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Abstract 

In the structural expansion for the ground-state energy of 

simple metals, the higher-order effects are studied. To take ac­

count of the exchange-correlation effects on the higher order 

polarizations, the effective vertex approximation is examined in 

the asymptotic forms up to fourth order, with finding its validity 

region limited by the singularity of the higher order polarizations. 

A new resummation scheme is presented in a cluster expansion based 

on the variational principle of Luttinger and Ward. A general 

method for evaluating the many-point ring diagrams is also pre­

sented. 

Higher order effects on the high-density hydrogen system are 

studied. The mechanism for the stability of the filamentary struc­

ture is clarified in connection with the singularity of higher 

order polarizations, where the numerical results are also presented 

in proof of our theory. It is .shown that the resumrnation effect 

does not change the situation. 

Monomer-dimer transition of hydrogen is studied in the bcc 

[lllJ model. It is pointed out that exchange-correlation effects 

on the fourth order energy are considerable, though a large can­

cellation occurs with contributions from 'the Hubbard H-graph. 

The fifth-order effect is studied for the first time. The tran­

si tion pressure is predicted to be 2. 3Mbar at r s = 1. 4 in the 

fifth-order stage without effect of the zero-point motion of 

protons. 
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§ 1. Phase diagram 

Hydrogen is the simplest but most abundant element in the 

universe. The solar abundancres by mass are predicted to be 76% J 
for Hand 22% for He. l ) The cosmic abundances are known to be 

nearly the same. Hydrogen exists in a wide range of circumstances; 

as the most dilute place we have the intergalactiC space and 

as an extremely dense place the interior of stars and giant 

planets. According to the variety of circumstances we have the 

variety of its existing forms; atomic, molecular, plasma and con-

densed states. 

Construction of the phase diagram of hydrogen in the whole 

p-T pl~ne is a challenging subject. At low pressures and at low 

temperatures it forms a molecular solid (~14K at ordinary pressure). 

At elevated temperatures hydrogen molecules are dissociated and 

then ionized to form the proton-electron Plasmaatl04~105K. On 

the other hand at low temperature and at high pressures, hydrogen 

is supposed to form a condensed ionized state, namely metallic hy-

drogen. To such formation of low temperature plasma a crucial 

role is played by the quantum mechanical nature of electrons. 

In Fig.l we show1a global picture for the phase diagram of 

h~drogen. In drawing the phase diagram we refer mainly to a classic 

work by Brush, Sahlin and Teller. 2 ) They drew the phase diagram 

of Fe, whence we obtain the similar one for H with appropriate 

modification. In Fig.l we mention the melting curve of proton 
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lattice, which is characteristic of hydrogen; the melting occurs 

even at zero temperature. The chId melting comes out due to the 

zero-point motion effect of protons, as pointed out first by 

Abrikosov. 3 ) We estimate the melting point at OK from Akrikosov's 

formula 

-11 2 a '\., 5 ·10 / Z A cm (1 ) 

where a denotes the lattice constant,Z the atomic number, and A 

the atomic weight. We note that the critical lattice constant 

becomes exceedingly small even for helium. At the side of high 

temperature the melting curve is drawn with the use of Pollock and 

Hansen's Monte Carlo result 4) 

T = 1500 pl/3 K 
M 

( 2) 

where TM denotes the melting temperature and p the density in 

g cm -3. 

For the high density plasma an important parameter is 

r = ( 3) 

where e denotes the electron charge, kB the Boltzmann constant, T 

th€ absolute temperature and a the radius of ionic sphere. In 

Rig.l 'some of the curves are drawn for r = const. For large values 

of r the plasma is strongly coupled. The study for such plasma 
5) 

has been one of developing fields. The critical curves for 
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the nuclear fusion to occur are also shown roughly in 

Fig.l. 

§2. Molecular hydrogen 

In free state, hydrogen forms diatomic molecule in the ground 

state with binding energy 6) -1.1645 Ry. This simplest molecule 

has been a touchstone for ensuring our knowledge about the binding 

mechanism of molecules. Accordingly, a great deal of theoretical 

studies have been done for the binding energy of hydrogen molecule 

as well as its properties with considerably high accuracy from 

the first principle. 7) If the effect of molecular vibration is 

neglected, the ground-state energy of a molecule has been estab­

lished to be 8) 

- 1.1745 Ry per atom ( 4 ) 

with equilibrium proton distance 0.74 A , that is 

1.40 bohr. (5) 

By including the zero-point vibration effect, the measured binding 

energy is in agreement with the theoretical one with accuracy of 

10:- 4 . The first vibrational level is extremely high and esti-

mated to be about 6000K. 8) Here we note that 1 Ry corresponds 

to the termperature 1.58 x 10 5 K. 

In the solid state, molecular hydrogen shows interesting 

- 4 -



properties, which mainly come from the quantum nature of the ro-

tational degree of freedom. The H2 molecules are classified into 

two species; orthohydrogen with the odd rotational quantum number 

J and parahydrogen with even J, owing to the Fermi statistics of 

protons. The first rotational energy level of para H2 is about 

510. K and that for or-tho H2 is much higher. 8) We note that the hydro­

gen molecule has the highest rotational constant n2/2I among mole-

cules owing to its smallest moment of inertia I. 

For solid hydrogen, the intermolecular interaction is consid-

erably weak at low pressure. Accordingly, valuable informations 

on the anisotropic intermolecular forces have been obtained from 

various properties of solid orthohydrogen. The main part of the. 

anisotropic force is the electric quadrupole-quadrupole inter­

action, 9) whence the Pa3 structure of the solid ortho-hydrogen 

comes out as the low temperature phase. 10) 

At zero pressure, solid hydrogen has a small density p = o. 09 

g/cm3, which corresponds to about r s = 3.1. Here r is the radius s 

of the equivalent sphere to the volume per .electron divided by 
o 

the bohr radius a O = 0.529 A. In the low pressure region, the 

volume va per mole is used as a parameter,wl1ich is related to rs 

by 

For compressed solid hydrogen, our knowledge about the 

equation of state (EOS) is very poor. It is because the current 
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expression for the intermolecular force is based on.:.approximations 
11) 

relevant to the region of low density (de Boer 1942, Evett and 

Margenau 1953 12)). The assumption of constant separation between 

protons limits the relevancy. Recent studies with many configu­

rations taken into account show that the effect of the change of 

proton separation is not small. 13 ) 

We also menb1~n the many-body force, which would bring about 

larger effect with increasing density. An attempt to evaluate the 

three-body force has been done by Ree and Bender,14) who claimed 

its effect to be important in explaining EOS obtained from the 

shock wave experiments 

§3. Metallic hydrogen 

Metallic hydrogen .provides us with a unique condensed system 

which Ca!l be treated from the first principle. Furthermore the 

thermodynamic properties of this system and its mixture with helium 

play crucial roles in studying the constitution of Jupiter and 

Saturn.15 ) 

The first study of metallic hydrogen was done by Wigner and 

Huntington. 16) One of their motivations was to examine the Wigner= 

Seitz theory for the cohesive energy of metals. A relevant theory 

must predict the cohesive energy of metallic hydrpgen smaller than 

that of the molecular hydrogen. For bcc they obtained the ground= 

state energy -1.05Ry, which is surely higher than that for the 
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molecular state. Kronig, de Boer and Korringal7 ) also treated the 

same system with main concern in the internal constitution of the 

Earth. 

After appearance of these pioneering works various methods 

have been developed for calculating the cohesive energy of metals. 

With the use of these methods, metallic hydrogen was re-attacked 

by many authors. 18~45) A th ti th . I mong em we men on e S1mp e rs-ex-

pansion, which Carr utilized with a result for the ground-state 

energy nearly indentical to Wigner and Huntington's one. 16 ) 

Almost all the calculations have. been confined to the cubic 

crystal. Eventually the estimates to the ground-state energy are 

nearly -1.05Ry, Wigner and Huntington's value. 

22) Exceptional study has been done by the Kagan group. They 

carried out calculations for the structure-dependent energy of me-

tallic hydrogen in a great variety of crystal forms, finding the 

filamentary structure with considerable lowering of the ground= 

state energy.. Their estimate is close to -1.IORy.23) 

§4. Molecule-metal transition 

The molecule~metal transition is one of the main concerns 

about our system. This might also be treated from the first 

principle. However most of the studies employ different methods 

for two branches, namely metallIc and molecular phases. The 

estimates of the transition pressure show a broad spectrum, O.5Mbar 
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~5Mber. The main reason for such uncertainty may be attributed 

to our poor knowledge of EOS for the molecular phase. For the me-

tallic phase, however, confinement to cubic phase may be another 

weak point. 
. 24"'26) An exceptional study was done by Harr1s et aI, who 

treated th~ metallic and molecular phase in a scheme of the Hatree= 

Fock approximation though they used the different modification of 

orbitals for different phases. They have shown occurrence of the 

first-order transition, assuming bcc structure. However thei~ 

estimate for the ground-state energy is consideraqly high, thougb 

the r -value at the transition may be of reasonable magnitude. 
s 

In spite of many efforts with the use of various methods, 46) 

the metal-molecule transi it.ion has not been solved. 

Here, we mention the experimental status on the compressed 

solid hYdrogen~7) The melting point of solid hydrogen rises from 

14K to the higher termperature as the pressure increases. 48 ) Ac­

cording to the recent experiment by Mao and Bell,49) the solid 

phase is stable at room termperature under 50kbar. The same authors 

compressed it up to 600k.bar, where they found the "refractive index 

of hydrogen to be comparable to that of ruby. Though their highest 

pressure attained is still far from the molecule-metal tansition, 

they observed that the intramolecular vibration begins to soften 

at 400kbar?O) A similar experiment has also been done at 5 K by 

the other authors. 51 ) 

The molecule-metal transition of hydrogen must exist in the 
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outer layer of Jupiter, which is a giant hydrogen planet. The 

pressure ranges from ~lbar at the surface to ~lOOMbar at the core. 

Owing to poor knowledge of the EOS and of the properties of hy-

drogen, both in the vicinity of the transition point, we still 

have difficulties in unfolding a complete story about JUPiter?2) 

§5. Scope of the present thesis 

The r -expansion is a method effective in the high density s 

region, where the theory starts with the electron gas distributed 

uniformly. This is just what happens in the limit of high density. 

If the electron-ion interaction is switched on, the electrons 

would tend to concentrate around each ion. This tendency may be 

treated by the perturbation method with the electron-ion inter~ 

action as a perturbation, as far as the density is not considerably 

low. However a naive treatment of the r -expansion would be ef­s 

fective only in an extremely limited region of validity. Some in-

geneous technique is necessitated to extend the validity region. 

This is the structural expansion, as developed by Brovrnan et al. 

and by others~3) 

At this pOint we are in close contact with the many-body 

theory of the electron system. The many-body theory has developed 

considerably after the war, where one of the most important tech­

niques consists in the use of the Green's funciton. 54 )we shall use 

the temperature Green's function in developing our theory. We men-
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tion Matsubara,55)whO invented the temperature Green's function. 

The key quantities to the structural expansion are the higher 

order polarizations, which correspond to the many-point diagrams 

according to the language of the many-body theory. Many-body 

effect on the higher order polarization is very important to obtain 

a reliable result in the intermediate density region. For the 

dielectric function of the electron gas, which reduces to the 

second order polarization, a great deal of efforts have been 

devoted to clarify the many-electron effect. 56 ) It is not the 

case for the higher order polarizations, though some attempts have 

been done. 53 ) A critical study will be presented in Part II for 

the many-electron effect on the higher order polarizations. The 

resummation of the perturbation series has also been one of the 

problems in the structural expansion. For it we also present a 

new scheme (II). 

In III we present a general method for evaluations of the 

many-point diagrams. This method is simpler and more comprehen­

sive than the previous work. 57) The general formula presented 

for the anomalous diagrams is entirely new and may be thought 

valuable for evaluating the fluctuation of spins and of current. 

On the basis of these results, we shall study the higher 

order effect on the ground-state energy of high density hydrogen. 

The stability of the filamentary structure is also one of our 

subjects. The mechanism for the occurrence of the above structure 

will be clarified in connection with the singularity of the third= 
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order polarization. It may be interesting to see that the stabl~ 

structure must be cubic for helium by the same mechanism as the 

anisotropic structure is stabilized for hydrogen in the inter-

mediate region of density. The metal-molecule transition will be 

44) 
discussed with reference to the bcc [lllJ model, a filamentary 

structure. Density at the transition is obtained for each stage 

of the approximation , where the true position of the critical 

density may be predicted, whithout zero-point motion effect of 

protons. The similar data will also be given for the transition 

pressure. These are presented in Part IV. 
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Figure Caption 

Fig.l. Global phase diagram for hydrogen. The melting curve 

in the molecular region is plotted after Liebenberg et al's 

data (Ref. 48). A supposed melting curve in the metallic 

region is shown by wavy line. The thin broken lines represent 

the isobars, obtained from a rough interpolation between the 

low temperature limit and the high temperature one. The elec-

tron degeneracy line in the plasma region is also plotted .. 
(-- •• --). The adi abat in Jupiter (-_. --) is drawn 

after Steevenson and Salpeter in Ref. 15. See text for the 

other lines. 
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II Structural Expansion, Vertex Function 

and Cluster Expansion 
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§l. Introduction 

The structure dependence of the ground-state energy of metals 

has been studied by many authors. l ) The method of pseudopotential 

expansion has been successfully used to explain the observed 

crystal structure of simple metals or their alloys,1,2) for which 

the second order perturbation is usually used. Lloyd and Shol1 3 ) 

presented a structural expansion in an effective field approach 

analogous to that of Hohenberg, Kohn and Sham4 ,5) and first de­

rived the third Qrder term. Brovman and Kagan 6,7) developed a 

many particle theory for this problem and extensively applied it 

to the dynamical properties of non-tvansition metals. 7) They also 

attacked the problem of metallic hYdrogen8 ,9) using the results 

up to the third order perturbation. 

In the case of metallic hydrogen, higher order terms are im­

portant. Hammerberg and Ashcroft (HA) 10) used the finite· tempera-

ture technique and discussed the fourth order effect in the e-

lectron-ion interaction, where they considered the relevant dia-

grams partially. Their scheme is essentially the expanion in terms 

of the effective electron-ion potential shielded by the Lindhard 

dielectric function so that the exchange and higher order corre-

lation effects are completely neglected. We mention Yasuhara and 

Watabe,ll) who pointed out the importance of the correlation effect. 

We note here that the effect of the Fermi surface distortion was 

first teken into account by carr,12) and later by HA, where the 
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latter authors also examined the resummation of a partial series 

from the higher order terms. On the other hand, Brovman et al. 

discussed the singularity of the higher order diagrams13 ) and de-

f . t' th . t . d· 14) veloped a technique 0 lntegra lng e many-pOln rlng lagrams 

(see part TII). They also examined the effect of the choice of 

dielectric function15 ) and proposed an effective-vertex (T-factor) 

approximation7,16) to the n-point p61ari~ation (n~ 3) diagrams. 

However the nature of this approximation was not clear. 

In a series of papers 17- 20 ), which will hereafter be referred 

to as STI, STII, STIll and STIV in order, Nakamura, Miyagi and 

Nagara critically studied the higher order effects both in the 

electron-ion and electron-electron interactions (See also Ref. 

