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SUMMARY

This thesis is concerned with estimation problems in
factor analysis. The paper first specified the random factor
analysis model and then gave a simpler and more direct proof
for Anderson and Rubin’s theorem on the identifiability of
parameters.

Secondly, the paper reviewed iterative procedures now
available and then proposed an algorithm, the partial Gauss-
Newton algorithm, which can be dealt with both the least-
squares and maximum likelihood (ML) wethods. Applied to two
real data sets, it was shown to work well. The structure of
improper solutions was clarified analytically for both ML and
WLS (weighted least-squares) methods.

A Monte €Carlo study was carried out to compare the three
estimation methods, SLS (simple least-squares), WLS and ML.
It was found that SLS performed better than WLS or ML for a
small sample size, not exceeding 300. |t was proved in a
special case that all the three estimation methods tended to
underestimate the uniquenesses asymptotically.

Finally, a new consistent estimator of the uniqueness
which can be expressed as an explicit function of the sample
covariance matrix was proposed. Applied to real data sets,
the estimate was shown to be rather cfose to the ML estimate

vhichis well known to be asaymptotically best.
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CHAPTER 0
INTRODUCTION

Factor analysis aims to reduce the dimensionality of
observed wultivariate data by explaining the observed inter-
refations among the variates involved in terms of simpler
relations. The simplification may consist of creating a
smaller number of latent (unobservable or hypothetical)
variables, or producing a set of classificatory categories.
Sueh an aim is so central to all scientific work that facter
analysis has become one of the most popular multivariate
statistical techniques in many fields of scientific research
as is reviewed in Gnanadesikan and Kettenring [19847 .

As a research instrument, factor analysis was developed
originally by psychologists. Spearman, in 1904, being in-
terested to prove his psychological theory that all forms of
intellectual performances spring from a single general mental
capacity, developed a proof that if a watrix of correlations
takes a certain formw, then the tnter-relationships of all the
variables invelved could be accounted for by a single underly-
ing general ability factor called the common factor, plus a
factor called the unique factor specific to each performance.
This mono-factor theory by Spearman [1904] was generalized in
the next thirty years, principally by Thurstone [1935] , into
principles for multiple factor analysis.

An early theoretical account of the subject was given by
Anderson and Rubin [1956] and more recent and comprehensive
treatments are provided by Lawley and Maxwell [1971] and
Okamoto [ 1986a] .



The application of factor analysis to the real data
starts off with assuming a statistical model specified by
parameters to be estimated from the data. The random factor
ahalysis model, which is defined in Chapter 1, is the most
important of all the models for factor analysis. The fixed
factor analysis model also is important, but it is not dealt
with in this thesis.

The next stage is to estimate the unknown parameters in
the model under the assumption that the number of common
factors is known. Among various estimation methods proposed -
so far the least-squares (LS) and maximum likelihood (ML)
methods are most popular. We need an iterative procedure if
we want to use either LS or ML. A great number of computa-
tional aigorithls have been desceribed by many authors, since
Joreskog [1967] deseribed an algorithm to determine the ML
estimates by using the method of Fletcher and Powell [1963]
which is an efficient non-linear prbcedure: see Jennrich and
Robinsen [ 19691 , Joreskog [ 1977] Lee and Jennrich [1979]1 ,
Lee [ 19807 and Lee and Poon [ 1985] among others.

In Chapter 2 we first reviewed these algorithms from the
points of view of (a) choice of variables, (b) restriction for
the rotation and (c) optimization methoﬂ, and then discussed
a new procedure which was described in Okamoto and lhara
{19847 .

When we use an'itérative procedure, a éofﬁtion may be
obtained on the boundary of the admissible parameter space.
Such an estimate which corresponds to the above solution is

called improper solution or Heywood case and various causes of



improper solutions have been pointed out by some researchers,
see Cliff and Pennell [ 19671 , Pennell [1968] , van Driel

[ 19781 , Boomsma [ 19821 and [ 1985] and Anderson and Gerbing
[1984] among others. On the other hand, Joreskog [1967]
clarified the structure of such an estimate in maximum likeli-
hood factor analysis under the assumption that some unique
variances are known to be zero. We extended his result to the
case where the estimates of some unigque variances are zero in
Chapter 2.

It is well known that ML leads to asymptotically best
estimators for large samples. It needs the normality assump-
tion with respect to the distributions of all the variables
in the model, which has been questiioned whether to be real-
istic or not, especially in the field of psychology. On the
other hand, there are some researchers like Wold [1982] who
favor the least-squares approch which does not necessarily
need the normality assumption. Therefore we believe that it
is worth uhiré comparing the performance of LS and ML for a
small sample. No exact expression to evaluate the sampling
error, fofiinstance, variance or mean squared error, has yet
been obtained and we believe that only the Monte Carlo
approach will be available from now on. Many Monte Carlo
studies have been carried out with respect to maximum likeli-
hood factor analysis, but LS seems untried so far, much less
experimental comparison of LS and ML methods: again see Cliff
and Pennell [ 19671 , Pennell [ 19681 , Boomsma [ 1982] and [ 1985]
and Anderson and Gerbing [ 19841 . 1Ihara and Okamoto [1985]

carried out a Monte Carlo study to compare the three methods,



the simple (SLS) and weighted (WLS) least-squares methods

and the ML method, where SLS and WLS are two most important
members of a family of least-squares methods and defined in
Chapter 2. 1In thara and Okamoto [ 1985] we used only one
numerical model, so that we carried out adhitional experiments
using a new model in order to make the conclusions obtained in
thara and Okamoto [ 19851 more reliable.

In Chapter 3 we first discussed experiments and results
and then prove from the viewpoint of an asymptotic theory that
the estimators of uniquenesses obtained by each method, SLS,
VLS or ML, tend to be negatively biased. This tendency for
"WLS was first indicated by Joreskog and Goldberger [1972] and
after that Boomsma [ 1982] and [1985] and Anderson and Gerbing
[ 1983471 found in their experimental studies that the ML esti-
mators also had such tendency. However, as far.as the author
isvaware, any analytic approach has not been attempted until
present.

Both thé LS and ML estimates are determined as a solution
of simultaneous non-linear differential equations, so that we
can not express the estimates as explicit functions of the
sample covariance matrix S . In Chapter 4 we proposed an
entirely new estimators of uniquenesses which can be expressed
as explicit functions of S and hence can be obtained without
using any iterative procedures.

Chapter 2 is mainly based on Okamoto and lhara [1984] and
Ihara [ 19861 and Chapter 3 on lhara and Okawoto [ 1985] and
thara [1985] . The contents of Chapters 1 and 4 consist of
lhara and Kano [ 1986]



CHAPTER 1
SPECIFICATION OF FACTOR ANALYSIS MODEL
1.1 DEFINITION OF MODELS

In a random factor analysis model an observable random

vector x of p components is usually represented in the form
X = p +t AT + e, , (1.1)

where p is a fixed vector of p population weans, A is a
fixed p x k matrix of factor loadings, f is a random vector
of k (k < p) common factors and e is a random vector of p
unique factors (or unique factors plus specific factors) .

Ve assume that E(f ) =0, E(Cf £’ Y=1, E(e) =0,
E(fe’” )=0and E(e e’ ) = ¥, diagonal and non-negative

definite matrix. Then the covariance matrix = of X is
2 = AN O+ @ (1.2)

from (1.1) and the above assuﬁptions.
Let us write £ =(oi;) , A =(Axir) and ¥ =
(8i;% i) ,where & i; stands for Kronecker’s delta. Then

from (1.2) we have

k
gii = X Air2 + B, (1.3)
r=1
for each i (i =1, . . . ,p) . In the terminology of factor



analysis, the proportion of the first term in the right-hand

side of (1.3) to the left-hand side

k
hii = 2 Xie2 / 0
r=1

is called the cou.unality of the variable x:; and the quantity
I - hii the uniqueness, whereas ¥ i is called a unique vari-
ance of x .

There are problems about the model (1.1) , such as what
covaiance matrix £ can be represented by (1.2) for a given
k and, if there is such a representation, vhat festrictions
shatl be put on A and ¥ to make them unique. In the way of
statistical inference, there is the problem of estimating A
and ¥ from a set of observations on x ; the principal factor
analysis method is the simplest, while the least-squares and
maximum likelihood methods are most popular. Another problem
is to test whether k s a given number and thus decide what
number k is. The above problems with respect to the wmodel
are discussed in the following sections, whereas the estimat-
ing problem is discussed in the following chapters. However,

the problem about the number k is not treated in this thesis.
1.2 IDENTIFICATION PROBLEM
Among various problems with respect to the model, the

most important problem may be what covariance matrix 2 can

be represented in the form of (1.2) ; given a p x p positive



definite matrix X, can it be expressed as AN’ + ¥?
lowever, since our main subject in this thesis is to compare
the performance of estimation methods in factor analysis, we
shall no wore consider the problem.

