML, so that as an algorithm for-the least-squares 

and maximum likelihood methods, we adopted the partial 

Gauss-Newton method presented by Okamoto and lhara [19841 

which replaces the Newton-Raphson, method used in Jdreskog 

[19771 by the Gauss-Newton method which performed well in 

Lee and Jennrich [19791 

     As is shown by Krane and McDonald [19781 , the three 
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estimation methods are scale invariant so that there are two 

situations in estimating the parameters (A 4f) which satis-

fies (1.2) according as Y_ is a covariance matrix or a 

correlation matrix. In the former case, the equation (2.5) 

to determine A (40 is given by 

                       S - 2: ) W A = 0 

where S is the sample covariance matrix and W equals D s-2, 

S -1 and Z -1 for SLS, WLS and ML, respectively. In the tat-

ter case, A ( T ) is determined by 

                       R - Z ) WA = 0 

where R is the sample correlation, matrix and W = I , R 

and Z-1 for SLS, WLS and ML, respectively. We applied the 

partial Gauss-Newton method to the function G in (2-4) 

using the sample correlation matrix. 

     If a cycle in the iterative process assigned a negative 

value to some component of uniquenesses (Heywood case) , we 

forced the solution to be proper by shortening the increment 

of the estimate in the cycle so that the new point would lie 

on the boundary of proper solutions and then continued the 

iteration. 

     As an initial value of AP at which iterative computation 

starts, we adopted SMC (squared multiple correlation) due to 

Guttman [19561 which is used in many studies including Okamoto 

and lhara [1983b] The stopping rule of the iteration was 
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that either the number of iterations exceed 30 or 

           m i n ( RMS ( g) , RMS ( A qf ) ) < 10- 4 

where RMS stands for the root mean square of the com~ponents 

of a vector, g. and A AV denoting the gradient vector and the 

successive difference of the diagonal elements of W , respec-

tively, in the iteration process. 

3.2 SPECIFICATION OF THE EXPERIMENTS 

     There are two major factors which are likely to affect 

experimental results; the sample size and the uniquenesses or 

communalities. We treated three levels of the sample size , 

100, 300 and 1000 as representatives of small, moderate and 

large samples and two levels, small and large, for the 

uniquenesses defined later. 

     It is an intriguing problem to decide upon the population 

model to be used in a Monte Carlo study. In lhara and: Okamoto 

[19851 we thought that in order that a comparison based on a 

single numerical model would be convincing enough, the model 

should be familiar to readers. After looking through the 

literature, we found that Emmett's data [19491 with p, = 9 is 

referred to most frequently so that we adopted it as a numer-

icat model, Model 1, which provided the basis of our experi-

ments. 

     By rounding the maximum likelihood estimate & from 

Lawley and Maxwell [1971, P.421 , where the number of common 
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factors is assumed known to be 3, to the nearest tenth we set

          0.7 0.7 0.5 0.8 0.7 0.8 0.7 0.4 0.8 

A 04.3 0-2 0.3 -0.3 -0.3 -G-4 0.4 0.3 G. 4 

            0.1 -0-2 -0.2 -0.1 -0.2 0.1 -0.1 0.5 0.0

in thara and Okamoto [19851 . However, the entries at two 

cells (1,8) and (3,4) differ from the exact rouding by 0.1. 

This modification was done deliberately to treat these cells 

differently from almost same values at the cells (1,3) and 

(3,9) , respectively. It is noted thatA i satisfies Anderson 

and Rubin's sufficient condition on the identifiabil1ty. 

(See Theorent, 1.1 in Chapter 1.) The condition that every 

population, variance is unity leads to the unique variance 

matrix

AP i =d i ag (0.41, 0.43, 0.62, 0.26, 0.38, 0.19, 0.34, 0.50, 0.20)

and hence the population correlation matrix becomes

       A 1 A i ' +- +1

The unique variance matrix varied with two jr evels, small and 

large. The smaller level was defined by xPi mentioned above, 

whereas the larger level was defined by 

XP2=diag (0 .54, 0.56, 0.71, 0.41, 0.51, 0.34, 0.47, 0.57, 0.35)
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which was obtained from A 2 by replacing the first row of the 

matrix A i' by 

           (G-6, 0.6, 0.4, 0.7, 0.6, 0.7, 0.6, 0.3, 0-7) 

which, is smaller than the original row by 0.1 componentwise. 

The corresponding correlation matrix is defined by 

                          Z 2 A2A2' + +2 

similarly as for Z1. 