21). All the diagrams up to the fourth order are examined in terms 

of RPA-screened interaction line. The first order correction was 

evaluated in the Thomas-Fermi approximation up to the three-point 

polarization (STll). Dynamical effects were included in the prima-

ry ccrrection to the RPA polarization (STllI), while the second 

order corrections were calculated comprehensively in the Thomas= 

Fermi approximation to obtain the static dielectric function (STIV) . 

A resummation of the anomalous terms of higher order in the e-

lectron-ion interaction was also considered with some new result 

(STI) • 

In this part, we shall consider some of the higher order ef-

fects still neglected in STI-IV and examine methods of taking ac-

count of them with application to the high-density hydrogen in 
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mind. Method of calculating higher order many-point ring dia-

grams will be described in III . 

Our Hamiltonian is described in §2 together with the notations. 

The structural expansion of STII is rederived in somewhat differ-

ent manner in §3. In §4, an approximate treatment for the vertex 

factor is examined critically. In §5, a resummation scheme is 

proposed, in terms of which all the higher order anomalous terms 

can be absorbed into the primary terms in the expansion. 

§2. Hamiltonian and notations 

We shall consider the system of N electrons, of which in the 

sea NO ions with charge Ze are embedded. The electron Hamiltonian 

is given by 

~2 2 t 1 1 '4rre 2 
H= '\pa a +- ,--

2m L po po 2 V qL 2 po q 

at at a a 
p+q,o p'-q,o p' ,0 p,O 

" 4rr e 2 
+ ~ L -2- S(g) 

g g 

t 
I ap+g,o 

p,O 

I 
p p' 

a p,O ( 1) 

where the first term represents the kinetic energy, the second one 

the electron-electron interaction and the third one the electron= 

ion interaction, with V the volume of the system. Here S(g) is 
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the structure factor 

1 \' Z -igoR .. = - L e l 
N i 

( 2) 

Here the reciprocal lattice vector is denoted by g, which will be 

used separately from q, the quasi-continous wave-vector. 

In the following, we put !l. = 1, and measure the energy in 

4 2 and the momentum in units of the Fermi Ry = me /211 , momentum 

PF = (3rr 2N/V)1/3. And we introduce the parameter r as the radius s 

of the equivalent sphere to the volume per electron devided by the 

Bohr radius a O = n2/me 2 . This convention of units is equivalent 

2 ) () 2 2 -1 to putting e = 2/(ars ' m = ars /2, and N/V = (3rr) ,where 

e is the unit charge, m the electron mass and a = (4/9rr)1/3 ~ 

0.5211. Furthermore, we prefer the factor (l/N) to (l/V) for the 

momentum summation. This is a convenient procedure when we con-

sider the energy per electron. 

According to the above conventions Hamiltonian (1) becomes 

HO = I E at a 
po p po po (4-a) 

H2 
1 1 I ' v(q) I at at at a = 2N pp' p+q,o p'-q,o p' ,0 p,O q 

(4-b) 

° 
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, 
L at 

Hl - - L S(g)v(g) a (4-c) 
g po p+g,o po 

where 

n 2 2 2 
P 

E:p - 2m 
p + 

2 (ar ) s 

v(q) N 4'TTe 2 
- V --2- + ( 5 ) 

q 

Now r s plays a role of scaling parameter and may be thought as a 

coupling constant: (ar ) 'Vv(q)/E: . 
S P 

In constructing the Hamiltonian (1), we have taken the usual 

procedure of treating q = 0 term. Since we neglect the ion motion, 

the rest of the energy is merely the ion Madelung energy, which 

can be written as 22 ,23) 

1 \" EM = 2" { L v(g)S(g)S(-g) 
g 

z ' N L v(q) } 
q 

( 6 ) 

Our main problem is to calculate the total energy E per elec-

tron in the ground state as a function of rs and as a functional 

of S(g): 

(7 ) 

The pressure of the system is obtained from 
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p - -
1 2E 

4rrr 2 Clr 
s s 

( 8 ) 

in the atomic unit (= 147 Mbar). Equation (8) reflects the fact 

that the concept of pressure is closely related to a scaling trans-

formation .. 

§3. Structural expansion 

We shall evaluate the ground-state energy E of the electron 

system under the external potential Hl . To take account of the 

deformation of the Fermi surface, it is convenient to use the 

finite-temperature perturbation theOry,24) in which we have the 

expansion of the thermodynamical potential with respect to the e-

lectron-ion interaction. Thus, by the thermodynamic relation we 

can obtain the ground-state energy of the system. 

(A) Thermodynamical potential 

A~cording to Luttinger and ward,25,26) the thermodynamical 

potential n can be expressed in terms of the temperature Green's 

function Ga(p, p'; ~!), where p denotes the electron momentum, a 

the spin state, and l;;! = (2£.+1)1Ti!8 +~, £. =:0, ±l, ±2,···, where ~ 

denotes the electron chemical potential and 8 = kBT. This function 

is a natural generalization of the free electron thermal propagator 

( 9) 

by which the thermodynamical potential nO of this system can be 
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obtained as: 25 ) 

i I ,q,n[l+eB(ll-Sp)]. 
p 

(10) 

Here we use the abbreviation p = (p, I;,q,), f = N- l Ip B-1 II; in 
p ,q, 

accord with STll. In Eq. (10), the factor 2 comes from the spin 

summation, and the summation over frequency I;~ is performed by the 

well-known contour integration. 25 ) 

The functional int~oduced by Lutting er and Ward may be written 

'26 27) 
in the following form: ' 

o 0 where the matrices G and G stand for G(p, pI) and G (p)o , 
p,p 

respectively, and tr designates the trace of the matrix indices 

p, p'. The functional ~[GJ is given" by the sum of closed linked 

skeleton diagrams with weight lin, where n is the number of the 

Green's function "included in each diagram. (Examples of the skele-

ton diagrams are shown in Fig.l.) Then the functional derivative 

of ~[GJ with respect to G gives the self-energy: 

o~[GJ (12) 

See Fig.2 for the self-energies corresponding to the linked skele-

tons in Fig. 1. 
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Now the Dyson equation 

may be derived by the variational principle on/oG = O. Then the 

expression for the thermodynamical potential becomes 25 ) 

where 1 stands for the unit matrix. 

Now our problem is how to approximate the functional form of 

¢[GJ. If we start with the skeletons of b) and c) of Fig.l., an 

expansion is obtained in terms of the RPA-screened external field 

given by HA. To take account of the exchange and correlation ef-

fect properly, we must include the diagrams a) of Fig.l and the 

higher order ones. In the following we restrict our discussion 

to the effect of the diagrams a). (Higher order effects were con-

sidered in STIV.) Thus, from Eq. (12) we have 

L:(p,p+g) = w(g) + 2v(g) f 
p 

- I f [v(q)E-l(q,q+g')JG(p-q,p-q+g-g'), (15) 
g' q 

where the inverse dielectric tensor E-l(q, q+g') is given by the 

relation 

d q, q + g) = 0 g, 0 - v (q) IT (q, q + g) , 
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n(q,q+g) = 2 L J G(p,p+g')G(p+g'+q,p+g+q) . 
g' p 

(16) 

These quantities were utilized by Hubbard. 28"-'30) In Eq. (15) w(g) 

stands for the external line (Fig.2 c): 

w(g) = -v(g)S(g) . (17) 

Now, as in STII we expand G and ~ with respect to the ex-

ternal lines: 

G(p,p+q) = L G(n) (p,p+g) ',' 
n~O 

~(p,p+g) = I ~(n)(p,p+g) . 
n~O 

(18) 

The zeroth order solution will be taken to be the corresponding 

functions for the electron gas system: 

where 

and 

G(O)(p,p+g) = G(p)o 0' 
g, 

E(O)(P,p+g) = 

in our approximation. 

- 27 -
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Here ;(O)(q) denotes the screened internal line given by 

( 0) -(0) v (q) = v(q)/[l- v(q)II (q) ] , 

n(O)(q) = 2f G(p)G(p+q) . 
P 

(22) 

The screened internal line is shown in Fig.2a by double wavy line. 

If we replace G(p) by GO(p) in Eqs.(21) and (22), then n(O)(q) 

reduces to the RPA polarization n(O)(q). In the above approxi-

mation the last term of Eq. (14) reduces to the ring diagram con-

tribution: 

° -- _12 f (0) q, [G ] ~n [1 - v (q ) n (q ) ] • 
q 

(24) 

On the other hand the higher order contributions from the self= 

energy z(O)(p) is included in the logarithmic term of Eq.(14). 

Next, from Eq.(13), G(l) proves to be of the form 

G(l)(p,p+g) = G(p)z(l)(p,p+g)G(p+g) . (25) 

Using the above expression we obtain 

(26) 

from Eqs.(15) and (16). Here i(g) is given by 

w(g) = w(g)/E:(g) , (27) 

with E(g) the static dielectric function of the uniform system: 
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E(g) = 1 - V(g)IT(g) , 

II(g) = 2f G(p')G(p'+g)A (pI) . 
pI g 

( 28) 

The vertex function A (pI) may be obtained from a solution of 
g 

the integral equation: 

Ag(P) = 1 - J y(p,pl;g)G(pl)G(pl+g)j\ (pI) , 
pI g 

where the kernel function y(p,pl ;g)31) is given by 

y(p,p';g) = -y(O)(P-P')-2.J y(O)(p_p")y(O)(p_p"+g) 
pIT 

(29) 

x G ( p " ) [G ( p " - p + g I) + G ( p - p "+p I + g)] . ( 30 ) 

Contributions to II(g) are given explicitly by Eqs.(3.13) to 

(3.16) of STU up to second order in y(O). We note that the 

- (b) 
present approximation does not include the term IT2 2 of STII . , 

For the higher order terms, Eq.(13) gives 

G(n)(p,p+g) = G(p)[v~n)(p) +L(n)(p,p+g)]G(p+g) , 

n ?; 2 , (31) 

where the proper self-energy parts L(n) of higher order are ob-

tained by replacing thin lines in Fig.2a,b by the higher order 

propagators: 
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r(n)(p,p+g) = 2v(g) f G(n)(pl,pl+g) 
p' 

- f v(O)(p_p')G(n)(pl,p'+g) + .... (32) 
p' 

In Eq.(3l) the function v(n)(p) stands for the improper self= 
g 

energy, which is of the form 

n-l ( 
v(n)(p) = [G(p+g)]-l I I r(s)(p,p+g')G n-8~p+g' ,p+g) • (33) 

g g I 8=1 

Examples of r(n) are given in Fig.3. 

By using these quantities, the thermodynamica~ potential is 

obtained from Eq.(14) with substitution of Eq.(18),in the ex-

panded form: 

(33) 

where Qeg is the contribution from the system of uniform electron 

gas and may be written as 

= -Nf ~n[_G(O)(p)]-l 
p 

+ [cfJ O - N f rCO) (p)G CO ) (p)] , 
p 

(34) 

The structure dependent part n t = Q - n may be expanded from s eg 
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Here the logarithmic term is a single-particle like contribution, 

where the correlation effects are absorbed in the self-energy, 

while the remaining terms may be thought as a correction for 

double counting which comes in ordinarily in the single-particle 

description. 

We write down straightforwardly the expansion of the first 

and last terms of Eq. (35), which we denote by O(i) .and O(iii) 

respectively. The result is 

+ ••• , (36) 

- ... (37) 
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In writing down Eqs.(36) and (37) some terms have been dropped 

out, since they cancel each other in the resultant of n(i)and 

n (ii) . 

The expansion of the term n(ili)may be obtained by a dia­

gramatic analysis, or by expanding ¢[G] in a Taylor series 

¢[G] (38) 

with the help of the relation 

o¢ r or = G-loGG- l (39) oG - , 

The result is as follows. 

n(ii) = 1: I 
S i 

tr{G(2)r(0) + 1:[G(l)(r(l)_w)] 
2 

+ G(l)w} 

+ ••• (40) 

where (w) + - w(g) and L F(2) corresponds to the diagr.am F of p,p g 

Fig. 3. 

Collecting terms from n(i), n(ii) and n(iii), we obtain the 

series: 
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(41) 

The above result is essentially identical with that of STII apart 

from the second term of n3 (See Fig.4a), which was not explicitly 

written down previously. This term comes in naturally in our pro-

cedure. Though we shall not treat it,the following may be inter-

esting to note. The mentioned term is analogous to a second order 

term shown in Fig.4b, whose impor.tance was pointed out by Ge1dart 

and VOsk0 31 ), and analysed by Ge1dart and Tay10r32 ,33). Such 

terms would be necessary in the scheme of· expansion'~ith respect 

to a screened internal 1ine.in order to keep the consistency31). 

The following may also be worth noting. According to our 

procedure, a peculiar form of the second order term n 2 comes ·out 

as a result of the correction of double counting. This character-

istic feature of.ou·r formalism will be useful in treating both of 

an effective approximation to the vertex factor (§4) and the re­

summation of the perturbation series (§5) so as to avoid over-

counting. Moreover, such a term does not appear in the third 

order term n 3 . This fact is closely related to the" H-reducibi-

1ity" argument by Hubbard. 28 ,30) A H-type diagram appears in 

fourth order as pointed out by HAlO). It is because the factor 

attached to the skeleton b) of Fig.1 does not cancel that of the 

self-energy contribution. 

In Eq.(41), the matrix products in trace reduces to the sum 

over reciprocal lattice vectors. The frequency and momentum sum-
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mations may be performed beforehand to give sturcture independent 

quantities. These quantities were called TIn in STII, where n 

stands for the power of the external potential. In the actual 

calculation, these quantities are further:~xpanded'~ith respect 

to the free electron propagator GO(p) and the RPA screened inter­

acion v ° (q). Here the latter is the primary term of v(O)(q) and 

given by 

with 

TI(O)(q) = 2 f GO(p)GO(p+q) . 
p 

(42) 

(42a) 

The resulting contributions are shown diagramatically in Fig.5. 

(B) Ground-state energy 

By the procedure described above, we can calculate the thermo-

dynamical potential n under a constant value of the chemical po-

tential~. However, simple use of the perturbation procedure 

does not conserve the particle number N. 32 ) This problem was 

treated in STI17 ) and also in HAlO) in connection with the defor-

mation of the Fermi surface. We shall below look into this problem 

briefly. 

Assume that the thermodynamical potential n is given as a 

function of ~ and of a parameter A. 
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(43) 

then the condition 

an -
(~)A = N (= constant) ( 44) 

gives a curve ~ = ~N(A) in the A - ~ plane (Fig.6.) , which is 

determined by the differential equation 

d~N a2n a2n 
(45a) d"I"" = - (a~dA) / (a~2) 

with the initial condition 

Here Eq.(45) is obtained by the differentiation of Eq.(44) with 

respect to A. 

Now the Legendre transformation at zero-temperature gives us 

(46a) 

where E is the energy per electron. From the above expression we 

get 

N dE I = d r2 I ( 46 b ) 
dA - ax-N ~=~-(A) N 

under the condition of Eq.(41). If r2 is given as a power series 
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with respect to A at ~ = ~O and if the ~-derivatives of n are well 

behaved , then ~N(A) and E(N, A) may also be expanded in Taylor 

series with respects to A: 

+ ••• , 

(47) 

Then 

(48a) 

and 

NEI = nl ' 

(48b) 

Here, primes denote the derivative with respect to ~ at ~ = ~O. 