On the other hand, when we want to construct a numerical
model in a Monte Carlo study, it is the most important problem
to confirm whether the population covariance matrix X can be
expressed uniguely as AA’ + ¥ or not, so that we need
consider the problem what restrictions shatl be put on A and
¥ to make them unique. This is called the identification
problem and various conditions have been proposed so far by
many authors:. see, for example, Albert [ 1944a] and [ 1944b] ,
Anderson and Rubin [1956] , Tumura and Fukutomi [ 1968] ,
Tumura and Sato [ 19801 and [1985] ,Williams [ 19811 and Kano
[19861 . liere we will present only 2 condition called
Anderson and Rubin’s sufficient condition [1956] on the iden-
tifiablity, for which we develop the proof by thara and Kano
[ 19861 because it is a simpler and more direct proof than

that provided by Anderson and Rubin [19567F .

THEOREM 1.1 (Anderson and Rubin [ 19561 )
Vhen any row vector of the matrix A in (1.2) is deleted,
if there remain two disjoint non-singular submatrices of order

k , then the matrix ¥ is uniquely determined.

PROOF. It is sufficient only to prove that the 1 can
be uniquely determined from the matrix X .

Partition the matrices X, A and ¥ as follows:



11 012 G132 0 1a

021 L22 223 Xo4

> =
31 232 233 X34
0 a1 2 42 2 43 2 44
i _
1 k k p-2k-1i
r 3
At ]
A2 k

A= and ¥ =
As k
L/\¢ Jp-zk-l

Substituting the =, A and ¥ in the form of (1.4)

(1.2) , we have

611 = A1X1” + 1, 012 = AN,

g 31

p-2k-1

P

¥,

AsXi1” and 232 = AsAN2’ .

ke

p-2k-1

into

(1.4)

K p-2k-1

(1.5)

Under the assumption we can suppose that the two submatrices

A2 and A3 are non-singular. Using the non-singulality of



the matrix Z32 = A3sA2’ and relations in (1.5) , we have

01223277031 = X1tA2” (ANsN2" ) "AzAx1’ = A1 X1’
Substituting this into 611 = A1X 1" + 1 yields
1 = 011 - 612232"103;1. (1.8)

Now, tet £ = AN+ ¥ = AA’ +V, and partition A
and V into the same fashion as in (1.4) . Then the
non-singularity of the matrix 32 = AsA 2" leads to that of
the two submatrices A2 and As. Thus we can @btain zpn = v
by going along the same liﬁéﬁ‘as the défi?étian of (5.6)'~"

This completes the proof. [Q.E.D]
1.3 ROTATION OF FACTORS

Subpose that given a p x p positive definite matrix =,
we can express it as AN’ + ¥ and the ¥ is unique. I|f the
number of common factors k is equal to 1, then A reduces to
a column vector of p components. It is unique, apart from
a possible change of sign of all its components, which
corresponds merely to changing the sign of the factors. Such
sign changes are merely trivial and we shall ignore them
through this thesis.

When k > 1, there is an infinity of choices for A. For
equations (1.1) and (1.2) are still satisfied if we replace

f and A by Tf and AT’ , respectively, where T is any



orthogonal matrix of order k. In the terminology of factor

analy§}s, this corresponds to a rotation of the factors.

To eliminate the indeterminacy of the solution A due to the
arbitrariness of the rotation, we need to put a restriction

on A . Among various restrictions proposed so far we shall

use the restriction that

For a given positive definite matrix B of order p

AN’ BA is a diagonal matrix.

For other restrictions see Anderson and Rubin [ 19567 .

_10_



CHAPTER 2

COMPUTATIONAL ALGORITHMS FOR FACTOR ANALYSIS
2.0 GENERAL REMARKS

In this chapter we first review computational algorithms
which are available for determining either the LS or ML esti-
mates of the factor loading matrix A and the unique variance
matrix ¥, and then discuss a new algorithm which was proposed
in Okamoto and lthara [ 1984] . |

Suppose that a random sample X1, . . . ,X.n is dravwn
from a population according to a random fact@fvanalysié model
and the problem is to esiimate the unkﬁown‘ﬁ%faneﬁérs in the
model, t",!\ and @f; undef the assumption that the number of
common factors is known. The population mean u can be easily
estimated by the samplie mean so that our problem is only to
estimate (1&,‘?) by using the sample covariance matrix S .
This is usually accomplished by minimizing a suitable function
vwhich measures the degree of descrepancy between S and the
population covariance matrix X ; that is, the estimates (A ,¥)
are determined as a solution which minimizes the function
subject to the condition (1.2) . Since the derivatives of
the function are usually non-linear with respect to (A ,¥) ,
we need an iterative procedure in order to obtain the solution
(A,%) . Therefore, we first review computational algor-
ithms proposed so far.

The principal factor analysis method is the siublest
of ait. This method is obtained by applying the notion of

principal component analysis to factor analysis. It is

_11_



vell known that in difficult situations the iterative process
needs a great number of iterations before attaining the
convergence so that a prescribed number gives rise to stop the
iteration earltier for other stopping criteria. Such a dis-
advantage is seen also in the iterative nethods described by
Lawley [ 1940] and Hemmerle [ 1963] to obtain the ML estimates.
Joreskog [1967] was a breakthrough which presented an
efficient algorithm to determine the ML estimates. Three
more papers dealing with the subject appeared after it:
Jennrich and Robinson [19691 , Clarke [1970] and Lee and
Jennrich [1979]1 . On the other hand, after Harman and Jones
[1966] described an algorithm called MINRES (minimizing re-
siduals) for a least-squares method, theré appeared five more
algorithms to deal with a family of least-squares methods:
Derflinger [1969] and [1979] , Joreskog and Goldberger
[19723 , Joreskog [ 19771 and Okamoto and lhara [ 1983b] .

They may be reviewed from the following points of view.

(a) Choice of variables. There are two choices for the
variables in which the iteration proceeds: ¥ or (A and ¥) .
For the former case, only the diagonal elements of ¥ are used
in the iteration, whereas for the latter case all elements of

¥ jointed with A are used.

(b) Restriction on A. As a positive definite weighé
matrix B in Section 1.3, Joreskog [1967] , Clarke [1970] and
Joreskog and Goldberger [1972] chose B = ¥ -1, Derflinger

[1969] used B = I and Jennrich and Robinson [ 1969] adopted

_12_



B = S-t for the first time.

(c) Optimization method. As an algolithm to maximize
the likelihood function, Joreskog [ 19671 wused the method of
Fletcher-Powell [1963] which is generally called the Davidon-
Fletcher-Powell method (in short DFP) . Jennrich and Robinson
[1969] , Derflinger [1969] and [1979] , Clarke [1970] and
Joreskog and Goldberger [ 1972] used the Newton-Raphsqn method
(NR) which needs second order derivatives. Lee and Jennrich
[1979] used the Gauss-Newton method (GN) and stated that the
performance of GN is better than that of NR. |In maximum |ike-
tihood context, GN is usually called Fisher’s scoring method
in the statistical community. On the other hand; the algor-
ithms used by Harman and Jones [ 1966] and Okamoto and lhara
[ 1983b] are the Gauss-Seidel method (GS) and the method of
Marquardt [ 1963] , respectively.

The algolithm described by Okamoto and thara [1984] is
characterized by the triplet (¥ ,W,GN) in order to (a) , (b)
and (c) with W = S-1! or = Ds 2, where Ds-2 = (Ds2) -1
and Ds2 is a diagonal matrix whose diagonal elements are the
sample variances of the observed variables. These considera-

tions are summarized in Table 2.1.
2.1 LEAST-SQUARES AND MAXIMUM LIKELIHOOD METHODS
Invthe Ieaét-squares approach in factor analysis it is

required to determine the value of (A,¥) which minimizes

the function

_13-



1
L{A,¥) = ;‘tr[ (S - T)w ]z (2.1

subject to the condition (1.2) , where W is a positive defi-
nite weight matrix of order p{

Choices of W give rise to a family of least-squares
methods and two most important members of the family are the
simple (SLS) and weighted (WLS) least-squares methods which
correspond to the choices W = Ds-2 and W = S -1,respective-
ly. On the other hand, the maximum likelihood method (ML)
attempts to maximize the likelihood function or eguivalently

minimize the function
MCA, %) =tr (S-'Z) - logl S=Z-t] -p (2.2)

again subject to the condition (1.2) , where we need the
normality assumption with respect to the distribution of the
observable variables.

Let us use the letter F in general to mean either the
function L or M. Lee and Jennrich [1979] considered to mini-
mize the function F (A ,¥) with respect to (A,¥) directly
by using the Gauss-Newton method. Here the minimization of
F(A,¥) is done in two steps, as was initiated by Joreskog
[1967] .

First F is minimized with respect to A for given ¥.

The winimizer A (¥ ) is determined by the equation

aF /7 a AN = 0. (2.3)

_14_



Then the function
G(¥) =F (A (¥) ,¥) (2.4)

is minimized with respect to ¥.