     As a second model, Model 2, we adopted a loading matrix 

           F -I 
         a a/wQ a / F2 a/2 

A a/.R a/2 a a/ J2 a / J.-2 a/2 

                                  a / ko a/2 a / r,- a / 2 J2-
       L j 

with (p,k) = (10,3) which was obtained by modifying the model 

with (p,k) = (15,4) due to Cliff and Pennell [19673 princi-

pally in reducing the value of k. They chose two values of 

the parameter a, 0.9 and 0.7, to represent two levels of the 

unique variance matrix, sm,att and large, respectively, which 

will be denoted by W, and IV2 sinilarly as for the first 

model. Instead of the exact value of a/,r,- for a = 0.9 and 

0.7, however, their approximations 0.64 and! 0.50 were used 

in our experiments as was the case with Cliff and Pennell's 

study. The corresponding correlation matrices were defined 
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similarly as before. 

     For every combination of levels of the three conditions, 

                                                                                                  -I -I         Model I Small 100   Mode I I x 41 1 x n 300 
            Model 2 Large 1000 

            L A L j L 

we generated 200 sample correlation matrices drawn from~ the 

Wishart distribution WP (2:, n-I) , using Smith and Rocking's 

program [19721 . Every data matrix was analyzed by the three 

methods, SLS, WLS and ML. 

     In, addition to assessing the frequen~cy of improper or 

non-convergent solutions and the number of iterations we also 

evaluated the error of estimates of the unique variances and 

factor loadings. For each combination of two levels of the 

models and W, denote by 0 i and ~Pi the true value and an 

estimate, respectively, of the i-th uniqueness for i = 1, 

. p. Then RMSEU (Root Mean Square Error for Uniqueness) 

stands for the average of 

P                                             2 1 2 

computed across replications in each of the following two 

cases: 

     (a) all replications that lead to proper solutions for 
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       a particular method in question, or 

      (b) all replications that lead to proper solutions for       

.ail methods . 

     0iias lot V was computed for each i as the average of 

      40 across replications only in the case (a) 

     On the other hand, following Cfiff*s method [19663 to 

deal with the error of the estimated loadings , we computed the 

estimate i ir by fitting the solution obtained by each of the 

three methods to the true value A ir by least-squares method 

and defined RMSEL (Root Mean Square Error for Loadings) by the 

average of 

          p k 
              2: ( r X r 2/ pk) 1/2 

across replications in each of the two cases (a) and (b) 

3.3 RESULTS OF THE EXPERIMENTS 

     First live tables are concerned wj-th Model I for two 

for*$ of Klpoett*s model, Table 3.1 shows the proportion of 

proper (P) improper (10 and non-convergent (RC) solutions 

for every combination of levels of the three conditions , me-

thod (3 levels'. SLS, WLS and ML) , unique variance matrix 4f 

(2 levels; small and large) and sample size n (3 levels; 100,
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300 and 1000) . In terms of this criterion, performance for 

the methods depends mainly on the value of n and partly on AP. 

When n = 100, SLS.is best and WLS and ML behave similarly. 

When n = 300 for small %P or when n 1000, there are few 

differences among the three methods. The table also shows 

that the proportion of IP or of NC for each method decreases 

as n increases or 41 decreases. It was found that most of IP 

or RC solutions took place at the uniqueness though the 

result is not tablated. 

     Table 3.2 gives values of the three criteria, median, 

mean and standard deviation for the number of iterations 

before attaining convergence across replications in the case 

(a) . It is s-een from the table that every criterion is 

smallest for SLS as *Compared with WLS and ML, irrespective of 

the values on n and AP, whereas the latter two perforit simi-

larly. The value of every criterion decreases as n increase 

or as average AP entries decreases. 

     Table 3.3 shows values of RMSEU for every combination of 

levels of the three conditions, methods, n and V values in 

the cases (a) and (b) - Conclusions are similar to those for 

Table 3.1. When n = 100 or when n = 300 with large AY, SLS is 

best of the three methods and the other two are almost alike, 

while all three show similar performance when n, = 300 with, 

small %P or when n = 1000. The value of RMSEU decreases as rw 

increases or AP decreases. Oft the. other hand, for a given 

method, n and AP, the value of (b) is smatter than that of 

(a) -

     The results for the criterion RMSEL for estimated load-

ings are shown in Table 3.4 in the same style as in Table 3.3 
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and interpretations are similar. 

      Table 3.5 gives the bias of estimated uniqueness in the 

case (a) when n = 100 or 300. Even though the number of re-

plications was thus made larger than for the case (b) , it 

seems still to be too small to make the results stable , partly 

because the information was diluted by computing the bias 

componentwise. However, two conclusions can be drawn from the 

table. First, generally speaking, the bias tends to decrease 

as n increases or average AP value decreases . Second, WLS is 

negatively biased as was indicated by Jfireskog and Goldberger 

 [19721 , the absolute value of the bias being larger than for 

either SLS or ML, whereas the latter two behave similarly 

except when n = 100, where SLS has slightly smatter bias than 

ML does. 