If n has no linear term in A, then the result"is much simplified: 

~l = 0 , 

- 36 -



(49a) 

and 

NE3 - n3 ' 

(4gb) 

In accordance with the present problem,let us multiply the 

electron-ion potential w(g) by A. Then ~O and nO are the corre­

sponding quantities for the system of the uniform gas ~eg and neg 

" Thus no appearing in Eq.(4ga,b) as the denominator reduces to the 

q = 0 limit of the static dielectric function defined by Eq.(28) 

" neg/N = II(O) • (50a) 

The above expression may be derived from the differentiation of 

N = 2 L 1 I G(p)e~o+ 
p B R. 

with respect to ~, where the Ward identity27) 

is to be used. 

dr (0) (p) = 
1 - d~ 

A (p) 
g=O 
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Finally we note that the power series method discribed above 

may break down when the denominator d 2n / d11 2 in Eq.( 458,) becomes 

5~all as A increases. This quantity is related to q = ° limit 

of the polarization tensor for the crystal given by Eq.(16), which 

might become small if the crystal undergoes the metal-insulator 

transition. 

§4. Exchange and correlation effects 

on the many-point polarization 

In the previous section, a structural expansion of the ground= 

state energy has been described. The primary term in the structure 

dependent part Est is of the form: 

(52) 

Here the two-point polarization n 2 (g) is written simply as neg) 

in §3, which is related to E(q) by Eq.(28). The leading term in 

n 2 is the Lindhard function n(O)(q), which gives us the dielectric 

function EO(q) in RPA (Eq.(43)). 

Many attempts have been done to take account of the exchange 

and correlation effects on IT 2 (q) (Refs. 29),31)~33),35~38) and 

STTII, STIV) , and certain progress has been achieved, though the 

available results may still be somewhat far from the reliable 

knowledge about n(q) and E(q) at metallic densities (3 ~ y ~ 6), s 
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and particularly in the region of Iql~2. A current procedure is 

based on the Hubbard from 

= IT(O)(g) 

l+dl(q)IT(O)(q) , 
(53) 

with modifications of the local field factor ¢(q) from the origi­

nal Hubbard's one. 29 ) 

For n-th order energy E , the n-point polarization IT is the 
n n 

relevant quantity. For example, the third order energy is of the 

form: 

E3 = J I' w(gl)w(g2- g l)w(-g2)IT 3 (gl,g2) . 
gl,g2 

gl~g2 

(54) 

The primary contribution to IT comes from the n-point ring dia­n 

gram IT~O). This quantity was extensively studied by Brovman, Kagan 

and Kholas,13,~4) who have presented its evaluation method. The 

treatment has been improved recently by Nakamura et ale (STI) and 

by the present auther (part lIT). 

To take account of the exchange and correlation effects on TIn 

(n ~ 3) is much more difficult than in the case of TI 2 . In STIT , 

Miyagi et al studied the primary corre~tion IT~I) to IT~O), by in­

cluding the screened internal line in the Thomas-Fermi approxi-

mation. The results indicate the importance of the exchange= 

correlation effects especially in the region of Brovman and Kagan's 

singularity. This singularity occurs when the radius of circle 
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circumscribing a triangle formed by reciprocal lattice vegtors gl' 

g2 coincides with the Fermi radius. The results applied to the 

problem of high-density hydrogen 39) show significant effects of 

the term TI~l). This fact may indicate that the exchange-corre­

lation effects would be considerable also in the fourth order 

energy E4. However any direct calculation of the mentioned cor­

rection to TIn (n~ 4) seems to be a formidable work, even in the 

first order. It is also the case for the higher order correction 

to TI 3 . Thus an approximate procedure is needed to take into ac­

count the exchange-correlation effect. 

For this problem, Brovman et a17,15) proposed an effective 

vertex approximation. Their approximation is based on the follow-

ing observation for the Hubbard approximation of the two-point 

polarization, TI 2 (g) given by Eq.(53). The mentioned approximation 

comes out with replacement of the exact vertex function in Eq.(28) 

by an approximate one 

T(g) = 1 (55) 

where the momentum dependence of A (p) is neglected. Further ap-
g 

proximation lies in the replacement of the exact Green's function 

G(p) by the free electron one GO(p). With these approximations 

the Hubbard formula (53) is obtained, according to Brovman et 

ale Now, by generalizing the above observation to the higher 

order polarization, they proposed an approximation of the form: 
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with T(g) given by Eq.(SS). 

However the replacement Ag(P) -+ T(g) and G(p) -+ GO(p) 

cannot be separate approximations. This is because in Eq.(S6) 

refers to the free propagator. Therefore, besides 

the vertex correction one must have the self-energy correction, 

corning from the replacement of G(p) ° by G (p), to be taken 

account of in the factor of T(g). The self-energy correction 

may be considerable since the quasiparticle renormalization 

factor for GO(p) has pr~ved substantially important. llb ) However, 

the vertex function A (p) is known to have a strong momentum g 

dependence, as pointed out by Yasuhara and Watabe. lla)In 

actuali ty the error due to the neglect of the momentum depend-

ence may be reduced largely as a result of momentum summations. 

In spite of the above argument we agree with the approxi-

mation, on the basis of our analysis to be described later. 

However, Brovman et al lS ) determined the T-factor by comparing 

both sides of Eq.(S6) in the limiting case when one of g. 's ap­
l 

proaches zero. In the above limit they use an identity 

(S6a) 

We shall examine the approximation from the opposite side since 

all g-vectors are of considerable length in the region of interest. 
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Let us now consider the primary terms bringing the T-factor, 

which stand for the first order terms in the electron-electron 

interaction. These primary contributions to II(O) (g) may be 

of the form: 

T(l) (g) = _ ¢(g) II(O) (g), (57) 

in conformity with the original Hubbard argument. Accordingly 

the primary correction II2 (1) to II(O) may be written as 

--( 58) 

Thus, if the approximation: Eq. (56) is relevant, the primary 

correction, II3 (1), to II3 (0) must be approximated by 

with 

¢(g) = - II 2 (1)(g)/[rr CO )(g)]2. (60) 

See Fig.7, where the value of (1) (0) 
II3 (gl,g2)/ II3 (gp g2) is 

compared with the same ratio calculated by Eq. (59), both in 

the Thomas-Fermi approximation. The result shows a good agree-

ment, unless the radius of circle circumscribing the triangle 

<gl,g2 >determined by gl and g2 is smaller than the Fermi readius. 
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Let us then examine the asymptotic form of the considered 

ratio, expecting that the above agreement may hold for IT (1) 
3 

even with the dynamically screened interaction, for which we 

have no available datum. We shall then write down IT (1 ) 
3 

(l,a) (l,b) 
= IT 3 (gl ,g2) + IT 3 (gl ,g2 ) , 

where 

as 

(61) 

(1 a) J J 0 0 0 -0 IT3 ' (~,g2) = - 2 P pI G (p)G (P+gl)G (P+g2) v (p_pl) 

(62) 

In the above expressions, IT3 (l,a) corresponds to the first 

order correction to the vertex function and IT (l,b) to the cor-
3 

rection from the self-energy insertions. (See Fig.5) 

Now we examine the asymptotic form of IT 3 (1). Here the fol-

lowing formula will be very useful: 
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n ° IT G (p+g.) = 
i=l J. 

n ° 1 L G (p+g.) IT -----
i=l J. j;fi 

E p +g . - E p +g . ' 
J. J 

for i;f j 

In addition to the above formula we also use 

[G O(p)J2 = ("/" ) GO( ) o OEp p. 

Then we obtain the expression for n3 (1) as follows 

+ R. 

Here we put 

-2 1 1 
= ~ L Fp_p'(P,p') 

N p,p' E - E 
P P+gl 

E - E 
P P+g2 

1 1 1 1 
x{[ J + [ 

E 

(63) 

(64) 

(65) 

JL 
-E E -E E -E e; -E p' p'+g P P+gl p' P'+g2 p P+g2 1 

(66) 

-2 1 
J g (gl,g2) = 2L Fp+p'+g (p,p') 

3 N p,p' 3 E - e; 
p P+g3 
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1 1 1 1 
x{[ + ] 0 [ + ] 

e: -e: e: -E e: -e: e: -e: 
p P+g3 p' p'+g P P+gl p P+g2 3 

1 1 1 1 
+[ + ] (67) 

e: -e: e: -e: e: -e: e: -e: p P+gl p' p'+g P P+g2 p' p'+g 2 1 

-2 
L [a~ Fp_p'(P,p')]o[ 

1 1 
R = 

N2 P p' P e: -e: e: -e: , p p+g p P+g2 1 

1 1 1 1 
+ + ] (68) 

e: -e: 
p P+g2- g l 

e: -e: 'p P-gl 
e: - e: 

P P-g 2 
e: -e: 

P P+g2-g l 

where 

1 v ( q ) GO ( P ; I'; l ) GO ( p , ; I'; :9,' ) 
Fq (p , p ') = -2 L -------:-O-~---~:.:.....-.-

8 l,l' e: (q,r;,.Q,-I';.Q,') 
(69) 

In the above expressions R includes an anomalous contribution, 

which cancels the contribution from the first order shift of 

chemical potential. In Eqs. (66) 'V( 68) we shall neglect the con­

tribution from the imaginary part of l/e:O(q,e:p-e:p,-iO+), which 

~ay be considered as a higher order term ( see STII ) 0 Then the 

term R in Eq. (65) may be neglected and Eq. (69) becomes 
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(70) 

Now the momenta p and p' appearing in Eqs. (66) and (67) are 

always inside the Fermi sphere, so that we may expand the energy 

denominator as 

1 -1 2pog 2pog 
= -2 { 1 -- -2- + (-2-)2 - ... } (71) 

E -E 
P p+g 

g g g 

for large g. For a moment we put ar c: 1 for the sake of brev­s 

ity, since the neglected factor can easily be taken into account 

in the final expression. 

In this way we obtain the asymptotic form for the factor 

(1) (0) 
TI3 (gl,g2)/TI 3 (gl,g2) as follows: 

where is the asymptotic form of T(l) (g) = 

+ R' , 

(72) 

TI (l)(g)/ 
2 

TI(O)(g) obtained in the same manner as described above: 

T ( 1) ( g) = \.l 3/2 10 -4 11 
g 

Here 10 is the asymptotic value of 
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and 11 

1 4 
10 "" - - L Fg(p,p') g2 , 

11 3 N2 p,p' 

is given by 

4 1 (p-p' ) 
L F p_p' (p, p , ) 11 = 

11 3 N2 p,p' 3 

The remainder R' is given by 

R' = 
1/2 1 A 

11 1 

(74) 

2 

(75) 

(76) 

In the expressions for R', there appear terms of scalar 

product gl"g2' which indicates that the ratio ll3(1)/ll3(0) 

depends actually upon the shape of the triangle determined by 

gl and g2· Then the term ll3 (1) is not completely factorized 

as premised in Eq. (59) even in the asymptotic form. However 

we note that R' vanishes exactly for the regular triangle. 

Now let us go into more details of the constants IO and 

11 which appear in Eqs.(73) and (76). The first one, 1 0 , comes 
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from the matrix element v(q) of large momentum transfer Iql ~ 

-g. Since v(q) approaches v(q) for large q, the constant IO may 

easily be evaluated with the following result: 

(77) 

On the other hand II comes from the term J in Eq. (65), which 

includes the matrix elements v(p-p'), with p and p' both inside 

the Fermi sphere. In the Hatree-Fock approximation, where the 

bare interaction v(p-p') replaces the shielded one v(p-p'), the 

momentum summation in Eq. (75) becomes trivial. E'or this case 

we have 

(78) 

in accord with Geldart and TaYlor. 33 ) For the shielded inter-

action the factor (1/3) will somewhat be reduced; particularly 

in ~he Thomas-Fermi approximation, we estimate II ~ (1/7) 10 

for a.rs = 1 . Thus, we may conclude that because of the factor, 

II' in Eq. (76) the shape dependent term R' is of smaller magni­

tude than the remaining terms, T( 1) (gl) etc., of -"Eq ~ (72), unless 

the triangle constructed by gl and g2 distorts extremely from the 

regular one. However the failure is due to such expansion pro­

cedure as given by Eq.(71), according to the numerical analysis. 

This is shown in Fig. 8 for the case of gl and g2 which are paral­

lel to each other. 
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Thus we have proved that Eq.(59) is a good approximation. 

However the considered approximation breaks down for triangles 

< gl' g2 > whose circumscribing spheres have radii smaller than the 

Fermi radius; an important fact overlooked by Brovrnan et al. 7) 

The characteristic behavior of TI 3 (1)/TI 3 (O) just pointed out canbe 

observed in Figs.7,8 for triangles with and without Brovman and 

Kagan's singularity. The mentioned failure could not be analyzed 

according to the present method, which relies on the expansion 

effective only for large transfer momenta. 

The similar analysis has been done for TI 4(See Appendix). 

The result indicates that the approximation (56) may also hold 

for TI4 with some modifications. The following form for TI4 would 

be more consistent than a simple generalization of Eq. (56), accod-

ing to our analysis. 

Let uS consider a tetrahedron which is determined by gl,g2 and g3 . 

. 
We then expect that the above approximation is a good one unless 

the smallest radius of four circles circumscribing the sides of 

the tetrahedron is smaller than the Fermi radius. This con-

jecture seems reasonable in view of the numerically analyzed 

- 49 -



results for IT 3• It is also quite reasonable that the considered 

approximation may hold for the higher order polarization in the 

similar region of validity. 

Finally we note that the last two terms in the brace of Eq. 

(79) include a contribution from the diagram shown in Fig.9c as a 

primary term. This is the 'exchange conjugate' to the H-type dia­

gram shown in Fig.9d, according to the t~rminology by Hubbard. 29 ) 

He introduced the above concept in his discussion on the Hubbard 

approximation. Thus it seems natural that such terms in Eq.(79) 

appear in a generalization of th€ Hubbard type approximation (53). 

§5. Systematic method of resummation 

-- a cluster expansion 

In the structural expansion we meet various kinds of diver-

gence, if the shortest reciprocal lattice vector is smaller than 

the Fermi diameter. Then the partial summation of perturbation 

series is needed to eliminate the divergence. The resummation 

procedure becomes much more complicated for finding out an ap-

propriete perturbation series if the primary term is of higher 

order, because the series is further from simple series of geo-

metric progression. Though the resummation has been dicussed by 

HAlO) and in STI,17) there still remain some ambiguities in col-

lecting the higher order terms. In this section we shall show 

that for a specific set of diagrams there exists a systematic 
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method of resummation, by which all of the terms included in the 

set can unambiguously absorbed into a single resummed term. Ex-

tention of our method to more general set of diagrams would be 

straightforward. 

In the expansion for nst given in §3, we may obtain a series 

(i) of terms from the logarithmic part n ,Eq.(36), which does not 

contain any higher-order self-energy r(n) than the first-order 

one r(l). These terms may be collected into a logarithmic form: 

(80) 

Here we introduce a quasimomentum k by 

p = k + g (81) 

for convenience' sake. In Eq.(80), the matrix elements G(k) " g,g 

r(k) "etc. stand respectively for G(k+g,k+g'), r(k+g,k+g') 
g,g 

etc, and tr designates the diagonal sum over g with fixed quasi­g 

momentum k. And the summation over k is to be taken in a Brillouin 

zone. 

