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Abstract

In the structural expansion for the ground-state energy of
simple metals, the higher-order effects are studied. To take ac-
count of the exchange-correlation effects on the higher order
polarizations, the effective vertex approximation is examined in
the asymptotic forms up to fourth order, with finding its validity
region limited by the singularity of the higher order polarizations.
A new resummation scheme is presented in a cluster expansion based
on the variational principle of Luttinger and Ward. A general
method for evaluating the many-point ring diagrams is also pre-
sented.

Higher order effects on the high-density hydrogen system are
studied. The mechanism for the stabilityof the filamentary struc-
ture is clarified in connection with the singularity of higher
order polarizatidns, where the numerical results are also presented
in proof of our theory. It is shown that the resummation effect
does not change the situation.

Monomer-dimer transition of hydrogen 1s studled in the bce
[111] model. It is pointed out that exchange-correlation effects
on the fourth order energy are consliderable, though a large can-
cellation occurs with contributions from the Hubbard H-graph.

The fifth-order effect is studied for the first time. The tran-
sition pressure is predicted to be 2.3Mbar at rs==l.4 in the
fifth-order stage without effect of the zero-polint motion of

protons.
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I Introductory Part



§1. Phase diagram

Hydrogen is the simplest but most abundant element in the
universe. The solar abundances by mass are predicted to be 76%éj
for H and 22% for He.l> The cosmic abundances are known to be
nearly the same. Hydrogen exists in a wide range of circumstances;
as the most dilute place we have the 1lntergalactic space and
as anextremely dense place the interior of stars and gilant
planets. According to the variety of cilrcumstances we have the
variety of its existing forms; atomic, molecular, plasma and con-
densed states.

Construction of the phase diagram of hydrogen in the whole
p-T plane is a challenging subject. At low pressures and at low
temperatures it forms a molecular solid (214K at ordinary pressure).
At elevated temperatures hydrogen molecules are dissociated and

40105k, on

then ionized to form the proton-electron plasma-at 10
the other hand at low temperature and at high pressures, hydrogen
is supposed to form a condensed ionized state, namely metallic hy-
drogen. To such formation of low temperature plasma a crucial
role is played by the quantum mechanical nature of electrons.

In Fig.l we show'a global picture for the phase diagram of
hydrogen. In drawing the phase diagram we refer mainly to a classic

work by Brush, Sahlin and Teller.z)

They drew the phase diagram
of Fe, whence we obtain the similar one for H with apprbpriate

modification. In Fig.l we mention the melting curve of proton

-2 -



lattice, which is characteristic of hydrogen; the melting occurs
even at zero temperature. The cHld melting comes out due to the
zero-point motion effect of protons, as pointed out first by

3)

Abrikosov. We estimate the melting point at 0K from Akrikosov's

formula
aﬁ:5'10_11//Z2A cm (1)

where a denotes the lattice constant,Z the atomic number, and A
the atomic weight. We note that the critical lattice constant
becomes exceedingly small even for helium. At the side of high
temperature the melting curve is drawn with the use of Pollock and

b)

Hansen's Monté Carlo result

T, = 1500 0173 x (2)

where TM denotes the melting temperature and p the density in

g em™ 3.

For the high density plasma an important parameter is

T = , (3)

where e denotes the electron charge, k, the Boltzmann constant, T

B
the absolute temperature and a the radius of ionic sphere. In
Fig.l 'some of the curves are drawn for T =const. For large values
of T the plasma is strongly coupled. The study for such plasma

5)
has been one of developing fields. The critical curves for



the nuclear fusion to occur are alsb shown roughly in

Fig.1l.
§2. Molecular hydrogen

In free state, hydrogen forms diatomic molecule in the ground
state with binding energy 6) -1.1645 Ry. This simplest molecule
has been a touchstone for ensuring our knowledge about the binding
mechanism of molecules. Accordingly, a great deal of theoretical
studies have Qéén done for the binding energy of hydrogen molecule
as well as its properties with considerably high accuracy from
the first principle. 7) If the effect of molecular vibration is
neglected, the ground-state energy of a molecule has been estab-

lished to be8)

- 1.1745 Ry per atom (4)
with equilibrium proton distance 0.74 A , that is

1.40 bohr . (5)

By including the zero-point vibration effect, the measured bindihg

energy is in agreement with the theoretical one with accuracy of

10?“. The first vibrational level is extremely high and esti-

mated to be about 6000K. 8)

Here we note that 1 Ry corresponds
to the termperature 1.58 XI05 K.

In the solid state, molecular hydrogen shows 1interesting



properties, which mainly come from the quantum nature of the ro-
tational degree of freedom. The H2 molecules are classified into
two species; orthohydrogen with the odd rotational gquantum number
J and parahydrogen with even J, owing to the Fermi statistics of
protons. The first rotational energy level of para H2 is about
510 K and that for ortho H2 1s much higher. 8) We note that the hydro-
gen molecule has the highest rotational constant E2/2I among mole-
cules owing to its smallest moment of inertia I.
For solid hydrogen, the intermolecular interaction i1s consid-
erably weak at low pressure. Accordingly, valuable informations
on the anisotropic intermolecular forces have been obtained from
various properties of solid orthohydrogen. The main part of the.
anisotropic force is the electric quadrupole-quadrupole inter-
action, 9) whence the Pa3 structure of the solid ortho-hydrogen
comes out as the low temperature phase.lo)
At zero pressure, solid hydrogen has a small density p =0.09

g/cm3

, which corresponds to about rs==3.l. Here ro 1s the radius
of the equivalent sphere to the volume per electron divided by

(o]
the bohr radius a, =0.529 A. In the low pressure region, the

volume vO per mole is used as a parameter,which is related to rs

by

vy = 2 x 0.374 rs3 cm3/mole.

For compressed solid hydrogen, our knowledge about the

equation of state (EOS) 1s very poor. It is because the current



expression for the intermolecular force 1s based on.:approximations

11
relevant to the region of low density (de Boer 1942, )Evett and

12)). The assumption of constant separation between

Margenau 1953
protons limits the relevancy. Recent studies with many configu-
rations taken into account show that the effect of the change of
proton separation is not small.l3)
We also menbidn the many-body force, which would bring about
larger effect with increasing density. An attempt to evaluate the
three-body force has been done by Ree and Bender,lu) who claimed

its effect to be important in explaining EOS obtained from the

shock wave experiments
§3. Metallic hydrogen

Metallic hydrogen provides us with a unique condensed system
which can be treated from the first principle . Furthermore the
thermodynamic properties of this system and its mixture with helium
play crucial roles in studying the constitution of Jupiter and

15)

Saturn.

The first study of metallic hydrogen was done by Wigner and

Huntington.16)

One of their motivations was to examine the Wigner=
Seitz theory for the cohesive energy of metals. A relevant theory
must predict the cohesive éehergy of metallic hydrogen smaller than
that of the molecular hydrogen. For bcc they obtained the ground=

state energy -1.05Ry, which is surely higher than that for the



molecular state. Kronig, de Boer and Korringal7)

also treated the
same system with main concern in the internal constitution of the
Earth.

After appearance of these pioneering works various methods
have been developed for calculating the cohesive energy of metals.
With the use of these methods, metallic hydrogen was re-attacked

18~45)

by many authors. Among them we mention the simple r —ex-

pansion, which Carr utilized with a result for the ground-state
energy nearly indentical to Wigner and Huntington's one.l6)
Almost all the calculations have.been confined to the cubic
crystal. ’Eventually the estimates to the ground-state energy are
nearly -1.05Ry, Wigner and Huntington's value.

2)

Exceptional study has been done by the Kagan group.2 They
carried out calculations for the structure-dependent energy of me-
tallic hydrogen in a great variety of crystal forms, finding the
filamentary structure with considerable lowering of the ground=

state energy. Their estimate 1s close to -l.lORy.23)

§4, Molecule-metal transition

The molecule~metal transition 1s one of the main concerns
about our system. This might also be treated from the first
principle. However most of the studles employ different methods
for two branches, namely metallic and molecular phases. The

estimates of the transition pressure show a broad spectrum, 0.5Mbar



n 5Mber. The main reason for such uncertainty may be attributed
to our poor knowledge of EOS for the molecular phase. For the me-
tallic phase, however, confinement to cubic phase may be another
weak point.

An exceptional study was done by Harris et al,2um26) who
treated the metallic and molecular phase in a scheme of the Hatree=
Fock approximation though they used the different modification of
orbitals for different phases. They have shown occurrence of the
first-order transition, assuming bcc structure. However their,
estimate for the ground-state energy i1s considerably high, though
the rS—value at the transition may be of reasonable magnitude.

In spite of many efforts with the use of various methods,u6)
the metal-molecule transition has not been solved.

Here, we mention the experimental status on the compressed

4

solid hydrogen.'’ The melting point of solid hydrogen rises from

48)

14K to the higher termperature as the pressure increases. Ac-
cording to the recent experiment by Mao and Bell,u9) the solid
phase is stable at room termperature under 50kbar. The same authors
compressed it up to 600kbar, where they found the refractive index
of hydrogen to be comparable to that of ruby. Though their highest
pressure attained 1s still far from the molecule-metal tansition,
they observed that the Intramolecular vibration begins to soften

at MOOkbar?O) A similar experiment has also been done at 5 K by
51)

the other authors.

The molecule-metal transition of hydrogen must exist in the



outer layer of Jupiter, which is a giant hydrogen planet. The
pressure ranges from ~“vlbar at the surface to ~100Mbar at the core.
Owing to poor knowledge of the EOS and of the properties of hy-
drogen, both in the vicinity of the transition point, we still

have difficulties in unfolding a complete story about Jupiter52)
§5. Scope of the present thesis

The rs—expansion is a method effective 1n the high density
region, where the theory starts with the electron gés distributed
uniformly. This is Just what happens in the limit of high density.
If the electron-ion interactilon is switched on, the electrons
would tend to concentrate around each lon. This tendency may be
treated by the perturbation method with the electron-ion inter-
action as a perturbation, as far as the density is not considerably
low. However a naive treatment of the rs—expansion would be ef-
fective only in anextremely limited region of validity. Some in-
geneous technlque 1s necessitated to extend the validity region.
This is the structural expansion, as developed by Brovman et al.
and by others?3)

At this point we are in close contact with the many-body
theory of the electron system. The many-body theory has developed
considerably after the war, where one of the most important tech-

niques consists in the use of the Green's funciton.Su)We shall use

the temperature Green's function 1n developling our theory. We men-



55)

tion Matsubara, who 1nvented the temperature Green's function.

The key quantities to the structural expansion are the higher
order polarizations,which correspond to the many-point diagrams
according to the language of the many-body theory. Many-body
effect on the higher order polarization is very important to obtailn
a reliable result in the intérmediate density region. For the
dielectric function of the electron gas, which reduces to the :
second order polarization, a great deal of efforts have been

56)

devoted to clarify the many-electron effect. It 1is not the

case for the higher order polarizations, though some attempté have

53)

been done. A critical study will be presented in Part II for
the many-electron effect on the higher order polarizations. The
resummation of the perturbation series has also been one of the
problems 1in the structural expansion. For it we also present a
new scheme (II).

In ITT we present a general method for evaluations of the
many-polnt diagrams. This method is simpler and more comprehen-

57)

sive than the previous work. The general formula presented
for the anomalous diagrams is entirely new and may be thought
valuable for evaluating the fluctuation of spins and of current.

On the basis of these results, we shall study the higher
orﬁer effect on the ground-state energy of high density hydrogen.
The stability of the filamentary structure is also one of our

subjects. The mechanism for the occurrence of the above structure

will be clarified in connection with the singularity of the third=

- 10 -



order polarization. It may be interesting to see that the stable
structure must be cubic for helium by the same mechanism as the
anisotropic structure is stabilized for hydrogen in the inter-
mediate region of density. The metal-molecule transition will be

¥)

discussed with reference to the bcc [111] modelf4 a filamentary
structure. Density at the transition is obtained for each stage
of the approximation , where the true position of the critical
density may be predicted, whithout zero-point motion effect of

protons. The similar data will also be given for the transition

pressure. These are presented in Part IV.
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Figure Caption

Fig.l. Global phase diagram for hydrogén. The melting curve
in the molecular region 1s plotted after Liebenberg et al's
data (Ref. 48). A supposed melting curve in the metallic
region is shown by wavy line. The thin broken lines represent
the isobars, obtained from a rough interpolation between the
low temperature limit and the high temperature one. The elec-
tron degeneracy line in the plasma re%;on is also plotted

(——++ —). The adiabat in Jupiter (— -

) is drawn
after Steevenson and Salpeter in Ref. 15. See text for the

other lines.
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IT Structural Expansion, Vertex Function

and Cluster Expansion
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§1. Introduction

The structure dependence of the ground-state energy of metals

1)

has been studied by many authors. The method of pseudopotential

expansion has been successfully used to explain the observed

1,2)

crystal structure of simple metals or their alloys, for which

the second order perturbation is usually used. Lloyd and Sholl3)
presented a structural expansion in aneffective field approach

analogous to that of Hohenberg, Kohn and Shamu’S) and first de-
6,7)

rived the third order term. Bro?man and Kagan developed a

many particle theory for this problem and extensively applied it

7)

to the dynamical properties of non-transition metals.

8,9)

They also
attacked the problem of metallic hydrogen using the results

up to the third order perturbation.
In the case of metallic hydrogen, higher order terms are im-

portant. Hammerbergand“Ashcroft(HA)lO)

used the finite tempera-
ture technique and discussed the fourth order effect in the e-
lectron-ion interaction, where they considered the relevant dia-
grams partially. Their scheme is essentially the expanion in terms
of the effective electron-ion potential shielded by the Lindhard
dielectric function so that the exchange and higher order corre-
lation effects are completely neglected. We mention Yasuhara and

11)

Watabe, who pointed out the importance of the correlation effect.

We note here that the effect of the Fermi surface distortion was

2)

first teken into account by Carr,l and later by HA, where the

- 19 -



latter authors also examined the resummation of a partial series

from the higher order terms. On the other hand, Brovman et al.

13)

and de-

4)

discussed the singularity of the higher order diagrams
veloped a technique of integrating the many-point ring diagramsl
(see part ). They also examined the effect of the choilce of

15)

dielectric funection and proposed an effective-vertex (T-factor)

7,16)

approximation to the n-point polariéation (nZ 3) diagrams.

However the nature of this approximation was not clear.

In a series of papersl7-20)

, which willl hereafter be referred
to-as STI, STII, STIII and STIV in order, Nakamura, Miyagi and
Nagara critically studied the higher order effects both in the
electron-ion and electron-electron interactions (See also Ref.
21). All the diagrams up to the fourth order are examined in terms
of RPA-screened interaction line. The first order correction was
evaluated in the Thomas-Ferml approximation up to the three-point
polarization (STI[). Dynamical effects were included in the prima-
ry ccrrection to the RPA polarization (STIII ), while the second
order corrections were calculated comprehensively 1in the Thomas=
Fermi approximation to obtain the static dielectric function (STIV).
A resummation of the anomalous terms of higher order in the e-
lectron-ion interaction was also considered with some new result
(STI).

In this part, we shall consider some of the higher order ef-
fects still neglected in STI-IV and examine methods of taking ac-

count of them with application to the high-density hydrogen in

- 20 -



mind. Method of calculating higher order many-point ring dia-
grams will bte described in III.