     The next four tables are concerned with Model, 2 adopted 

from Cliff and Pennell9s model [19671 , corresponding to 

Tables 3.1, 3.2, 3.3 and 3.4 in this order. Throughout all 

tables, every criterion decreases as n increases or 41 decrea-

ses so that we shall concentrate on other features . Table 3.6 

shows that when n = 100 SLS is better than WLS and ML and the 

latter two are almost similar. Model 2 looks such easier than 

Model I since IP or NC rarely occurs as-soon as n attains 300 . 

Table 3.7 shows that the three methods may be arranged in the 

order of SLS (best) , WLS and ML (wrost) with respect to the 

number of iterations. Combining Table 3.8 and 3 .9, we find 

that when n = 100 or n = 300 the order of preference is SLS , 

ML and WLS for large AP (a = 0.7) but ML is best for small AP 

(a = 0.9) When n = 1000, there is not much difference 
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between the performance of the three methods . 

3.4. ASYMPTOTIC BIAS OF ESTIMATORS OF THE UNIQUNESS 

      Analyzing two sets of real. data, Jd,reskog and Goldberger 

 E 19723 indicated that the weighted least-squares estimate of 

the un i queness was systemat i ca I I y sma I I e r than the max i mu~Nt, 

tikelihhod estimate so that VLS ten,ds to be negatively biased . 

Boonsma [19821 and [19851 reported that ML had similar tenden-

cy in her Monte Cairo study with resprect to maximum likelihood 

factor analysis. We found in our experimental study that the 

three methods, SLS, WLS and ML, tended to lead to negatively 

biased estimate of the uniqueness and moreover the tendency 

was most remarkable for WLS when the sample size n was not 

large. 

     In this section we show that the three methods lead to 

estimators of uniquenesses with negative biases at least when 

 (p,k) = (3,l) -

     Let p = 3 and k = I throughout this section and denote by 

triplet (a,b,c) any permutation of (1,2,3) Suppose that 

 (n - 1) S , S being the sample covariance matrix, is distri-

buted in the Vishart distribution W ( Y~, , n-1), Ve can, postu-

I ate that cF a r, 1, si pos i t i ve because i f. i s; a necessary 

and suff icient C6,n.ditio," on the identifiabillity of parameters 

in--(1.2) when (p,k) = (3,l) See also Theorent 5 .5 in 

Anderson and Rub in E 19561 . Since S converges to Y_ almost 

surely, we can assume that SabSbcSca is positive with proba-

bility one when n becomes sufficiently large. Then we can 
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decompose S into a similar form as that of E in (1 -4) and 

hence the estimators by the three methods , SLS, WLS 

and ML, coincide with each other, which are given by 

              i a ~P a ( S --: Sa a - Sa b Sea S b c , (3.1) 

for a = 1, 2, 3- Thus we can prove the fol1towins . 

     THEOREM 3, 1 The estimator ~va (a 1, 2, 3) in (3.1) has 

the asymptotic bias 

AB + ( A a / A b A 2 ?P b 0 n - 1 (3 -2) 

up to the order n-1. 

     PROOF. It is sufficient to prove the theorem for the 

case a = 1. Then (b,c) = (2,3) in (3-1) so that ip 1 is the 

function of only the variables sil, S12, S13 and S23. Let 

denote by s and a the vectors ( si i , si 2 , S1 3 1, S23 ) ' and 

  911, 912, CF13, CF23) respectively. Then Taylor's 

expansion' of ~P 1 at s a up to order of n-1 is given , by 

   i t + ( s, cr + s, - a H ( s. - a 2 

    + op (n-1) (3 .3) 

where

-42-



                  CF 

and 

F 
       a Cr 

H 

              S 3', S-

Thus we have 

     bias ( ip i tr 

                  + 0 

Since ( n-1) S is dist 

W ( Z , n-1) , we have 

E (S.b - CF b) (S.d -

for a, b, c, d = 1, 2, 

relation (1.2) which i 

  1, 2, 3 into the rig 

     It should be note 

tendency found in our 

asymptotic point of vi

          or 1 3 /Cr 2 3 CF 1 2 IG 2 3 1 2 OF 1 3 IG 2 3 2 

        0 0 

             0 -1 la23 -9 1 3 ICT 2 3 2 

     0 - I ky 2 3., 0 Or 1 2 ICF 2 3 2 

     0 CF 1 3 la 2 3 2 CF 1 2 /CF232 -29 1 2 U 1 3 /(T 2 3 3 

     H - E Cr 2 

    n-1 ) (3-4) 

    ributed in the Wishart distribution 

    E ( s cr = 0 and 

       CF C d ( CF a c 9 b d + CF a d CF b n - I 

     3. Substituting these results and the 

    s he re 9 . b = X a A b + & . b IP a f o r a , b

    ht-hand side 

   d that this 

   Monte Calro 

    ew. 
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,of (3 -4) yields (3-2.) -