According to the discussion in the previous section, Eq.(80) 

is effectively equivalent to 

(82) 

where the effective field r is independent of k and ~!' and is 
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given by 

rg,g' ='w(g'-g)T(g'-g) . (83) 

Here GO is the free electron propagator matrix GO(k) ,= g,g 

GO(k+g)6 "w(g) the shielded external potential given by Eq. g,g 

(27), and T(g) the effective vertex factor given by Eq.(55). 

In order to obtain the rearranged series, we rewrite Eq.(82) 

as 

Here we choose the branch cut for the logarithmic singularity to 

be along the negative real axis with In 1 = O.25,31a ) Then we 

41) use the following theorem of linear algebra: 

tr InA = In detA (85) 

Here A is an arbitrary matrix, whose logarithm is well-defined. 

Thus Eq.(84) becomes 

1 L L {In D - In II Dl (i)} ~ 
a I kEBz 1 

(86) 

where we put 
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= E - r,; k+g i $I,' (87) 

and 

-[GO(k+gl)]-l Ll 2 Ll ,3 · . . . . , 

D = L -[GO(k+g 2 )]-1 L2 ,3 · . . . . (88) 2.,1 , 

L3,1 L3 ,2 -[GO(k+g3)]-1 · . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . 

where the components of the determinant refer to reciprocal 

lattice vectors. Let us confine ourselves to a set consisting of 

a certain number M of reciprocal lattice vectors. And introcuce 

a n x n determinant Dn by 

Dl ( {i}) -

L. i J , 
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r. . 
J , l 

r k . 
,l 

~ • • • 0 • • • • • • • • • 

L j l, 

r k . ,J 

r. k J , 

L k J , 
, 

(89) 

Let us now apply the meothod of cluster expanston 42 ) to 

in D. The result becomes 

in D 
D2 ({i,j}) 

= I in Dl({i}) + I in ------

+ 

i i<j Dl({i})Dl({j}) 

+ I 
i<j<k 

D3({i,j,k})Dl ({i})Dl ({j})Dl ({k}) 
in ~--------~----~----~-----

D2({i,j})D2 ({j,k})D2 ({k,i}) 

~ D4({i,j,k,1}) 
L in{--------------~-----------------------

i<j<k<i D3({i,j,k})D3({i,j,1})D3({i,k,1})D3({j,k,1}) 

D2({i,j})D2({k,1})D2({i,k})D2({j,1})D2({i,1})D2({j,k}) 
x ----------~------~------------~~----~~-----} 

Dl ({i})Dl ({j})Dl ({k})Dl ({l}) 

+ • D •••••• 
(90) 
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Substituting the above expression into Eq.(86), we get the cluster 

expansion of ~(l). After substitution the first term in Eq.(90) 

disappears as a result of cancellation. 

The above result contains all of the anomalous diagrams, if 

we confine ourselves to simple ones which take account of the 

electron-electron interactions by means of the vertex function. 

However we must mention the effect of the chemical potential 

shift. In the original perturbation series the anomalous terms 

are largely cancelled by another energy contribution coming from 

the chemical potential shift, leaving a small residual as a de-

formation energy of the Fermi surface (STI) . However the anoma-

lous terms are of considerable magnitude. It means that the 

effect of the chemical potential shift is also considerable. This 

effect must not be neglected if we use our expansion scheme. 

In the present scheme the number of electrons does not 

conserve if the chemical potential is fixed (§3.B). The deviation 

of the number oN(l) due to ~(l) is given by 

(91) 

-Then the true value )..I of the chemical potential is determined 

-.from 

d~(l) 
oN(l)(p) a~O I + d~O 1 (92) - ail = = -- d)..l d)..l -

11=)..1 )..1=)..1 )..1=)..1 0 
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if we disregard the other contribution than dl~ Here nO and ~O 
are the thermodynamical potential and the chemical potential for 

the free electron system, respectively. If we expand the quanti-

ties in Eq. (92) at ~ = ~O' the energy change eE due to the chemical 

potential shift is approximately given by 

NeE = - (93) 

At this point we note that the derivative an(l)/a~ comes 

out only through the ·~-dependence of the free propagator GO. It 

is because the t~rm arising from the derivative of the self= 

energy r are cancelled by those from n(ii)and n Ciii ) ~ Eqs.(40) and 

(37), owing to our variation principle (§3); the expression (14) 

for the thermodynamical potential Is stationary with respect to 

the change of the self-energy.24) In this way we get 

1 I L { I [_ Dl({i})+Dl({j}) 

8 i kEBz i<j D2({i,j}) 

1 1 
+ ----+ ] 

+ 
L [_ D2 ({i,j})+D2 ({j,k})+D2 ({i,k}) 

i<j<k D3({i,j,k}) 
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D1({i})+D1({j}) D1({j})+D1({k}) 
+ + --=----=-----

D2 ({i,j}) D2 ({j,k}) 

Dl ({i}) +D1 ({k}) 
+ ----~--

1 1 1 
---J 

+ ••••• } , 

where the use is made of 

aD ({ 1 2 ° 0 ° n}) n " , -------- - I Dn_1({1,ooo,i-l,i+l,ooo,n}) . 
i 
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Appendix 

Analysis of II4 

Before going into the analysis 

fact. Both of the primary terms in 

IT 2 (1,b)(g)/IT(O)(g) are of order of 

of II4 we note the following" 

II 2 (1,a)(g)/II(O)(g) and 

2 
l/g for large g. However 

these terms cancel each other with the resultant asymptotic form 

of T(l) Cg) = IT2 (1) (g)/II(O) (g) proportional to 1/g4(See Eq. (73)), as 

pointed out by Geldart and Taylor. 33 ) The similar cancellation 

occurs between the primary terms of IT 3
Cl ,a) and IT 3(1,b). Other­

wise we could not get such asymptotic behavior as Eq.(72) and ac-

cordingly the factorization in Eq.(56). The similar cancellation 

is expected to occur for the case of II 4 (1). Let us then consider 

collectively the contributions to II 4 (1), which consists of II 4 (1,a), 

II 4 (1,b) and II 4 Cl ,c) as follows. 

(l,a) 
IT4 (gl,g2,g3) 

= -2 J p Jp,GOCP)GO(P+gl)GO(P+g2)GOCP+g3) 

(A.l) 
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x ;(O)(p_p')[ GO(p)GO(p') +GO(p+g )GO(p'+g) 
1 1 

(A. 2) 

(A. 3) 

These terms correspond to the diagrams shown in Fig.9 , where the 

superscript a, b, c in TI4 are also in accord with the labels in 

the figure. 

Let us now examine the asymptotic behavior of 

(A. 4) 

Similarly as in the case for TI 3(1), we use the formula (63) and 
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(64) to obtain the following expression for IT 4 (1): 

- . 

+ R • (A. 5) 

Here we put 

(A.6) 
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2 \' F ( ')(~ )-1(~ · )-1 
~ L p_p' p,p g g 
N p,p' 1 2 

(A.7) 

2 \' F (p,p'){(~ )-1(~ )-1(~' )-1(~1 )-1 
-----s- pL~1 p+p'+g g g g g 
N~ • i-' 2 2 3 4 5 
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(A.9) 

with 

(A.IO) 

The remainder R.in Eq.(A.5) includes contributions from the 

anomalous term as well as those from the imaginary part of 

l/e: 0 (q, E - e: ,- iO +). We shall neglect the. remainder by the p p 

same reason as in §4. Then we may expand the energy denominator 

( " )-1 (1) 
u g to obtain the asymptotic form of ll4 (gl,g2,g3) as follows: 

+ R' . (A.ll) 

Here T(l)(g) denotes the asymptotic expression for T(l)(g) = 
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IT (1)(g)/IT(O)(g) which is given by Eq.(73). And ¢(g) is the 
2 

similar expression for ¢(g) = _IT 2(1)(g)/[IT(0)(g)]2: 

¢ (g) = (A.12) 

with IO and II given by Eqs.(77) and (74). And TI 3 (0) and TI 4 (0) 

are the asymptotic expressions for IT3 (0) .and IT4 (0) respectively 

given by 

+ 

1/2{ 
-].I 

(A.13) 

(A.14) 

In Eq.(A.II) the remainder R' consists of two terms, RO' and 

RI', which include respectively IO and II as a factor. The term 

RO' is given simply by 

(A.IS) 

where 
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(A.16) 

The expression for Rl' is much more complicated and may be omitted 

here, since the factor II is fairly smaller than 1 0 . Now, RO' 

vanishes identically if the tetrahedron [gl,g2,g3 J determined by 

gl' g2 and g3 is the regular one, in conformity with the case for 

IT 3 . It appears that the other term Rl' does not exactly vanish. 

for the above tetrahedron. However the contribution of Rl' may 

be thought small as mentioned before. 

By the foregoing analysis Eq.(79) has proved to be a relevant 

approximation. The pDoof is apparently in parallel with that for 

IT 3 . However the result for IT4 is much more involved than the other. 

It is because an entirely new diagram comes in for IT4 as shown in 

Fig.9c. Though that diagram cannot be taken account of in a single 

vertex function it is indispensable in ensuring the proper behavior 

of the asymptotic form. It is also the mentioned diagram which 

produces the last two terms in Eq.(79). 
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Figure Captions 

Fig.l. Skeleton diagrams for the f~nctional ~[GJ. Solid lines 

represent the electron propagator, wavy lines the electron= 

electron interaction and the broken line the electron-ion one. 

Fig.2. Skeleton diagrams for the self-energy~. The double 

wavy lines represent the renormalized electron-electron inter-

action. 

Fig.3. Illustrations showing the first and second order self= 

energies, ~(l) and ~(2). The presented diagrams are typical 

ones obtained by expanding the integral equations (29) or (32)~ 

Fig.4. Diagram illustrating a third order polarization (a) as 

a generalization of the second order one (b). 

Fig.5. Lower order diagrams contributing to ~he thermodynamical 

potential Q. The shown diagrams appear in the expansion of Q 

with respect to the free electron propagator. 

Fig.6. Schematic curve of the chemical potential ~ vs. a cou-

pling constant A. 

Fig.7. Comparison of 
( 1 ) ( 0 ) with 3IT (l)(g)/ IT3 (gl,g2)/TI 3 (gl,g2) 2 

II2 
(0) 

for the regular triangles igli = ig2 i = g. Their values , 
multiplied by -1 plotted as a function of R, the radius r are s 

of the circle circumscribing the triangle <gl,g2>. The data 

are owing to H.Miyagi. 

Fig.8. The similar plot to Fig.7 in the limmitting case when 

gl and g2are antiparallel to each other with Igll = Ig 2 1. 
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Fig.B. Primary corrections to IT 4 CO ). (a) incluedes a vertex 

part, (b) a self-energy part, Cc) a part irreducible to the 

vertex one. Cd) rpresents the Hubbard H-diagram. 
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III Method for Evaluating Many-Point Ring Diagrams 

in the Degenerate Case 
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§l. Introduction 

In the structural expansion for the thermodynamical poten­

tial of metals,1~3) the most important contributions come from 

many-point ring diagrams(Fig.l). These are of the form 

IT (g , ... g ) = N- l L a- l L GO(p+g ,W )···.GO(p+g ,w), (1) 
n !,-l ",-n po ,t 0 ...... \.:.1,t 0 ."\.:" -vn !L 

° where Go(£'w,t) is the thermal Green's function for a free electron 

with spin state 0: 

0 -1 
G 0 (.~. ' w ,t ) = (iw!L+~-Ep) (2) 

.~ 

with w!L = (2!L+l)'Tr/S,i = O,±] ,±2,···· 

2 2 e: = p I (ar ) . p s (2a) 
t'\,; 

Here p denotes the momentum reduced in units of the Fermi mome:1tum, 
""" 

g. the reciprocal lattice vector rR=l), ~ the chemical potential, 
J. 

N the number of electrons, S = l/kS T, and the other notations are also 

the standard ones. 

For the evaluation of Eq.(l), a systematic method was pro­

posed by Brovman 'and Kholas (SK),4) where an integral represen-

tation with the Feynman prametrization was used for the n-point 

diagram IT .5,6) They also analyzed in detail the four-point ring 
n 

diagrams, giving expressions for all possible cases. 4) Nakamura 

et ale also examined this case and presented more tractable ex-
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6) pression for IT 4 . This paper will be referred to as STI. 

Although BK's method of integration is general and in .princi­

pie makes it possible to calculate ITn for any specific cases, it 

is complicated especially for the degenerate case; a particular 

analysis is needed for each specific case in order to get the final 

expression. Here, by the degenerate case we mean the case when 

the vectors 

are lineaaly dependent. (We introduce a redundant vector for the 

sake of symmetry.) Accordingly, one h~s exclusively the degenerate 

case for n ~ 5. Thus, in the higher order calculation BK's argu-

ment would be extremely cumbersome. 

On the other hand, in STI a simple recurrence relation has 

been given together with a formula which connects a degenerate IT4 

to an /d~ with n < 4. However the treatment is not comprehensive n 

for the case n > 5. In this paper three fundamental recurrence 

relations are presented for general cases. The obtained formulas 

constitute an algorithm for evaluating the higher-order diagrams, 

with the help of the existing lower order results. 

The recurrence formulas are generally given in §2 and some 

of their applications to evaluation of the five~point diagrams are 

described in §3~ The·results will be utilized in part IV. 
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§2. Recurrence formulas 

Let us consider 

k 
~ g , ••• g ) 

",m ~m 
(4) 

with n = kl + k2 + ••• + km' where 2.:1 of the vectors !~l' ~2' , 

~ are assumed distinct. The exponent k i will be called the 

multiplicity of the vector g.; We shall use the following 
rVJ-

quantities 

2 
l..l * = (a:r ) l..l , s 

II I(a:r )~n-2 
n s 

We shall consider two kinds of cases separately. The one 

( 5 ) 

is the case when the set of g-vectors {g" "', g } is degenerate 
--'- ""m 

irrespectively of the multiplicity. The· other is the case when 

the set of g-vectors is non-degenerate but includes at least one 

vector with higher multiplicity .than one. In accordance with the 

two cases considered above, W2 shall below look for two kinds of 

recurrence formulas separately. 

(A) Case when the set of g-vectors is degenerate. 

For this c~se, we have 
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". 

m-l 
I 

i=l 
Y . (g._rr ) = 0 
~ ~ Om 

""' ."V 

with the coefficients Yl ' ... , Ym- l , which do not vanish simultane­

ously. Introducing the m-th constant Ym by Ym = -(Y l + .•. +Y m- l ), 

we rewrite the above relation as 

m 
I Yi = 0, 

i=l 

m 
I Yi g. = o. 

i=l I"'-"~ 

For the sake of brevity we shall write G(p) in place of 

o G (p,w i ). And consider a quantity defined by 
cr /"'.... 

2 m 1 
C = (ar) L y.[G(p+g.)]-. 

s i = 1 ~ ru .",".J. 