Our Hamiltonian is described in §2 together with the notations.
The structural expansion of STII is rederived 1n somewhat differ-
ent manner in §3. In §4, an approximate treatment for the vertex
factor is examined critically. In §5, a resummation scheme is
proposed, in terms of which all the higher order anomalous terms

can be absorbed into the primary terms in the expansion,

§2. Hamiltonian and notations

We shall consider the system of N electrons, of which in the
sea NO ions with charge Ze are embedded. The electron Hamiltonian

is given by

2 : 2
n >+ 11 e
H=7%; 1 pa tS§L o b
>V
2 g PO po a q° pop'
at at a

N +
+ Ty S(g) 1§ a a (1)
2 + ’
\ g g p,o p+g,d p,0
where the first term represents the kinetic energy, the second one
the electron-electron interaction and the third one the electron=

ion interaction, with V the volume of the system. Here S(g) is



the structure factor

_1g. Ri

s(g) -Nl—OZ e
1

2 Ze—ig'Ri . _ (2)
i

=+

Here the reciprocal lattice vector 1s denoted by g, which will be
used separately from q, the quasi-continous wave-vector.
In the following, we put h = 1, and measure the energy in

meu/2h2, and the momentum in units of the Fermi momentum

Ry =

_ 2 1/3 . .
Pp = (37°N/V) . And we introduce the parameter r  as the radius
of the equivalent sphere to the volume per electron devided by the
Bohr radius a, = h2/me2. This convention of units is equivalent

to putting e2 = 2/(ars), m = (ars)2/2, and N/V = (3ﬂ2)_l, where

e 1s the unit charge, m the electron mass and o = (u/9n)l/3

0.5211. Furthermore, we prefer the factor (1/N) to (1/V) for the
momentum summation. This 1s a convenient procedure when we con-
sider the energy per electron.

According to the above conventions Hamiltonian (1) becomes

H=Hy+H, +H , (3)
Hy = 1 ¢ a+0 a (4-a)
) po P P P
=11ly%' t t T -
H, 5 & Yy v(Q) Z'ap+q,0 ap,_q’0 ap,’o ap,0 (4-p)
q PP
o
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H I's(e)vig) § al a (b-c)
= - g)v(g s -c
1 g ps P*tg:0 PO
where
e = h2 2 p2
P~ 2m 2
(ars)
) s Nime® 18,1 (5)
A q2 (ars) 3T q2

Now ry plays a role of scaling parameter and may be thought as a
coupling constant: (ars)'bv(q)/ep.

In constructing the Hamiltonian (1), we have taken the usual
procedure of treating g = 0 term. Since we neglect the ion motion,
the rest of the energy is merely the ion Madelung energy, which

can be written as22’23)

Ey = 511 v()s(g)S(-g) - £ 1 v(a) }. (6)
g q

=

Our main problem is to calculate the total energy E per elec-

tron in the ground state as a function of ry and as a functional

of S(g):

t=
]
=2

<Hy + Hy + H) > + Ey (7)

The pressure of the system is obtained from
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1 2E (8)

2
Mﬂrs Brs

in the atomic unit (= 147 Mbar). Equation (8) reflects the fact
that the concept of pressure is closely related to a scaling trans-

formation.
§3. Structural expansion

We shall evaluate the ground-state energy E of the electron

system under the external potentilal Hl To take account of the
deformation of the Fermi surface, i1t 1s convenient to use the

4)

finite-temperature perturbation theory;2 in which we have the
expansion of the thermodynamical potential with respect to the e-
lectron-ion interaction. Thus, by the thermodynamic relation we
can obtaln the ground-state energy of the system.

(A) Thermodynamical potential

25,26)

According to Luttinger and Ward, the thermodynamical

potential € can be expressed in terms of the temperature Green's
function Gc(p, P'; Ty), where p denotes the electron momentum, o
the spin state, and g, = (28+1)mi/B +u, & =0, #1, #2,«++, where p
denotes the glectron chemical potential and B = k,T. This function

B
i1s a natural generalization of the free electron thermal propagator
-1
)

Gg(p 300) = (g -¢p > (9)

by which the thermodynamical potential Q. of this system can be

0
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obtained as:25)

LS
|

= -2N'Jp ﬂn[—GO(p)]'leC0+

- % y gn[l+e8(u-€p)]. (10)
D

Here we use the abbreviation p = (p, gl), f =Nt Ep B_l EC in
L
accord with STII. In Eq.(10), the factor 2 comes from the spin

summation, and the summation over frequency zy is performed by the

well-known contour integration.25)

The functional introduced by Luttinger and Ward may be wrltten

in the following form:26’27)

1

RLG] =-- + [6°(2,) 17 65 )-11+006T, (11)

™I+

} trianl-G(z,)]1"
%

where the matrices G and GO stand for G(p, p') and Go(p)ép’p,
respectively, and tr designates the trace of the matrix indices

P, p'. The functional ¢[G] is given by the sum of closed linked
skeleton diagrams with weight 1/n, where n is the number of the
Green's function included in each diagram. (Examples of the skele-

ton diagrams are shown in Fig.l.) Then the functional derivative

of #[G] with respect to G gives the self-energy:

8¢[G]
6G(p',p;§Q)

z(p,p';c2> (12)

See Pig.2 for the self-energies corresponding to the linked skele-

tons in Fig.l.
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Now the Dyson equation
-1 0,-1
G~ = [G] -, (13)

may be derived by the variational principle 8R/8G = 0. Then the
25)

expression for the thermodynamical potential becomes

Q=£2-w%%tr{hﬂl-G%CQZ@QH4i(%)MCQ}+¢[ﬂ, (14)
where 1 stands for the unit matrix.

Now our problem 1s how to approximate the functional form of
[G]. If we start with the skeletons of b) and c¢) of Fig.l., an
expansion is obtained in terms of the RPA-screened external field
given by HA. To take account of the exchange and correlation ef-
fect properly, we must include the diagrams a) of Fig.l and the
higher order ones. In the following we restrict our discussion
to the effect of the diagrams a). (Higher order effects were con-

sidered in STIV.) Thus, from Eqg.(l2) we have

+
2(p,p+g) = w(g) + 2v(g) [ G(p,p+g)e’’
P

-3 J EV(q)E’l(q,q+g')]G(p-q,p-q+g—g') ) (15)
g'’q

where the inverse dielectric tensor e_l(q, q+g') is given by the

relation

t—:(q,Q'*'g) = ‘Sg 0 - V(Q)H(Q>q+g);
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n(g,q+g) = 2) J G(p,p+g')G(p+g'+q,p+g+q) . (16)
g' ‘p

28~30)

These quantities were utilized by Hubbard. In Eq.(15) w(g)

stands for the external line (Fig.2 c):

w(g) =-v(g)S(g) . (17)

Now, as in STIT we expand G and I with respect to the ex-

ternal lines:

G(p,p+a) = J 6 (p,p+e) ,
n>0 ‘

Z(p,p+tg) = ) Z(n)(p,p+g) . (18)
n>0

The zeroth order solution will be taken to be the corresponding

functions for the electron gas system:

6! (p,p+8) = G(P)S, 4
(% (p,048) = 1 P08, o (19)
where
6(p)t = %)t - 1Oy, (20)
and
2(0(p) = -j 79 (popya(pryed O (21)
o

in our approximation.
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~( . . )
Here v‘o)(q) denotes the screened internal line given by

0 gy = v(a)/[1-v@i @7,

7(0) (q) 2[ G(p)a(p+a) . (22)
D

The screened internal line is shown in Fig.2a by double wavy line.
If we replace G(p) by Go(p) in Egs.(21) and (22), then ﬁ(o)(q)
reduces to the RPA polarization H(O)(q). In the above approxi-
mation the last term of Eq.(1l4) reduces to the ring diagram con-

tribution:
01c°1 = 3 | anl1-v@n' @)1 . (24)
Qq

On the other hand the higher order contributions from the self=
energy E(O)(p) is included in the logarithmic term of Eq.(14).

Next, from Eq.(13), G(l) proves to be of the form
6P (p,pte) = a(p)z' P (p,pre)c(pte) . (25)
Using the above expression we obtain
t P (p,048) = #(2)1 (p) (26)
from Eqgs.(15) and (16). Here w(g) is given by

w(g) = w(g)/e(g) , (27)

with e(g) the static dielectric function of the uniform system:
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e(g) 1 - v(g)i(g) ,

I(g) 2J G(p')G(p'+g)Ag(p') . (28)
p'

The vertex function Ag(p') may be obtained from a‘solution of

the integral equation:

1y(®) = 1 - [ Y(0,p'58)G(p")G(p" +e)A (") (29)
p' '

where the kernel function Y(p,p';g)3l) 1s given by

y(p,p';g) = -G(O)(p—p')-E.J V(O)(p-p")ﬁ(o)(p—p"+g)
p"

x G(p")[G(p"-p+g') +G(p-p"+p'+g)] . (30)

Contributions to II(g) are given explicitly by Egs.(3.13) to

(3.16) of STI up to second order in ¥'97. We note that the

present approximation does not include the term ﬁ2 Z(b) of STIT.
3
For the higher order terms, Eq.(1l3) gives
¢{")(p,p+g) = G(p)[Vén)(p) +3%) (b p+g) 16(p+e)
nzz2, (31)

(n)

where the proper self-energy parts I of higher order are ob-
tained by replacing thin lines in Fig.2a,b by the higher order

propagators:
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z(“)<p,p+g) = 2v(g) J G(n)(p',p'+g)
p!

_ J 79 (pp)a™ (pr,prag) + -en . (32)
p'

In Eq.(31) the function vén)(p) stands for the 1mproper self=
energy, which is of the form
(n) -1 ¢ 851 (s) (n—s?
vy (p) =[C(p+e)] Z 1 27 (p,p+g")G p+g',p+g) . (33)
g' s=1

Examples of Z(n)

are given in Fig.3.
By using these quantities, the thermodynamical potential is
obtained from Eq.(1l4) 'with substitution of Eg.(18),in the ex-

panded form:

Q = Qeg 0, + 93 Qe (33)

where Qeg is the contribution from the system of uniform electron

gas and may be written as

Uy = —NJpln[—G(O)(p)]_l + [e, - NJ 10056 py7,

P
0, = o[c)] . (34)
The structure dependent part Qst = Q - Qeg may be expanded from
o - - g leranti-o Pz -1 P en

+ {ol6] -8 ) - (3 ] erlaey)6(ey) 2O He @@ 1 (35)

- 30 -



Here the logarithmic term 1s a single-particle like contribution,
where the correlation effects are absorbed in the self-energy,
while the remalning terms may be thought as a correction for
double counting which comes in ordinarily in the single-particle
description.

We write down straightforwardly the expansion of the first
(1) (1i1)

and last terms of Eq.(35), which we denote by @ and Q

respectively. The result is

old) o % ) tr{%[G(O)Z(l)]2}
g

+ % y tr{%[G(O)Z(l)]3 AR ACORN!
g

2
1 1-,(0). (1) 4 | 1-,(0)(2)]

b 6(0)5(1G(0)1(3) | [5(0)5(1)125(0)5(2)y

o oeen (36)

7 er ({250 4 (05142
z

™|~

w|

L

w|

L

e (37)
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In writing down Egs.(36) and (37) some terms have been dropped
out, since they cancel each other in the resultant of Q(l)and
o(11),

(111)

The expansion of the term Q may be obtained by a dia-

gramatic analysis, or by expanding &[G] in a Taylor series

2
8o 1 879
o[G] = ¢, + =— AG + 5 5= AGAG + =-- (38)
0 G G=G(O) 2 8GS8G G=G(O)
with the help of the relation
$¢ _p, sr =g tecet (39)

(o]
(]

The result is as follows.

o3 % 7 tric(@3 (0 %[G(l)(z(l)-w)] + oy
g

P17 ere3050) 4 (oM 12 52y, L g5

2
+ oo, (40)
where (w)p,p+g z w(g) and Zég) corresponds to the diagram F of
Fig.3. .
Collecting terms from 217, o) 4ng (311 Lo outain the
series:

2, = % % tr{% a(0) g (1)5(0) 4y
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- 2 ] er(3ra! @293 L 26105020y (41)

The above result 1s essentially identical with that of STII apart
from the second ferm of 93 (See Fig.4a), which was not explicitly
written down previously. This term comes in naturally in our pro-
cedure. Though we shall not treat 1t,the following may be inter-
esting to note. The mentioned term is analogous to a second order
term shown in Fig.4b, whose importance was pointed out by Geldart

and Vosko3l) 32,33).

, and analysed by Geldart and Taylor Such
terms would be necessary in the scheme of expansion with respect
to a screened internal line .in order to keep the consistency3l).
The following may also be worth noting. According to our
procedure, a peculiar form of the second order term 92 comes -out
as a result of the correction of double counting. This character-
istic feature of our formalism willl be useful in treating both of
an effective approximation to the vertex factor (§4) and the re-
summation of the perturbation series (§5) so as to avoid over-

counting. Moreover, such a term does not appear in the third

order term 93. This fact is closely related to the " H-reducibi-
lity" argument by Hubbard.28’30) A H-type diagram appears in
fourth order as pointed out by HAlO). It is because the factor

attached to the skeleton b) of Fig.l does not cancel that of the
self-energy contribution.
In Eq.(41), the matrix products in trace reduces to the sum

over reciprocal lattice vectors. The frequency and momentum sum-
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mations may be performed beforehand to give sturcture independent
quantities. These gquantities were called Hn in STII, where n
stands for the power of the external potential. In the actual
calculation, these quantities are further:expanded with respect

to the free electron propagator GO(p) and the RPA screened inter-
acion ¥ 0 (q). Here the latter is the primary term of G(O)(q) and

given by

() = vy()/e%a) (42)
with

%@ = 1 - v,(1n' %) ,

1% ¢q) = 2 f 6%(p)c%(p+a) . (42a)
P

The resulting contributions are shown diagramatically in Fig.5.
(B) Ground-state energy

By the procedure described above, we can calculate the thermo-
dynamical potential @ under a constant value of the chemical po-
tential u. However, simple use of the perturbatioﬁ procedure

does not conserve the particle number N.32)

10)

This problem was
treated in STI17) and also in HA in connection with the defor-
mation of the Fermi surface. We shall below look into this problem
briefly.

Assume that the thermodynamical potential  is given as a

function of ¢ and of a parameter A.

- 34 -



Q= Q(u3X) , 0 £ XA <1 . (43)

then the condition

- (__)X = N (= constant) (4u)

gives a curve u = uN(A) in the X - u plane (Fig.6.), which is

determined by the differential equation

du= 2 2
N _ 3 8 3°Q
o - o) /GG | (45a)
with the initial condition
pg(A=0) = u, . (45b)

Here Eg.(45) 1s obtained by the differentiation of Eq.(44) with
respect to A.

Now the Legendre transformation at zero-temperature gilves us
NE(N,2) = @(ug(A),2) + Nu o, (46a)

where E 1s the energy per electron. From the above expression we

get

= af
N |- DY

| (46b)
N u=uN(X)

under the condition of Eq.(41). If Q is given as a power series
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with respect to A at p = Mg and if the p-derivatives of Q are well
behaved , then uN(x) and E(N, A) may also be expanded in Taylor

series with respects to A:

2
= Hq + Xul + A My + e,

yo=
E = E. + AE. + \°E, + -+ . (47)
0 1 2
Then
! "
My = - 89/ 8
1 " 1 " n
By = =(Q5 + Qqu; +5Q5u.)/ 0 (48a)
and
NEO = QO + Nuo
NEl = Ql )
= _ 1,.',\2
NE2 = 92 - 5(91) /QO s
N’E _ Q QIQ' Q" l 1 2 " n 2
Here, primes denote the derilvative with respect to u at u = u

0
If § has no linear term in A, then the result i1s much simplified:

1

1 " "
My =0 Uy TR, /85 0 w3 = -03/8,,
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and

1 \
Hy = -0y + 05 uy + 5 Qg
NE, =0, NE,=Q,,
1 2 "
NE, = Qj - %(92) /QO s
) 1 1 "
NEg = 95 - 232,/9,

(49b)

In accordance with the present problem, let us multiply the

electron-ion potential w(g) by A.

sponding quantities for the system of the uniform gas Mg

Thus

n

0

Then uo and Q

0

are the corre-
and Q.
g €g

appearing in Eq.(49a,b) as the denominator reduces to the

q = 0 limit of the static dielectric function defined by Eq.(28)

"
Qeg‘/

N = II(0)

(50a)

The above expression may be derived from the differentiation of

with respect to p, where the Ward identity

N =2

1
Y =
o B

$(0)

) G(p)e®’
)

1 - dz" "“(p) _

is to be used.

du

g=0
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Finally we note that the power series method discribed above
may break down when the denominator 329,/8u2 in Eq.(452) becomes
small as A increases. This quantity is relatéd to g =0 1limit
of the polarization tensor for the crystal given by Eq.(16), which

might become small 1f the crystal undergoes the metal-insulator

transition.