                      [Q.E.D.] 

theorem, suggests that the 

study exists at least in



     The vector x of observations may be standardized because 

of the scale-invariance. Factor analysis of the sample corre-

lation matrix results in the standardized estimator 

                                 ZP a . :-' iP a / Saa 

for a - 1, 2, 3. Then we can prove the following by going 

atong the same lines as the proof for the flrst theores. 

     THEOREM 3.2 Let a or and X X a a a 

for a 1, 2, 3. Then the estimator io'a* has the asymptotic 

bias 

AB + A 21 b A c - 2 b 

                    2 A 2 n - 1 (3-5) 

up to the order of n-1. 

     The expression in the bracket in (3-5) can be rewritten 

as 

             21 a A b * A 2 0 b a 1, - 2 0 a 

so that the asymptotic bias for a* becomes negati ve if 

       2_~ 0.5. 

     Finally, the asymptotic relative biases for ip . and 

are defined by AB ( iva) and AB respecti-

vely, and then we obtain that 
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AR iy + b 1.) b 

and 

AB A 1, * X C 2 b* c*1 a 

                      2A n-1) -

This fact implies that the asymptotic relative bias for the 

standardized: estimator is closer to zero than that for non.-

standardized estimator is. 

3.5 CONCLUDING REMARKS 

     Throughout the experiments in this chapter, the perform-

ance of any of SLS, WLS and ML was found to always improve 

when the sample size increases or the uniquenesses decrese, 

irrespective of the criterion employed to evaluate it. The 

first half of thi's finding is intutively natural and actually 

agrees with the reports by Pennell [19681 , Boomsm [19821 and 

[19851' and Anderson and Gerbing [19843 - On the other hand, 

the last half agrees with Boomsma [19821 and [19851 , Cliff 

and Pennell [19671 and Pennell [19681 but not necessarily with 

Anderson and Gerbing [19841 who showed that in some situations 

the proportion of improper solutions was the largest when the 

uniquenesses were the smallest of three levels considered 

there. Another interesting feature, the effect of the number 

of variables per factor, which was treated by Anderson and 

Gerbing [19841 was not considered here. 
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     As far the preference among the three methods, SLS, WLS 

and ML, these results suggest that SLS is most reliable if the 

problem is difficult in the sense that the sample size is 

rather small and unique variances are large. A main reason 

for this finding is that the algorithm of the SLS is the 

simplest of the three competing Methods under investigation 

and that in generat.thre simplest method would be most effici-

ent for a problen which requires a complicated computation. 

     A remarkable advantage of the least-squares methods is 

that it can be applied, to any data without assuming any 

particular probability distribution for the sample, whereas 

the maximum likelihood method is heavily dependent on the 

underlying distribution, usually a multivariate normal distri-

bution. Though all samples in this study were generated from 

normal distributions, the author conjectures that SLS would be 

more favorable than ML based on the normality assumption and 

presumable than WLS when the samples are drawn from more 

general populations. Thus, SLS deserves more attention from 

statisticians, theoretical or-applied, than that paid to at 

present, though this suggestion is against the current trend 

in the statistical community which seems to favor ML or WLS 

among the least-squares family. 

     Some discussion would be needed on the program-dependency 

of findings in this study. There is a certain difference 

between the proportion of IP or NC solutions and the number of 

iterations on one hand and the error of estimates on the other 

hand. For a given set of sample correlation matrices, the 

value of each criterion in the first group maybe heavily 
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dependent on the computer program adopted in the study . 

However, the present author believes that the result would not 

change much as far as the comparison of the method is concern-

ed, since the simplicity of SLS would be valid for any 

algorithm applicable to factor analysis. As for the error of 

estimates, the estimated value for a particular sample and 

under a particular method should be the same for any program, 

provided the computati:on starts from a reasonably good initial 

value and the iterative process converges.
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                      CHAPTER 4 

        NON-ITERATIVE ESTIMATORS IN FACTOR ANALYSIS 

4.0 INTRODUCTORY REMARKS 

     In previous two chapters we have treated the least-

squares (LS) and maximum likelihood (M:L) methods which are 

Most popular among various methods to estimate the unknown 

parameters in the factor analysis model. The estimates (,& 1i ) 

are determined as a solution which minimizes a suitable dis-

crepancy function F ( S Y_ ) subject to the condition ( 1-2) 

where S and 2; are the sample and population covariance 

matrices, respectively Since the derivatives of F are non-

linear with respect to (A W ) , the solution can not be 

expressed as an explicit function of S . Thus it is usually 

obtained by means of an iterative procedure as is reviewed 

in Chapter 2. 