( 6) 

(7 ) 

It is a simple matter to prove that C is a constant as given by 

C - -
m 2 
L Yi gi" 

i=l 

Let us now rewrite Eq.(7) as 

kl k 
C[G(p+g ) ] •.. [G(p+g )] m 

~. ~l ~~m 

k.-l 
[G(p+g.)] ~ 

'"'- .,,1. 

k 
[G(p+g )] m. 

....... ""m 

( 8 ) 

(9 ) 

Assuming C ~ a and summing both sides of Eq.(9) overx! cr and . wi' 

we obtain the first recurrence formula 

(10) 
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with the help of Eqs.(l) and (4). This is a generalization of 

Eq.(S.17) of STI. The formula .(10) may be used successively 

until one of the Green's functions is eliminated from each term 

on the; right-hand side of it. It is machinary to write down the 

expression thus obtained. 

In the case when C = 0, Eq.(lO) does not work. For this case 

we may assume Y l F 0 without loss of generality. Then we multiply 

Eq. (9) by G(,e+Zl) and perform the summation·.over p, 0, wi. The 
"-..: 

result is the second recurrence formula 

k.-l k 
[gi J ~ , .•. ,[g ]m). (11) 
~ ,~m 

The case C = 0 occurs ~hen heads of the vectors ~l' ' .. , ~m 

are lying on the same sphere whose dimension is less than or 

equal to m-2 ( See §3 ). This case was called the still more 

degenerate one by BK. They treated it as an exceptional case, 

though an expression was derived for a specific case of IT4 by the 

limiting procedure. Some examples will be given in §3 together 

with another geometrical meaning. 

In Eq.(ll) the multiplicity of gl becomes higher by one in 
t"\J 

the right-hand side. In the structural expansion only IT 's with 
n 

single multiplicities kl = ••• = k = 1 n 
come out in the normal 

term. However, if the condition C = a happens to be satisfied by 

some set Qf the reciprocal lattice vectors gl' 
."-

, gn' the corres-.... 
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ponding ITn is decQ~posed.into the anomalous terms. 

(B) Reduction of the multiplicity 

The recurrence relations obtained above work when a set of 

g-vectors is degenerate. The reduction procedures are performed 

successively until any set of g-vectors contained in IIn becomes non= 

degenerate, where the multiplicity of each g-vector may still 

remain. Let us then look for another recurrence relation which 

reduces ITn to that of lower mul tiplici ty. 

Now, Brovman and Kagan5 ) gave an integral representation for 

II (g" g2' ••• ,g ), using the ·Feynman parametrization procedure. 7 ) 
n "'"'" ...... 1\.0 n 

Following the same procedure we start with 

k , 
m "V kl 

f~ ~)n-l J: IIn([glJ , [r:r ] m) = (- da ••• da 6(1- ~ (1i) ..em du*" 1 
'" m . i=l 

k -1 k -1 
(1 1 m 3/2 (1 

1 m 
[E;m (~l' ••. , gm) ] (12) x , 

( k 1 -1) ! •.• (km -1) ! ."-

where we put 

m 2 m 2 
E;m = II * + ( ~ CL. g.) - ~ CL. g. . 

i=l 1. rv1. i=l 1. 1. 
(13) 

Expression (12) can be derived by a generalized Feynman procedure 

(~ppendix·A). In the same expression we carry out the integration 

in the last parameter CLm and introduce .~i' 

write down 
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(- ~)n-l fOl da ••• 
dfl* 1 

x [~ (g' ••• g' )]3/2. 
"'m-l 0"",1' , ~-l 

a i 

da 1 m-

(14) 

Here g', ••. , g' may be assumed linearly independent, since the "'-01 _m-l 
alternative case has been treated already. 

Now a useful recurrence relation may be obtained from Eq.(14) 

by partial integration in a i . In the partial integration we meet 

m-l 
d~m_l/dai = 2 L giJoaJo - gii ' 

j=l 

i = 1, •.. , m - 1 , 

where in accordance with STI we put 

, m - 1 

(15) 

(16) 

Since the Gram determinant D m-l = det(gij) does not vanish, Eq. 

(15) is solved to be 

i = 1, , m - 1, (17) 

where gij denotes ij-element of the inverse matrix to (gij) and 
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", 

It is 

Then 

m-l 
~l.' = -21 I g .. g ., 

j=l l.J JJ~ 
i = l~ m - 1 . 

introduce '" by convenient to Cl 

Cl = 1 -m 

Eq. (17) 

m-l 
I Cli~ 

1=1 

holds for 

m-l 
= - I 

i=l 

'" Cl 

i = 

-g .. 
l.J , 

m 

m-l 
'" = 1 - I Cli m 1=1 

m by introducing 

j = 1, m. 

(18) 

(19) 

(20) 

Now~ we utilize Eq.(17) in the partial integration (Appendix B). 

The result 1s the ~hird recurrence formula 

m _ '" kl 
+ 2kl I g .. IT l([glJ , 

i j=l l.J n- ~ 
[ Jk.-l 

~ ~ J ~ 

i = 1, ' .. , m (21) 

with n = I~=l k j . This formula is a generalization of Eq.(5.29) 

in" STI. Note that the maximum number of g-vectors in Eq.(21) is 

four. 

Recurrence Eq.(21) satisfies an identity 
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.k 
••• , ~J m), (22) 

which is also derived easily from Eq.(4). This identity is es-

sentially equivalent to BKIs one, though the latter uses the sum 

of IT svmmetrized in the transfer momenta. n u 

§3. Evaluation of the five-point diagrams 

In this section we shall go into some.detail~ of the comcu-
" . -

tation" procedure with partic~la~ re!e~e~ce to the five-point dia-

grams. Of the three recurrence formulas, the first one will be 

applied in the sUbsection (A), the second one in (B), and the third 

one in (C). 

(A) The first recurre~ce formula. 

We shall apply Eq.(lO) to the five-point diagrams. For this 

case, we conveniently choose Yi by 

tl t2 t3 t4 ts 

L yit i 
1 

1 1 1 1 1 (23) = b , 
i 

glx g2x g3x g4x gSx 

gly g2y g3y g4y gSY 

glz g2z g3z g4z gSz 
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where (gix' giy' giz) denote the components of ~i in a Cartesian 

coordinate system. The Yi's thus chosen satisfy Eq.(6), as is 

- easily observed from Eq.(23) by substituting I or g. for tJ. .. We 
I'\."J. 

note here that, for instance, ~~ is equal to_the volume of a tetra-

hedron wit.h heads of- ~, Z3' ~4 and ~S as vertices. The above 

procedure works unless all of the vertices are lying on the same 

plane. For the coplanar case, we set YS = 0 and determine the 

other coefficients by the current method. 

Most of the five-point normal diagrams can be treated by uti­

lizing Eq.(IO). A computed example is shown in Fig.2. For the 

shown case, a set of four g-vectors chosen from t~l' ••. , ~S} is 

degenerate. Even for this case ITS (~.l' .'., .~.5) can be expressed 

in terms of IT 4 , since C does not vanish. The singular behavior 

of ITS shown in- Fig.2 comes from that of IT4~) No more singularity 

comes in through decomposition. 

(B) The second recurrence formula 

This formula works for the case C = 0, namely 

As mentioned already, the above case occurs when heads of gl' .'., 
. ....., 

g are lying in a spherical surface. 
~S 

This follows directly from 

Li'Yi\~i~t~2 = 0, which is satisfied by an arbitrary vector ~ 
owing to Eqs.(6) and (24). 

Such singular case often appears among diagrams in the struc-

tural expansion. Some examples are shown in Fig.3. With refer-
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ence to the figure, case (a) occurs in sc lattice, where eight 

reciprocal lattice points are lying in a spherical surface. Simi-

lar case also occurs in the orthorhombic lattice. Tn the body 

centered tetragonal lattice there exists the case when five re-

ciprocal lattice points are lying in a spherical surface. Another 

reciprocal lattice point falls into the same surface paricularly 

for bcc lattice. This is shown in (b). Some of the other cases 

are also shown in (c) and (d), which appear in rhombohedral and 

hexagonal lattices respectively. 

Now the physically significant vec·tors are such as .~i = ~l - ~5' 

,!4 =!4 -!5 in accord with Eq.(3). All of the planes bi­

secting each of these vectors meet at the center of the sphere 

circumscribing such polyhedrons as shown in Fig.3. If the meeting 

paint touches the Fermi surface, the relevant integral might be 

singular. 

As an example let us consider the following set: 

gl = (g, g, 0), g2 = (g, 0, g), g3 = (g, 0, -g), 
rv I'\: "'" 

g4 = (2g, 0, 0), g5 = (0, 0, 0). (25) 
~. I'"'-' 

For this set we choose Yi by Eq.(23) as Yl = 0, Y2 = Y3 = -Y4 = 

-Y 5 = g3/3 . Then we use Eq.(ll) with Yl replaced by Y5 to get 

tV 

rr5(~1' ••. '~J.I' 0) 

= 2~5(~.1' ~2' ~4' [oJ 2 ) - n5(.~1' ~2' ~' [OJ 2 ),(26) 
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where [OJ 2 stands for square of the Green's function G(p). The 
~ 

computed result is shown in Fig.4. Of the singularities in-

eluded in each term of the right-hand side of Eq.(26), the 

two are weakened as a result of cancellation while the main one 

survives, being of the form ( .. )-1 
~:-R with R the radius of the 

. ib· h S) c~rcumscr ~ng sp ere. 

(C) The third recurrence formula 

'" 2 The simplest terms, to which Eq.(21) is applied, are ITS([glJ , 
3 "'..4 '" 3 ('\.. 

~2J ), ITs'b' ~2J·) for m =2 and IT5:~1' .~.2' ~Z3J ) for m = 3. 

We may leave the above terms out of c9~sideration,since they do 

not appear in the fifth order calculation. 

'" 2 2 Let us then consider ITS (~l' [~2] , [.~ ] ) for m = 3. By ap-

plying twice Eq.(2l) to the considered term, we obtain 

'" after symmetrization, where we use the abbrreviatious: IT2 = 
'" dIT2/d~*,etc. 
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For m = 4, we similarly have 

- (l/2){g4l~~(~2' £3' ~4) + g42~~(~l' ~3' Z4) 

+ g43~;(~l' e2' ~4) + g44~;(!l' ~2' ~3)}. (28) 

Here ~~(~l' !2' !3' !4) can be evaluated similarly as in STI. 

However we note that the differentiated term does not include 

a single integral which remains in IT 4. 
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Appendix A 

Generalized Feynman Procedure --

We shall derive Eq.(12) of text. In the Feynman parametriza­

tion formula7) 

1 

A A •• A 
12m 

(Al) 

we substitute A. - A. for each of A. IS. On the substituted ex-
~ ~ ~ 

pression we operate 

m 
IT [ 

i=l 

1 

(k.-l)! 
~ 

( 
k -1 

) i ] 

and then put A. = a after differentiation. Thus we get 
~ 

1 
= (n-~)! fl {l 

A dal '" 0 da 
(k. -1) 1" '(k -l)! m 

. .L m 

a 
k -1 m 
m , 

(A2) 

(A3 ) 

In the above expression we substitute G(p+g.) for each of A~lrSe 
"oJ ....... ~ ~ 

The remaining procedures for the derivation are the same as given 

in STI. 
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Appendix B 

Derivation of the third recurrence formula --

'" kl For the sake of simplicity, let us replace ITn(~~lJ, , 
k '" kl k +1 

[!mJ m) by ITn+l(~~lJ , ••• , ~mJ m ) in Eq.(14) of text. Into 

the resulting expression we substitute Eq.(17) of text to get 

'" eL '" k 
d dll* -{ --E! IT ([g ] 1-

k m n .-...;1 

k 1 m-l 
, [§;mJ m) + - , - F }, (Bl) 

N 2km j~l gmj mj 

where we put 

m-2 
F . = (- ~)n-l Jl deL .•• J l - E i=leLi deL 1 

mJ dll* 0 1 0 m-

k -1 k -1 k -1 1 m-l ,m-l) m 
2 eLl .• ·eLm_ l (l-l.i=leLi 

x 5 (kl-l)!···(k l-l)!(k -l)! m- m 

It is now proved that 

k. 
, [gi J J., 

...... 

d E;5/2 
deL j m-l 

k -1 
, [!!mJ m ) 

For the proof we notice that Eq.(12) of text is symmetric in 

(B2) 

(B3) 

permutation of eLl' ,eLm' This symmetry is partially broken 
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after the first integration is performed with respect to ~ . 
m 

However the permutation symmetry must be conserved in a set of 

~l' ••• , ~m-l· Owing to this observation we replace the integral 

in Eq.(B2) by 

flO d~ ••• 
1 

da.. .•••• 
J 

(B4) 

" where l ~i indicates the sum over ~i with exclusion of ~m and ~j. 

With the above replacement in mind, we integrate the right-hand 

side of Eq.(B2) by part with respect to ~j to eliminate the dif­

ferentiation of ~5/2. In the resultants, the integrated term m-l 

vanishes unless k j = 1 and/or km = 1. After differenti~ing the 

resulting expressions once with respect to ~*, one gets Eq.(B3) by 

using Eq.(12) of text. We note here that Eq.(B3) is valid even 

in the case when k. = 1 and/or k = 1. For the mentioned case, 
J m 

with the help of Eq.(13) of text the integrated terms prove to 

bring about both or one of the two terms on the right-hand side 

of Eq.(B3) according as k. = 1 and/or k = 1. 
J m 

By inserting Eq.(B3) into Eq.(Bl), we get Eq.(2l) for i = m. 

This result must be independent of choice of the last parameter. 

- "-Note that both g .. and ~i are dependent only on the geometrical 
J.J 

configuration of gl' 
n.,,0 

••• , g . 
"'-lorn 
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Figure Captions 

Fig.l. Illustration showing many-point diagram. The symbols 

attached to broken lines represent momentum transfer. 

'" Fig. 2. Curve for IT5 (~l' "', ~5) as a function of the scaling 
. '" 

parameter g. In this ease IT5 is decomposed into three distinct 

'" IT4s, which are shown in broken, dotted and dot-broken lines. 

Fi~.3. Illustration showing the cases when heads of g-vectors 

are lying on a sphere. (a) appears in sc, (b) in bcc, (c) in 

rhombohedral lattice, and Cd) in hexagonal one. 

'" Fig.4. Curve for IT5(~I' ~2' .~3' .~4' 0) with heads of all g-vectors 

lying on a sphere. The broken and dotted curves represent the 

decomposed terms. 
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IV Stability of the Filamentary Structure of 

Hydrogen and Its Monorner-dirner Transition 
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§l. Introduction 

At extremely high pressures, any material would have an iso-

tropic structure such as body-centered cubic (bcc) or face-centered 

cubic (fcc), because of the strong repulsion between bare ions. 

For the case of hydrogen, these highly symmetric structures become 

unstable with decreasing density; strikingly anisotropic structures 

may arise in the 

pointed out by 

intermediate density regions. This possibility was 

Brovrnan, Kagan and Kholas (BKK),1~3) who investi-
. .~ 

gated extensively the structures of metastable phase of metallic 

hydrogen over wide range of Bravais lattice structures in the 

third-order perturbation. According to them, the prolate structures, 

in which two-dimensional arrays of protons are stacked, are the 

most stable one at intermediate densities (r ~l), while the oblate s 

structures, in which a system of proton filaments forms a trian-

gular or quadratic lattice, are more favored at the lower density. 