§4, Exchange and correlation effects

on the many-point polarization

In the previous section, a structural expansion of the ground=
state energy has been described. The primary term in the structure
dependent part Est is of the form:

n,(g)
- 1! 2 2
E2 =3 zg Iw(g)l E(g) (52)

Here the two-point polarization H2(g) is written simply as Ii(g)
in §3, which is related to e€(q) by Eq.(28). The leading term in

(O)(q), which gives us the dielectric

I, is the Lindhard function I
function eo(q) in RPA (Eg.(43)).

Many attempts have been done to take account of the exchange
and correlation effects on Hz(q) (Refs. 29),31)n33),35v38) and
STIII , STIV), and certain progress has been achieved, though the

available results may still be somewhat far from the reliable

knowledge about N(gq) and e(q) at metallic densities (3 2 Y £6),
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and particularly in the region of [d|n2. A current procedure is

based on the Hubbardvfrom

1¢% (q)
1+¢(q)H(O)(q)

T,(qa) = (53)

with modifications of the local field factor ¢(q) from the origi-
nal Hubbard's one.29)
For n-th order energy En’ the n-point polarization Hn is the

relevant quantity. TFor example, the third order energy is of the

form:

t
I
w|+

1
N (g )W(gy-g )W (-g,)3(gy58,) - (54)
gl.’ gg
g178;
The primary contribution to Hn comes from the n-point ring dia-

(0)

gram Hn

This quantity was extensively studied by Brovman, Kagan

and Kholas,lB’lu)

who have presented i1ts evaluation method. The
treatment has been improved recently by Nakamura et al. (STI) and
by the present auther (part III).

To take account of the exchange and correlation effects on Hn

(n23) is much more difficult than in the case of H2. In STIT,
Miyagi et al studied the primary correction Hél) to Hgo), by in-

cluding the screened internal line in the Thomas-Fermi approxi-
mation. The results indicate the 1importance of the exchange=
correlation effects especially in the region of Brovman and Kagan's

singularity. This singularity occurs when the radius of circle
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circumscribing a triangle formed by reciprocal lattice vectors 81>

g2 coincides with the Fermi radius. The results applied to the

problem of high-density hydrogen 39)

(1)
H3 .

show significant effects of
the term This fact may indicate that the exchange-corre-
lation effects would be considerable also in the fourth order
energy EM' However any direct calculation of the mentioned cor-
rection to Hn (n2U4) seems to be a formidable work, éven in the
first order. It is also the case for the higher order correction
to H3. Thus an approximate procedure is needed to take into ac-
count the exchange-correlation effect.

For this problem, Brovman et al7’15)

proposed an effective
vertex approximation. Their approximation is based on the follow-
ing observation for the Hubbard approximation of the two-point
polarization, Hg(g) given by Eq.(53). The mentioned approximation

comes out with replacement of the exact vertex function in Eq.(28)

by an approximate one

T(g) = 1 s (55)

1+0(g)1%(g)

where the momentum dependence of Ag(p) is neglected. Further ap-
proximation lies in the replacement of the exact Green's function
G(p) by the free electron one Go(p). With these approximations
the Hubbard formula (53) is obtained, according to Brovman et

al. Now, by generalizing the above observation to the higher

order polarization, they proposed an approximation of the form:
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Mo(g),8,) = T(g)T(gy-g))T(-gy) 15 (g),85) ,  (56)

with T(g) given by Eqg.(55).

However the replacement Ag(p)-*T(g) and G(p)-+GO(p)
cannot be separate approximations. This is because in Eq.(56)
'H3(O)(gl,g2) refers to the free propagator. Therefore, besides
the vertex correction one must have the self-energy correction,
coming from the replacement of G(p) by Go(p), to be taken
account of in the factor of T(g). The self-energy correction
may be considerable since the quaslparticle renormalization

11b)

factor for Go(p) has proved substantially important. However,

the vertex function Ag(p) i1s known to have a strong momentum

11a) In

dependence, as pointed out by Yasuhara and Watabe.
actuality the error due to the neglect of the momentum depend-
ence may be reduced largely as a result of momentum summations.
In spite of the above argument we agree with the approxi-
mation, on the basis of our analysis to be described later.

15)

However, Brovman et al determined the T-factor by comparing
both sides of Eq.(56) in the limiting case when one of gi's ap-

proaches zero. In the above limit they use an identity

H3(g,0)
[e(g)1°

Hg(g)

1 d
5 = (56a)
2 du g(g)

We shall examine the approximation from the opposite side since

all g-vectors are of considerable length in the region of interest.
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Let us now consider the primary terms bringing the T-factor,
which stand for the first order terms in the electron-electron
interaction. These primary contributions to H(O)(g) may be

of the form:

() = - o(e) 1% e, (57)
in conformity with the original Hubbard argument. Accordingly
the primary correction Hz(l) to H(o) may be written as

L' P = - 1'P@een V@), +(58)

Thus, 1f the approximation: Eq.(56) is relevant, the primary

. 1 0 .
correction, n3( ), to n3( ) must be approximated by

HB(I)(gl,gz) = —{H(O)(gl_)cb(gl) + H(O)(g2)¢(gz)

+ 189 (50800 (gyme) 11, V(e L) ,(59)

with
o(e) = - 1, (et ()% (60)

See Fig.7, where the value of H3(l)(gl’g2)/ n3(o)(gl,g2) is
compared with the same ratio calculated by Eq.(59), both in
the Thomas-Ferml approximation. The result shows a good agree-

ment, unless the radius of circle circumscribing the triangle

<8158, >determined by 8, and g5 is smaller than the Fermi readius.
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Let us then examine the asymptotic form of the considered

ratio, expecting that the above agreement may hold for HB(l)

even with the dynamically screened interaction, for which we

(1)

have no available datum. We shall then write down HB as
(1) (1,a) (1,b)
= +
i (gl,g2) T3 (gl,gZ) T3 (gl,gZ), (61)
where
O ~
i (l’a)(gl,g ) = -2 G (p)GO(p+g )Go(p+g ) vo(p—p')
3 2 ' 1 2
P‘D
x [6%(p)6%(pr+g)) + 6% (p+g)6%(p' +e,)
+ a%(pr+g,)8%(p") 1,
0 0 ~
1.2 (g, ,e,) = - 2 ¢%(p)a® (p+e,)60(p+e,) VO (p-p')
3 1°82 . 1 2
P’DP
0 0
x [67(p)6 (p") + 6 (p+e)GO(p +g)
0 0,_, :
+ G (ptg,)G (p'+g,) I (62)
In the above expressions, H3(l,a) corresponds to the first

(1,b)

order correctlion to the vertex function and H3 to the cor-

rection from the self-energy insertions. (See Fig.5)

(1)

3 Here the fol-

Now we examine the asymptotic form of I

lowing formula will be very useful:
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n 0 n 0 1
I G (p+gy) = ) G (p+gy) T
i=1 i=1 J#L € - € R
ptg; - Pty
g4 # g for i # 3 . (63)
In addition to the above formula we also use
2
16°%()3% = (3/3e) ¢%(p) . (64)

Then we obtaln the expression for ,HB(l) as follows

H3(l)(gl,g2) = J(g1,8,) + J(gy-81,287) + J(-8,,8,-85)

-~

+ - - - -
ng_gl(gl, g,) + J_g2(g2 g1,87) + ng( 85585-87)

(65)
Here we put
-2 1 1
J(gl,gZ) = _2' z Fp_pv(p:p') °
N" p,p' E_ - € € - €
P "ptg; P Dptg,
1 1 1 1
x{[ - 1+ 0 - 1},
- -c -
p'"p'+g; P ptey “p'"“p'+g, P Cpte,
(66)
( - 1
J F !
£, £,58,) 2 pgp' p+p.+g3(p,p ) —
p p+g3
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+[ y + y ] (67)
€_-€ E_,—€E_, g€ _-€ € _,—€_,
P ptg, P' P'tg, P ptg, p' p'+g,

-2 5 1 1
R=— 1 [5E;Fp_p.(p,p')]°[ .

€ _—€ E_—E
P DP+g; D DPtg,

where

1 v(q) Go(p;cl) Go(p';cy.)
Fq(p,p') == 1 T =
B ;Q,,.,Q,' € (Q,CQ—C&|)

(69)

In the above expressions R includes an anomalous contribution,
which cancels the contribution from the first order shift of

chemical potential. In Egs.(66)~(68) we shall neglect the con-
tribution from the imaginary part of l/so(q,ep—ep,—10+), which

hay be considered as a higher order term ( see STII ). Then the

term R in Eq.(65) may be neglected and Eq.(69) becomes
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( ) (e )f(e_,) [ M ] (70)
F (p,p') = ¢ by ,) Re ' .
q “p " so(q,sp—ep,—i0+)

Now the momenta p and p' appearing in Egs.(66) and (67) are
always inside the Fermi sphere, so that we may expand the energy

denominator as

1 -1 2p g 2p°g 5
S = 2{ 1 - g2 + (——5—) - eee ] (71)
p “p+g & &
for large g . For a moment we put ar_ = 1l for the sake of brev-

ity, since the neglected factor can easily be taken into account
in the final expression.
In thils way we obtain the asymptotic form for the factor

HB(l)(gl,g2)/ﬂ3(o)(gl,g2) as follows:

(1)
H3 (glsg2) (

=i e + T (g + TP (g g + R,

(0)
n3 (gl,gg)

15855 18,7811 > =, (72)

where T(l)(g) is the asymptotic form of T(l)(g) = Hz(l)(g)/
H(O)(g) obtained in the same manner as described above:

-~

Io - 1)

— T - (73)
g

21 gy = 372

~

Here IO 1s the asymptotic value of

T



L 2
I, = ;§ — 1 'Fg(p,p') g (74)

and I1 is given by

t ) (0,012 (75)
I = —= 5 F ' p:p' - e
1 u3 w p,pr PP 3

The remainder R' i1s given by

1/2
il Il A

R' =
4 4 4 2 2 2
g1 85 |g2-g1| (gl +g2 +|g2—gl| )’

2 2

2, 2. 2. 2 2 2 2
A = gl g2 |g2—gl| [gl g2 + gl |g2_g1| + g2 |g2_gl| ]

6, 2, 2 6, 2 2
- Uey-g | (g "+, Ve "8, + 8y (8, +lgymey | T)ey (g-8))

+ g26(g12+|g2—gl|2)g2-(g2—g1) b (76)

In the expressions for R', there appear terms of scalar
(1) (0)

3 /3
depends actually upon the shape of the triangle determined by

8, and P Then the term H3(1) is not completely factorized

product 81°85 > which indicates that the ratio I

as premised in Eq.(59) even in the asymptotic form. However

we note that R' vanishes exactly for the regular triangle.

-~

Now let us go into more detalls of the constants IO and

comes

'_l

which appear in Eqs.(73) and (76). The first one, iO’
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from the matrix element v(q) of large momentum transfer |gq| ~
g. Since v(q) approaches v(q) for large g, the constant iO may

easlly be evaiuated with the following result:

~ _ 8 :
IO = —3?(&1"5) . (77)

On the other hand I, comes from the term J 1in Eq.(65), which

1
includes the matrix elements ;(p—p') , with p and p' both inside
the Fermi sphere. In the Hatree-Fock approximation, where the

bare interaction v(p-p') replaces the shielded one v(p-p'), the

momentum summation in Eq.(75) becomes trivial. For this case
we have
= L1 3
11 =3 I (78)

in accord with Geldart and Taylor.33) For the shielded inter-
action the factor (1/3) will somewhat be reduced; particularly

in the Thomas-Fermi approximation, we estimate I1 v (L/7) fo

for ar_ = 1. Thus, we may conclude that because of the factor,
Il » in Eq.(76) the shape dependent term R' is of smaller magni-
tude than the remaining terms, T(l)(gl) ete., of 'Eq.(72), unless
the triangle constructed by g, and g5 distorts extremely from the
regular one. However the failure is due to such expansion pro-
cedure as given by Eq.(71), according to the numerical analysis.
This is shown in Fig. 8 for the case of g4 and g, which are paral-

lel to each other.



Thus we have proved that Eq.(59) 1s a good approximation.
However the considered approximation breaks down for triangles
<8585 >whose circumscribing spheres have radii smaller than the
Fermi radius; an important fact overlooked by Brovman et al. [
The characteristic behavior of H3(1)/H3(0) just pointed out can be
observed in Figs.7,8 for triangles with and without Brovman and
Kagan's singularity. The mentioned failure could not be analyzed
according to the present method, which relies on the expansion
effective only for large transfer momenta.

The similar analysis hés been done for Hu(See Appendix).

The result indicates that the approximation (56) may also hold
for HM with some modifications. The following form for Hu would

be more consistent than a simple generalization of Eq.(56), accod-

ing to our analysis.
Ty(8y,8,,83) = T(g))T(gy-8,)T(g3-8,)T(-g3)

< 11V (g 58,,85) - 150 (81,8,)0(8,)T(8,)15 %) (5, 85)
(0) \ (0)
Let us consider a tetrahedron which is determined by 81:85 and g3'

We then expect that the above approximation is a good one unless
the smallest radius of four circles circumscribing the sides of
the tetrahedron is smaller than the Fermi radius. This con-

jecture seems reasonable in view of the numerically analyzed
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results for H3. It is also quite reasonable that the considered
approximation may hold for the higher order polarization in the
similar region of wvalidity.

Finally we note that the last two terms in the brace of Eg.
(79) include a contribution from the diagram shown in Fig.9c¢ as a
primary ﬁerm. This is the 'exchange conjJugate' to the H-type dia-
gram shown 1in Fig.9d, according to the terminology by Hubbard.zg)
He introduced the above concept in his discussion on the Hubbard

approximation. Thus 1t seems natural that such terms in Eq.(79).

appear in a generallzation of the Hubbard type approximation (53).

§5. Systematic method of resummation

— a cluster expansion

In the structural expansion we meet various kinds of diver-
gence, if the shortest reciprocal lattice vector is smaller than
the Fermi diameter. Then the partlal summation of perturbation
series 1s needed to eliminate the divergence. The resummation
procedure becomes much more complicated for finding out an ap-
propriete perturbation series if the primary term is of higher
order, because the seriles 1s further from simple series of geo-
metric progressilon. Though the resummétion has been dlcussed by

HAlO) and in STI,17) there still remain some ambiguities in col-
lecting the higher order terms. 1In this section we shall show

that for a specific set of diagrams there exists a systematic
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method of resummation, by which all of the terms included in the
set can unambiguously absorbed into a single resummed term. Ex-
tention of our method to more general set of diagrams would be
stralghtforward.

In the expansion for Qgt given in 8§83, we may obtain a series

<i), Eq.(36), which does not
(n)

of terms from the logarithmic part Q

contaln any higher-order self-energy L

(1)

one I . These terms may be collected into a logarithmic form:

than the first-order

(1) _ 1 (0) (1)
Q = - = tr [1-G (k,g,)Z (k,z,) 71 . (80)
8 % kg%z g % .