     Now, among various findings obtained from experimental 

comparisons in Chapters 2 and 3 the following is the most 

remarkable: a simpler method performs better than a compli-

cated method does. For this suggests that if we can obtain 

estimators (Jk + ) as explicit functions of S , then such 

estimators way behave better than the LS or ML estimators do 

for small samples, since we can obtain such estimators with-

out using any iterative procedures. Unfortunately, the 

population covariance matrix Z in (1.2) is non-linear with 

respect to (A 41) so that we can 'not simultaneously express 

A and W as explicit functions of Z , but we can do only the 

q/ as is shown in lhara and Kano [19861 
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      In this chapter we explicate the new estimator of the 

uniqueness proposed in lhara and Kano [1986] and apply it to 

 two data sets from Emmett [19491 and Holzinger and Swineford 

 (see Lawley and Maxwell [19711 , p-96) 

4.1 ESTIMATORS OF THE UNIQUENESS 

      Among various estimators of the uniqueness the estimator 

SPIC (Squared Multiple Correlation) due to Guttman [19561 is 

most popular. Letuswrite S =(s;i) and S-1 =(sij) 

Then SMC is defined by 

                   i = 1 (4.1) 

for i = 1, p. Since we have the inequality 

                     Z -1 < AP-1 (4.2) 

from (1.2) provided AP is positive definite and the number 

of common factors k is not equal to 0, SPIC is a positively 

biased estimator. 

     Jdreskog [19671 proposed an initial value of the unique-

ness by modifing SMC so as to reduce its bise . Let us denote 

it by JOR. Then JOR is defined by 

                  i = ( I - k / 2p) / si i 

for i = 1, p. 
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     There remain two more estimators which are widely used as 

an initiator in analyzing the real data; the highest corre-

lation (HIGH) and ZERO defined by 

          HIGH: ji =sii(I-max Irir 1) 

and 

          ZERO: ipi =0, 

respectively. In Okamoto and lhara [1983b] we carrie d out 

an experimental comparison of these four estimators, SMC, 

JPR, HIGH and ZERO, as the starting point of our iterative 

computation and then found that SMC was best of all, whereas 

Okamoto [1986b] reported in his Monte Carlo study that JOR 

performed better than SMC did. 

    ,If we use these estimators as the initiator, they may 

be superior to our new estimator defined later because our 

estimator will be time-consuming to compute as compared with 

them, but our estimator can be shown to be better than them in 

the sense that it has analytically desirable properties such 

as consistency, asym~ptotic normality and scale invariance. 

4.2 NEW ESTIMATOR OF THE UNIQUENESS 

     From the proof for Anderson and Rubin's sufficient con-

dition on the identifiability in Section 1.2 the unique 

variance matrix AP in (1.2) was shown to be expressed as an

-so-



explicit function of Z . Thus if the sample covariance matrix 

S is partitioned in the same fashion as Z in (1-4) , then 

we can define an estimator of 0 i by 

                 QV I = S1 I - S12S 3 2 - ' S3 1 (4-3) 

provided the submatrix S 32 is non-singular. Note that the 

expression, (4.3) can be rewritten. as the reciprocal number 

of the (1,I) element of the inverse of the submatrix defined 

by 

                              sli S12 

                              S31 S 32 k 
                     I k 

and thus the expression is similar to that for Guttman's SMC. 

In the case of SPIC we have only to calculate the inverse of 

S , whereas in the case of the new estimator we need to do 

the inverse of S for every index i so that it may be time-

consuming to obtain the new estimator. 

     The estimator Zo i is a continuous- function of S and dif -

f e rent i ab I e a t S = Z , so tha t by us i ng Theo rem i i ) on p - 387 

of Rao [19733 we can prove the following. 

    THEOREM 4.1 (Ihara and Kano [19861 

     (i) If S is a consistent estimator of Z then ~P i is 

     a consistent estimator of 01 
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and 

      00 if the asymptotic distribution of n1,12 (S Z) is 

      normal , then that of n' -' 2 ( jy 1 - 0 0 is normal . 