In a previous paper,4) hereafter refered to as I, Nagara, 

Miyagi and Nakamura looked for the stable phase of the same system 

among cubic structures of more than one atom in a unit cell. This 

approach is complementary to that by BKK. It was found in I that 

the "bcc [lllJ monomer" structure is the lowest one in the third= 

order stage. The mentioned structure is obtained from the simple 

bcc lattice by putting an additional atom at every midpoint be­

tween the neighboring atoms along the body diagonal [lllJ and is 

nearly identified with BKK's filamentary structure. 2 ) It was also 
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proved that the above structure transforms into a dimer one at a 

fairly low density in the fourth-order stage. The transition was 

found to be of the second order and the transition pressure was 

estimated to be ~0.9Mbar (r ~1.55). In the dimer phase, the s 

proton distance approaches a value nearly equal to but smaller 

than that of the free-molecule with decreasing density. 

The predicted formation of anisotropic structures may be a 

characteristic feature of hydrogen, in which the anisotropy in-

creases with decreasing density. However BKK's anisotropic 

structure is controversial. 5~8) Thus it may be important to 

look into the mechanism for the formation of anisotropic struc~ 

tures: It is somewhat puzzling that the strongly anisotropic 

structures appear in such simple system as hydrogen. A qualita-

tive consideration on the second order perturbation effect was 

made by Beck and Straus ,9) in connection with the dynamical in-

stabilit~- of phonons in metallic hydrogen. They attributed the 

phonon instability to the Kohn anomalies, which was thought 

responsible for the occurrence of BKK's structure. However this 

is not the whole story, though the occurrence for the planar 

structure may be related to their mechanism. The third- and 

higher-order effects are more essential to the formation of the 

filamentary structures. It is also interesting to elucidate 

whether such a strongly anisotropic stuctures might occur for the 

other simple elements, e.g. helium in the intermediate densities. 

The aim of this part is two-fold. The first one is to ana-
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lyse the mechanism of the formation of anisotropic structure. It 

is proved that the anisotropic structures result from the char­

acteristic behavior in the momentum dependence of the n-point 

polarization TIn. The same mechanism works to stabilize the cubic 

structures of helium. These qualitative results are confirmed by 

the numerical calculation for virtual crystals with nuclear charge 

Z(1~Z~2). 

The second purpose is to study the higher order effects on 

the monomer-dimer transition in the high-density hydrogen. In I, 

contrary ,to most of the other theoretical studies, Ref.10 and 

references therein,. the ground-state energies for both monomer 

and dimer phases were calculated in the same scheme of the ex­

pansion, by utilizing the structural expansion given in Refs.11~14) 

However, for the dimer phase the convergence of the series was 

rather slow. In order to c1~rify the nature of the transition it 

seems necessary to go beyond the approximations adopted in I. 

This part is organized as follows. In IV-A, the mechanism 

for the formation of the anisotropic structure is analysed. Charac­

teristics of the expansion terms are clarified in §2 for each order. 

The numerical results are described in §3 for the rhombohedral 

structures. An application of the result to the system of hydro­

gen-helium mixture is also dis.cussed. 

In IV-B, the higher-order effects on the monomer-dimer tran­

sition is studied with the use of the method described in parts II 

and III. This is done on the basis of the bcc [lllJ model. The 
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numerical result for the monomer-dimer transition is described in 

§4. The fifth-order energy is included for the first time by 

utilizing the result of part III. Higher-order effects with re-

spect to the electron-electron interaction are taken into account 

by the effective vertex approximation proposed in part II. The 

effect of the resummation is examined in Appendix A. Some techni-

cal aspects of the calculations are also described in the Appendices 

B, C and D. 

A. Anisotropic stuctures of high-density hydrogen 

§2. Mechanisms by which the stable structure occurs 

Let us consider the system· with nuclear charge Z and write 

down its total average energy, E per electron, as 

E = E + EM + E t ' eg s (1) 

where E denotes the electron gas energy, EM the Madelung energy eg 

and Est the structural part of the electronic energy. We shall 

consider the role of the structure dependent energies, EM and Est' 

which have different functions as factors for determining the 

stable structure of crystals. 

In this section our discussion will be confined to the Bravais 

lattice structures with particular reference ~ to the rhombohedral 

family. 
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(a) Family of the rhombohedral lattices as a self-reciprocal 

system 

Rhombohedral lattices are obtained by stretching or shrinking 

the simple cubic (sc) lattice along the body diagonal [111J. 15 ) 

The obtained lattice is described by a single uniaxial parameter 

cia. This family of lattices hasa~ interesting symmetry; the 

reciprocal lattice of its member also belongs to the family. 

Structures having such a symmetry is called self-reciprocal by 

Heine and Weaire. 16 ) The present case provides us with another 

one than discussed by them. A fascinating feature of the rhombo-

hedral family consists in the fact that all of the three cubic 

lattices, sc, bcc and fcc, are its members. It is convenient to 

use the parameter y = Ib cia instead of cia. The values of yare 

1/2, 1 and 2 respectively for bcc, sC.and fcc. This parameter 

has a property such that a lattice described by l/y coincides with 

the reciprocal lattice of a crystalline lattice described by y. 

In Fig.l we show the Madelung energy EM as a function of y. 

A noticeable point is its symmetry with respect to the change 

y ++ l/y. This symmetric character of the Madelung energy in a 

self-reciprocal structure was pointed out by Weaire and William~7) 

for the case of simple hexagonal structure. In the present case 

two minima occur at bcc and fcc for which the numerical values of 

EM are fairly close to each other. We also observe in Fig.l that 

EM increases steeply as the anisotropy of lattice becomes larger 

both for the planar structure (y > 2) and the filamentary one 

- 107 -



(y < 1/2) . 

(b) Stability of the isotropic structures 

In the high density region, the most dominant part of the 

structure dependent energy is EM: 

EM = ~ (y) Z2/3 r -1 
M s (2) 

The constant ~M(Y) is given by18) 

~M(~) (3) 

for the Bravais lattice structures. In Eq.(3), NO is the total 

number of ions and ~ = (4/97r) 1/3. And the second term in braces 

stands for the self-potential correction with q denoting the quasi= 

continuous wave vectors. 

For the Madelung constants in the rhombohedral family, the 

appearance of minima at bcc and fcc may be proved by the follow-

ing simple analysis. 

Let us consider a sum over reciprocal lattice points defined 

by 

, 
I = I f(g) , (4) 

g 

where f(g) is a function of the magnitude of g. The change of 

I under the volume conserving distortion may be expanded with 

respect to the change of g: 
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2 
III = 11 {(g'-g)f'(g) + (gl_g) f"(g) + 000 } ( 5 ) 

g 2 

Then we expand g I - g in the dist ort ion parameter <5 as 

gl - g = gIA(g)<5 +B(g)<5 2 + ooo ] ( 6) 

Let us look into what happens for the coefficients A(g) and B(g) 

at positions of bcc, sc and fcc. We first note that for the three 

structures under consideration the first, second and third neigh-

bors form the cubic lattices, respectively. The first neighbor 

contribution to A(g) vanishes for the three structures. And, for 

the similar contributions to B(g) we have 

B bcc 
4 

I B (g) = 12 sc ( 7) 
n.n. 

32 fcC! 3 

Similarly we estimate 

12 bcc 

I [A(g)]2 = 0 sc ( 8 ) 
n.n. 

32 fcc 3 
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Now for the Madelung constant we have f( g) = const/g2 . Then 

~I becomes 

~I = L' co~st [ 3A(g) 2 - 2B(g) ] 02 + ••• 
g g 

( 9) 

Thus by Eqs.(7) and (8) we can see that the first neighbor con-

tributions to ~I are positive for bcc and fcc and negative for sc. 

Let us go further into what happens. In Fig.2 the magnitudes 

of short reciprocal lattice vectors are shown as a function of y. 

Two baranches of the shortest reciprocal lattice vectors an~ the 

next ones cross at the positions of bcc and fcc, whili sc is the 

minimum point of a single branch. According to the analysis de-

scribed before, the contribution to the Madelung energy increases 

if the shortest vectors split into shorter and longer ones by the 

lattice distortions. The above observation for bcc and fcc will 

ce important on considering the screening effect to be described 

shortly. 

(c) Formation of the planar structures. -- Effect of the screening. 

With decreasing density, the electronic part Est of the 

structure dependent energy becomes more effective. Because of the 

Coulomb matrix element ex I/g2 in the electron-ion interaction, 

contributions to Est become larger for structures having smaller 

reciprocal lattice vectors. Since Est is negative in sign, the 

isotropic structure may be less stabilized. 

In the simple r -expansion, it is proved that the cubic s 
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structures become unstable in the intermediate density region. 

Moreover, any structure can hardly be stabilized for r larger s 

than certain value of it unless extremely anisotropic sturctures 

are taken into account. 18 ) At this point the screening effects 

on the electron-ion interaction come into play. It is very im-

port ant to take proper account of the dielectric function. 

Adding the second order energy in the structural expansion 

(part II) to the Madelung energy, we have 

1 ,-
= 2 L v(g) - (self potential correction), (10) 

g 

v ( g) = v (g) / E ( g) (11) 

for the Bravais lattice sturctures, where v(g) is the Coulomb 

matrix element 

v( g) = 8 1 

3n ar s 

1 
g2 

and E(g) the dielectric function for the electron gas. 

(12) 

Since Eq.(lO) is of the same form as Eq.(4), we may use the 

sLmilar analysis as in (b) to discuss the stability of crystals 

for the region with EM as a dominant contribution. The only differ­

ence from the previous analysis is the functional form of f(g) 

for g ~ 2. In Fig.3 we show v(g) as a function of g for g'\, 2. 
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The dotted line is the result with use of the RPA dielectric 

function EO(g). And the full line corresponds to that with E(g) 

calculated by Miyagi,14) which will be used throughout our calcu­

lation. The characteristic feature of v(g) is the change of the 

curvature near g = 2, where the length of the shortest g-vector 

coincides with the Fermi diameter. This was already pointed out 

by M· . 14) lyagl. 

Now, let us consider the first neighbor contribution 61 to 

the energy difference of EM with lattice distortion taken into 

account. If the shortest g-vector is nearly equal to 2, f"(g) 

decreases and changes its sign. For the present case the quantity 

corresponding to Eq.(9) becomes negative. We note here that the 

first term in Eq.(9) comes from f"(g). 

It has been proved that the isotropic structures become un-

stable if the shortest reciprocal lattice vector is nearly equal 

to and slightly greator than 2, in the intermediate region of 

density. For the above mechanism, the planar structure is more 

favored than the filamentary one, because the former structure 

produces more effectively shorter reciprocal lattice vectors in 

accordance with Fig.2, where the lowest branch on the right side 

has a steeper slope than the op~Jsite one. 

For the three cubic structures the shortest reciprocal lattice 

vectors are numerically given by 

2.280/Z1/3 bcc, 
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2.031/Z1/3 sc , 

fcc. 

For sc we have the g-vectors closest to the Fermi diameter. However 

sc is already at a minimum position in the rhombohedral family. 

Then, it is most possible to have a form distorted from fcc whose 

shortest vector is the one next closest to the Fermi diameter. 

This observation is also in accord with the numerical calculation 

for hydrogen with Z = 1: 

However, the above mechanism no longer works for Z ~ 1. 5 . It 

is because the shortest g-vector is now smaller than the Fermi 

diameter even for the isotropic stucture and accordingly any dis­

tortion does not produce further energy gain. Thus the planar 

structure does not occur for the region of interest. 

The characteristic behavior of v( g) around g'" 2 may be con-

nected with the Kohn anomaly. However it is clear by our analysis 

that the curvature of v( g) in the vicinity of g = 2 is more res­

ponsible for the instability of lattice than the singularity 

itself just at g = 2. This conclusion is in accord with Stroud and 

Ashcroft,19) who studied the phase stability in binary alloys by 

calculating the second order energy in the pseudopotential scheme. 

The dielectric function E(g) with inclusion of the exchange= 

correlation effects increases the convexity of the effective 

coupling v( g) near g = 2 as shown in Fig. 3. This is a common 
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feature of the various kinds of current dielectric functions. 

Thus the exchange and correlation effect would enhance the for-

mation of the anisotropic structures. 

Cd) Formation of the filamentary structures. - Effects of the 

three-point polarization 

If the density decreases further, higher order terms in Est 

become much more important. Though the magnitude of En(n~3) is 

rather small in the intermediate region, its strong dependence on 

the structure has a considerable effect on the choice of the 

stable structure. The most remarkable property of the higher 

order energy is the appearance of stronger singularities than the 

Kohn anomaly. These are the singular momentum dependence of the 

many-point polarization TI : the Brovman-Kagan (BK)20) singularity. 
• n 

To explain the role of the characteristic behavior of TIn' let 

us consider the third order energy E3: 

In this expression the polarization TI 3 dep ends only on the triangle 

< gl' g2 > determined by the reciprocal lattice vectors gl and g2· 

The momentum dependence of the function TI 3(O) is shown in 

Fig.4 for some families of similar triangles. Here TI 3(O) is the pri­

mary term in TI3 and gives us a fundamental feature for the momentum 

dependence of TI3 (see part II). In Fig.4, the horizontal axis is 

the radius R of the circle circumscribing the triangle < gl' g2 > • 

- 114 -



The strong BK-singularity of the cusp type appears at R = 1 for 

acute triangles. For obtuse ones such a singularity does not ap­

pear. However even in the latter case the curve shown in Fig.4 

has a fairly large peak near R = 1. 

Now we look into the role of the singular behavior of IT3 for 

the structural stability. The third order energy, Eq.(13), is a 

sum over triangles in the reciprocal lattice. Thus the structure 

having the triangles with R = 1 will be energetically favored. See 

Fig.5, where we plot radii R of the circumscribing circles for 

small triangles appearing in the reciprocal lattice of rhombohedral 

structures. Fig.5 also shows the ionic charge Z for which the 

structure described by y has a reciprocal lattice triangle with 

R = 1. 

Noticeable points observed in Fig.5 are the following. First, 

any small triangle does not appear in the planar structures for 

Z ~ 2. This is because the reciprocal lattice to the planar 

struc~ure is oblate; the shortest g-vectors gl and g2 are merely 

forming colinear configulations. For such a configulation, IT 3 (O) 

can be reduced to a linear combination of IT 2 (O) (see part III), 

and accordingly any singularity of the cusp type does not appear. 

On the other hand, arbitrarily small triangle could appear 

if"we distort the lattice towards the filamentary structure. Thus, 

for a fixed Z we can get a triangle with R = 1 at som value of y = Y . 
c 

For Z = 1, y c ~ 0.2417. The structure roughly corresponds to the 

bcc [lllJ structure as called by Naga~a et ale (r 4 )), for which 
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y = 1/4. With increasing Z, y c increases and the anisotropy of the 

corresponding structure decreases. For Z = 2, y ;, 0.4835, which c • 

is very close to bcc. 

From the above observations we conclude that the strongly an­

isotropic filamentary structure should appear for hydrogen in the 

density region where E3 becomes considerable. On the other hand 

the same mechanism does work to stabilize the bcc structure for 

helium. These conclusions are confirmed by the numerical calcu-

lation. 