Since
sL /7 3 A = -2W (S - ) WA,
M/ a AN = -22-1 (S - ) 1A

(see, e.g., equations (8) and (9) in Joreskog [ 19771 ) ,equa-

tion (2.3) is written as

(S - Z)Y WA =0 (2.5)

with W = Ds-2, S-1 and X£-!' for SLS, WLS and ML, resecp-
tively.

Now, equation (2.5) for W = X -1 is shown to be equiva-
Tent to equation (2.5) with W = S-1 (see, e.g., equation (6)

in Jennrich and Robinson [1969] ) so that we have

£
1l

Ds-2 for SLS,
(2.8)

S-t for WLS and ML

as far as equation (2.5) is concerned.

_15..



Substitution of (1.2) into (2.5) yields
(S - ¥) WA = A (A’ WA)
or equvalenfly
Wiz (S - V) Wi72 (W12 ) = Wi 2A (A’ WA) . (2.7)

To eliminate the degree of freedom of the rotation for A, we

can postulate that
A” WA is a diagonal matrix,

which was explained in Section 1.3. Then (2.7) means that
diagonal elements of the matrix A’ WA are eigenvalues of
the matrix

Wtz (S - ¥) Wi-2 ( = S-, say ) ,
whereas column vectors of the matrix VV"é N are eigenvectors
of S*. If we denote by I'y the diagonal matrix determined by
the k largest ecigenvalues of S * and by Vi the p x k matrix

with the associated orthonormal eigenvéétors as columns, then

A = W-172y, T, 12, (2.8)

..16-



2.2 PARTIAL GAUSS-NEWTON METHOD

We shall first develop a general methodology and later
discuss the three particular cases, SLS, WLS and ML. Before
attempting minimization of the function G (¥ ) in (2.4) , let
us change the notations. Let A be the pk x 1 vector consist-
ing of all elements A ir of A (i =1, . . . ,p; r =1, . . .
" k) and % be the p x 1 vector of diagonal elements i of
¥ (i =1, .. .,p) . lInstead of F(A (¥) ,¥) , A (¥)
and 6 (¥) , we write F(A () ,») , X () and G(p) ,
respectively.

‘KSSUIe that we need an interative procedure to minimize
€ () . For each cycle of interations, let bé an initial
value and A% an increment of % minimizing G () approxima-
tely, which will be determined tater. Corresponding to A#»,
the function A (%) increases, up to the first order, by the

increment
AX = JAY, (2.9)
where J = AX / Ay = ( 3Xic/ 3%; ) is a pk x p

matrix called Jacobian matrix. By Taylor’s expansion up to

the second order we have

G(p + Ap) =F (X (» + Ap) , v + Ay)
- aF oF
= F (X (&) ,) + (Ap’ — + AL’ ——)
oY 3 A
1 32F a2F
+t —(Ayp’ ————Ayp + Ap’ ————A A
2 3y sy’ 3P ar’

-17_



92F 32F
t AN ————Ayp + AL’ ———— A1)
23X 39’ A 3 A’

Joreskog [1977] used the Newton-Raphson wethod to minimize
G(yp + Ap) , whereas we use the Gauss-Newton method. As
was shown in Lee and Jennrich [1979]1 , it is equivalent to

approximating the matrix

.
32F a2F

3P sy’ 3P sk’
o2F a32F

SA 2’ 3A 33X’ )

Uil&

U 21

Thus, using (2.3) and (2.9) , the last expression of
G(® + Ap) can be approximated by

1
CG(p)+ Ap’ - g *;A’P"H’Alﬁ‘, (2.10)

-18_



where g and H are the gradient vector of F and pseudo

Hessian matrix of G defined by

aF
gz_;;andH=Un+U12J t J7 Uzt + §J7 Uead,
o

respectively. The expression (2.10) is minimized at
Ay = -H-1rg, (2.11)

provided that the matrix H is positive definite. Thus, we
need the vector g and two matrices U and J in order to
determine the increment A% by (2.11) . This method was
called the partial Gauss-Newton method in Okamoto and Ihara
£1984] , since the Gauss-Newton method is applied only to
the parameter % , not to the whole parameters (A ,¥) as in
Lee and Jénnrich £19793 . In case the iteration should di-
verge, a suitable constant multiple of the unit matrix might
be added to H in (2.11) by the up-and-down Marquardt
algorithm described in Okamoto and lhara [1983a] or [ 1983b] .
Now, we turn to the particular cases, SLS, WLS and ML.
From relevant expressions given in Lee,hnd Jennrich [19791 ,
Section 6 and (3.5) , elements of g, Ui1, Uz2: and Usz can

be written as
gi = [W(Z - S)YWwW] .,
U(pi,pi) = Wi;2,

_lg-



U (XAic, ;) =2Wi; (WA) .,
U (Xiry,At) =2W;5; (A7 WA) 1t
+ 2(WA) it (WA) .,

for i, 3 =t, . . . ,p5r, t =1, . . . , k, where the symbol
Ai; stands for the (i,j) element for any matrix A and

W = Ds 2, S-1 and £ -1t for SLS, WLS and ML, respectively.
It is noted that the matrix U for ML is twice the Fisher
information matrix per sample element.

We have finally to caleculate J. Let y1 2 + o « 27,
be the eigenvalues of the matrix S and let V be the orthog-
onal matrix of order p with the associated orthonormal eigen-
vectors as columns. Then it will be shown in Appendix that

the elements of J are given by

3 Xir
DY
=T”22p (re - 7)) P (W172V) ¢ (W172V ) ;4 (W172V ) ;¢
{71
1
'—é?’r—l/2 (W-172V ) ;+ [ (W172V) ;.1 2, (2.12)

where W = Ds-2 for SLS and W = S -t for WLS and ML by
(2.6) .

-20-



2.3 COMPARISON OF PERFORMANCE

We want to see how efficient the new method is in ana-
lyzing the real data as compared with the Newton-Raphson
method. Let us use the two data sets from Rao [1956, p.110]
and Harman [ 1960, p.373] which were used by Jennrich and
Robinson [ 1969] to evaluate their aigorithm based on the
Newton-Raphson method.

The iterative processes for these data are shown in
Tables 2.2 and 2.3, where the solutions obtained by Rao and
Harman were chosen as the starting values in each case. The
terms RMS (3) and RMS (A %) denote the root mean square of
the components g i’s amf’ Api’s, respectively. The stopping
rule of iterations was that at least one of them is less than
10-4. The A:’s are defined to be square roots of the » ’s.

The new method is readily seen to be very efficient by
comparing these tables with Tables 1 and 3 in Jennrich and
Robinson [1969] . It has also another advantage as follows.
Starting from Harman’s solution A: = 0.451, they failed to
attain the convergence but we arrived at the same solution as
before at the seven cycle, only one cycle more than in Table
2.3.

The superiority of the partial Gauss-Newiton method to
the Newton-Raphson method was anticipated by us, since the
direct Gauss-Newton method due to Lee and Jennrich [1979] was

found better than the Newton-Raphson method.

-21_



2.4 STRUCTURE OF IMPROPER SOLUTION

As we can see in Tables 2.2 or 2.3, sometimes we arrive
at a solution (A ,¥ ) in which some diagonal elements of ¥
are zero. Such a solution which is obtained on the boundary
of the admissible parameters space is called improper
solution or Heywood case. Many Monte Carlo studies have been
carried out in order to investigate causes of improper solu-
tions in maximum likelihood factor analysis. Joreskog [1967]
attempted to clarify the structure of such a solution in maxi-
wum likelihood factor analysis and obtained a structure under
the assumption that the first m ( = k) uniquenesses are equal
to zero.

in this section we extend his result to the case where
‘the estimates of the first m ( = k) uniquenesses are equal to

Zero.

THEORM 4.1 (lthara [19861 )

Assume that the first m ( = k) diagonal elements of the
matrix ¥, the ML estimator of W, are equal to zero and
partition the matrices S, A, the ML estimator of A, and ¥

as follows:

r 1 r . 1
i Si11 Sz ] A1l Atz ]
S = , A =
S21 Soeoo p-m A21 A22 p-m
L. A L A
] p-m [ k-m
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O 0 m
and ¢ = . (2.13)
L() @2_! p-m
[ ] p-®

Then the ML estimators obtained under the restriction that

A~ S T'A is a diagonal matrix are given as follows:
(a) the submatrix A 12 becomes zero,
(b) the two submatrices A1: and A2: are determined by
A11r = S11Q and A21 = S21Q, (2.14)

where Q is an w x m matrix such that Q @’ = Si:1°1,

and

(c) the two submatrices A 22 and ¥ 2 are determined as

a solution which minimizes the function

M* (Az22,%2) = tr (S22-1Z2271) + logl S22-1"1'% 22|
-(p - m)

subject to the condition 222 = A22A22" + Vo,

where
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S22-1 = S22 - S21S1:1°1'S 2.