     On the other hand, if S converges to Z , both SMC and 

JON can be, shown not to he consistent estimators by noting 

the inequality (4.2) , 

     If S is transformed into DSD by a diagonal matrix D 

with positive diagonal etesents di, - - - d,. , we will, want 

that the estima .tor ip i is transformed into dj2 ~p i for each i 

 (i = 11P . . . . p) . If an estimator has such a property, we 

call it scale-invariant estimator, for which we have the 

following 

     THEOREM 4.2 (Ihara and Kano [19861 

     All the five estimators mentioned above, SMC, JOR, HIGH 9 

ZERO and our estimator, are scale invariant. 

     Now, different choices of the submatrix S 32 in (4 .3) 

may yield different values of the estimator ~p i. In the next 

section we will give a procedure for the choice of S 32 which 

wilt be reasonable and simple for comp .titatiort. 

4.3 APPLICATIONS 

     As described in the last paragraph in the previous sec-

tion, the value of the estimator depends on the choice of 

the submatrix S :32. Therefore we are required to determine 
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 how to choose S 32- It will be reasonable to suppose that 

the stab i I i ty of S 3 2 i s an i mportant f actor of tha t of ip 

For each possible choice of S 32 we calculated the corre-

sponing estimate of 0 9 and the absolute value (A , say) of 
the determinant of S 32 in Emmett's data [19491 and Holzinger 

and Swineford's data (see Lawley and Maxwell [19711~ , p-96) 

with ( P,k) = (9,3) For each data the number of estimates 

for t6s, is, 8C3,-5C3 2 = 280 and they were grouped into 

several classes according to the value of A - In each class 

we calculated the mean of the estimates iq and the root mean 

squared error (RMSE) of iog to the maximum likelihood estimate 

 (MLE) which is 0.231 for Emmett and 0.421 for Holzinger and 

Swineford. Tab.le 4.1 shows that the larger the value of A 

becomes, the closer ip'q becomes to the PILE in general in both 

senses of Mean and RMSE. Thus we suggested the use of S 32 

with the maximum value of A in order to hopefully obtain the 

best estimator. Table 4.2 shows the results when the method 

was applied to the two data sets mentioned above and it can be 

seen that our estimate is rather close to the PILE. 

     In practice, it may be time-consuming to try all possible 

choices of the matrix S 32. Our estimation method would work 

well by using the maximum value of A among randomly chosen 

S 32S, for instance 10 in number, though the result is not 

reported.
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Table 2.1 

Computational algorithm for

 Before 1960, 

Harman-Jones (1966) 

Ijreskog (1967) 

Jennrich-Robinson (1969) 

Derflinger (1969) 

Clarke (1970) 

Jbreskog-Goldberger (1972) 

Jbreskog (1977) 

Lee-jennrich (1979) 

Okamoto-lhara (198-3b) 

Okamoto-lhara (1984)

factor analysis

hors Method riabVa fel Constraintl Algorit
I I

A & T

i

I PFA-I
I

I

 LS 

 ML 

 ML 

ML, LS 

 ML 

 LS 

ML, LS 

ML, LS 

 LS 

ML, LS

A 

   'p 

 'p 

  'I' 

  'I, 

A & 

A 

 'p

IV

  S-1 

AP-1, I 

  qf-i 

  qf-I 

  S-1

  GS 

  DFP 

  NR 

  NR 

  NR 

  NR 

  NR 

  GN 

Marquardt 

  GN

PFA: Principal Factor Analysis Method 

GS: Gauss-Seidel Method 

DFP: Davidon-Fletcher-Powell Method 

NR: Newton-Raphson Method 

GN: Gauss-Newton Method 

Marquardt: Marquardt Method
I
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Table 2.2 

Rao's data

Convergence 

using Rao's

of the partial Gauss-Newton ML 

solution for starting values.

a I gori tto

I ter. F. RMSg RMS A 4)

0 

I 

2 

3 

4 

5 I

.09963 

.06974, 

.06-M 

.06774 

.06774 

.065774

.1644 

.0175 

.0141 

.0011 

.0001

.0413 

.0396 

.0027 

.0002 

.0000

Al A2 A3 A4 A5

.4400 .5700 .8800,.9000 

 .34,37 .58,34 .8796 .9060 

.0000 .5920 .8797 .9058 

.0000 .5872 .8792 .9030 

.0000 .5871 .8793 .9029 

.0000 .5871 .8793 .9029

.7300 

.7250 

.7286 

.7296 

.7298 

.7298

tto app I i ed 

A6 A7 

.4300 .5500 

.4297 .5425 

.4302 .5441 

.4318 .5445 

.4321 .5445 

.4321 .5445

to 

.7500 

.7515 

.7495 

.7481 

.7479 

.7479

.6300 

.5487 

.5476 

.5468 

.5466 

.5466

Table 2.3 

data using

Convergence of the 

Harman's solution

partial Gauss-Newton ML 

for starting values with

algorithm applied to 

As replaced by .700.