(e) Additional factors for stabilizing the anisotropic structure. 

First we note that the cusp-type singularity described above 

also appears in the higher order polarizations TIn (n~4).11,20) 

For example, we consider TI 4 , which is a funct~on of the tetrahedron 

[gl,g2,g3] determined by reciprocal lattice vectors gl,g2 and g3· 

Then TI4 has the mentioned singularity when one of the radii of 

four circles circumscribing the sides of the tetrahedron [gl,g2,g3] 

coinc~des with the Fermi radius. The similar situation occurs 

for TI of higher order. 
n 

Thus the higher order terms would enhance 

the mechanism for stabilizing the critical structure y described 
c 

in (d). 

Second, TI4 has another singularity when the radius of the 

sphere circumscribing the tetrahedron coincides with the Fermi 

radius. ll ,20) This singularity is of the logarithmic divergence 

with positive sign. Thus the structure having such tetrahedrons 

in the reciprocal lattice space would energetically be unfavored. 
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However we do not meet such situation among the Bravais lattice 

structures in the case where Z S 2. 

Next, we must mention the effect of the resummation. 8,9) As 

shown in Appendix A, by resumming the partial series including the 

higher order terms, the cusp-type singularity of IT3 disappears. 

However this does not drasticlly change the peak structure of IT3 

near R = 1 . Thus the characteristic role of IT3 remains un-

altered (§3). 

Finally we note that the filamentary structure for hydrogen 

becomes unstable against the dimer formation ('§4). This insta­

bility occurs only in the fourth~order without vertex correction. 4) 

§3. Numerical results for the rhombohedral structures 

In Figs.6, 7 we show the ground-state energy of rhombohedral 

structur;:s as a function of the uniaxial parameter y for Z = 1, 

1.25, 1.5, 1.75, and 2. In Fig.6, the third order result with and 

without resummation is presented. The fourth-order result is shown 

in Fig.7. In the fourth-order energy, the electron-electron 

interaction is taken into account with the use of the effective 

vertex function. 

For hydrogen we observe that the fcc structure becomes un-

stabe at r '" 0.9 and the minimum position moves to the direction s 

of the planar structure as r s increases. For larger r s (r s '" 1.1 

in the fourth-order stage) the filamentary structure is more 
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favored. With increasing Z, the anisotropy of the filamentary 

structure reduces. Ror Z = 1.75, both bcc and fcc are stable 

throughout the density region calculated. The values of y for the 

minimum structure are also plotted as a function of r in Fig.8. 
s 

The inclusion of the resummation effect changes the total 

energy by about 0.01 R at r = 1.6 for the third order energy of y s 

hydrogen with y = Y c. However the position of the minimum structure 

does not considerably change. Therefore the resummation does not 

alter our conclusion for the crystal stability. 

In the resummation the cusp-type singularity for TI3 is some­

what smoothed. The similar smoothing occurs when the effect of 

lattice vibration is taken into account. Here, the smoothing function 

is the sturcture factor Seq) of ions. At this point we mention 

Straus and AShcroft,7) who treated the proton motion in a se1f= 

consistent phonon scheme in the second order structural expansion. 

Their calculation shows the isotropic structures to be more favored 

than the anisotropic ones. They also claimed the higher order 

terms would enhance this tendency by stronger smoothing effect. 

However we disagree with them. The misleading conclusion comes 

from a simple generalization of their second order result. For 

E2 , the structural stability depends sensitively upon the curvature 

of-the shielded interaction v(q) in the close vicinity of q =2 as 

pointed out in §2(c). However, in the higher order terms the sit-

uation is quite different as seen before. 
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We have studied the crystal stability for crystals of virtual 

atoms with atomic numb.er 1: Z: 2. The results for these virtual 

crystals may serve to get some predictions about solid mixtures of 

helium and hydrogen, which may be treated as an average crystal 

with an average atomic number 

Z = (l-c) + 2c (14) 

with c denoting the concentration of helium. This is a reasonable 

approach, where the scattering effect may then be taken into ac­

count as corrections. On this basis Straus et a1 21 ) studied the 

above solid mixture by the structural expansion up to the third 

order. 

However, the convergence of the expansion series becomes slower 

with increasing Z. It may simply be shown that our expansion para­

meter is proportional to Zl/3 r. Accordingly larger discrepancy s 

might be expected with approaching Z = 2, unless the pressure is 

extremely high. It may be of interest to look into the higher 

order effect on the mixtures. According to our examination, how-

ever, the scattering contribution has proved very large. Then any 

reliable prediction would not be obtained until the mentioned ef- . 

fect is taken into account. We mention here that small difference 

of the cohesive energy might produce a large temperature effect. 
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B. Monomer-dimer transition in the system of hydrogen 

§4. Higher order effects on the 

monomer-dimer transition 

(a) Monomer-dimer transition in the b6c C1IIJ-model 

In the sub-part A, the lowest structure of hydrogen system 

was pointed out to be bcc [lllJ structure in the rhombohedral family, 

where the two protons in the unit cell of bcc are lying along a 

body-diagonal with equal separation. This structure has an out­

standing nature, where for twelve nearest ·reciprocal lattice vectors 

g we have the structure factor S(g) = 1 for six g's and S(g) = 0 

for the remaining g's. For our lattices the structure factor may 

be given by 

S(g) 1 = cos (2" g.p) , (15) 

where p denotes the vector to the nearest protons. Now, we have 

S(g) = 1 because the six g-vectors are perpendicular to p. And we 

have S (g) = 0 because the other g-vectors have g. p = 'IT. If the pro­

tons displace alternatively along the [lllJ direction, we have no 

longer S(g) =0 for the vectors mentioned above. Even for this case 

we-have still S(g) = 1 for the other six g-vectors. Then, for the 

displacement considered the ground-state energy may be lowered. 

This produces a monomer-dimer transition as described before. 4) 

Referring to the above model, the ground-state energy has been 
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studied up to fourth order,4) where the vertex function has not 

been taken into account. With the use of the vertex function, the 

result might change considerably particularly in the third order. 

The previous study has shown that the third order result does not 

produce the monomer-dimer transition unless the density is ex­

tremely low (r ~3). We shall look into what happens by taking 
s 

account of higher order terms successively up to fifth order. 

(b) Numerical results 

We calculate the ground-state energy E of the hydrogen system 

for bcc [lllJ structure as a function of the proton displacement. 

In the monomer phase the proton separation will be denoted by P 

along [lllJ axis. 

In. Table I, contributions of various terms to E are compared 

with the previous result 4 ) up to fourth-order. The present calcu-

lation includes the higher order effects with respect to the elec-

tron-electron interaction in the effective vertex approximation 

described in part II. In Ref.4) these effects were taken into 

account by expanding them in terms of the shielded internal line. 

The expanded terms are written as E (m) in Table I, where m is the 
n 

number of the electron-electron lines in the corresponding diagrams. 

The secon-order enrgy up to E2 (2) is almost identiacl with the 

present result. The third-order energy up to E (1) shows fairly 
3 

good agreement with the present one. 

A ~emarkable point arises in the fourth-order energy. The 

exchange-correlation contribution to E4 , which is simply neglected 
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in Ref.4, is considerably large. However this contribution partly 

cancels that from the H-diagram E4H, which may be considered as a 

term representing the higher-order screening effect and is also 

neglected in Ref.4. Thus the total E4tot of the fourth-order energy 

in the present calculation has a fairly close value to that of the 

previous one. We also note that a good cancellation between 

the contributions from anomalous terms and that from the chemical 

potential shift is maintained in the present calculation, and ac-

cordingly the resultant contribution oE is small. 

The energy of the dimer phase ~ay be represented as a function 

of ~ defined by ~ = (p-p)/p. The numerical results are well ap-

proximated by 

(16 ) 

as in Ref.4, where A, Band C are function of rs. The monomer= 

dimer transition may be analysed by this fitting form. 4 ) The 

transition occurs when B vanishes. For the region of rs where B<O, 

the system favors the dimer phase. 

In Table II we show contributions of various terms to the 

constants A, Band C up to fifth-order. We notice a strong ~-de-

pendence of the higher order terms, which comes largely from the 

higher order contribution to B with slow convergence. The 

constant A is fairly well convergent even at r s = 1. 8. On the other 

hand the contribution to B from E3 is even larger than that from 

E2 at r s = 1.4. Contributions from E 4 and E5 are also rather large. ; 
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These results may indicate that our expansion scheme would break 

down in the dimer phase. However it is expected that the tran­

sition point might well be described in our scheme. 

The value of rs at the transition is estimated to be 1.5D 

wi th transition pressure P = 1 .. 2r·1bar in the fourth-order stage. c 

This result is not far from the previous one as expected from the 

above discussion on Table I. By including the fifth-order result 

we get r =1.40 for the ·transition point with P =2.3Mbar. How-
s c 

ever some cautions are needed for the fifth-order result. In the 

fifth-order energy, we have not included the H-type two-ring con-

tribution (Fi~. 9a), which would largely cancell the exchange= 

crrelation contribution. In the fifth order we also have the 

three-ring H-diagram (Fig.· 9b), which has a negative contribution. 

These corrections would possibly lower the transition pressure as 

a resultant. 

Here we emphasize that both the exchange-correlation effect 

and the long-range screening effect must be taken into account 

properly. Neglect of the former effect 22 ) brings us an under­

estimation, while neglect of the latterlO ) produces an overesti-

mation in the fourth order energy. 

As mentioned in (a), the transition occurs at fairly reasonable 

value of r even for the third order stage, with the vertex factor s 
* taken into account. The transLtion point r is given in Table III s 

for each order of approximation. Though the scheme of extra-

* polation is somewhat arbitrary, the true value of rs may be around 
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1.4. The fifth order result for the transiton pressure is close to 

the value supposed currently. However the transition pressure is 

very sensitive on the order of approximations, as seen in Table· 

III. Both of the above critical data may change by taking account 

of the zero-point motion effect of protons. The study of this 

effect is left as a future problem, though a preliminary attempt 

is given in Appendix B. 
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Appendix A 

Examination of the resummation effect 

In part A we have seen that the most stable structure of hy-

drogen in the rhombohedral family is almost identical with the 

bce [lllJ structure 4) in the density region where the monomer= 

dimer transition might occur. 4) It is numerically proved that the 

resummation has only a minor effect on the determination of the 

stablest structure. The method of resummation is formally given 

in part II as a cluster expansion. Here we shall go into the 

details of its calculation. 

In the cluster expansion, the third order term for the thermo-

dynamical potential is written as 

Q3 - - I I I 
i<j <k kEBZ r,; $I. 

where D is the n x n determinant defined in II § 5, whose diagonal 
n 

elements are of the form 

(A. 2) 

and the off-diagonal elements are the effective external field 

Eg,g' = w(g'-g)T(g'-g) . (A.3) 

2 2 Here Ep =p fears) , r,;R. = (2R.+l)7I"i/B+11 with B = l/kBT and 11 the 

chemical potential. And w( g) is the shielded external field and 

- 125 -



T(g) the effective vertex function (II). In Eq.(18), i,j and k in 

braces stand for the reciprocal lattice vectors and the summation 

over the quasimomenta k is to be taken in a Brillouin zone. 

To evaluate Q3 and higher order terms, we meet the quantity 

I n (k;{1,2, .• ·,n}) = -I R.n Dn (1;R.,k;{1,2,oo·,n}) . 
1;1 

Now by the definition we can write D as 
n 

(A. 4) 

D (1;,k) = IT [e:(j) (k) - 1;J , (A.5) 
n j=l 

where E(j)(k) (j=l,···,n) is the j-th root of the characteristic 

equation 

Thus Eq.(A.4) becomes 

I (k;l,···,n) n 

(A. 6) 

By using the contour integration as described in Ref.ll, we get 

I (k'l ... n) = n " , 
I [e:(i)(k) -llJf(e:(j)(k)) 
j=l 

(A. 8) 

at. zero temperature, where fee:) 1s the Fermi factor. Here we note 

that the form (A.S) is owing to the choice of the branch cut of 

the logarithm as stated in II§5. However the final result (A.10) 

below is independent of the choice. 
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We shall below evalutate ~3. Though the sum in Eq.(A.l) 

is taken over momenta in the first Brillouin zone, the summation 

may be replaced by that over whole momentum space. By such pro-

cedure we rewrite the sum over i,j,k in Eq.(A.l) as the corre-

sponding sum over triangles <gl,g2> which are not congruent to 

each other with respect to lattice translations. Thus we obtain 

the following expression for ~3: 

= 2 I {I 3 (P;{O,gl,g2}) 
p 

(A. 9) 

(A.10) 

Here the factor 2 comes from the spin summation and the summation 

over p is to be performed in the whole momentum space. In Eq.(A.10) 

we put 

Il(P) = (s -~)f(s ) . p p (A.ll) 

The first term of Eq.(A.10) is essentially the two-wave approxi-

mation, where the one-wave contributions must be subtracted since 

they were already counted in ~2. 

In the simple perturbation series, terms corresponding to 

~3(gl,g2) is obtained by expanding the logarithmic term of Eq.(A.l) 
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with respect to the external field L. Then the primary term 

becomes 

(A.12) 

with 

L - LO = w(g)T(g) g ,g 

The remaining terms reduce to the higher order anomalous terms in 

which only the many-point functions of the form 

k 
II (0)([ ] 1 

n gl' 

appear (see part III). 

(A.14) 

Now we turn to the effect of the resummation. Figure 10 

shows the values of 03(gl,g2) in comparison with those of 03(gl,g2) 

in the case when <gl,g2> is a regular triangle. We first notice 

the striking difference of the behavior near R = 1 with R the radius 

of the circle circumscribing a triangle <gl,g2>; the cusp-type 

singularity in 03(gl,g2) ceases to exist in the resummed result 

03(gl,g2)' However a shoulder remains in 03(gl,g2) at R = 1 and the 

global feature of 03(gl,g2) does not drastically change. 

The difference of the two curves in Fig.lO reduces with in-

creasing R. This fact permits us to use the unresummed quantity 
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For the bcc [lllJ, the smallest triangle has the circumscribing 

circle with R~1!034. For the shown case in Fig.10, the dis­

crepancy is about 20% at the position of the mentioned triangle. 

However this discrepancy must somewhat be reduced by properly 

taking account of the effect of the chemical potential shift as 

discussed in II§5. Therefore we use the simple perturbation 

result throughout our numerical calculation. 
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Appendix B 

An attempt for treating the phonon 

effect on the monomer-dimer transition 

The structural expansion of the dynamical matrix would be less 

convergent than that of the energy itself. Therefore it is es-

sential to evaluate the higher order effects for the phonon problem. 

Unfortunately, the full calculation of the higher order dynamical 

matrix is much more difficult than the energy itself. Thus some 

ingeneous method is needed to treat the dynamical matrix. 

Let us consider a crystal having two identical atoms in each 

unit cell. The relative position of two atoms in a unit cell will 

be denoted by p. Then the structure dependent part of the total 

energy Est may be written as a function of p 

(B.l) 

This energy may be expanded in a Fourier series 

(B.2) 

with g the reciprocal lattice vector. The above form is evident 

from the product of structural factors included in the structural 

expansion. In the structural expansion, we can get Est(g) more 

easily than Est(P). 