PROOF. Let d1 = + ¢« « = d« be the k smallest eigen-
values of the matrix S-172¢ S-172 ( = N, say) , and denote
by V the p x k matrix with the associated orthonormal eigen-
vectors as columns. Then the A in (2.5) is shown to be given

by
A = S172V (1 - D) r-2 =~ ‘ (2.15)
where D is a diagonal matrix consisfing of the di’s. See,

for example, (60) in Jireskog [1977] .

Partition the matrices D, V, S-% and S as follows:

D 0 n
D = » s, V.= (Vi,V2) ,
1] D k-m n k-m
L 4
m k-m (2.186)
. 1 r 1
A1 A2 m Bii Bi: m
S-1-2 = and St1-2 = .
LA21 Ao . p-Rm LBe1 B2o2 . p-m
m p-m B p-m

Then from the assumption we have
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N Vi ViDt = O (2.17)

and

N Vo VaDo. (2.18)

"

Premultiplication of (2.17) by the matrix (Bg2i1, Ba22)

and then by ¥ 2! leads to
(A21, A22) V1 = 0,
which implies that the matrix Vi is represented as
Vi = (Bi11” , B21" ) * Q (2.19)

with an w x m matrix Q. Substitution of (2.19) into
Vi’ Vi =1 and then using (B1:” ,B21" ) (B11’ ,B21’” )’
= S11 yields QQ’ = Si1:1-'. Thus we have (b) from
(2.15) , (2.16) and (2.19) .

On the other hand, premultipling (2.18) by (B11, B12)
and then using (B11, B12) (Ai12’ ,A22" )"’ 0, (2.15)
and (2.16) , we obtain (a) .

Ed

The ML estimator & = A A" + ¥ is then given by

- S 1 Si2
5 = . (2.20)

S 21 Sz1S11"S12+§22.J
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Partition S-! and & as

Sttt g2 ) ﬁn J:Zt2‘ m
S-t = and ¥ ! = .
821 Saa -m S 21 o 22 -
L _JP LZ z Jpﬂ
] pP-m ] p-m

Noting that S22 and £ 22 are equal to S22-1-! and $ 221,

respectively, we can show that

r " 1
I S1171S12 (I - S22.-1"1%522)

-

o S22-1713% 22

and

A

tr L (S - £) £§-1F3=1r[ (S22-1 - $22) $22-1] .
Using these results at the function M in (2.2) reduces M to

the function M* and we obtain (c¢) . ) [Q.E.D.]

Now, the generalized least-squares estimators ( A , ¥ )

are defined as a solution which minimizes the function

1
GL (A,¥) = £~tr [ (S - 2) S-1]2
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subject to the condition (1.2) and thus the solution A for
given ¥ is represented as the Sale form as that of the ML
estimator A in (2.15) . Therefore we can prove the following
by going along the same lines as the proof for the first

theorenm.

THEOREM 4.2 (thara [1986] )

Assume that the first m ( = k) diagonal elements of ¥
are zero and partition the matrices S, A and ¥ similarly as
(2.13) . Then the submatrices A11, A12 and A 21 are given
by

A11 = S11Q and A21 = S21Q

respectively, Q being an m x m matrix such as Q Q" = S1:°1,

and the two submatrices A 22 and ¥ > are determined as a

solution which minimizes the function
1
GL* (A22,¥2) = ;tl‘[ (S22-1 - 222) S22-1"1] 2

subject to the condition Z 22 = A22Az22" + ¥o.
2.5 CONCLUDING REMARKS
It was found in the aspect of computational performance

that the Gauss-Newton method, partial or direct, is better

than the Newton-Raphson method. Moreover, it will be found at
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the next chapter that SLS is better than WLS or ML at least
for a small sample size, not exceeding 300.

The author believes that these two findings result from
the same reason that a simpler method performs better than a
sore complicated method does. In fact, for the former issue,
the Newton-Raphson method utilizes second order derivatives
and hence is more complicated than the Gauss-Newton method
which does with only first order derivatives. For the latter
issue, the weight matrix W = Ds-2 used in SLS is far simpler
than the weights W = S-1 or -1 which appeaf for WLS or ML.
The more complicated a quantity is, the more seﬁsitive it
seews to be to random fluctuations at earlier and unstable
stages in an iterative process.

An application of the up-and down Marquardt algorithm
described by Okamoto and Ihara [1983a] or [1983b] to the
partial Gauss-Newton method is advised for a practitioner of
factor analysis in dealing with only one sample, since it may
be more likely to lead to a proper solution with a moderate

loss in computing time.
APPENDIX
Calculation of the Jacobian matrix
In order to prove (2.12) , we generalize the argument in
Jennrich and Robinson [1969] which dealt with only the maximum

likelihood wmethod. Define K = W% and I' = diag (ri1, 7 2,

« « « sT598) , the ecigenvalue matrix of the matrix S -.
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Then I' and the matrix V are determined by the simultaneous

equations

=
~
w
83
~
=~
<
1l

VF,

as functions of ¥. Let AT and AV be the increments of I

and V, respectively, when ¥ increases by A¥ . Then

K(S -¥ - A¥) K (V + AV)

(V + AV) (T + AT)

(V + AV) " (V + AV)

I
et

-

Defining AQ = V’ « AV, we have from the first equation
that

(AQ) v =Cre - 1) 12 (KV) 30 (KV) 1e Ay, (t£1)

j=1 (A. 1)
p
Are=-2L(KV) i d2Aws (r=i ... .0 (A2
=
and from the second equation that
(AQ) ¢+ =0 (r =1, . . . ,p) . (A.3)
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The relation AV = V « AQ, which is equivalent to the
definition of AQ, yields that

p
(AV) one = 2 Var (AQ) +r for any m and r. (A.2)
t=1

Expression (2.8) or A = K- 'V:iT 1172 implies that

1
AN = K1 (AVi+Ti172 + —V ICi1t72+« AT )
2

or elementwise

p i
An\ir=EI(K_‘)im{(A‘IT)mr?’r+;er?’rt/2ATr}.
B

Using (A.1) through (A.4) , we obtain

p
AXicr =2 (K-1) ia Varr o172 Cre - 7o) 71
m=1} r

{
t #

~ W

« 2 (KV) ;t

1
= —Varr 1723 [ (KV) jr] 2A¢i}

o 2
=2 {rt723 (r+¢ - 7v¢) "V (K-1V) it (KV) j+t (KV) ;.

1
- 2—rr-1’2 (K-'V) i+ L (KV) ;r12} A, .

KV) jrAlpj

This implies (2.12) [Q.E.D.]
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CHAPTER 3

EXPERIMENTAL COMPARISON OF LEAST-SQUARES AND MAXIMUM
LIKELIHOOD METHODS IN FACTOR ANALYSIS

3.0 GENERAL REMARKS

In this chapter three popular methods to estimate the
unknown parameters in the factor analysis model, the simple
(SLS) and veighted (WLS) least-squares methods and the max-
imum likelihood method (ML) , are compared by a Monte Calro
study.

The most popular estimation methods in factor analysis
may be ML proposed by Lawley [1940] under the normality
assumption and the generalized least-squares method (GLS) ’
being equivalent to WLS,by Jﬁreskog and Goldberger [1972] .
For it is well known that ML teads to asymptotically best
estimators for large samples and it is shown by Jireskog and
Goldberger [ 1972] that under the normality assumption the GLS
estimators have the same asymptotic properties as the ML esti-
mators. Here there are two problems. One problem is that
the situation where the sample size is infinitely large is
only hypothetical so that the actual‘sauple size is always
finite and usually less than a few hundreds. Another problem
is that the normality assumption has been questioned in ana-
Iyzing the real data whether to be realistic or not. In such
circumstances, the computatinal simplicity may change to the
good performance for small samples and thus SLS which is
asymptotically less efficient than ML or WLS may perform most

favorably for small samples. Therefore the author believes

_31-



that it is worth while comparing the three estimation methods,
SLS, WLS and ML.

We used the following three criteria to compare these
three methods. The first criterion is the frequency of
occurence of improper solutions or nonconvergent solutions.
The second is the number of iterations before attaining the
convergence and the third .is the estimation error of the
solution from the true value of the parameters. It is very
difficult to deal with any of these criteria analytically.
No exact expression to evaluate the sampling error, for
instance, variance or mean squared error, has yet been ob-
tained. Thus we have decided to carry out experimental
comparison in terms of these three criteria.

in lhara and Okamoto [ 1985] we used oniy one numerical
model based on Emmett’s data [1949] so that we carried out
an additional experiment to make the conclusions in thara

and Okamoto [ 1985] wore reliable.
3.1 ALGORITHM

We want to compare the three estimation methods, SLS,
WLS and ML, so that as an algorithm for the least-squares
and maximum likelihood methods, we adopted the partial
Gauss-Newton method presented by Okamoto and lhara [1984] ,
which replaces the Newton-Raphson method used in Joreskog
[ 19771 by the Gauss-Newton method which performed well in
Lee and Jennrich [ 197971 .