Here we introduce a quasimomentum k by
p=k+g (81)

for convenience?® sake. In Eq.(80), the matrix elements G(k)g g
3

(k) etc. stand respectively for G(k+g,k+g'), IL(k+g,k+g')

g,g"’
etc, and trg designates the diagonal sum over g with fixed quasi-
momentum k. And the summation over k is to be taken in a Brillouin
zone.

According to the discussion in the previous section, Eq.(80)

is effectively equivalent to

o(1) _

w|H

7 7 tr anf1-6%27 , (82)
L keBz &

where the effective field I is independent of k and ;2, and 1is
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given by

Lo gt ='w(g'-g)T(g'-8) . (83)
Here GO is the free electron propagator matrix Go(k)g g =
Go(k+g)6

g,g? w(g) the shielded external potential given by Eq.

(27), and T(g) the effective vertex factor given by Eq.(55).

In order to obtain the rearranged series, we rewrite Eq.(82)
as

o =17 7 er_{an(I-(6%7T - anl-(c%7?
{ keBz,2 &

1}. (84)
Here we choose the branch cut for the logarithmic singularity to

be along the negative real axis with &n 1 = 0.25’313) Then we
use the following theorem of linear algebra:ul)

tr LnA = n detA (85)

Here A is an arbitrary matrix, whose logarithm is well-defined.
Thus Eq.(84) becomes

(1)

1 .
="§2 Z{QnD—RnEDﬁl)},

(86)
L keBz

where we put

Dy(1) = -[6%(k+g,,0,)17"
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= €k+gi_
and
0 -1 -
D = E —[Go(k+g
2,1 2
I3,1 3,2

where the components of the de
lattice vectors. Let us confi
a certain number M of reciproc

a n xn determinant D, by

Dl({i}) =

0 -1

D,({1,5})

- 53

e (87)

)17t (88)

3

2,3

_[Go(k+g3)]‘l ceees

terminant refer to reciprocal
ne ourselves to a set consisting of

al lattice vectors. And introcuce

D, (1) ,

i,J

—[Go(k+gj)]—l




) _ ' 0 -1
D3({1,j,k}) = . . -[G (k+gj)1 Zj’k >

4
4

-16” (erg )17t

™
o™

k,1 K,J

(89)

42)

Let us now apply the meothod of cluster expansion to

. &n D. The result becomes

D, ({1,i})

fn D = ] n D ({i}) + } ¢n
i i<y Dy({i})p, ({3})

D3({i,j,k})Dl({i})Dl({j})Dl({k})

+ Y n
i<j<k D2({i,j})D2({J,k})DZ({k,i})

Dy ({1,3,k,2))

+ E n {
1<j<k<y D3({i,j,k})D3({i,j,l})D3({i,k,2})D3({J,k,l})

D, ({1,31)D,({k,21)D,({1,k})Dy({J,21)D,({1,21)D,({,k})

Dl({i})Dl({j})Dl({k})Dl({z})

b oeeeeeans (30)
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Substituting the above expression into Eq.(86), we get the cluster
expansion of Q(l). After substitution the first term in Eq.(90)
disappears as a result of cancellation.

The above result contains all of the anomalous diagrams, if
we confine ourselves to simple ones which take account of the
electron-electron interactions by means of the vertex functicn.
However we must mention the effect of the chemical potential
shift. In the original perturbation serilies the anomalous terms
are largely cancelled by another energy contribution coming from
the chemical potential shift, leaving a small ;esidual as a.de-
formation energy of the Fermi surface (STI). However the anoma-
lous terms are of considerable magnitude. It means that the

effect of the chemical potential shift is also considerable. This

effect must not be neglected i1f we use our expansion scheme.

In the present scheme the number of electrons does not
conserve 1f the chemical potential is fixed (§3.B). The deviation
of the number BN(l) due to Q(l) is given by

(1)
1 1Y
sty = - &7 (91)
ou

Then the true value Y of the chemical potential is determined

from

(1)

kT =P = - 22 e 22, (92)

H=U ]J=U0 H=H
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(1)

i1f we disregard the other contribution than @ . Here QO and K
are the thermodynamical potentlal and the chemical potential for
the free electron system, respectively. If we expand the quanti-
tles 1n Eq.(92) at u =u0, the energy change 8E due to the chemical

potential shift is approximately given by

2 2_ (1)

3°Q 3°Q -1

NSE = - %-[ 20 +—> } [GN(l)(uO)J2 . (93)
ol o H=Hg

At this point we note that the derivative 39(1)/au comes
out only_through the -uy-dependence of the free propagator GO. It
ls because the term arising from the derivative of the self=
energy g are cancelled by those from Q(ii)and Q(iii),Eqs.(MO)and
(37), owing to our variation principle (8§3); the expression (14)

for the thermodynamical potential is stationary with respect to

the change of the self-energy.zu) In this way we get
(1) D,({1})+D, ({J})

R I AR S S L

H £ keBz i<] D,({1,31)

1 1

+ +
D, ({1}) D, (i)
. L D, ({1,51)+D,({J,k})+D,({1,k})
i<j<k D3({i,j,k})
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DL ({11)+D1({3}) D ({31)+D, ({x})

+ +
D,({1,5}) D,({J,k})
\ D, ({1})+D; ({k}) ) 1 i 1 ) 1
D,({1,k}) D ({1}) Dy ({3}) D, ({x})
F oeenas } o, (94)

where the use 1s made of

9D, ({1,2,++-,n})

= - 2 Dn_l({l’."3i‘l,i+l,"‘-,n}) . (95)
ou i
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Appendix

Analysis of 1'[u

Before going into the analysis of Hu we note the following’
fact. Both of the primary terms in Hz(l’a)(g)/ﬂ(o)(g) and
(1,b) (0) 2
I, (g)/T (g) are of order of 1/g° for large g. However
these terms cancel each other with the resultant asymptotic form

or T(l)(g):=H2(1)(g)/n(0)(g) proportional tol/g (See Eq.(73)), as
33)

The similar cancellation
(1,a) (1,b)
: I ’ .

3 " and 3
wise we could not get such asymptotic behavior as Eq.(72) and ac-

pointed out by Geldart and Taylor.
occurs between the primary terms of II Other-
cordingly the factorization in Eq.(56). The similar cancellation

1s expected to occur for the case of Hu(l)

(1)

. Let us then consider

(1,a)
}4 s

collectively the contributions to HH s Which consists of I

nu(l’b) and nu(l’c) as follows.
(1,a)

= -2 [ J GO(p)GO(p+gl)GO(p+g2)Go(p+g3)
p ‘p'
x 5(0)(p—p')[ Go(p')GO(p'+gl)-+G0(p'+g1)G0(p'+g2)
+ 6%(p'+g,)60 (pr+ey) +6%(pr+g)a%(p ) 1, (A.1)

(1,b)
Ty (g):85,83)
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= 2 [ J GO(p)GO(p+gl)G0(p+g2)G0(p+g3)
p ‘p'
» ;(O)(p-p')[ Go(p)GO(p')-+G0(p+-gl )dj(p'+g1)
+ Go(p+g2)G0(p'+g2)-+G0(p+g3)GO(p'+g3) 1, (A.2)
(1,c)
-2 [ ] 1000100 (prey 0 (prey)
P Jp!
x 5(0)(p—p')Go(p')Go(p'+g3)G0(p'+82)
+ Go(p+gl)G0(p+g2)GO(p+g3)

x Q(O)(p—p')Go(p'+gl)G0(p')Go(p'+g3) 1. (A.3)

These terms correspond to the diagrams shown in Fig.9 , where the
superscript a, b, ¢ in Hu are also 1n accord with the labels in

the figure.

Let us now examine the asymptotic behavior of

1
Hu(l)(gl,gz,g3) = Hu( ’a)(gl,gz,g3) + Hu(l’b)(gl,gz,g3)

+ Hu(l’c)(gl,gz,g3) . (A.L)

Similarly as in the case for I (l), we use the formula (63) and

3
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(64) to obtain the following expression for Hu(l):

Hu(l)(gl,gz,g3)
= J(gy381583) + J(83-81385-8,-87)
tJ(-8,385-8,,8178,) + J(g)-855-85,8,-83)
+ K(gy:81385583) + K(8,:8,-8138,,8,783)
* K(g3-2,,8,-8383787,-81). + K(g3-8,,83-8,383-8,,83)

~ ~ .

+ ng(g3,g2;g2—g1,g3-gl) + Jgg_gl(g3—gl,—gl;—g2,g3—g2)

~

Jg3_gl(—g2,g1-g2;gl—g3,—g3) tI g

+

~

t Ky (81,8,581-8,:85-8,) + K gl(—gl,gz—gls—g3,g2—g3)

2 €3~
+ R . (A.5)

Here we put

2 -1
J(g1385584) = - = 1 F___(p,p")(A_ )" ~(a_)

y Loyl -1 Pyl -1
[(a gz) (Agz) +(A g3) (Ag3) 1,
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K(gl,gzsgl,g3)

(a7t (A.7)

ng(g2,g3;gu,55)

2

F ,p' ) [(a
p+p.+g1(p p')[(

2
N” p,p!

K, {€,,8538),85)

2
=- 5 ] F ' (p,p'){(A
N p,n' p+p +g2 g
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+ <Ag1)‘1<Agu)‘1(Ag5)'1[<A'g )7t @y ) 1
+ (Agl)_z[(AgZ)_l(Ag3)_l +(Agu)-1(Ag5)_l]} ,  (A.9)
wilth
Ag = Ep - Ep+g R
A'g E €yt T Eprig ¢ (A.10)

The remainder R in Eq.(A.5) includes contributions from the
anomalous term as well as those from the lmaginary part of

1/E°(q,sp -€ -i0+). We shall neglect the remainder by the

pl
same reason as in §4. Then we may expand the energy denominator

(Ag)_1 to obtain the asymptotic form of Hu(l)(gl’gz’g3) as follows:

Hu(l)(glsgzagB)

= Hu(o) (gl,g2,g3){5(l) (gy) + %(1)(g2—g1)

+ %(1)(23-g2)'*%(l)(—g3)} - H3(O)(gl’g2);(g2)ﬁ3(0)(g2’g3)

+ R' . (A.11)

Here T(l)(g) denotes the asymptotic expression for T(l)(g) =
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H2(l)(g)/H(0)(g) which is given by Eq.(73). And ;(g) is the

similar expression for ¢(g) = -H2(l)(g)/[H(0)(g)]2:
~ I.-I
¢(g) = ——* (A.12)
2g
with I, and I, given by Eqs.(77) and (74). And n3(0) and nu(o)
are the asymptotic expressions for H3(O).and Hu(o) respectively
given by
2 2 2
~ g, +te, " +|g,-g, |
H3(0)(g1,g2) - ut/2 5 2 5 C 5 (A.13)
E g1" 85 l&y-gq|
= (0) _ _.1/2 1 1

2 2 a2 12 |2

1 1
' " el le 2.l egal?
3 1 =3" =22 =3

2| - |2| - |2 1. (A.14)
&y 1817851 18378,

In Eq.(A.11) the remainder R' consists of two terms, RO' and

Rl', which include respectively I0 and Il as a factor. The term

RO' is given simply by

| - . . -
Rq Io thiegysg,,83) +hig -g,58.-85,8)

where




1 1 1 1
7 {

h(g,58,585) -
1°=2 2 2 2
3 gl g2 |g2—gl| g3 |g3—g2|

5 )

1 1 1

' g% lg.-g. 1% |e.-g|° ) lg,-5, |
3 3 -1 3 °1 3 =2

=)} . (A.16)

The expression for Rl' is much more complicated and may be omitted

here, since the factor I1 is fairly smaller than IO. Now, RO'
vanishes identically if the tetrahedron [gl,g2,g3] determined by
81> &5 and gs i1s the regular one, in conformity with the case for
H3. It appears that the other term Rl' does not exactly vanish
for the above tetrahedron. However the contribution of Rl' may
be thought small as mentioned before.

By the foregoing analysis Eq.(79) has proved to be a relevant
approximation. The proof is apparently in parallel with that for
H3. However the result for HH is much more involved than the other.
It is pecause an entirely new diagram comes in for Hu as shown in
Fig.9c. Though that diagram cannot be taken account of in a single
vertex function it is indispensable in ensuring the proper behavior

of the asymptotic form. It is also the mentioned diagram which

produces the last two terms in Eq.(79).
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Figure Captions

Fig.1l. Skeleton diagrams for the functional ¢[G]. Solid lines
represent the electron propagator, wavy lines the electron=
electron interaction and the broken line the electron-ion one.

Fig.2. Skeleton diagrams for the self-energy L. The double
wavy lines represent the renormalized electron-electron inter-
action.

Fig.3. Illustrations showing the first and second order selfs=

Z(l) and 2(2).

energiles, The presented diagrams are typical
ones obtained by expanding the integral equations (29) or (35);

Fig.l4., Diagram illustrating a third order polarization (a) as
a generélization of the second order one (b).

Fig.5. Lower order diagrams contributing to the thermodynamical
potential ¢. The shown diagrams appear in the expansion of
with respect to the free electron propagator.

Fig.6. Schematic curve of the chemical potential u vs. a cou-
pling constant A.

Fig.7. Comparison of I (l)(gl,g2)/ﬂ3(0)(gl,g2) with 3H2(l)(g)/

(0)
Iy

3
, for the regular triangles |gl| = [g2| = g. Their values

multiplied by rs—l are plotted as a function of R, the radius
of the circle circumscribing the triangle <g15857- The data
are owlng to H.Miyagi.

Fig.8. The similar plot to Fig.7 in the limmitting case when

g, and g,are antiparallel to each other with |gl| = |g2|.
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(0)

Fig.8. Primary corrections to Hq . (a) incluedes a vertex
part, (b) a self-energy part, (c) a part irreducible to the

vertex one. (d) rpresents the Hubbard H-diagram.
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ITIT Method for Evaluating Many-Point Ring Diagrams

in the Degenerate Case
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§1. Introduction

In the structural expansion fqr the thermodynamical poten-

1v3)

tial of metals, the most important contributions come from

many-point ring diagrams(Fig.l). These are of the form

Il (gly"'é ) = N_l 2 B_l 2 G (P"'gl,m )""G (p+g s W (l)

pO' 2 P i v A N 2)

where Gg(p,ml) is the thermal Green's function for a free electron

with spin state o:

Ggﬁg,mz) =-(iml+u—sp)_l (2)

~“

with w, (22+1)W/B,2 = 0,1 ,%2, -

€

D p2/(ars)2. (2a)

Heregldenotes the momentum reduced in units of the Fermi momentum,
gi the reciprocal lattice vector (ﬁ=l), u the chemical poténtial,

N the number of electrons, B = l/kBT,and the other notations are also
the standard ones.

For the evaluation of Eg.(l), a systematic method was pro-

1)

posed by Brovman 'and Kholas (BK), where an integral represen-

tation with the Feynman prametrization was used for the n-point

5,6)

diagram Hn They also analyzed in detail the four-point ring

4)

diagrams, giving expressions for all possible cases. Nakamura

et al. also examined this case and presented more tractable ex-
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6) This paper will be referred to as STI.

pression for HM'
Although BK's method of integration is general and in princi-

ple makes it possible to calculate Hn for any specific cases, it

is complicated especially for the degenerate case; a particular

analysis is needed for each specific case in order to get the final

expression. Here, by the degenerate case we mean the case when

the vectors

= - ] 1 -— e o o ! - —_—
BT " En BT & T En U Enl f Ean En 3

N~

are lineaaly dependent. (We intrcduce a redundant vector for the
sake of symmetry.) Accordingly, one has gxclusively the degenerate
case for n > 5. Thus, in the higher order calculation BK's argu-
ment would be extremely cumbersome.