Let us now look for the way for calculating Est(g). For this 

purpose we expand Est(g) as 
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(B. 3 ) 

where n denotes the number of the structure factors included in . 
a summand. Here the Madelung energy is to be included in E(2)(g). 

It is proved that £(n)(g) may be obtained by summing over recipro­

cal lattice points by the same way as for E(n)(p), but with the 

multiplicity of summation reduced by one. Furthermore, in the 

summation there appears no structure factor. It is also proved 

that E (n)(g) has the full symmetry of the Bravais lattice. And 

hence we have 6nly to caluculate Est(g) once for each independent 

class of g. 

Now we write down the final result for £(2) and £(3), in the 

following: 

and 

~(2)(O) 1[1 l' v(g) = 2 2 g 

~(2) (g) 1 -
= "4 v(g) 

£(3)(0) = 1 I' £(3)(g) . 
g 

1 I' v(q) ] , -!if 
q 

The fourth-order term becomes somewhat complicated 
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(B.4b) 

(B.5a) 

(B.5b) 



with 

E(4)(O) = i- II E(4,a)(g) + E(4,b)(O) , 
g 

~(4,b)(g) = 

(B.6a) 

(B.6b) 

(B.7) 

(B. 8) 

Here in IT4 the H-diagram contribution must be added after symme­

trization. The properties of E(n)(g) mentioned beore can be seen 

explicitly in the above expressions. 

In Fig.ll we plot the Fourier coefficients E(3)(g) for bcc 

(y=O. 5) and the other two rhombohedral structures (y= 0.'-58 ,0.67) . 

The dependence of E(3)(g) on g is quite similar for these three 

structures. As an application of the result, a rough sketch is 

made for E(p) in Fig.12 for bcc up to the third order. The 
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calculation is not complete: the vertex factor is simply neglected 

and the lattice summation is truncated at g '" 6. However s.ome 

general feature of the optical phonon may be obtained from Fig.ll: 

The transverse mode is softer than the longitudinal one. 
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Appendix C 

Multiple summation in the reciprocal lattice 

In the structural expansion, the n-th order contribution to 

the ground-state energy is usually written as a sum over (n-l) 

independent reciprocal lattice vectors. For example, the fourth= 

order energy is written as ll ) 

(C.l) 

It is a formidable task, however, to execute such multiple sum-

mation as encountered in Eq.(C.l). 4 In fifth order, we have ~lO 

terms even if the summations are confined to the shortest g-vectors, 

for instance, in bcc lattice. 

However, if we utilize the symmetric properties of the summand, 

terms to be counted can be drastically reduced. We shall describe 

here the procedure of such reduction particularly for the fourth= 

order energy. Generalization to the fifth-order one is straight-

forward. 

We first note that in the summand of Eq.(C.l), IT4 is symmetric 

under the interchange of the vectors gl,g2 and g3' while the pro­

duct of w-terms changes to different forms. To avoid the above 

trouble, we symmetrize the summand of Eq.(C.l) with respect to 
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interchange of g-vectors: 

( c . 2) 

( c. 3) 

In the reduction of summation the first step is to utilize the 

permutation symmetry of Ew.(C.3). Number the r€ciprocal lattice 

vectors as g(i) such that Ig(i)l~lg(J) I, i < j. Then Eq .. 2) 

reduces to 

( c . 4 ) 

by considering the factor 3!, the number of permutations. 

The next step is to utilize the translational and rotational 

sy~etry of the lattice. For this purpose we note that the summand 

in Eq.(C.4) is a function only of the tetrahedron [g(i) ,g(j} ,g(k) ] 

determined by g-vectors g(i) ,g(j) and g(k). Thus the most efficient 

summation would be attained if we rewrite Eq.(C.4) as a sum over 
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different tetrahedrons with a suitable multiplication factor for 

each tetrahedron. Here the mentioned factor proves to be the 

number of the congruent tetrahedrons appearing in the reciprocal 

lattice with one vertex at origin. Since the complete reduction 

to such form is difficult in general cases, we shall below uti-

lize partially the rotational symmetry as the second step and the 

translational one as the third step. 

As the second step we fix g(k) with k the largest number among 

the rotationally equivalent g-vectors, and perform the summation 

over i and j. The resultant is multiplied by the number of g= 

vectors which is rotationally equivalent to g(k), where we divide the 

above resultant by the number of equivalent vectors in the triplet. 

_ The third step is to utilize the translatdJon symmetry. We 

choose one of the vertices ofa tetrahedron, and count the con-

tribution from tetrahedrons with the chosen vertex at origin, by 

taking a~count of the factor 4. A convenient choice is the vertex 

at which the largest number of the shortest g-vectors meet as the 

edges of tetrahedrons. Additional multiplication factor arises 

for tetrahedrons with equivalent vertices in conformity with the 

above choice. The factor proves equal to the inverse of the number 

of vertices satisfying our condition. 

We finally note that an additional manipulation is needed for 

the molecular phase, where the structure factor depends upon the 

direction of g-vectors with respect to the molecular axis. Even 

for this case the presented method remains effective if we replace 
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the terms in braces of Eq.(C.3) by its average. Here the average 

is to be taken over configurations which are generated from the 

one by rotations of the 1atti8e symmetry. 
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Appendix D 

Numerical integration for IT 4 (0) 

I th . f IT (0) 11) th . t 1 f n e expreSSlon or 4' ere appears an ln ega 0 

the form (Eq.(S.14) of Ref.ll) 

with 

R m 

dx 
2 1/2 f(x;s,r) , 

(x +0) 

2 = Max (s , - 0) , 

2 2 1/2 
f(x;s,r) = arcsin [f (x2-s 2 ) J. 

x -r 

We propose the following form for the case when s 2 + 0 S 0 

(D.l ) 

(D. 2) 

(D. 3) 

(D. 4) 

Equation (D.3) obtained by a simple change of the variable, 

2 2 x .+ 0 = t , may be thought trivial. In this form, however, the 

computation time is largely reduced. It is because the denomina-

tor in the integrand of Eq.(D.3) no longer vanishes at the lower 

limit of the integration, while it is not the case for Eq.(D.l). 
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The reduction has proved very important for calculation of the fourth 

and higher order energy, since the main part of the computation 

time is devoted to this integral. 

In Eq. (S .14) of Ref .11, the case s = a is excluded. For the 

excluded case Eq.(S.14) of Ref.ll reduces simply to 

where 

F2 (r. ,r. ) 
l J 

TT- e ij 
= 2TT Fa, 

Fa = 2TT { ~ - !. tn 
~2 

(D. S) 

I } , (D. 6) 

and TT - e .. is the angle between the two sides of the tetrahedron, 
lJ 

which is defined in Ref.ll. The other notations follow Ref.ll. 

In the actual computation, we use the following expression 

for I. 

1 I = f (R; s ,r) {'2 tn ~+R 

Iil* - R 

(R 2+0)1/2+R 
I - !. tn I m m I } 

2 (R 2- 0 )1/2-R 
m m 

+ J , (D. 7) 

where the remainder J of minor contribution is written as 

f
(R2-S 2 )1/2 

J = dz 2 2 1/2 z2 2 1/2 g(z;R,s,r) 
o (z +s) (z +s +0) 

(D. 8) 
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with 

2 for 8 + 6 > 0, and 
(D. 9) 

J = C· dt ([ 2 2 2 1/2 
(t 2_6)1/2 g t -6 -8 ] ;R,s,r) (D.IO) 

2 
for 8 + 6 ~ 0 . 
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Table I Minute description of contribtuions to the ground-state 

energy for representative cases in comparison with Ref.4) 

(in units of Rydberg) 

r = 1.4 
s 

p/bohr 1. 50 p/bohr 1. 31 

. t preVlOUS . present previous t present 

E 0.3684 0.3684 0.3684 0.3684 
eg 

EM -1.1261 -1.1261 -1.0939 -1. 0939 
l -

E2 -0.2125 -0.2117 ·-0.2236 -0.2226 

E2 
(0 ) -0.1864 -0.1959 

E2 
(1) 

-0.0160 -0.0170 

E2 
( 2) 

-0.0101 -0.0107 

E3 -0.0734 -0.0808 -0.0850 -0.0915 

£3 
( 0 ) -0.0608 -0.0691 

E3 
( 1) 

-0.0136 -0.0159 

E4 -0.0199 -0.0280 -0.0250 -0.0365 

E4 
( 0) 

-0.0199 -0.0250 

E H 
4 0.0091 0.0127 

oE +0.0014 0.0023 0.0012 0.0021 

E tot 
4 -0.0185 -0.0189 -0.0238 -0.0238 

Etot -1.0631 -1.0675 -1.0579 -1.0617 

i Re f .4 
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Table I cont'd 

r = 1.8 s 

p/bohr = 1.70 p/bohr =1.23 

previous t present previous t present 

E 0.0762 eg 
0.0762 '0.0762 0.0762 

EM -0.8543 -0.8543 -0.6986 -0.6986 

E2 -0.2178 -0.2167 -0.2709 -0.2685 

E2 
( 0 ) -0.1871 -0.2321 

E2 
( 1) -0.0180 -0.1227 

E2 
( 2) -0.0127 -0.1161 

E3 -0.0995 -0.1099 -0.1661 -0.1851 

E3 
( 0 ) 

-0.0791 -0.1298 

E .... ( 1) 
. J 

-0.0204 -0.0363 

E4 -0.0359 -0.0549 -0.0810 -0.1253 

E4 
( 0) 

-0.0359 -0.0810 ~-:,~ 

E H 
,)~ 

0.0224 0.0541 
. ,' j 

4 M 
E 0.0017 0.0032 0.0012 0.0024 .. c: 

E4 
tot -0.0342 -0.1293 -0.0798 -0.0688 

Etot -1.1296 -1.1339 -1.1392 -1.1449 

t Ref.4 
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Table II, Values of fitting constants A, Band C to reprocuduce ttc ground-state energy 

in the form E = A + B 6. 2 + C6 4 

r = 1.0 r = 1.2 r 2 1.4 s s 

A B C A B C 'A B C 

E 1.1786 eg 0 0 0.6617. 0 0 0.3684 0 0 

EM -1. 5745 1. 584 3.62 -1.3157 1. 539 1. 84' -1.1277 1. 322 1. 511 

E2 -0.2152 -0.469 0.23 -0.2133 -0.461 0.21· -0.2114 -0.45'{ 0.21 

I-' E3 -0.0603 -0.418 0.23 0.0724 -0.435 0.00 -0.0804 -0.486 -0.11 
.s::-
Vl 

E tot 
4 -0.0093 -0.139 -0.03 -0.0118 -0.286 0.05 -0.0164 -0.222 -0.03 

E4 -0.0139 -0.187 -0.04 -0.0195 -0.273 0.00 -0.0278 -0.346 -0.10 

E H 
4 0.0034 0.051 0.00 0.0059 .0.081 0.03 0.0091 0.124 o .0 11 

6E'-4 0.0012 -0.003 0.00 0.0018 -0.005 0.01 0.0023 -0.007 -0.03 

E a) 
5 

-0.0022 -0.060 -0.15' -0.0037 -0.101 -0.26 -0.0057 -0.155 -0. III 

iO~~Ptd 4th) -0.6805 0.557 4.05 -0.9515 0.445 2.10 -1. 0675 0.148 1. 60 

t'ot~pto 5th) -0.6827 0.496 3.89 -0.9552 0.343 1. 83 -1. 07317 --0.007 1.18 . 

a) without contribution from H-diagram 



Table I I cont'd 

r = 1.6 r = 1.8 
s s 

A • B C A B C 

Eeg 0.1901 0 0 0,.0762 0 0 

EM -0. 9866 1.142 1. 50 -0.8762 0. 986 1. 50 

E2 -0.2093 -0.451 0.20 -0.2071 -0.446 0.20 

E3 - 0.0891 -0.554 0.03 -0.0967 -0.608 0.06 
I-' 
J;: 

0'1 E tot -0.0196 -0.265 -0.08 -0.023 It -0.2 63 -0.30 4 

E4 -0.0353 -0.433 -0.15 -0.0442 -0.495 -0.38 

E H 
4 0.012 8 0.177 0. 15 0.0172 0.242 0.0 5 

oE 4 0.00 29 -0.008 0.01 0.0034 . -0.010 0.02 

E5 
a) -0.0082 -0.220. - 0 .59 -0.0114 -0.297 -0.81 . 

iO~up to 4trv -1.1146 -0.129 1. 65 -1.1275 -0.333 1. 46 

i ot (up to 5trD -1.1064 -0.350 1. 05 -1.1386 -0.630 0.65 



Table III Transition pressure P ~ the value of r and the ground= 
c s 

state energy E per electron at the transition point, for 

each order of the approximation. 

2nd 3rd 4th 5th 

a) 
P "'-0.1 0.06 1.19 2.33 c 

r '" 4 1.75 1. 50 1.40 s 

E 
b) 

"'-0.8 -1.105 -1. 098 -1. 073 

a) units in Mbar 

b) units in Ry 
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Figure Captions 

Fig.l. Madelung energy for the rhombohedral structure as a 

function of y in logarithmic scale. 

Fig.2. Magnitudes of the small reciprocal lattice vectors in 

the rhombohedral structure as a function of y. 

Fig.3. Screened Coulomb matrix element v(g) as a function of 

g r'or rs = 2. The solid line is based on the dielectric 

function given in Ref.14, and the dotted line on that of RPA. 

The broken line represents the bare Coulomb matrix element. 

Fig.4. vs. R, the radius of the circle 

circumscribing the triangle <gl,g2> . 

Fig.5. Magnitudes of R for small triangles in the reciprocal 

lattice of the rhombohedral structure as a function of y. 

Fig.6. Ground-state energy as a function of y for the rhombo­

hedral structure. Figures 6a to 6e correspond respectively 

to Z = 1, 1.25, 1.5, 1.75, 2. The solid lines are the 

unresummed result and the broken lines the resummed one both 

up to third order without vertex correction. 

Fig.7. Ground-state energy as a function of y for the rhombo-

hedral structure. (a) Z = 1 for r = 1.5 (b) Z = 1.5 for s 

(c) Z = 2 for r = 0.99 . s The exchange-correlation 

effects are taken into account by the effective vertex function 

T( g) • 
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Fig.8. Distortion parameter y as a function of rs for the ex­

tremum structures. The solid lines stand for the stablest 
/ 

structure. (a) :fcc, (b) :sc, (c) :bcc, (d): planer structure, 

(e):filamentary structure. 

Fig.9. H-diagrams to appear in fifth order. 

Fig.10. Contribution Q3(gl,g2) to the third order thermodynamical 

potential Q3 in the cluster expansion as a function of R (solid 

line) in comparrison with the unressumed one (broken line) for 

the regular triangles <gl,g2>' 

Fig.ll. Fourier coefficient E3(g) plotted against reciprocal 

lattice vector g, referring to the rhombohedral system. 

Fig.12. Equi-energy curves for various molecular configulations 

in the bcc lattice (third order result). The equ1-energy curves 

are drawn for positions of a proton in the unit cell when another 

is at the origin of the same cell. Here r = (0,0,0), K = (- i, 
311 1 1 1 
"8",0), L=(1f'4'4)' W=(0'2'1f) in units of the length of cube edge. 
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