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Abstract
In this paper, we show that the orbit space of the domain by theelliptic Weyl

group for an elliptic root system of codimension 1 has a structure of Frobenius man-
ifold. We also give a characterization of this structure of the Frobenius manifold
under suitable conditions.

1. Introduction

A Frobenius manifold is a complex manifold with a multiplication and a metric
on the holomorphic tangent bundle and with two global vectorfields, the unit field and
the Euler field satisfying some integrable conditions. The notion of Frobenius manifold
was introduced by Dubrovin in order to give a geometric description of the integrable
structures in the topological field theory. The study of the Frobenius manifolds is im-
portant from the viewpoint of mirror symmetry (cf. [6]).

On a Frobenius manifold, the tensor, called “the intersection form”, is defined. It
is a holomorphic symmetric tensor on the cotangent bundle ofthe Frobenius manifold.
It appears first in the work of Saito ([14]) on the study of a semiuniversal unfolding
of an isolated hypersurface singularity. Dubrovin ([4]) generalized the definition of the
intersection form in cases of Frobenius manifolds.

In this paper we discuss the following problem:

PROBLEM. Let (M, I �, E) be a triple of a complex manifoldM, a holomorphic
symmetric tensorI � on the cotangent bundle ofM and the vector fieldE. Establish
the structure of a Frobenius manifold onM such that its intersection form coincides
with the tensorI � and its Euler field coincides with the vector fieldE.

If M is the complex orbit space of a finite irreducible Coxeter group, I � is the
tensor descended from the standard holomorphic metric andE is the Euler field derived
from the standardC�-action, the problem was solved by Saito [13] and Dubrovin [4].

In this paper, we solve the problem for the complex orbit spaces of the elliptic
Weyl groups for the elliptic root systems of codimension 1 with the tensors descended
from the standard holomorphic metrics and with the vector fields derived from the
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302 I. SATAKE

canonicalC-action. It is a natural generalization of the complex orbitspace of a fi-
nite Coxeter group. We also prove the uniqueness (up toC� action) of the structure
of the Frobenius manifold on the orbit spaces of the ellipticWeyl groups under the
condition that the intersection formI � and the Euler vector field are fixed.

We remark that the complex orbit spaces of the elliptic Weyl groups for the el-
liptic root systems occur in various contexts in the following subjects: the invariant
theory (I.N. Bernštĕın and O.V. Švarcman [1], [2], E. Looijenga [12], K. Saito [16],
K. Wirthmüller [22]), the representation theory of the affine Lie algebras (V.G. Kac and
D.H. Peterson [11], P. Slodowy [21]), the theory of the elliptic Lie groups (S. Helmke
and P. Slodowy [7]) and the theory of theG-principal bundles over elliptic curves
(R. Friedman and J.W. Morgan [5]).

We shall explain the outline of our method of the construction of the Frobenius man-
ifolds for our cases, which is similar to those in cases of thefinite Coxeter groups [4].

In [16], the normalized lowest degree vector fielde is defined and the flat holo-
morphic metricJ on M was constructed byI � and e.

For the construction of the multiplication, we need to recall the following facts.
The structure of the multiplication of the Frobenius manifold gives the intersection

form (step (a) in the diagram). The Levi–Civita connection is defined for the inter-
section form and gives the Christoffel symbols (step (b)). Then the structure of the
multiplication gives the Christoffel symbols (step (c)).

The explicit description of step (c) is given as follows. Forgiven flat coordinates of
the Frobenius manifold, we have the following simple relation between the structure
coefficientsC��
 of the structure of the multiplication and the Christoffel symbols0��

([4, p. 194, Lemma 3.4]):

(1.1) 0��
 D �
d� C 1� D

2

�
C��
 ,

where D is a degree of the flat metric (see Definition 3.5) of the Frobenius manifold
and d� is a degree of the homogeneous flat coordinatet� . Thanks to the equation
(1.1), we could recover the structure of the multiplicationfrom the Christoffel symbols
for some cases. This is a clue to solve our problem.

For the case of the complex orbit space of a finite irreducibleCoxeter group, ev-
ery factord� C (1� D)=2 in (1.1) is non-zero. Thus eachC��
 is determined by0��
 .

Furthermore it is shown ([4]) that the set ofC��
 satisfies the conditions of Frobenius
manifold.
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For the case of the complex orbit space of the elliptic Weyl group for an elliptic
root system of codimension 1, some factorsd�C (1� D)=2 in (1.1) are zero. However
we could determine allC��
 ’s also for this case by another condition that the normal-
ized lowest degree vector fielde must be the unit field. Then we can prove that the
set of C��
 satisfies the conditions of Frobenius manifold.

Among the results of this paper, the existence of the structures of the Frobenius
manifolds on the complex orbit spaces of the elliptic Weyl groups is already announced
in [18]. For the explicit construction of the flat coordinatesystem, it is done forG2

case [17],D4 case [18] and forE6 case [19]. For the explicit calculation of the struc-
ture of the Frobenius manifold, it is done forD4 case [18] and forG2 case [3].