On the other hand, in STI a simple recurrence relation has
been given together with a formula which connects a degenerate Hu
to SHn/Su with n < 4., However the treatment is not comprehensive
for the case n > 5. In this paper three fundamental recurrence
relationg are presented for general cases. The obtained formulas

constitute.an algorithm for evaluating the higher-order diagrams,
with the help of the éxisting lower order results.

The recurrence formulas are generally given in §2 and some
of their applications éo evaluation of the five=point diagrams are

described in §3. The results will be utilized in part IV.
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§2. Recurrence formulas

Let us consider

ky k.
Hn(ggl], s, Q%m] )

k k
- — N
= Hn(_,%l’ ctTy, El’ ct T, r%m’ "'Em) (M)

with n = ky ky + 000 F K> where a1l of the vectors £15 &

~2’

,§m are assumed distinct. The exponent ki will be called the

multiplicity of the vector gi; We shall use the following

1A%
quantities
. 2
u# = (ar_)"u,
N~ 2n-2
M =1n_/(ar)S (5)

We shall consider two kinds of cases separately. The one
is the case when the set of g-vectors {g,, ---,‘gm} is degenerate
irrespectively of the multiplicity.. The other is the case when
the set of g-vecto;s ié non-degenerate but includes at least one
vector with higher multiplicity .than one. In accordance with the
tw? cases considered above, w2 shall below look for two kihds of

recurrence formulas separately.

(A) Case when the set of g-vectors is degenerate.

For this case, we have
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m-1
Yi(gi-gm) =0

121 P At~

with the coefficients y;, °°°, Y, ;, which do not vanish simultane-

ously. Introducing the m-th constant Y, PV Yo = -(Yl+ cee dy ),

m-1
we rewrite the above relation as

Ie~3

m .
vy =0, 1 Yy B = 0. (6)

i=1 i=1

For the sake of brevity we shall write G(p) in place of
Gg(p’“g)' And consider a quantity defined by

¢ = (ar_)? If [G(p+g. )]t '
S 121 Yi '~ Ei : (7)

It 1s a simple matter to prove that C 1s a cecnstant as given by

7- (8)

Let us now rewrite Eq.(7) as

kl km
CEG(p+gl)] o+ [G(p+g )]
AN o oo~
> kl ki—l
=lor )™ 3 Yi[G(Efgl)] o+ [G(p+g,)]
i=1
km
.- EGnggm)] . (9)
Assuming C # 0 and summing both sides of Eq.(9) over p, o and_ml,
. N\
we obtaln the first recurrence formula

- Ky “n
T, (gt ooy [l ™
) k k-1 k

' 1T, et ;o e 1™

(10)

1]
Q
nhe3

v
Yy Hn_l(E%l

i=1
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with the help of Egs.(1l) and.(U). This 1s a generalization of
Eq.(5.17) of STI. The formula (10) may be used successively
until one of the Green's functions is eliminated ffom,each term
on the. right-hand side of it. It is machinary to write down the
expression thus obtained.

In the case when C = 0, Eg.(10) does not work. For this case

we may assume Y, 7

0 without loss of generality. Then we multiply
Eq.(9) by CG(p+s,) and perform the summation-.over p, o, w,. The

e N~ ~
result is the second recurrence formula

A k k
T(Lgyl Toere, [gy1 ™
Pa ™ ~e
ko +l k k-1 k
- _Yl izé Yi nn([El] J ['_%2] 5% [,%_i] ) -")E§m] -m)- (ll)

The case C = 0 occurs wnen heads of the vecbors,%l, ...’,gm'
are lying on the same sphere whose dimension is less than or
equal to m-2 ( See §3. ). This case was called the still more
degenerate one by BK. They treated 1t as an exceptional case,
though an expression was derived for a specific case of My by the
limiting procedure. Some examples will be given in §3 together
with another geometrical meaning. ‘

In Eq.(1l1l) the multiplicity Of,%l becomes higher by one in
the right-hand side. In the structural expansion only Hn's with
single multiplicities kl = e = kn = 1 come out in the normal
term. However, if the condition C = 0 happens to be satisfied by
some set of the reciprocal lattice vectors El’ e, g

on’ the corres-
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ponding Hn i1s decomposed. into the anomalous terms.

(B) Reduction of the multiplicity

The recurrence relations obtained above work when a set of
g-vectors 1s degenerate. The reduction procedures are performed
successively until any set of g-vectors contained in Hﬁ becomes non=
degenerate , where the multiplicity of each g-vector may still
remain. Let us then look for another recurrence relation which
reduces Hnto that of lower multiplicity.

5)

Now, Brovman and Kagan gave an 1integral representation for
T (gy, E4> °"*58_), using the Feynman parametrization procedure.T)
n ’\rl .-\.-2 Pty

Following the same procedure we start with

-
L

n kl km d \n-1 1 .
0 ([g] 5 *+°, [2.] ) =(- =—%) J da_«-- I da  6(1- :
n' 21 R du® o ! o % 00 izlal)
k,-1 k -1
_ all K amm 3/2
x - Lep(eys = g)] s (12)
- | - -~ -
(ky=1)1e == (k —1)!
where we put 3
m m
s 2 2
E =u*+ (Yo . g) - § o g5, (13)
m j21 L AA 21 171

Expression (12) can be derived by a generalized Feynman procedure
(Appendix-A). In the same expression we carry out the integration

in the last parameter o and introduce gi, T, g
Py ~

1
m—1 by Eq.(3) to

write down

- 85 -



~ ky. kn d \n-1 (1 1=1 %
Hn([‘él] 3 ".; ['Em] ) = (— du*) IO dal"' JO dam_l
k,-1 k. .-1 k_-1
1 =... m—1 _yvm-1 m
! gy (I-l5oy ey)
(k=)= (e 1=1) E(k =1)!
' ' 3/2
x [Em_lggl, "",Em—l)] . (14)

Here gi, LRICIN g%_l may be assumed linearly independent, since the
N

~t

alternative case has been treated already.
Now a useful recurrence relation may be obtained from Eq.(1l4)

by partizl integration in ;- In the partial integration we meet

m-1
3 1/0ey = 2 Z 813%; ~ Bi1 >
J=1
i=1, <<+, m-1, (15)

where 1n accordance with STI we put

gi,] = gi'g' 5 l,J = l’,..., m- 1. (16)

Since the Gram determinant Dm—l = det(gij) does not vanish, Eq.

(15) is solved to be

m-1 3§
N 1 - m-1 .
¢; oy t3 jzl 8ij T3a. ° =1, s m-1, (17)
where Eij denotes l1j-element of the inverse matrix to (gij) and

_ 86 -



n, ]_m_l_ .
ai=§j=2=1 15855, Poh mm 9

"
It is convenient to introduce . by

m—1
Y N
a_ =1 - Z Q. a. = 1 - izl @ . (19)

Then Eq.(1l7) holds for i = m by introducing

1

l gij’ j = l, ..n’ m. (20)

m

oq!
E]
[
n
oql
o,
=
1}
e |

Now, we utilize Eq.(17) in the partial integration (Appendix B).

The result is the third recurrence formula

k ki+l

k
v 1 m
r[n_*_l(t.-%l] R ---, [,%i] R e e 5 ':.‘%m] )

Q2

E—
1

[o
T

. k k
= - é* { ? En(qgl]‘l’ cen P%m] my

7 k k
1 m o _on 1 k.-1
b o 2. 0 (g ] =, «oo, [2.7975, -0, (2.1 ™),
?ki le ij n-1 :wl - 2J ~om )
i:l’ e om (21)

with n = 2?=lkj' This formula is a generalization of Eq.(5.29)
in- STI. Note that the maximum number of g-vectors in Eg.(21) is
four.
Recurrence Eq.(21) satisfies an identity
m n k k,+1 k
1 1 m
L efotte™ o ™ e te™
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k k

= d ¥ l 0o 0 . m
- = du* Hn([,%l] > H I:/%m] ), (22)
which is also derived easily from Eq.(4). This identity is es-

sentially equivalent to BK's one, though the latter uses the sum

of Hn symmetrized in the transfer momenta.
§3. Evaluation of the five-point diagrams

In ths section we shgll go intq some .details of the compu-
tation'procédurelﬁith bérticulér reference to the five-point dia-
grams. Of the three recurrence formulas, the first one will be
applied in the subsection (A), the second one in (B), and the third
one in (C).

(A) The first recurrence formula.

W

(M

shall apply Ea.(10) to the five-point diagrams. For this

case, we convenlently choose Yy by

Tvgtg=g |2 1 1 1 1 |, (23)
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where (gix’ - giz) denote the components of g5 in a Cartesian

iy ~
coordinate system. The Yi's thus chosen satisfy Egq.(6), as is
"easily observed from Eq.(23) by substituting 1 or'ng;i for ti. We
note here that, for instance,]vllis equal to_the volume of a tetra-
hedron with heads of. E?’ EB’ §u and 55 as vertices. The above
procedure works unless all of the vertices are lying on the same
plane. For the coplanar case, we set 75 = 0 and determine the
other coefficients by the current method.

Most of the five-point normal diagrams can be treated by uti-
lizing Eq.(lp). A computed example is shown in Fig.2. "For the

shown case, a set of four g-vectors chosen from {gl, s, gS} is
A% ~~

(

degenerate. Even for this case I £1> " gS) can be expressed
~ -~

5
in terms of Hu, since C does not vanish. The singular behavior
of H5 shown in Fig.2 comes from that of Hq§) No more singularity

comes in through decomposition.

(B) The second recurrence formula

This formula works for the case C = 0, namely
1 v,8° = 0. (24)
; 171

As mentioned already, the above case occurs when heads of g1s s
. -~
gS are lying in a spherical surface. This follows directly from
~
2.-7.(g.—P)2 = 0, which is satisfied by an arbitrary vector P
i Tit2i oA ~
owing to Egs.(6) and (2U4).
Such singular case often appears among diagrams in the struc-

.tural expansion. Some examples are shown in Fig.3. With refer-
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ence to the figure, case (a) occurs in sc lattice, where eight
reciprocal lattice points are lying in a spherical surface. Simi-
lar case also occurs in the orthorhombic lattice. In the body
centered tetragonal lattice there exists the case when five re-
ciprocal lattice points are lying in a spherical surface. Another
reciprocal lattice point falls into the same surface paricularly
for bce lattice. This is shown in (b). Some of the other cases
are also shown in (¢) and (d), which appear in rhombohedral and
hexagonal lattices respectively.

Now the physically significant vectors are such as,éi =’§1 —.%5,

s §ﬁ =;§M - &5 in accord with Eq.(3). All of the planes bi-
sectiﬁg each of these vectors meet at the center of the sphere
circumscribing such polyhedrons as shown in Fig.3. If the meeting
point touches the Fermi surface, the relevant integral might be

singular.

As an example let us consider the following set:

g, = (g, g8, 0), g, = (g, 0, g), g, = (g, 0, -g),

~1 o2 N g

gq = (2g; 0: 0): gs = (0: 0: 0)- (25)
~ rad

For this set we choose Yy by Eq.(23) as Yy, = 0, Y, = Y3 = vy =

-Yg = g3/3. Then we use Eg.(1ll) with Yq replaced by Y5 to get

.

N,
gy, ooy, O)

v 2 ~ 2
= 2“5&%1’ %2: §A; [0] ) - HS{El, E;: EB, [O] ),(26)
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where [O]2 stands for square of the Green's function G(E). The
coﬁputed result is shown in Fig.4. Of the singularities in-
cluded in each term of the right-hand side of Eq.(26), the

two are weakened as a result of cancellation while the main one
survives, being of the form (u*—R)'—l with R the radius of the

5)

circumscribing sohere.

(C) The third recurrence formula

The simplest terms, to which Eq (21) is applied, are H ([gljz,
%2]3): 5( ] czju) for m = 2 and r[ (::13 82, [. ] ) for m = 3.

We may leave the above terms out of comsideration, since they do

not appear in the fifth order calculation.

. v 2 2
Let us then consider n5€§l’ E%zj s E%BJ ) for m = 3. By ap-

plying twice Eg.(21) to the considered term, we obtain

Y 2 2
HSaél’ [g,1 E§3] )

Y mu

+

(1/8){[(2¢a +l)°31+(2a +1)g 21]H”(g2, g3)

N
+2a

+

N

N
+ [(2a +l)g33+2a3023] "(?l’ 52)} (27)

[av]

Y
after symmetrization, where we use the abbrreviatious: Hé
Y
di,/du¥, ete.
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For m = 4, we similarly have
T (g, £, 84, [8,1%) = - a,%,(e., g,, & )
5°R1° =27 53° -4 yryiBre Lo0 B30 Bu
- (1/2){By Mg, B3r B * Buoll3(grs 830 £4)
+ Bysllzers goo g) * Eyulislers 8o 801 (g

|
Here X (8.5 245 5, &) can be evaluated similarly as in STI.
Ll' ("'l rv2 '\13 Nu

However we note that the differentiated term does not include

a single integral which remains in Hu.
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Appendix A

— Generalized Feynman Procedure —

We shall derive Eq.(12) of text. In the Feynman parametriza-

tion formula7)

1 (1) 1 1 §(1-}a,)
= (m-1)! I da, *-- I do (Al)
.. 1 m m m ?
Aphor g 0 0 (L3-191484)
we substitute Ai- Xi for each of Ai's. On the substituted ex-
pression we operate
m k,-1 ‘
1 9
L - ( y T, (A2)
i=1 (ki—l). axi
and then put Ai = Q0 after differentiation. Thus we get
1 1
1 (n-1)!
E T el ) I dal--- f da
U - B G DR AR C D o T
1 n2 r\m L m
kl—l km—l
@y seroa
x §(1-Ya,) NS , i k; = n. (A3)
i1
In the above expression we substitute G(p+gi) for each of Aflts‘
~ A 1

The remaining procedures for the derivation are the same as given

in STI.
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Appendix B

— Derivation of the third recurrence formula —

k
For the sake of simplicity, let us replace ﬁn([gl] l, e,
k n k k +1 ~
m 1 .
[Em] ) by nn+l(F§l] > =t Lgd ™ ) in Eq.(14) of text. Into

the resulting expression we substitute Eq.{17) of text to get

k-1 k_ -1
1 -, ... m-1 m-1

2 %4 ey (-iyey) 3 .5/2

5 Tk-D) 1~ (k_-1) (k1)1 foy fm-1 (B2)

X

It is now proved that

"~ k k. -1 k
= 1 i
Frg = Taoa(lggd 7 ooes Lyl 7y ooy Lg 1 ™)
il " Kk K, k_ -1
R (T e R 70 e R £ A I (B3)

For the proof we notice that Eg.(1l2) of text is symmetric in

permutation of al, see am. This symmetry is partially broken
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after the first integration is performed with respect to am
However the permutation symmetry must be conserved in a set of
. Owing to this observation we replace the integral

a e o o a
1° > "m-1

in Eq.(B2) by
[ aey-s Jl“ﬁ ®1 da e e (54
o 0 J

where Enui indicates the sum over @y with exclusion of o and aj.

With the above replacement in mind, we integrate the right-hand

side of Eg.(B2) by part with respect to aj to eliminate the dif-

5/2

ferentiation of gm—l‘

In the resultants, the integrated term
vanishes unless kj = 1 and/or km =1 . After differentiating the
resulting expressions once with respect to u*, onegets Eq.(B3) by
using Eq.(12) of text. We note here that Eq.(é3) is valid even
in the case when kj = 1 and/or km = 1. For the mentioned case,
with the help of Eq.(1l3) of text the integrated terms prove to
bring about both or one of the two terms on the right-hand side
of Eq.(B3) according as kj = 1 and/or km = 1.