As is shown by Krane and McDonald [1978] , the three
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estimation methods are scale invariant so that there are two
situations in estimating the parameters ( A,¥ ) which satis-
fies (1.2) according as X is a covariance matrix or a
correlation matrix. |In the former case, the equation (2.5)

to determine A (W) is given by
(S - T)YWA =0 ,

where S is the sample covariance matrix and W equals Ds 2,
S-1 and £ -t for SLS, WLS and ML, re#pectiveiy. In the tat-

ter case, N (¥) is determined by
(R - ) WA = 0 ,

where R is the sample correlation matrix and W = |, R
and =-' for SLS, WLS and ML, respectively. We applied the
partial Gauss-Newton method to the function G in (2.4) ,
using the sample correlation matrix.

If a cycle in the iterative process assigned a negative
value to some component of uniquenesses (Heywood case) , we
forced the solution to be proper by shortening the increment
of the estimate in the cycle so that the new point would lie
on the boundary of proper solutions and then continued the
iteration.

As an initial value of ¥ at which iterative computation
starts, we adopted SMC (squared multiple correfation) due to
Guttman [ 19561 which is used in many studie§ including Okamoto

and lhara [1983b]1 . The stopping rule of the iteration was
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that either the number of iterations exceed 30 or
min (RMS (g) , RMS (A ¥ ) ) < 10-4

where RMS stands for the root mean square of the components
of a vector, g and A ¥ denoting the gradient vector and the
successive difference of the diagonal elements of ¥, respec-

tively, in the iteration process.
3.2 SPECIFICATION OF THE EXPERIMENTS

There are two major factors which are likely to affect
experimental resultis; the sample size and the uniquenesses or
communalities. We treated three levels of the sample size,
100, 300 and 1000 as representatives of small, moderate and
large samples and two levels, small and large, for the
uniquenesses defined later.

It is an intriguing probliem to decide upon the population
model to be used in a Monte Carlo study. |In lhara and Okamoto
£ 19851 we thought that-in order that a comparison based on a

single numerical model wouid be convincing enough, the model
should be familiar to readers. After looking through the
literature, we found that Emmett’s data [1949] with p = 9 is
referred to most frequently so that we adopted it as a numer-
ical model, Model 1, which provided the basis of our experi-
ments.

By rounding the maximum likelihood estimate A from

Lawley and Maxwell [ 1971, p.42] , where the number of common
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factors iIs assumed known to be 3, to the nearest tenth we set

r : B
0.7 0.7 0.5 0.8 0.7 0.8 0.7 0.4 0.8
A’ = ; 0.3 0.2 0.3 -0.3 -0.3 -0.4 0.4 0.3 0.4
0.1 -0.2 -0.2 -0.1 -0.2 0.1 -0.1 0.5 0.0 '
L 4

in thara and Okanofo {19851 . However, the eniries at two
cells (1,8) and (3,4) differ from the exact rouding by 0.1.
This modification was done deliberatgly to treat these cells
differently from almost same values at the cells (1,3) and
(3,9) , respectively. It is noted thatA, satisfies Anderson
and Rubin’s sufficient condition on the identifiability.

(See Theorem k.1 in Chapter 1.) The condition that every
population variance is unity leads to the unique variance

matrix
¥ ,=diag (0.41, 0.43, 0.62, 0.26, 0.38, 0.19, 0.34, 6.50, 0.20)
and hence the population correlation matrix becomes

21 = A A7 ¥ ¥y
The unique variance matrix varied with two levels, small and
large. The smaller Ievel was defined by ¥, mentioned above,

whereas the larger level was defined by

¥o=diag (0.54, 0.56, 0.71, 0.41, 0.51, 0.34, 0.47, 0.57, 0.35)
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which was obtained from A > by replacing the first row of the

matrix A1’ by
(o.6, 0.6, 0.4, 0.7, 0.6, 0.7, 0.6, 0.3, 0.7)

which is smaller than the original row by 0.1 componentwise.

The corresponding correlation matrix is defined by
T2 = A2A2" + ¥

similarly as for 2 1.

As a second model, Model 2, we adopted a loading matrix

P 3
a afde alpr al2 t
A= | alJfe a’/2 a a/sf al&  al2 :
a/fe al/2 a/do a/2e
L 1
with (p,k) = (10,3) which was obtained by modifying the wmodel

with (p,k) = (15,4) due to Cliff and Pennell [1967] princi-
pally in reducing the value of k. They chose two values of
the parameter a, 0.9 and 0.7, to represent two levels of the
unique variance matrix, small and la;ge, respectively. which
will be denoted by ¥ and ¥: similarly as for the first
model. Instead of the exact value of a/& for a = 0.9 and
0.7, however, their approximations 0.64 and 0.50 were used

in our experiments as was the case with Cliff and Pennell’s

study. The corresponding correlation matrices were defined
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similarly as before.

For every combination of levels of the three conditions,

r ' m r ] r -
Modelt | - Small 100
Mode | x ¥ E X n: 360
' Modetl 2 ! Large i 1000
[ _1 | _i [

we generated 200 sample correlation matrices drawn from the
Vishart distribution W (2, n-1) , using Smith and Hocking’s
program [ 1972] . Every data matrix was analyzed by the three
methods, SLS, WLS and ML.
in addition to assessing the frequency of improper or
non-convergent solutions and the number of iterations we alseo
evaluated the error of estimates of the unique variances and
factor loadings. For each combination of two levels of the
models and ¥, denote by #¥; and & ; the true value and an
estimate, respectively, of the i-th uniqueness for i =1, .
,p. Then RMSEU (Root Mean Square Error for Uniqueness)

stands for the average of

p E
[Xi(ﬁa-zp;)?/ p} 172
i=

computed across replications in each of the following two

cases.

(a) all replications that lead to proper solutions for
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a particular method in question, or

(b) all replications that lead to proper solutions for

‘all methods.

”Eias for ¥ was computed for each i as the average of
o~ @a acfoss replicaﬁions only in the case (a) .

On the other hand, following Cliff’s method [ 1966] to
deal with the error of the estimated loadings, we computed the
estimate 3 ;. by fitting the solution obtained by each of the
three methods to the true value A ;. by least-squares method

and defined RMSEL (Root Mean Square Error for Loadings) by the

average of

p k
[ 2 (iir - XAic) 2/ (pk) J 172
i=1 r=1

across replications in each of the two cases (a) and (b)
3.3 RESULTS OF THE EXPERIMENTS

First five tables are concerned with Medel 1 for two
'f@ris of E@ﬂéﬁﬁés ‘Qdé'v‘ Table 3.1 sﬁows ihé proportion of
proper (P) g'improper (iP) and non-cenvergent (NC) solutions
for every combination of levels of the three conditions, me-
thod (3 fevels; SLS, WLS and ML) , unique variance matrix ¥

(2 levels; small and large) and sample size n (3 levels; 100,
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300 and 1000) . In terms of this criterion, performance for

the methods depends mainly on the value of n and partiy on ¥ .

When n 100, SLS.is best and WLS and ML behave similarly.

Vhen n 300 for swmall ¥ or when n = 1000, there are few
differences among the three methods. The table also shows
that the proportion of IP or of NC for each method decreases
as n increases oF ¥ decreases. |t was found that most of IP
or NC solutions took place at the uniqueness ¥ s, though the
result is not tablated.

Table 3.2 gives values of the three criteria, median,
mean and standard deviation for the number of iterations
before attaining convergence across replications in the case
(a) . It is seen from the table that every criterion is
smallest for SLS as compared with WLS and ML, irrespective of
the galues on n and ¥, whereas the latter two perform simi-
larly. The value of every criterion decreases as n increase
or as average ¥ entries decreases.

Table 3.3 shows values of RMSEU for every combination of
levels of the three conditions, methods, n and ¥ values in
the cases (a) and (b) . Conclusions are similar to those for
Table 3.1. When n = 100 or when n = 300 with large ¥, SLS is
best of the three methods and the other two are aimost alike,
while all three show similar performance when n = 300 with
small ¥ or when n = EOGG. The value of RMSEU decreases as n
increases ofr ¥ decreases. On the ether hand, for a given
method, n and ¥, the value of (b) is sﬁaiter than that of
(a) .

The resuits for the criterion RMSEL for estimated load-

ings are shown in Table 3.4 in the same style as in Table 3.3
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and interpretations are similar.

Table 3.5 gives the bias of estimated uniqueness in the
case (a) when n = 100 or 300. Even though the number of re-
plications was thus made larger than for the case (b) , it
seems still to be too small to make the results stahle, partty
because the information was difuted by computing the bias
componentwise. However, two conclusions can be drawn from the
table. First, generally speaking, the bias tends to decrease
as n increases or average ¥ value decreases. Second, WLS is
negatively biased as was indicated by Jéreskog and Goldberger
£ 19721 , the absolute value of the bias being larger than for
either SLS or ML, whereas the latier two behave simitarly
except when n = 100, where SLS has slightly smaller bias than
ML does.