Harman's

 i F 
I ter. I F R%g RWA?P Al A2 A3 A4 A5 A6 A 7 A 8I

I

.13181 

-OM 

.07641 

.07572 

.07571 

.07571 

.07571

.3947 

.1322 

.0564 

.0035 

.0011 

.0004

.0286 

.0117 

.0038 

.0006 

.0002 

.0001

.3990 

.3667 

.3649 

.3585 

.3571 

.3571 

.3570

.3050 

.1760 

.0000 

.0000 

.0000 

.0000 

.0000

.4110 

.4384 

.4470 

.4403 

.4404 

.4405 

.4405

.4380 

.3937 

.3906 

.3938 

.3950 

.3954 

.3955

.2920 

.3037 

.3063 

.3001 

.3008 

.3007 

.3007

.6040 

.5970 

.5971 

.5994 

.5m 

.5994 

.5994

.6470 

.6413 

.6410 

.6418 

.6408 

.6408 

.6407

.7000 

-6989 

.7046 

.7006 

.7008 

.7007 

.7007

I

-62-



Table 3.1 

Proportion of proper, improper and nonconvergent solutions (Mode I I )

Sma I 1 91 Large AP

R, 100 300 1000 100 300 1000

SLS 78.5 

21.0 

 0.5

931.0 

7.0 

0.0

100.0 

 0.0 

 0.0

73.5 

24.5 

2.0

90.5 

9.5 

0.0

99.0 

 1.0 

0.0

WLS

ML

61.0 

34.5 

4.5

63.0 

34.0 

 3.0

93.0 

 7.0 

0.0.

91.0 

8.5 

0.51

100.0 

 0.0 

 0.0

100.0 

 0.0 

 0.0

49.5 

44.0 

6.5

56.5 

40.5 

 3.0

85.0 

12.5 

2.5

87.0 

11.5 

 1.5

99.5 

0.5 

0.0

99.0 

 1.0 

0.0

The upper 

the middle 

value for

value shows the proportion of 

value for improper solutions 

non-convergent solutions (NO.

proper solutions (P), 

OP) and the lower

I
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Tab I e 3.2 

The number of iterations for proper solutions (Mode 1 0

Swat I W Large +

n 100, 300 1000 100 300 1000

SLS Med i an 

   Plean 

    S. D.

5 4 

5.91 4.50 

3.40 1.39

4 

4.01 

0.49,

5 

6.33 

2.97

5 

5.12 

1.80

4 

4.23 

0.59

WLS Median 

   Mean 

    S. D.

8 5 

9.56 6.95 

5.12 3.04

4 

4.48 

0.63,

8 

9.72 

4.76

7 

8.27 

3.95

5 

4.89 

0.92

ML Ked i an 

     Me-an 

    S.B.

9 6 

9.87 7.23 

4.45 2.83,

5 

4.94, 

0.84

10 

10-88 

5.17

7 

7-981 

3.58

5 

5.27 

1.02

I
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Table 

Va I ues

3.3 

Of RMSEU(miltiplied by 104) (Mode I I )

sma I I XV Large ~P

n 100, 300 1000 100 300 1000

S LS (a) 

   (b) 

WLS (a) 

   (b) 

ML (a) 

   (b)

960 552 

914 541 

985 569 

945 550 

966 558 

948 549

322 

322 

315 

315 

315 

315

I

IZ71 729 

1194, 700 

1290 741 

1228 726 

1312 755 

1256 734

422 

422 

428 

421 

420 

420

Table 

Va I ues

3.4 

Of RWEL(mu I t i PI i ed by 104)(Model 1)

Sma I I W, Large AV

n 100 300 1000 100 300 1000

SLS (a) 

   (b) 

WLS (a) 

   (b) 

ML (a) 

   (b)

784 441 

764 436 

811 451 

798 444 

813 447 

799 444

249 

249 

245 

245 

245 

245

1012 

969 

1011 

993 

1040 

1002

564 

547 

571 

565 

579 

568

311 

311 

311 

311 

311 

311

I
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Tab I e 3.5 

B i as for uniqueness U100) for proper solutions (Mode I I)