By inserting Eq.(B3) into Egq.(Bl), we get Eg.(2l1l) for i = m.
This result must be independent of choice of the last parameter.

Note that both éij and &i are dependent only on the geometrical

configuration of €15 "%y &
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Figure Captions

Fig.l. Illustration showing many-point diagram. The symbols
attached to broken lines represent momentum transfer.
N
Fig.2. Curve for N-(g,, ***, <) as a function of the scaling
parameter g. In this ease H5 is decomposed into three distinct
N
Hﬁs, which are shown in broken, dotted and dot-broken lines.
Fig.3. Illustration showing the cases when heads of g-vectors
are lying on a sphere. (a) appears in sc, (b) in bec, (e¢) in
rhombohedral lattice, and (d) in hexagonal one.
N .
Fig.4. Curve for “5{%1:‘52’153’,§u’ 0) with heads of all g-vectors
lying on a sphere. The broken and dotted curves represent the

decomposed terms.
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IV Stability of the Filamentary Structure of

Hydrogen and Its Monomer-dimer Transition
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§1. Introduction

At extremely high pressures, any material would have an iso-
tropic structure such as body-centered cubic (bcc) or face-centered
cubic (fcc), because of the strong repulsion between bare ions.

For the case of hydrogen, these highly symmetric structures become
unstable with decreasing density; strikingly anisotropic structures
may arise in the intermediate density regions. This possibility was

1n3)

pointed out by Brovman, Kagan and Kholas (BKK), who investi-

gated extensively the structures of metastable phaserof{metailic
hydrogen over wide range ﬁf'Bravais lattice strucfures in the
third-order perturbation. According to them, the prolate structures,
in which two-dimensional arrays of protons are stacked, are the

most stable one at intermediate densities (rSWI), while the oblate
structures, in which a system of proton filaments forms a trian-
gular or quadratic lattice, are more favored at the lower density.

2d

In a previous paper, hereafter refered to as I, Nagara,
Miyagi and Nakamura looked for the stable phase of the same system
among cubic structures of more than one atom in a unit cell. This
approach is complementary to that by BKK. It was found in I that
the "bcec [111] monomer" structure is the lowest one in the third=
order stage. The mentioned structure is obtained from the simple
bcc lattice by putting an additional atom at every midpoint be-
tween the neighboring atoms along the body diagonal [111] and is

2)

nearly identified with BKK's filamentary structure. It was also
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proved that the above structure transforms into a dimer one at a
fairly low density in the fourth-order stage. The transition was
found to be of the second order and the transition pressure was
estimated to be ~0.9Mbar (rswl.SS). In the dimer phase, the
proton distance approaches a value nearly equal to but smaller
than that of the free-molecule with decreasing density.

The predicted formation of anisotropic structures may be a
characteristic feature of hydrogen, in which the anisotropy in-
creases with decreasing density. However BKK's anisotropic

58)

structure 1s controversial. Thus it may be important to
look into the mechanism for the formation of anisotropic struc-
tures: It is somewhat puzzling that the strongly anisotropic
structures appear in such simple system as hydrogen. A qualita-
tive consideration on the second order perturbation effect was
made by Beck and Straus ,9) in connection with the dynamical in-
stability of phonons in metallic hydrogen. They attributed the
phonon instability to the Kohn anomalies, which was thought
responsible for the occurrence of BKK's structure. However this
is not the whole story, though the occurrence for the planar
structure may be related to their mechanism. The third- and
higher-order effects are more essential to the formation of the
filamentary structures. It is also interesting to elucidate
whether such a strongly anisotropic stuctures might occur for the

other simple elements, e.g. helium in the intermediate densities.

The aim of this part is two-fold. The first one is to ana-
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lyse the mechanism of the formation of anisotropic structure. It
is proved that the anisotropic structures result from the char-
acteristic behavior 1n the momentum dependence of the n-poilnt
polarization Hn. The same mechanism works to stabllize the cubic
structures of helium. These qualitative results are confirmed by
the numerical calculation for virtual crystals with nuclear charge
z(12z22).

The second purpose 1s to study the higher order effects on
the monomer-dimer transition in the high-density hydrogen. In I,
contrary ‘to most of the other theoretical studies, Ref.10 and
references therein,. the ground-state energies for both monomer
and dimer phases were calculated i1n the same scheme of the ex-
pansion, by utilizing the structural expansion given in Refs.llmlu)
However, for the dimer phase the convergence of thevseries was
rather slow. In order to clarify the nature of the transitfion it
seems necessary to go beyond the approximations adopted in TI.

This part is organized as follows. In IV-A, the mechanism
for the formation of the anisotropic structure is analysed. Charac-
teristics of the expansion terms are clarified in 8§82 for each order.
The numerical results are described in §3 for the rhombohedral
structures. An application of the result to the system of hydro-
geh-helium mixture is also discussed.

In IV-B, the higher-order effects on the monomer-dimer tran-

sition is studied with the use of the method described in parts II

and IIT. This is done on the basis of the bece [111] model. The
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numerical result for the monomer-dimer transition is described in
§4, The fifth-order energy is included for the first time by
utilizing the result of part ITII . Higher-order effects with re-
spect to the electron-electron interaction are taken into account
by the effective vertex approximation proposed in part II. The
effect of the resummation is examined in Appendix A. Some techni-
cal aspects of the calculations are also described in the Appendices

B, C and D.
A. Anisotropic stuctures of high-density hydrogen

§2. Mechanisms by which the stable structure occurs

Let us consider the system with nuclear charge Z and write

down its total average energy, E per electron, as

E =E + E, + E

eg M st °? (1)

where Eeg denotes the electron gas energy, E, the Madelung energy

M

and Est the structural part of the electronic energy. We shall

consider the role of the structure dependent energies, E, and Es

M
which have different functions as factors for determining the

t,

stable structure of crystals.
In this section our discussion wlll be confined to the Bravais
lattice structures with particular reference: to the rhombohedral

family.
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(a) Family of the rhombohedral lattices as a self-reciprocal
system

Rhombohedral lattices are obtained by stretching or shrinking
the simple cubic (sc) lattice along the body diagonal [1111.15)
The obtained lattice is described by a single uniaxial parameter
c/a. This family of lattices has ar. interesting symmetry; the
reciprocal lattice of its member also belongs to the family.
Structures having such a symmetry 1s called self-reciprocal by

16)

Heline and Weailre. The present case provides us with another
one than discussed by them. A fascinating featureﬁof the rhombo-
hedral family consisfs in the fact that all of the three cubic
lattices, sc, bcc and fcc, are 1ts members. It is convenient to
use the parameter y =/6 c/a instead of c¢/a. The values of Yy are
1/2, 1 and 2 respectively for bcc, sc.and fcc. This parameter
has a property such that a lattice described by 1/vy coincides with
the reciprocal lattice of a crystalline lattice described by Y.

In Fig.l we show the Madelung energy EM as a function of vy.
A noticeable point 1s its symmetry with respect to the change
Y «+ 1/y. This symmetric character of the Madelung energy in a
self-reciprocal structure was pointed out by Weaire and Williams
for the case of simple hexagonal structure. In the present case
two minima occur at bcc and fcc for which the numerical values of

E,, are fairly close to each other. We also observe in Fig.l that

M

E,, increases steeply as the anisotropy of lattice becomes larger

M
both for the planar structure (y >2) and the filamentary one
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(y <1/2).
(b) Stability of the isotropic structures
In the high density region, the most dominant part of the

structure dependent energy is E

M
- 2/3 -1
Ey = aM(Y) Z r . (2)
. . 18)
The constant aM(Y) i1s given by
OLM(OL) = {2 T iz ﬁg—z} (3)
3Ta g g) Ny a (Z q)
for the Bravais lattice structures. In Eq.(3), N0 is the total
number of ions and a==(u/9ﬂ)l/3. And the second term in braces

stands for the self-potential correction with g denoting the quasi=
continuous wave vectors.
| For the Madelung constants in the rhombohedral family, the
appearance of minima at bcc and fcc may be proved by the follow-
ing simple analysis.
Let us consider a sum over reciprocal lattice points defined

by
=5 f(g) , (1)
g

where f(g) is a function of the magnitude of g. The change of
I under the volume conserving distortion may be expanded with

respect to the change of g:
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1 ' 2
AT = ' {(gl-g)fr(g) +{B78) pn(gy 4.t} (5)
g 2

Then we expand g' -g in the distortion parameter § as
. _ 2
g' - g=gl[A(g)d +B(g)8 "+ 1 . (6)

Let us look into what happens for the coefficients A(g) and B(g)
at positions of becec, sc and fcec. We first note that for the three
structures under consideration the first, second and third neigh-
bors form the cubic lattices, respectively. The first neighbor
contribution to A(g) vanishes for the three structures. And, for

the similar contributions to B(g) we have

éi bee
y
] B(g) = 12 sc (7)
n.n.
%% fce
Similarly we estimate
12 bcce
CY A1 = 0 sc (8)
n.n.
32
3 fce
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Now for the Madelung constant we have f(g)==const/g2. Then

AT becomes

AT = § COBSE [ 34(g)% - 2B(g) 16° + +e- . (9)

g g

Thus by Egs.(7) and (8) we can see that the first neighbor con-
tributions to AI are positive for bcec and fcc and negative for sc.
Let us go further into what happens. In Fig.2 the magnitudes
of short reciprocal lattice vectors are shown as a function of y.
Two baranches of the shortest reciprocal lattice vectors and the
next ones cross at the positions of becec and fce, while sc is the
minimum point of a single branch. According to the analysis de-
scribed before, the contribution to the Madelung energy increases
i1f the shortest vectors split into shorter and longer ones by the
lattice distortions. The above observation for bcc and fcc will
ke important on considering the screening effect to be described
shortly.
(¢) Formation of the planar structures. — Effect of the screening.

With decreasing density, the electronic part Es of the

t

structure dependent energy becomes more effective. Because of the
Coulomb matrix element « 1/g2 in the electron-ion interaction,

contributions to ESt become larger for structures having smaller

reciprocal lattice vectors. Since ES is negative in sign, the

t
isotropic structure may be less stabilized.

In the simple rs—expansion, it is proved that the cubic
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structures become unstable in the intermediate density region.
Moreover, any structure can hardly be stabilized for ry larger
than certain value of it unless extremely anisotropic sturctures

18) At this point the screening effects

are taken into account.

on the electron-ion interaction come into play. It is very im-

portant to take prooer account of the dielectric function.
Adding the second order energy in the structural expansion

(part II) to the Madelung energy, we have

-~

Ey = Ey t Ej

= % 2' ;(g) - (self potential correction), (10)
g
v(g) = v(g) /elg) (11)

for the Bravais lattice sturctures, where v(g) is the Coulomb

matrix element
1
- (12)

and e(g) the dielectric function for the electron gas.

Since Eq.(10) is of the same form as Eq.(4), we may use the
similar analysis as in (b) to discuss the stability of crystals
for the region with éM as a dominant contribution. The only differ-

ence from the previous analysis is the functional form of f(g)

for g52. In Fig.3 we show v(g) as a-function of g for g~ 2.

- 111 -



The dotted line 1s the result with use of the RPA dielectric
function eo(g). And the full line corresponds to that with e(g)

calculated by Miyagi,lu)

which will be used throughout our calcu-
lation. The characteristic feature of ;(g) i1s the change of the
curvature near g=2, where the length of the shortest g-vector
coincides with the Fermi diameter. This was already pointed out
by Miyagi.lu)
Now, let us consider the first neighbor contribution AI to

~

the energy difference of E,, with lattice distortion taken into

M
account. If the shortest g-vector is nearly equal to 2, f"(g)
decreases and changes 1ts sign. TFor the present case the quantity
corresponding to Eq.(9) becomes negative. We note here that the
first term in Eq.(9) comes from f"(g).

It has been proved that the isotropic structures become un-
stable if the shortest reciprocal lattice vector is nearly equal
to and slightly greator than 2, in the intermediate region of
density. For the above mechanism, the planar structure is more
favored than the filamentary one, because the former structure
produces more effectively shorter reciprocal lattice vectors in
accordance with Fig.2, where the lowest branch on the right side
has a steeper slope than the opro>site one.

For the three cubic structures the shortest reciprocal lattice

vectors are numerically gilven by

2.280/2z%/3 bee,
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2.031/2%/3 se

/3

2.'216/Zl fcec.

For sc we have the g-vectors closest to the Fermi diameter. However
sc is already at a minimum position in the rhombohedral family.
Then, it is most possible to have a form distorted from fcc whose
shortest vector is the one next closest to the Ferml diameter.
This observation is also in accord with the numerical calculation
for hydrogen with z=1.

However, the above mechanism no longer works for zzx1.5. It
is because the shortest g-vector 1s now smaller than the Fermi
diameter even for the ilsotropic stucture and accordingly any dis—.
ftortion does not produce further energy gain. Thus the planar
structure does not occur for the region of interest.

The characteristic behavior of ;(g) around g~ 2 may be con-
nected with the Kohn anomaly. However it is clear by our analysis
that the curvature of ;(g) in the vicinity of g=2 is more res-
ponsible for the instability of lattice than the singularity
itself just at g=2. This conclusion is in accord with Stroud and
Ashcroft,l9) who studlied the phase stablility in binary alloys by
cdlculating the second order energy in the pseudopotential scheme.

The dielectric function €(g) with inclusion of the exchange=
correlation effects increases the convexity of the effective

~

coupling v(g) near g=2 as shown in Fig.3. This is a common
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feature of the various kinds of current dielectric functions.
Thus the exchange and correlation effect would enhance the for-

mation of the anisotropic structures.

(d) Formation of the filamentary structures. — Effects of the
three-point polarization

If the density decreases further, higher order terms in Est

become much more important. Though the magnitude of En(n23) is
rather small in the intermediliate region, its strong dependence on
the structure has a considerable effect on the chcice of the
stable structure. The most remarkable property of the higher
order energy 1is the appearance of stronger singularities than the

Kohn anomaly. These are the singular momentum dependence of the

)

many-point polarization Hn: the Brovman-Kagan (BK)20 singularity.

To explain the role of the characteristic behavior of Hn, let

us consider the third order energy E

3Z

8158,

In this expression the polarization H3depends only on the triangle

< gl,g2:>determined by the reciprocal lattice vectors g and 85

(0)

The momentum dependence of the function H3 is shown in

(0)
3

mary term in H3 and gives us a fundamental feature for the momentum

Fig.4 for some families of similar triangles. Here I is the pri-

dependence of H3 (see part II). In Fig.l4, the horizontal axis is

the radius R of the circle circumscribing the triangle <gl,g2 > .
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The strong BK-singularity of the cusp type appears at R=1 for
acute triangles. For obtuse ones such a singularity does not ap-
pear. However even in the latter case the curve shown in Fig.l4
has a fairly large peak near R=1.

Now we look into the role of the singular behavior of H3 for
the structural stability. The third order energy, Eq.(1l3), is a
sum over triangles in the reciprocal lattice. Thus the structure
having the triangles with R=1 will be energetically favored. See
Fig.5, where we plot radil R of the circumscribing circles for
small triangles appearing in the reciprocal lattice of'rhombohedral
structures. Fig.5 also shows the ionic charge Z for which the
structure described by Yy has a reciprocal lattice triangle with
R=1.

Noticeable points observed in Fig.5 are the following. First,
any small triangle does not appear in the planar structures for
Z :2. This 1s because the reciprocal lattice to the planar
structure is oblate; the shortest g-vectors g, and g, are merely
forming colinear configulations. For such a configulation, I (0)

3

can be reduced to a linear combination of H2(O) (see part III),

and accordingly any singularity of the cusp type does not appear.
On the other hand, arbitrarily small triangle could appear

if-we distort the lattice towards the filamentary structure. Thus,

for a fixed Z we can get a triangle with R=1 at som value of ¥y =Yoo

For Z =1, Yo %0.2417. The structure roughly corresponds to the

bec [111] structure as called by Nagara et al. (Iu)), for which
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Yy=1/4. With increasing Z, Yo increases and the anisotropy of the

corresponding structure decreases. For Z=2, ¥y 0.4835, which

c
i1s very close to bcec.