The next four tables are concerned with Model 2 adopted
from Cliff and Pennell’s model [1967] , corresponding to
Tables 3.1, 3.2, 3.3 and 3.4 in this order. Throughout all
tables, every criterion decreases as n increases or ¥ decrea-
ses so that we shall concentrate on other features. Table 3.6
shows that when n = 100 SLS is better than WLS and ML and the
tatter two are almost similar. Model 2 looks much easier than
Model | since IP or NC rarely occurs as soon as n attains 300.
Table 3.7 shows that the three methods may be arranged in the
order of SLS (best) , WLS and ML (wrost) with respect to the
number of iterations. Combining Table 3.8 and 3.9, we find
that when n = 100 or n = 300 the order of preference is SLS,
| ML and WLS for large ¥ (a = 0.7) but ML is best for small W
(a = 0.9) . VWhen n = 1000, there is not much difference
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between the performance of the three methods.
3.4. ASYMPTOTIC BIAS OF ESTIMATORS OF THE UNIQUNESS

Analyzing two seis of real data, Joreskog and Goldberger
[1972] indicated that the weighted least-squares estimate of
the uniqueness was systeuatieatfﬁ smaller than the maximum
likelihhod estimate so that WLS tends to be negatively biased.
Boomsma [ 19821 and [ 1985] reported that ML had similar tenden-
cy in her Monte Calro study with respect to maximum likelihood
factor analysis. We found in our experimental study that the
three methods, SLS, WLS and ML, tended to lead to negatively
biased estimate of the uniqueness and moreover the tendency
was most remarkable for WLS when the sample size n was not
Earge; |

In this section we show that the three methods lead to
estimators of uniquenesses with negative biases at least when
(p,k) =(3,1) .

Let p = 3 and k = 1 throughout this section and denote by
friplet (a,b,c) any permutation of (1,2,3) . Suppose that
(pn - 1) S, S_ being ihe sample covariance matrix, is distri-
buted in the Wishart distrihutiom W{(Z, n-1}) . We can postu-
tate that 0 .60 500G ca is positive because it. is a necessary
and sufficient condition on the identifiability of parameters
in-(1.2) when (p,k) = (3,1) . See also Theorem 5.5 in
Anderson and Rubin [ 19561 . Since S converges to T almost
surely, we can assume that sabSpcSca IS positive with proba-

bility one when n becomes sufficiently large. Then we can
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decompose S into a similar form as that of = in (1.4) and
hence the estimators (A ,¥% ) by the three methods, SLS, WLS

and ML, coincide with each other, which are given by
Wa = ﬁa (S) = Saa - SabSeca £ Sbey (3.1)
for a = I, 2, 3. Thus we can prove the following.

THEOREM 3,1 The estimator v (a = I, 2, 3) in (3.1) has

the asymptotic bias
AB(?Pa)‘:‘[?ﬁa ‘f'()ﬁa/ ;\b;\c) zwblbc] / (n-l) (3.2)
up to the order n-t.

PROOF. It is sufficient to prove the theorem for the
case a = 1. Then (b,c) = (é,3) in (3.1) so that w1 is the
function of only the variables si1, s12, s13 and s23. Let
denote by s and ¢ the vectors (si1, si2, s13, s23) ~ and
(611, 612, 013, G23) ° , respectively. Then Taylor’s

expahsion'of b1 at s = ¢ up to order of n' is given by

¢ 1 = P +{(s - ¢g) "’ g f.€ s - 6¢6)’ ' H{(s - )/t 2
+ 0p (N 1) , (3.3)

where
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g8 = ——— (o) =(1, -013l023, ~Gr2f023, C12013/0232)

and

3291 (o) 0 0 0
H=- —————-— = 0 -llo2s g 13lc232
s 3as”’ -ifoas 0 ' 0125232

G 13/0232 G12/0232 -2 120G 13/l52383

Thus we have

bias (4 1) =trLH-E(s - a) (s - a) 17 2
+ 0 (nt) . (3.4)

Since (n-1) S is distributed in the Wishart distribution
W(Z, n-1) , we have E(s - ¢) = O and
E(Sab - Gab) (Scd = ch) =(O’ac(7bd + O'ada'bc) / (n‘l)

for a, b, ¢, d = 1, 2, 3. Substituting these results and the

retation (1.2) which is here 0ab = XalAbo + 8av®pa for a, b
=1, 2, 3 into the right-hand side of (3.4) yields (3.2.) .
| [Q.E.D.]

It should be noted that this theorem suggests that the
tendency found in our Monte Calro study exists at least in

asymptotic point of view.
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The vector x of observations may be standardized because
of the scale-invariance. Factor analysis of the sample corre-

lation matrix results in the standardized estimator

for a = I, 2, 3. Then we can prove the following by going

along the same lines as the proof for the first theorem.

THEOREM 3.2 Let ®a" = P2 / Gaa and Aa® = Xa / Baa
for a = 1, 2, 3. Then the estimator w .* has the asymptotic

bias

AB(‘IIa.)z "[wa“"»()ﬁa./xb'kc.) zwb‘(pc.
- 2 (Aa') alba'] / (n-l) (3.5)

up to the order of n-1t.

The expression in the bracket in (3.5) can be revwritten

as

(Aa'/kb‘kc.) 2¢b‘¢c"‘¢‘a‘(f‘2¢"a'),

so that the asymptoiic bias for % - becomes negative if
Ppa- = 0.5.

Finally, the asymptotic relative biases for wa. and % o°
are defined by AB (% ) / . and AB (% ") / ®a*, respecti-

vely, and then we obtain that
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AB(wa) /7 ®a = -[1+(CAa/ AodAc)2%hothe / pa1/ (n-1)
and

AB (% a) / ®pa- = -[1L +(Ra*/ Ao"Ac*) 2% Do/ Pat
- 2Xxa721 7 (n-1) .

This fact implies that the asymptotic relative bias for the
standardized estimator is closer to zero than that for non-

standardized estimator is.
3.5 CONCLUDING REMARKS

Throughout the experiments in this chapter, the perform-
ance ofiany of SLS, WLS and ML was found to always improve
when the sample size increases or the uniquenesses decrese,
irrespective of the criterion employed to evaluate it. The
first half of this finding is intutively natural and actually
agrees with the reports by Pennell [1968] , Boomsm [1982] and
[ 19851 and Anderson and Gerbing [1984] . On the other hand,
the last half agrees with Boomsma [1982] and [19851 , Cliff
and Pennell [1967] and Pennell [ 19681 but not necessarily with
Anderson and Gerbing [ 19841 who showed that in some situations
the proportion of improper solutions was the largest when the
uniquenesses were the smallest of three levels considered
there. Another interesting feature, the effect of the number
of variables per factor, which was treated by Anderson and

Gerbing [ 1984] was not considered here.
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As far the preference among the three methods, SLS, WLS
and ML, these results suggest that SLS is most reliable if the
problem is difficult in the sense that the sample size is
rather small and unique variances are large. A main reason
for this finding is that the algorithm of the SLS is the
simplest of the three competing methods under investigation
and that in general the simpiest method would be most effici-
ent for a problem which requires a complicated computation.

A remarkable advantage of the least-squares methods is
that it can be applied to any data without assuming any
particular probahilfty distribution for the sample, whereas
the maximum likelihood methed is heavily dependent on the
underlying distribution, usually a multivariate normal distri-
bution. Though all samples in this study were generated from
‘normal distributions, the author conjectures that SLS would be
more favorable than ML based on the normality assumption and
presumable than YLS when the samples are drawn from more
general populations. Thus, SLS deserves more attention from
statisticians, theoretical or applied, than that paid to at
present, though this suggestion is against the current trend
in the statistical community which seems to favor ML or WLS
among the least-squares family.

| Some discussion would be needed on the program-dependency
of findings in this study. There is a certain difference
between the proportion of ]P or NC solutions and the number of
iterations on one hand and the error of estimates on the other
hand. For a given set of sample correlation matrices, the

value of each criterion in the first group maybe heavily
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dependent on the conputef program adopted in the study.
However, the present author believes that the result would not
change much as far as the comparison of the method is concern-
ed, since the simplicity of SLS would be valid for any
algorithm applicable to factor analysis. As for the error of
estimates, the estimated value for a particular sample and
under a particular method should be the same for any program,
provided the computation starts from a reasonably good initial

value and the iterative process converges.
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CHAPTER 14
NON-ITERATIVE ESTIMATORS IN FACTOR ANALYSIS
1.0 INTRODUCTORY REMARKS

In previous two chapters we have ftreated the least-
squares (LS) and maximum likelihood (ML) methods which are
most popular among vérious methods to estimate the unknown
parameters in the factor analysis model. The estimates (A ,¥)
are determined as a solution which minimizes a suitable dis-
crepancy function F (S ,X) subject to the condition (1.2) ,
wvhere S and = are the sample and population covariance
matrices, respectively Since the derivatives of F are non-
linear with respect to (A ,¥) , the solution can not be
expressed as an explicit function of S. Thus it is usually
obtained by means of an iterative procedure as is reviewed
in Chapter 2.