( i )Smal I AP 

Var i ate 

True value

01 

0.41

02 

0.43

03 

0.62,

04 

0.26

It)5 

0.38

0 C, 

0.19

07 

0.34

?/) 8 

0.50,

Og 

0.20

100 SLS 

WLS 

ML

-3 

-6 

-3

-3

-1 -2 

-5 

-2

I -2 

-4 

-3

-1

300 SLS 

WLS 

ML

-1 -1 -2 -1 -1 -1

-1 

-1

0 i)Large4l 

Variate 

True value

*I 

0.54

*~ 2 

G. %

Ip 3 

0.71

7P 4 

0.41

4)5 

0.51

06 

0.34

0-, 

0.47

it) 8, 

0.57

09 

0.35

100 SLS 

WLS 

ML

-5 

-7 

-5

-1

-3

 -8 

-12 

 -8

-2 -4 

-7 

-4

-2

-3 

-6 

-4

2 

-2 

2

I

300 SLS 

WLS 

ML

-1 

-2 

-1

-1 

-2 

-1

-1 

-2 -2

-1 -1

-1 -1
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Table 3.6 

Proportion of proper, improper and non-convergent solutions(Model 2)

n

    a = 0.9 

100, 300 1000

    a = 0.7 

100 300 1000

SLS

WLS

ML

89.0 

11.0 

 0.0 

83.0 

16.5 

 0.5 

84.5 

15.0 

 0.5

100.0 

 0.0 

  0-0 

100.0 

 0.0 

 0.0 

99.5 

  0.5 

  0.0

100.0 

 0.0 

 0.0 

100.0 

 0.0 

 0.0 

100-0 

  0.0 

  0.0

77.5 

19.0 

 3.5

55.0 

35.0 

10.0

59.0 

36.0 

 5.0

100.0 100.0 

 0.0 0.0 

 0.0 0.0 

99.0 100.0 

  1.0 0.0 

 0.0 0.0 

99.0 100.0 

  1.0 0.0 

 0.0 0.0

The upper value 

(P)7 the middle 

lower value for

shows the proportion of proper solutions 

value for improper solutions (IP) and the 

non-convergent solutions (NO.

I
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Table 3.7 

The number of iterations for proper suiutions (Model 2)

a = 0.9 a = 0.7

n 100 300 1000 100: 300 1000

   Med i an 

SLS Mean 

    S. D.

4.00 

4.10 

1.12

4.00 3.00, 

3.33 3.01 

0.49 0.07,

6.00 5.00, 

7.54 4.99 

3.93 1.88

4.00 

3.77 

0.46

   Med i an 

WLS Meart 

    S. D.

6.00 

6.42 

2.48

5.00 4.00 

4-74 4.11 

0.86 0.31

11-00 

11-84, 

5.27

6.00 

7.381 

3.97

4.00 

4.33 

0.52

   Iled i an 

ML Neart 

    S.D.

7.00 

7-461, 

2.70

5.00, 4.00 

5.24 4-35-

0.82 0.48

11-00 

12-84 

5.21

7.00 

7.84 

3.12

5-00 

4.74 

0-63

I
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Tab I e 3.8 

Values of RMSEU (multiplied 104) (Model 2)

a = 0.9 a = 0.7

n 100 300 1000 100 300 1000

SLS (a) 939 5,31 286-

    (b) 942 531 286-

WLS (a) 1106 549 277 

   (b) 1107 548 277 

ML (a) 902 .505 271 

   (b) 898 504 271

1423 799 409 

1389 784 409 

16W 907, 418 

1649 M 418 

1513 836 409 

1508 830 409

Table 3.9 

Values of IMEL (williptied by 104) Ofode 1 2)

a = 0.9 a = 0.7

100 300 1000 100 300 1000

I

SLS

WLS

ML

(a) 797 454 247 

(b) 795 454 247 

(a) 781 440 238 

(b) 780 440 238 

(a) 773 438, 238 

(b) 773 438 238

1183 670 356 

1155 660 356 

1210 694 356 

1195 680 3,% 

1206 678 355 

1191 674 355
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Table 4.1 

Relatinship between A and the closeness to MLE

Interval

Emett Holzinger Swineford

Frequency Mean ME Frequency Mean ME

2.637.000 -19 A < .010 159 .135 .578 124 .604

.010 ;9 A < .020 54 .237 .054 74 .444 .306

.020 ;5 A < .030 38 .227 .032 21 .470 .176

.030 ;9 A < .040 22 .224 .030 11 .515 .171

.040 A < .050 7 .240 .015 10 .527 .156

.050 A < . 100 0 9 .432 .089

100 :9 A < .200 0 31 .394 .042

smC .348 .504

PILE .231 .400
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Ta I be 4.2 

New Estimates and MLE's 

Holzinger & Swineford's

for 

data

the uniqueness on Emmett's and

Variable I 2 3 4 5 6 7 8 9

Emett

NEW .438 .481 ACA .209 .375 .225 .408 .654 .266

MLE .451 .427 .617 .212 .381 .177 .400 .462 .231

Holzinger

Swineford

NEW .499 .624 .470 .301 .376 .318 .343 .313 .446

MLE .491 .622 .443 .289

I - 3701
1 1

I
. 324 .325 .268 .402
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