From the above observations we conclude that the strongly an-
isotropic filamentary structure should appear for hydrogen in the
density region where E3 becomes considerable. On the other hand
the same mechanism does work to stabillize the bcc structure for
helium. These conclusions are confirmed by the numerical calcu-
lation.

(e) Additional factors for stabilizing the anisotropic structure.

First we note that the cusp-type singularity described above
also appears in the higher order polarizations Hn (niu).ll’zo)

For example, we consilder HM’ which is a function of the tetrahedron
[gl,gz,g3] determined by reciprocal lattice vectors 81585 and g3+
Then HM has the mentioned singularity when one of the radii of

four circles circumscribing the sides of the tetrahedron [gl,gz,g3]
coincides with the Fermi radius. The similar situation occurs

for Hn of higher order. Thus the higher order terms would enhance
the mechanism for stabilizing the critical structure Ye described
in (d).

Second, HM has another singularity when the radius of the
sphere circumscribing the tetrahedron coincides with the Fermi

11,20) This singularity is of the logarithmic divergence

radius.
with positive sign. Thus the structure having such tetrahedrons

in the reciprocal lattice space would energetically be unfavored.

- 116 -



However we do not meet such situation among the Bravais lattice
structures in the case where Z S 2.

Next, we must mention the effect of the resummation.8’9) As
shown in Appendix A, by resumming the partial series including the

higher order terms, the cusp-type singularity of II_ disappears.

3
However this does not drasticlly change the peak structure of H3
near R=1. Thus the characteristic role of H3 remains un-
altered (§3).

Finally we note that the filamentary structure for hydrogen

becomes unstable against the dimer formation (§4). This insta-

bility occurs only in the fourth-order without vertex correction.

§3, Numerical results for the rhombohedral structures

In Figs.6, 7 we show the ground-state energy of rhombohedral

structurss as a function of the uniaxial parameter y for Z =1,

'1.25, 1.5, 1.75, and 2. In Fig.6, the third order result with and

without resummation is presented. The fourth-order result is shown

in Fig.7. In the fourth-order energy, the electron-electron
interaction is taken into account with the use of the effective
vertex function.

For hydrogen we observe that the fcc structure becomes un-
stabe at rs'V0.9 and the minimum position moves to the direction
of the planar structure as r increases. For larger rg (rs'hl.l

in the fourth-order stage) the filamentary structure is more
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favored. With increasing Z, the anisotropy of the filamentary
structure reduces. Ror Z=1.75, both bcc and fcc are stable
throughout the density region calculated. The values of Y for the
minimum structure are also plotted as a function of rg in Fig.8.

The inclusion of the resummation effect changes the total
energy by about 0.01 Ry at T =1.6 for the third order energy of
hydrogen with Y=Y, However the position of the minimum structure
does not considerably change. Therefore the resummation does not
alter our conclusion for the crystal stability.

In the resummation the cusp-type singularity for H3 i1s some-
what smoothed. The similar smoothing occurs when the effect of
lattice vibration is taken into account. Here, the smoothing function
is the sturcture factor S(gq) of ions. At this point we mention

7)

Straus and Ashcroft, who treated the proton motion in a self=
consistent phonon scheme in the second order structural expansion.
Their calculation shows the isotropic structures to be more favored
Ehan the anisotropic ones. They also clalimed the higher order
terms would enhance this tendency by stronger smoothing effect.
However we'disagree with them. The misleadingconclusion comes

from a simple generalization of their second order result. For

E the structural stability depends sensitively upon the curvature

2,
of the shielded interaction v(q) in the close vicinity of q =2 as
pointed out in §2(c). However, in the higher order terms the sit-

uation is quite different as seen before.
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We have studied the crystal stability for crystals of virtual
atoms with atomic number 1 7z 2. The results for these virtual
crystals may serve to get some predictions about solid mixtures of
helium and hydrogen, which may be treated as an average crystal

with an average atomic number
Zz = (l-c) + 2c » (14)

with ¢ denoting the concentration of helium. This 1is a reasonable
approach, where the scattering effect may then be taken into ac-

21) studied the

count as corrections. On this basis Straus et al
above solid mixture by the étructural expansion up to the third
order.

However, the convergence of the expansion series becomes slower
with increasing 2. It may simply be shown that our expansion para-
meter 1ls proportional to 21/3 re- Accordingly larger discrepancy
might be expected with approaching Z =2, unless the pressure is
extremely.high. It may be of interest to look into the highef
order effect on the mixtures. According to our examination, how-
ever, the scattering contribution has proved very large. Then any
reliable prediction would not be obtained until the mentioned ef-.

fect is taken into account. We mention here that small difference

of the cohesive energy might produce a large temperature effect.
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B. Monomer-dimer transition in the system of hydrogen

§4. Higher order effects on the

monomer-dimer transition

(a) Monomer-dimer transition in the bce [11ll]-model

In the sub-part A, the lowest structure of hydrogen system
was pointed out to be bcec [111] structure in the rhombohedral family,
where the two protons in the unit cell of bcc are lying along a
body-diagonal with equal separation. This stfucfure has an out-
standing nature, where for twelve nearest reciprocal lattice vectors
g we have the structure factor S(g) =1 for six g's and S(g) =0
for the remaining g's. For our lattices the structure factor may

be given by

S(g) = cos (% g:ep) , (15)

where p denotes the vector to the nearest protons. Now, we have
S(g) =1 because the six g-vectors are perpendicular to p. And we
have S(g) =0 because the other g-vectors have g-+p=7. If the pro-
tons displace alternatively along the [111] direction, we have no
longer S(g) =0 for the vectors mentioned above. Even for this case
we-have still S(g) =1 for the other six g-vectors. Then, for the
displacement considered the ground-state energy may be lowered.

1)

This produces a monomer-dimer transitlon as described before.

Referring to the above model, the ground-state energy has been
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studied up to fourth order,u) where the vertex function has not
been taken into account. With the use of the vertex function, the
result might change considerably particularly in the third order.
The previous study has shown that the third order result does not
produce the monomer-dimer transition unless the density 1s ex-
tremely low (rSNB). We shall look into what happens by taking
account of higher order terms successively up to fifth order.
(b) Numerical results

We calculate the ground-state energy E of the hydrogen system
for bece [111] structure as a function of the proton displacement.
In the monomer phase the proton separation will be denoted by o
along [111] axis.

In Table I, contributions of various terms to E are compared

4)

with the previous result up to fourth-order. The present calcu-
lation includes the higher order effects with respect to the elec-
tron-electron interaction in the effective vertex approximation
described in part II. In Ref.4) these effects were taken into
account by expanding them in terms of the shielded internal line.
The expanded terms are written as En(m) in Table I, where m 1s the
number of the electron-electron lines in the corresponding diagrams.

(2)
2

The secon-order enrgy up to E 1s almost identiacl with the

present result. The third-order energy up to E3(l) shows fairly
good agreement with the present one.
A Yemarkable polnt arises in the fourth-order energy. The

exchange-correlation contribution to EM’ which 1s simply neglected
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in Ref.4, is considerably large. However this contribution partly
cancels that from the H-diagram EuH, which may be considered as a
term representing the higher-order screening effect and is also
neglected in Ref.4. Thus the total EutOt of the fourth-order energy
in the present célculation has a fairly close value to that of the
previous one. We also note that a good cancellation between
the contributions fromanomalous terms and that from the chemical
potential shift 1s maintained in the present calculation, and ac-
cordingly the resultant contribution S6E is small.

The energy of the dimer phase may be represented as a function

of A defined by A =(p-p)/p. The numerical results are well ap-

proximated by

E=4A+ BA2 + CA” (16)

as in Ref.4, where A, B and C are function of rg- The monomers=
dimer transition may be analysed by thils fitting form.u) The
transition occurs when B vanishes. For the region of ro where B<O,
the system favors the dimer phase.

In Table II we show contributions of various terms to the
constants A, B and C up to fifth-order. We notice a strong A-de-
pendence of the higher order terms, which comes largely from the

higher order contribution to B with slow convergence. The

constant A is fairly well convergent even at rs==l.8. On the other
hand the contribution to B from E3 1s even larger than that from

E2 at ry =1.4, Contributions from EM and E5 are also rather large.:
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These results may indicate that our expansion scheme would break
down in the dimer phase. However 1t is expected that the tran-
sition point might well be described in our scheme.

The value of ro at the transition is estimated to be 1.50
with transition pressure Pc =1.2Mbar in the fourth-order stage.
This result is not far from the previous one as expected from the
above discussion on Table I. By including the fifth-order result
we get rs==l.MO for the transition point with Pc=2.3Mbar. How-
ever some cautions are needed for the fifth-order result. 1In the
fifth-order energy, we have not included the H-type two-ring con-
tribution (Fig. 9a), which would largely cancell the exchange=
cr?elation contribution. In the fifth order we also have the
three-ring H-diagram (Fig. %), which has a negative contribution.
These corrections would possibly lower the transition pressure as
a resultant.

Here we emphasize that both the exchange-correlation effect
and the long-range screenling effect must be taken into account
properly. Neglect of the former effectzz) brings us an under-
estimation, while neglect of the latterlo) produces an overesti-

mation in the fourth order energy.

As mentioned in (a), the transition occurs at fairly reasonable

value of r, even for the third order stage, with the vertex factor
: *

taken into acgount. The transition point rs is given in Table III

for each order of approximation. Though the scheme of extra-

’ ®
polation is somewhat arbiltrary, the true value of ro, may be around
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1.4, The fifth order result for the transiton pressure 1is close to
the value supposed currently. However the transition pressure is
very sensitive on the order of approximations, as seen in Table
ITII. Both of the above critical data may change by taking account
of the zero-point motion effect of protons. The study of this

effect is left as a future problem, though a preliminary attempt

is given in Appendix B.
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Appendix A

Examination of the resummation effect

In part A we have seen that the most stable structure of hy-
drogen in the rhombohedral family is almost 1identical with the
bece [111] structureu) in the density region where the monomer=

4)

dimer transition might occur. It is numerically proved that the
resummation has only a minor effect on the determination of the
stablest structure. The method of resummaﬁion is formally given
in part II as a cluster expansion. Here we shall go into the
details of its calculation.

In the cluster expansion, the third order term for the thermo-
dynamical potential is written as

Do ({1,3,k})Dy ({11)D; ({IJ1)Dy ({k})

a;=- 7 1 1 , (A1)
i<j<k keBZ g, D2({i,j})D2({j,k})Dz({k,i})

where Dn is the n xn determinant defined in II§5, whose diagonal

elements are of the form

k+g Sy (A.2)

and the off-diagonal elements are the effective external field

~

Lo,g T w(g'-g)T(g'-g) . (A.3)

Here e =p%/(ar )%, t, = (20+1)m1/8+u with 8 = 1/k,T and u the

chemical potential. And w(g) is the shielded external field and
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T(g) the effective vertex function (II). In Eq.(18),1i,j and k in
braces stand for the reciprocal lattice vectors and the summatiaon
over the quasimomenta k 1s to be taken in a Brillouin zone.

~

To evaluate 93 and higher order terms, we meet the quantity

I, (k;{1,2,-+-,n}) = -CZ fn D (z,,k;{1,2,-++,n}) . (A. 1)
L

Now by the definition we can write Drl as
D (z,k) = T [ -2, (4.5)
o J=l
where E(J)(k) (j=1l,*++,n) is the j-th root of the characteristic

equation

Dn(C,k) = 0 (A.6)
Thus Eq.(A.4) becomes
T 1 (3)
I (k3i,eeem) = -1 3 ] anlet (k) 2,7 . (A.7)
j=1 Ty

By using the contour integration as described in Ref.l1l, we get
T (1) (3)
I, (k;1l,+-,n) = Yo [et (k) —ulf(et? (k) (4.8)
=1

at.zero temperature, where f(e) 1s the Ferml factor. Here we note
that the form (A.8) is owing to the choice of the branch cut of
the logarithm as stated in II§5. However the final result (A.10)

below 1s Independent of the choice.
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We shall below evalutate 53. Though the sum in Eq.(A.1l)
1s taken over momenta in the first Brillouin zone, the summation
may be replaced by that over whole momentum space. By such pro-
cedure we rewrite the sum over i,j,k in Eq.(A.l) as the corre-
sponding sum over triangles <gl,g2> which are not congruent to
each other with respect to lattice translations. Thus we obtain

~

the following expression for Q

3:
93 = <g1§gz> Q3(gl)g2) ) (A-9)

93(813:%2) = 2 5{13(13;{03%13%2})

—Iz(p;{gl,gz})-I2(p;{0,g1}) —Iz(p;{o,gz})

+11(p) +Il(p+gl) +Il(p+g2) }. (A.10)

Here the factor 2 comes from the spin summation and the summation
over p is to be performed in the whole momentum space. In Eq.(A.10)

we put
I,(p) = (ep—u)f(ep) . (A.11)

The first term of Eq.(A.10) is essentially the two-wave approxi-
mation, where the one-wave contributions must be subtracted since
they were already counted in 52.

In the simple perturbation series, terms corresponding to

-~

Qs(gl,g2) is obtained by expanding the logarithmic term of Eq.(A.1)
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with respect to the external field L. Then the primary term

becomes

93(g1,g2) = N H3(O)(gl,g2)

~ ~ ~ ~ ~ ~

x{z_ _ __ L _ +L_ L LI _ 1}, (A.12)
g, 8,78, -8, &y 8,78, -8

with

~ ~

T = ;(g)T(g)

111
™

g 0,8

The remaining terms reduce to the higher order anomalous terms in
which only the many-point functions of the form

k k

k
n (e, 1, te,1 2, (01 ) (A.14)

n

appear (see part III).

Now we turn to the effect of the resummation. Figure 10
shows the values of 53(gl,g2) in comparison with those of 93(g1,g2)
in the case when <gl,g2> ls a regular triangle. We first notice
the striking difference of the behavior near R=1 with R the radius
of the circle circumscribing a triangle <gl,g2>; the cusp-type
singularity in QB(gl,g2) ceases to exist in the resummed result
53(gl,g2). However a shoulder remains in 53(gl,g2) at R=1 and the
global feature of QB(gl,g2) does not drastically change.

The difference of the two curves in Fig.l0 reduces with in-
creasing R. This fact permits us to use the unresummed quantity

~

QB(gl,g2) instead of the resummed one Q3(gl,g2) for large triangles.,
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For the bcec [111], the smallest triangle has the circumscribing

circle with R=1!034. For the shown case in Fig.1l0, the dis-

crepancy 1s about 20% at the position of the mentioned triangle.
However this discrepancy must somewhat be reduced by properly
taking account of the effect of the chemical potential shift as
discussed in II§5. Therefore we use the simple perturbation

result throughout our numerical calculation.
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Appendix B
An attempt for treating the phonon

effect on the monomer-dimer transition

The structural expansion of the dynamical matrix would be-less
convergent than that of the energy itself. Therefore it is es-
sential to evaluate the higher order effects for the phonon problem.
Unfortunately, the full calculation of the higher order dynamical
matrix is much more difficult than the energy itself. Thus some
ingeneous method 1s needed to treat the dynamical matrix.