Now, among various findings obtained from experimental
comparisons in Chapters 2 and 3 the following is the most
remarkable: a simpler method performs better than a compli-
cated method does. For this‘suggests that‘if wve can obtain
estimators ( A , ¥ ) as explicit functions of S, then such
estimators may behave better than the LS or ML estimators do
for small samples, since we can obtain such estimators with-
out using any iterative procedures. Unfortunately, the
population covariance matrix Z in (1.2) is non-linear with
respect to (A ,¥) so that we can not simultaneously express
A and ¥ as explicit functions of X, but we can do only the

¥ as is shown in thara and Kano [1986] .
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In this chapter we explicate the new estimator of the
uniqueness proposed in thara and Kano [ 1986] and apply it to
two data sets from Emmett [ 1949] and Holzinger and Swineford

(see Lawley and Maxwell [1971] , p.96) .
4.1 ESTIMATORS OF THE UNIQUENESS

Among various estimators of the uniqueness the estimator
SMC (Squared Multiple Correlation) due to Guitman [1956] is
most popular. Let us write S = (s;;) and S-! = (sii) .

Then SMC is defined by

i =1/ sii (4.1)

for i I, . . . ,p. Since we have the inequality

2"t < g1 (4.2)

from (1.2) , provided ¥ is positive definite and the number
of common factors k is not equal to 0, SMC is a positively
biased estimator.

Jireskog [ 19671 proposed an initial value of the unique-
ness by modifing SMC so as to reduce its bise. Let us denote

it by JOR. Then JOR is defined by

(1 - k /7 2p) / sii

F-3)
i

for i =1, . . . ,p.
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There remain two more estimators which are widely used as
an initiator in analyzing the real data, the highest corre-

lation (HIGH) and ZERO defined by

HIGH: @ ; sii (1 - max | ric | )
i

and

ZERO: w o,

respectively. In Okamoto and lhara [1983b] we carriédvout
an experimental comparison of these four estimators, SMC,
JPR, HIGH and ZERO, as the stérting point of our iterative
computation and ihen found that SMC was best of all, whereas
| Okamoto [ 1986b] reported in his Monte Carlo study that JOR
performed better than SMC did.

‘,If we use these estimators as the initiator, they may
be superior to our new estimator defined later because our
estimator will be tine—consuﬁing to compute as compared with
them, but our estimator can be shown to be better than them in
the sense that it has analyticaltly desirable properties such

as consistency, asymptotic normality aqd scale invariance.
4.2 NEW ESTIMATOR OF THE UNIQUENESS
From the proof for Anderson and Rubin’s sufficient con-

dition on the identifiability in Section 1.2 the unique

variance matrix ¥ in (1.2) was shown to be expressed as an
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explicit function of 2. Thus if the sample covariance matrix
S is partitioned in the same fashion as £ in (1.4) , then

we can define an estimator of #» : by
@1 = S11 - S12S 2271831, (4.3)

provided the submatrix Sz2 is non-singular. Note that the
expression (4.3) can be rewritten as the reciprocal number
of the (1,1) element of the inverse of the submatrix defined

by

. 1
l Sit1  S12 1
S=* =
S31 Sa3e2 k
3 1 k .

and thus the expression is similar to that for Guttman’s SMC.
In the case of SMC we have only to calculate the inverse of
S, whereas in the case of the new estimator we need to do
the inverse of S for every index i so that it may be time-
consuming to obtain the new estimator.

The estimator ¥ 1 is a continuous function of S and dif-
ferentiable at S = X, sb that by usingvTheoreu (ii) on p.387

of Rao [ 1973] we can prove the following.
THEOREM 4.1 (lhara and Kano [1986] )

(i) If S is a consistent estimator of X, then %1 is

a consistent estimator of
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and
(ii) if the asymptotic distribution of nt-2 (S - I ) is

normal, then that of n'72 (4 - 1) is normal.

On the other hand, if S converges to X, both SMC and
JOR can be shown not ﬁ@.be consistient estimators by noting
the inequality (4.2) .

If S is transformed into DSD by a diagonal matrix D
with positive diagonal elements d1, . . . ,do, we will want
that the estimator w ; is transformed into d;:2% ; for each i
(i =1, . . . ,p) . If an estimator has such a property, we
call it scale-invariant estimator, for which we have the

following

THEOREM 4.2 (lhara and Kano [ 1986] )
All the five estimators mentioned above, SMC, JOR, HIGH,

ZERO and our estimator, are scale invariant.

Now, different choices of the submatrix Si3», in (4.3)
may yield different values of the estimator % 1. In the next
section we will give a procedure for the choice of S3:2 which

will be reasonable and simple for compitation.
4.3 APPLICATIONS
As described in the last paragraph in the previous sec-

tion,vthe value of the estimator depends on the choice of

the submatrix Ss2. Therefore we are required to determine
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how to choose S3>. It will be reasonable to suppose that

the stability of S32 is an important factor of that of ¢ ;.
For each possible choice of S:» we calculated the corre-
sponing estimate of %9 and the absolute value (A, say) of
the determinant of S32 in Emmett’s data [ 19497 and Holzinger
and Swineford’s data (see Lawley and Maxwell L 19711 , p.96)
with (b,k} = (9,3) . For each data the number of estimates
for Ps is 8€3¢5€Cs / 2 = 280 and they were grouped into
several classes according to the value of A. In each class
we calculated the mean of the estimates % s and the root mean
squared error (RMSE) of %9 to the maximum likelihood estimate
(MLE) which is 0.231 for Emwett and 0.421 for Holzinger and
Swineford. Table 4.1 shows that the larger the value of A
becomes, the closer & o becomes to the MLE in general in both
senses of Mean and RMSE. Thus we suggested the use of S 3»
~with the maximum value of A in order to hopefully obtain the
best estimator. Table-4;2 shows the results when the method
was applied to the two data sets mentioned above and it cah be
seen that our estimate is rather close to the MLE.

In practice, it may be time-consuming to try all possible
choices of the matrix Ss». Our estimation method would work
| well by using the maximum value of A among randomly chosen
Ss2’s, for instance 10 in number, though the result is not

reported.
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Table 2.1

Computational algorithm for factor analysis

Authors Method | Variable | Constraint | Algorithm
Before 1960 ML A&V PFA*
Harman- jones (1966) LS A GS
Joreskog (1967) ML 14 Y- DFP
Jenarich-Robinson (1969) M 1 4 S-! NR
Derflinger (1969) | ML,LS v -1 ] NR
Clarke (1970) ML v p-t NR
Joreskog-Goldberger (1972) LS £ 4 Y- NR
Joreskog (1977) ML,LS £ 4 S-t NR
Lee-Jennrich (1979) MLLLS | A& GN
Okamoto-lhara (1983b) LS A | Marquardt
Okamoto- Ihara (1984) MLLLS ¥ [S,Ds2] 6N

PFA: Principal Factor Analysis Method

GS: Gauss-Seidel Method

DFP: Davidon-Fletcher-Powell Method

NR: Newton-Raphson Method
GN: Gauss-Newton Method
Marguardt: Marquardt Method
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Table 2.2 Convergence of the partial Gauss-Newton ML algorithm applied to

Rao’s data using Rao’s solution for starting values.

I

lter. | F  RMSg RMSA:p‘v Air Az As As As A Ar As  As

¢ |.09963 —— ——| .4400 .5700 .8800 .9000 .7300 .4300 .5500 .7500 .6300
b |.06974 .1641 .0413 | .3437 .5834 .8796 .9060 .7250 .4297 .5425 .7515 .5487
2 |-06790 .0175 .0396 | .0000 .5920 .8797 .9058 .7286 .4302 .5441 .7495 .5476
3 ].06774 .0141 .0027 | .0000 .5872 .8792 .9030 .7296 .4318 .5445 .7481 .5168
1 |.06774 .0011 .0002|.0000 .5871 .8793 .9029 .7298 .4321 .5M5 7479 .5466
5 | .06774 .0001 .0000 | .0000 .5871 .8793 .9029 .7298 .4321 .5445 .7479 .566

Table 2.3 Convergence of the partial Gauss-Newton ML algorithm appi-i‘ed to Harman’s

data using Harman’s solution for starting values with As replaced by .700.

Iter. F RMSg RMSA Y Ay Az As As As As A7 As
0 |.I13181 —— —— |.3990 .3050 .4110 .4380 .2920 .6040 .6470 .7000
1 08263 .3947 .0286 .3667 .1760 .4384 .3937 .3037 .5970 .6413 .6989
2 07641 .1322 .0117 | .3649 .0000 .4470 .3906 .3063 .5971 .6410 .7046
3 07572 0564 .0038 -3585 .0000 .4403 .3938 .3001 .5994 .6418 .7006
4 07571 .0035 .0006 -3571 .0000 .4404 .3950 .3008 .5993 .6408 .7008
5 07571 0011 .0002 .3571 .0000 .4405 .3954 .3007 .5994 .6408 .7007
6 07571 .0004 .0001 .3570 .0000 .4305 .3955 .3007 .5994 .6407 .7007




Table 3.1

Proportion of proper, improper and nonconvergent solutions (Model 1)

Small W Large ¥

n 100 300 1000 100 300 1000

SLS  78.5 93.0 100.0 73.5 90.5 99.0
210 7.0 0.0 28,5 9.5 1.0
0.5 0.0 0.0 2.0 0.0 0.0

WLS  61.0 93.0 100.0 49.5 85.0 99.5
3.5 7.0 0.0 44.0 12.5 0.5
4.5 0.0 0.0 6.5 2.5 0.0

ML  63.0 91.0 100.0 96.5 87.0 99.0
31.0 8.5 0.0 40.5 11.5 1.0
3.0 0.5 0.0 3.0 1.5 0.0

The upper value shows the proportion of proper solutions P,
the widdle value for improper solutions (IP) and the lower

value for non-convergent solutions (NC).