Let us consider a crystal having two identical atoms in each
unit cell. The relative position of two atoms in a unit cell will
be denoéed by p. Then the structure dependent part of the total

energy ES may be written as a function of p

t

Egp = Est(p) . (B.1)

This energy may be expanded in a Fourier series
~ r o~ eig'p
Eq.(p) = E.L(0) + ) E_ . (g) , (B.2)
g

with g the reciprocal lattice vector. The above form is evident
from the product of structural factors included in the structural
expansion. In the structural expansion, we can get Est(g) more
easily than Est(p). i

Let us now look for the way for calculating Est(g). For this

~

purpose we expand Est(g) as
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B (e = 1 2, (B.3)
nz?2

where n denotes the number of the structure factors included in

a summand. Her¢ the Madelung energy 1s to be included in é(z)(g).
It is proved that E(n)(g) may be obtained by summing over recipro-
cal lattice points by the same way as for E(n)(p), but with the
multiplicity of summation reduced by one. Furthermore, in the
summation there appears no structure factor. It is also proved
that E (n)(g) has the full syvmmetry of the Bravails lattice. And

hence we have énly to caluculate Est(g) once for each independent

class of g.

(2) (3)

Now we write down the final result for E and E , in the

following:

2 0) = 2027 vie) -3 1 v 1, (B.ka)

g q
(2 (g) = £ vie) , (B.4b)

and

—(3) _ 1 ' _ _

E 2 (g) = -pvig) [ v(g,-g)v( g,)15(8,8,) (B.5a)
gE#g
£(3) 0y = % 1" 53 () . (B.5b)
g

The fourth-order term becomes somewhat complicated
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E(u)(g) = E(u’a)(g) + E(”’b)(g), g # 0 , (B.6a)

0 = 31 0P + N0y (B.65)
g .
with

(g s 1o ) ey T v(syey) (e e)

x I, (8,8,583)5 8 # 0, (B.7)

~(4,b) 1 - vos e
EV(g) == ) vi-g,)v(g,-g) )V v(g,)v(g-g,)
32 g378 3 3 8,78 2 2

XEZHu(g,g2,g3) +Hu(g_g3sg2sg2_g3) ] ) (B-B)

Here in H4 the H-diagram contributilion must be added after symme-
trization. The properties of E(n)(g) mentioned beore can be seen
explicitly in the above expressions.

In Fig.ll we plot the Fouriler coefficients E(3)(g) for bce
(y=0.5) and the other two rhombohedral structures (y=0.58 ,067).
The dependence of £(3)(g) on g is quite similar for these three
structures. As an application of the result, a rough sketch is

made for E(p) in Fig.1l2 for bcc up to the third order. The
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calculation is not complete: the vertex factor is simply neglected
and the lattice summation is truncated at g=6. However some
general feature of the optical phonon may be obtained from Fig.ll:

The transverse mode is softer than the longitudinal one.
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Appendix C

Multiple summation in the reciprocal lattice

In the structural expansion, the n-th order contribution to

the ground-state energy is usually written as a sum over (n-1)

independent reciprocal lattice vectors. For example, the fourth=
order energy is written asll)
N 1
Qu = )y E Hu(gl:g29g3)
gl,g2,g3

It is a formidable task, however, to execute such multiple sum-
mation as encountered in Eq.(C.l). In fifth order, we have ’\'lOLl
terms even if the summations are confined to the shortest g-vectors,
for instance, 1in bcc lattice.

However, 1f we utilize the symmetric properties of the summand,
terms to be counted can be drastically reduced. We shall describe
here the procedure of such reduction particularly for the fourth=
order energy. Generalization to the fifth-order one i1s straight-
forward.

We first note that in the summand of Eq.(C.1l), IIu 1s symmetric
under the interchange of the vectors 8185 and g3, while the pro-

duct of w-terms changes to different forms. To avoid the above

trouble, we symmetrize the summand of Eq.(C.l) with respect to
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interchange of g-vectors:

l t
2, =7 1 2,(8,,85583) » (c.2)
185585

2,(g).85:85) = N 1I,(g,8;5,85)
x Ly )w(e,-8, )W (g -g,)W(-8s)
(8 ,)W (858, W (g -8 )W (g,)

+w(gy)w(g, ~g5)w(g,mg) W(-g,) +c.c. } . (c.3)

In the reduction of summation the first step i1s to utilize the

permutation symmetry of Ew.(C.3). Number the reciprocal lattice

vectors as g(l) such that |g(l)i§lg(a)|,i <j. Then Eq. .2)

reduces %o

1 (1) _(J) _(k)
Q, = Q,(g »8 g )
v T

; (C.h4)
by considering the factor 3!, the number of permutations.

The next step is to utilize the translational and rotational
symmetry of the lattice. For thils purpose we note that the summand
in Eq.(C.4) 1s a function only of the tetrahedron [g(l),g(J),g(k) ]

(i),g(j) (k)

determined by g-vectors g and g . Thus the most efficilient

summation would be attained if we rewrite Eg.(C.4) as a sum over
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different tetrahedrons with a suitable multiplication factor for
each tetrahedron. Here the mentioned factor proves to be the
number of the congruent tetrahedrons appeafing in the reciprocal
lattice with one vertex at origin. Since the complete reduction
to such form is difficult in general cases, we shall below uti-
lize partially the rotational symmetry as the second step and the
translational one as the third step.

(k)

As the second step we fix g with k the largest number among
the rotationally equivalent g-vectors, and perform the summation
over i and j. The resultant is multiplied by the number of g=
vectors which is rotationally equivalent to g(k), where we divide the
above resultant by the number of equivalent vectors in the triplet.
The third step 1s to utilize the translation symmetry. We

choose one of the vertices ofa tetrahedron, aﬁd count the con-
tribution from tetrahedrons with the chosen vertex at origin, by
taking account of the factor 4. A convenient choice is the vertex
at which the largest number of the shortest g-vectors meet as the
edges of tetrahedrons. Additional multiplication factor arises
for tetrahedrons with equivalent vertices in conformity with the
above choice. The factor proves equal to the inverse of the number
of vertices satisfying our condition.

- We finally note that an additfional manipulation is needed for
the molecular phase, where the structure factor depends upon the

direction of g-vectors with respect to the molecular axis. Even

for this case the presented method remains effective if we replace
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the terms in braces of Eq.(C.3) by its average. Here the average
is to be taken over configurations which are generated from the

one by rotations of the lattice symmetry.
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Appendix D
(0)

Numerical integration for Hu

In the expression for I

4(0),11) there appears an integal of

the form (Eq.(5.14) of Ref.1l1l)

R dx
I = J —s—=5 f(x3s,r) ,

R ()(2+6)l/2

m
2
Rm = Max(s~, -68) , (D.1)
with
2 2 1/2
f(x3s,r) = arcsin [E-(E—:E—-) 7. (D.2)
s 2—r2

We propose the following form for the case when 52 +8§ 20

/ﬁ¥
dt 2 2-1/2
I = J —s—5 F([t"-67] 38,r) (D.3)
0 (t2—6)1/2
¥ = 8§ + R2 . (D.4)

Equation (D.3) obtained by a simple change of the variable,
x2.+6 =t2, may be thought trivial. In this form, however, the
computation timevis largely reduced. It is‘because the denomina-
tor in the integrand of Eg.(D.3) no longer vanishes at the lower

limit of the integration, while it is not the case for Eq.(D.1l).
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The reduction has proved very important for calculation of the fourth
and higher order energy, since the main part of the computation
time is devoted to this 1ntegral.

In Eq.(5.14) of Ref.ll, the case s =0 is excluded. For the

excluded case Eq.(5.14) of Ref.ll reduces simply to

T— eij
Fz(ri,rj) = T FO 3 (D-S)
where
FO=2H{L—%QH|—M—I} s (D.6)
Yu¥ Yu¥ - R

and ﬂ-—eij 1s the angle between the two sides of the tetrahedron,
which is defined in Ref.1ll. The other notations follow Ref.ll.

In the actual computation, we use the following expression

for I.
2 1/2

: (R_"468) +R

‘/*
I = f(R;s,r) {%—£n| —iL—ili—| - %-lnl m2 Lyl
vu¥ - R (R_"=8)1/2-R
m m
+J, (D.7)

where the remainder J of minor contribution is written as
(R2-52)1/2

J = I dz
0 (22+52)

Z
g(z;R,s,r) (D.8)
1/2(22+52+5)1/2
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with

2 2.1/2 2 2.1/2, 2 2.1/2
_ , (s°—r"7) Rz-(R -5") (z"+s57)
g(z;R,s,r) = arcsin [r- . < - ]
s2 (Rz—r2)1/£(22+sd—r2)l/2
(D.9)
for s~ +68 >0, and
‘/u*
dt 2 2 241/2
J = J ——  — g( [t°=6-57] iR,s,r) (D.10)
5 (£2_6y1/2

for 52 +85 0.
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Table I Minute description of contribtuions to the ground-state
energy for representative cases in comparison with Ref.4)

(in units of Rydberg)

r = 1.4
s
p/bohr 1.50 p/bohr 1.31
pr’evious-rT present previous+ present
Eeg 0.3684 0.3684 0.3684 0.3684
EM -1.1261 —1.1261 -1.0939 -1.0939
E2 -0.2125 -0.2117 . =0.2236 -0.2226
EZ(O) -0.1864 . -0.1959
E2(l) -0.0160 -0.0170
E2(2) ~0.0101 ~0.0107
E3 -0.0734 -0.0808 -0.0850 -0.0915
EB(O) -0.0608 . -0.0691
E3(l) -0.0136 -0.0159
E, -0.0199  =-0.0280 ~0.0250 ~0.0365
Eu(o) -0.0199 -0.0250
EMH 0.0091 0.0127
§E +0.0014 0.0023 0.0012 0.0021
£, %" ~0.0185 ~0-0189 ~0.0238 ~0.0238
tot

E -1.0631 -1.0675 -1.0579 -1.0617
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Table I cont'd
r = 1.8
S
p/bohr = 1.70 p/bohr =1.23
previous+ present previous+ present
Eeg 0.0762 0.0762 ‘0.0762 0.0762
EM -0.8543 -0.8543 -0.6986 -0.6986
E, -0.2178 ~0.2167 ~0.270S -0.2685
E2(0) _0.1871 _0.2321
E2(1) ~0.0180 ~0.1227
Ez(z) -0.0127 -0.1161
E, -0.0995 ~0.1099 ~0.1661 -0.1851
53(0) -0.0791 ~0.1298
E%(l) _0.0204 _0.0363
E, -0.0359 -0.05U49 -0.0810 -0.1253
Eu(o) ~0.0359 ~0.0810
EMH 0.0224 0.05U1
E 0.0017 0.0032 0.0012 0.0024
Eutot ~0.0342 -0.1293 —0.0798 ~0.0688
gtot ~1.1296 ~1.1339 ~1.1392 ~1.1449
+ Ref.}




_gf,t_

Table 1I, Values of fitting constants A, B and C

to reprocuduce the ground-state energy

in the form E=A+ BA2 + CA”
r, = 1. ro = 1. r, = 1.4
A B c A B c ‘A B C
E,, 1.1786 0 0 0.6617 0 0 0.3684 0 0
Ey ~1.5745 1.584  3.62 -1.3157 1.539  1.84 ~1.1277 1.322 1.5l
E, ~0.2152 -0.469  0.23  -0.2133 -0.461  0.21. ~0.2114 -0.457  0.21
E, ~0.0603 -0.418  0.23 0.0724 -0.435  0.00 ~0.0804 -0.486 -0.11
E,"°" ~0.0093 -0.139 -0.03 ~0.0118 -0.286  0.05 ~0.0164 -0.222 -0.03
E, ~0.0139 -0.187 -0.04 ~0.0195 -0.273  0.00 -0.0278 -0.346 -0.10
E," 0.003% 0.051  0.00 0.0059 .0.081  0.03 0.0091 0.124 0.0l
SEj 0.0012 -0.003  0.00 0.0018 -0.005  0.01 0.0023 -0.007 -0.03
B ) ~0.0022 -0.060 -0.15 ~0.0037 0,101 -0.26 ~0.0057 -0.155 =-0.l1
Ifoﬁpptoutm -0.6805 0.557 4,05 -0.9515  0.44s 2.10 -1.0675 0.148 1.60
F°%pto 5th) -0.6827 0.496  3.89 -0.9552 0.343  1.83 ~1.07317 -0.007  1.18.
a) without contribution from H-diagram



Table IT cont'd

r = 1.6 r = 1.
S S
A B C A B c
o 0.1901 0 0 0.0762 0 0

Ey ~0.9866 1.142  1.50 _0.8762  0.986 1.50

E, ~0.2093 -0.451  0.20 _0.2071 -0.446  0.20

E, ~0.0891 -0.55 0.03 ~0.0967 -0.608  0.06
tot !

E, ~0.0196 -0.265 —0.08 ~0.02341 -0.263 -0.30
E, ~0.0353 -0.433 -0.15 ~0.04b2 -0.495 -0.38
EuH 0.0128  0.177 0.15 0.0172 0.242 0.05

5E,, 0.0029 -0.008  0.01 0.0034  -0.010 0.02

Ee a) ~0.0082 -0.220. -0.59 _0.0114 -0.297 -0.81

FO%up to 4ty -1.1146 -0.129 1.65 _1.1275 -0.333 1.46

F%%p to 5tH -1.1064 -0.350 1.05 ~1.1386 -0.630 0.65




Table III Transition pressure Pc, the wvalue of Ty and the ground=
state energy E per electron at the transition point, for

each order of the approximation.

2nd 3rd Ubth 5th
a)
P, n=-0.1 0.06 1.19 2.33
r Nl 1.75 1.50 1.40
E b) n-0.8 -1.105 -1.098 -1.073

a) units in Mbar

b) units in Ry
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Figure Captions

Fig.l. Madelung energy for the rhombohedral structure as a
function of vy in logarithmic scale.

Fig.2. Magnitudes of the small reciprocal lattice vectors in
the rhombohedral structure as a function of y.

Fig.3. Screened Coulomb matrix elemenf G(g) as a function of
g for r, = 2. The solid line is based on the dielectric
functipn given in Ref.1l4, and the dotted line on that of RPA.
The broken line represents the bare Coulomb'matrix element.

Fig.4. Curves for H3(0)(gl,g2) vs. R, the radius of the circle
circumscribing the triangle <g1,g2>.

Fig.5. Magnitudes of R for small triangles in the reciprocal
lattice of the rhombohedral structure as a function of y.

Fig.6. Ground-state energy as a function of y for the rhombo-
hedral structure. Figures 6a to 6e correspond respectively
to Z =1, 1.25, 1.5, 1.75, 2. The solid lines are the
unresummed result and the broken lines the resummed one both
up to third order without vertex correction.

Fig.?i Ground-state energy as a function of y for the rhombo-
hedral structure. (a) Z = 1 for r, = 1.5 (b) Z = 1.5 for

}s =1.31 (c) Z = 2'for r, = 0.99 . The exchange-correlation

effects are taken into account by the effective vertex function

T(g).
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Fig.8. Distortion parameter y as a function of rs for the ex-
tremum structures. The solid lines stand for the stablest
structure. (a):fce, (b):sc, (c):bece, (d): planer structure,
(e):filamentary structure.

Fig.9. H-diagrams to appear in fifth order.

Fig.1l0. Contribution 53(g1,g2) to the third order thermodynamical
potential 53 In the cluster expansion as a function of R (solid
line) in comparrison with the unressumed one (broken line) for
the regular triangles <gl,g2>.

Fig.l1l. Fourier coefficient 53(g) plotted against reciprocal
lattice vector g, referring to the rhombohedral system.

Fig.l2. Equi-energy curves for various molecular configulations
in the bcec lattice (third order result). The equl-energy curves
are drawn for positions of a proton in the unilit cell when another
is at the origin of the same cell. Here I'=(0,0,0), K=(- %,

%,0), L= (33> W=(0,2,7) in units of the length of cube edge.
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