Table 3.2 _
The number of iterations for proper solutions (Model 1)

Small W Large ¥
n 100 300 1000 100 300 1000
SIS Median 5 4 4 5 5 4

Mean 5.9t 4.50 4.01 6.33 5.12 4.23
S.D. 3.40 1.3% 0.49 2.97 1.80 0.59

WIS Median 8 5 4 8 7 5
Mean 9.56 6.95 4.48 9.72 8.27 4.89
S.D. 5.12 3.04 0.63 4.76 3.95 0.92

ML Median 9 6 5 10 1 5
Mean 9.87 7.23 4.94 10.88 7.98 5.27
S.D. 4.45 2.83 0.84 5.17 3.58 1.02
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Tab’le 3.3
Values of RMSEU(muitiplied by 10¢) (Model 1)

Small ¥ Large ¥

n 100 300 1000 100 300 1000

SLS (@) 960 552 322 12711 729 42
(by 914 541 322 1194 700 422
WS (a) 985 569 315 1290 741 428
(b 945 550 315 1228 726 421
ML (@) 966 558 315 ‘ 1312 755 420
(b) 948 549 315 1256 731 420

Table 3.4
Values of RMSEL(muitiplied by 10¢)(Model 1)

Small W Large ¥

n 100 300 1000 100 300 1000

SLS (a) T84 441 249 1012 564 311
(b) 764 436 249 969 547 311
WS (a) 811 451 285 1011 571 311
(b) 798 444 245 993 565 311
ML (@) 813 447 245 1040 579 3il
(b) 799 444 245 1002 568 311




Table 3.5

Bias for uniqueness (x100) for proper solutions (Model I)

(i)SmallWw
Variate Py P2 Bz Ppa s Ye Y1 Ps e
True value 0.4} 0.43 0.62 0.26 0.38 0.19 0.3 0.50 0.20
100 SLS -3 -5 -1 -2 1 -2
VLS -6 -3 -8 -3 -5 -4 -2 -1
ML -3 -5 -1 -2 -3 2
300 SLS -1
VLS -1 -1 -2 -1 -1 -1 -1
M
(ii)targe¥
Variate P Yo W3 Ya WYs  Pe Pir  Ps  Pg
True value 0.54 0.56 0.7t 0.41 0.51 0.34 0.47 0.57 0.35
100 SLS -5 -1 -8 -2 -4 -3 2 -1
WS -7 -3 -12 -5 -7 -2 -6 -2 -3
ML -5 8 -3 -4 4 2 -1
300 SLS -1 -1 -1 -1 -1
WLS -2 -2 -2 -2 -2 -1 -2 -1 -1
ML -1 -1 -1 -1 -1




Table 3.6

Proportion of proper, improper and non-convergent solutions(Model 2)

a=0.9 a = 0.7

n 100 300 1000 100 300 1000

89.0 100.¢ 100.0 77.5 100.0 100.0
S.IS 11.0 0.0 0.0 19.0 0.0 0.0
0.0 0.0 0.0 3.5 0.6 0.0

83.0 100.0 100.0 55.0 99.0 100.0
WS 16.5 0.0 0.0 35.0 1.0 0.0
0.5 00 0.0 10.0 0.0 0.0

84.5 99.5 100.0 59.0 99.0 100.0
ML 5.0 0.5 0.0 36.0 1.0 0.0
6.5 0.0 0.0 50 0.0 0.0

The upper value shows the proportion of proper solutions
(P), the middlie value for improper solutions (I1P) and the

fower value for non-convergent solutions (NC).



Table 3.7

The number of iterations for proper sulutions (Model 2)

a=0.9 a=0.7
n 100 300 1000 100 300 1000
Median 4.00 4.00 3.00 6.00 5.00 4.00
SLS Mean 4.10 3.33 3.0t 7.54 4.99 3.77
S.b. 1.12 0.49 0.07 3.93 1.88 0.46
Median 6.00 5.00 4.00 11.00 6.00 4.00
WLS Mean 6.42 4.74 4.11 11.84 7.38 1.33
S.Db. 2.48 0.8 0.31 5.2F 3.97 0.52
Median 7.00 5.00 4.00 11.00 7.00 5.00
ML Mean 7.46 5.24 4.35 12.8% 7.84 4.74
S.Db. 2.70 0.82 0.48 5.21 3.12 0.63




Table 3.8

Values of RMSEU (multiplied 104) (Model 2)

a= 0.9 a=10.7
n 100 300 1000 100 300 1000
StS (@) 939 531 286 1423 799 409
(b) 942 531 286 1389 784 409
WS €a) 1106 549 277 1690 907 418
(b) 1107 548 277 1643 878 418
ML (@) 902 505 271 1513 836 409
(b) 898 504 271 1508 830 409
Table 3.9

Values of RMSEL (multiplied by 10¢) (Model 2)

a=0.9 a=0.7

n 100 300 1000 100 300 1000

SLS (@) 797 454 247 1183 670 356
(b) 795 454 247 1155 660 356

WS (a) 781 440 238 1210 694 356
(b) 780 440 238 1195 680 356

ML (@ 773 438 238 1206 678 355
(b) 773 438 238 1191 672 355




Table 4.1

Relatinship between A and the closeness to MLE

Emmett Holzinger & Swineford

Interval Frequency ﬂean RMSE || Frequency | Mean | RMSE
000 S‘A 010 159 135 .o78 124 .604 2.;7
010 = A 020 54 | 237 .054 74 444 .306
020 = A -030 38 227 032 21 .QTd 176"
030 = A 040 22 224 .030 11 o315 171
010 = A .050 7 .240 015 10 527 .156
050 = A -.100. 0 - | 9 432 .089
100 S A < .200 0 — | — 3 | .3m | .om

SMC .348 .504

MLE .231 .400
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Talbe 4.2

New Estimates and MLE’s for the uniqueness on Emmett’s and

Holzinger & Swineford’s data

Variable 1 2 3 4 5 6 7 8 g
NEV | .438 | .481| .664 | .209 | .375 | .225| .408 | .651 | .266
Emsett :
MLE | .451 | .427| .617 | .212| .381 .177 | .400 | .462 | .231
Holzinger | NEW | .499 | .624 | .470 | .301 | .376 | .318 | .343 | .313 | .446
&
Swineford | MLE | .491 | .622 | .43 | .289 | .370 | .324 | .325 | .268 | .402

-71 -




	072-00001.pdf
	072-00002.pdf
	072-00003.pdf
	072-00004.pdf
	072-00005.pdf
	072-00006.pdf
	072-00007.pdf
	072-00008.pdf
	072-00009.pdf
	072-00010.pdf
	072-00011.pdf
	072-00012.pdf
	072-00013.pdf
	072-00014.pdf
	072-00015.pdf
	072-00016.pdf
	072-00017.pdf
	072-00018.pdf
	072-00019.pdf
	072-00020.pdf
	072-00021.pdf
	072-00022.pdf
	072-00023.pdf
	072-00024.pdf
	072-00025.pdf
	072-00026.pdf
	072-00027.pdf
	072-00028.pdf
	072-00029.pdf
	072-00030.pdf
	072-00031.pdf
	072-00032.pdf
	072-00033.pdf
	072-00034.pdf
	072-00035.pdf
	072-00036.pdf
	072-00037.pdf
	072-00038.pdf
	072-00039.pdf
	072-00040.pdf
	072-00041.pdf
	072-00042.pdf
	072-00043.pdf
	072-00044.pdf
	072-00045.pdf
	072-00046.pdf
	072-00047.pdf
	072-00048.pdf
	072-00049.pdf
	072-00050.pdf
	072-00051.pdf
	072-00052.pdf
	072-00053.pdf
	072-00054.pdf
	072-00055.pdf
	072-00056.pdf
	072-00057.pdf
	072-00058.pdf
	072-00059.pdf
	072-00060.pdf
	072-00061.pdf
	072-00062.pdf
	072-00063.pdf
	072-00064.pdf
	072-00065.pdf
	072-00066.pdf
	072-00067.pdf
	072-00068.pdf
	072-00069.pdf
	072-00070.pdf
	072-00071.pdf
	072-00072.pdf
	072-00073.pdf
	072-00074.pdf
	072-00075.pdf