This paper is organized as follows.
In Section 2, we review the notions which are necessary in later sections. We re-

call the definitions in [16] such as the elliptic root systems, the elliptic Weyl groups,
the domains, the symmetric tensors on the domains, invariant rings and the Euler op-
erators. A signed marking and an orientation of an elliptic root system are introduced
in this paper in order to give a natural definition of the domains.

In Section 3, we give the statements of the main results (Theorem 3.7). This the-
orem will be proved in§4 and §5. First we introduce the analytic spectrums of the
invariant rings of the elliptic Weyl groups. We call these spectrums the (modified) com-
plex orbit spaces of the elliptic Weyl groups. On the complexorbit spaces, the Euler
field is defined. Then the main theorem (Theorem 3.7) is stated, where the existence
and the uniqueness of the structures of the Frobenius manifolds on the complex orbit
spaces of the elliptic Weyl groups for the cases of “codimension 1” (see the before of
Theorem 3.7 for the definition) are asserted.

In Section 4, we prove that the complex orbit spaces have a structure of Frobenius
manifold (Theorem 3.7 (1)). First we review the construction of the holomorphic metric
in [16]. We construct a flat pencil. We define the multiplication on the tangent bundle
of the orbit spaces. We show that the Euler fields, the holomorphic metrics, the multi-
plications and its unit fields constitute the structure of the Frobenius manifold. Here
the flat pencil is used.

In Section 5, we prove Theorem 3.7 (2), (3), which asserts that the structure of
the Frobenius manifold with the Euler vector fieldE and the intersection formI � is
unique up toC�-action.

The author would like to thank Prof. Michihisa Wakui for his careful reading of
the manuscript and for his continuous encouragement.

2. Invariant rings of the elliptic Weyl groups

The purpose of this section is to review the invariant ring and the Euler operator
introduced in [16]. A signed marking and an orientation of anelliptic root system are
introduced in this paper in order to give a natural definitionof the domains.
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2.1. Elliptic root system. In this subsection, we define the elliptic root systems
and its orientations.

Let l be a positive integer. LetF be a real vector space of rankl C 2 with a
negative semi-definite or positive semi-definite symmetricbilinear form I W F � F ! R,
whose radical radI WD fx 2 F j I (x, y) D 0, 8y 2 Fg is a vector space of rank 2. For
a non-isotropic element� 2 F (i.e. I (�, �) ¤ 0), we put�_ WD 2�=I (�, �) 2 F . The
reflectionw� with respect to� is defined by

(2.1) w�(u) WD u � I (u, �_)� (8u 2 F).

DEFINITION 2.1 ([15, p. 104, Definition 1]). A setR of non-isotropic elements
of F is an elliptic root system belonging to (F , I ) if it satisfies the axioms 1–4:
1. The additive group generated byR in F , denoted byQ(R), is a full sub-lattice
of F . That is, the embeddingQ(R) � F induces the isomorphism:Q(R)
Z R ' F .
2. I (�, �_) 2 Z for �, � 2 R.
3. w�(R) D R for 8� 2 R.
4. If RD R1 [ R2, with R1 ? R2, then eitherR1 or R2 is void.

For an elliptic root systemR belonging to (F , I ), the additive group radI \Q(R)
is isomorphic toZ2.

DEFINITION 2.2. An elliptic root systemR is called oriented if theR-vector space
radI is oriented. A framefa, bg of radI is called admissible if radI \Q(R) ' Za�Zb
and it gives the orientation of radI .

REMARK 2.3. If an elliptic root system (R, F , I ) comes from vanishing cycles
of a Milnor fiber of a simple elliptic singularity, then radI \ Q(R) ' H1(E1, Z) for
an elliptic curveE1 at infinity (cf. [16, p. 18]). Then (R, F , I ) is canonically oriented
by the complex structure of the elliptic curveE1.

2.2. Hyperbolic extension and the elliptic Weyl group. In this subsection, we
define a signed marking, a hyperbolic extension and the elliptic Weyl group.

DEFINITION 2.4. Let R be an elliptic root systemR belonging to (F , I ). By a
signed marking, we mean a non-zero elementa of rad I \ Q(R) such thatQ(R) \Ra D Za.

Hereafter we fix an oriented elliptic root system with a signed marking (R, a)
such that the quotient root systemR=Ra (WD Image(R ,! F ! F=Ra)) is reduced
(i.e. �, c� 2 R=Ra implies c 2 f�1g).

Let F1 be a real vector space of rankl C3 and I 1W F1� F1 ! R anR-symmetric
bilinear form. The pair (F1, I 1) is called a hyperbolic extension of (F , I ) if F1 contains
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F as a linear subspace, radI 1 D Ra and I 1jF D I . A hyperbolic extension is unique
up to isomorphism. Hereafter we fix a hyperbolic extension (F1, I 1).

We define a reflectionQw� 2 GL(F1) by Qw�(u) WD u � I 1(u, �_)� for u 2 F1.
We define the elliptic Weyl groupQW (resp.W) by

(2.2) QW WD h Qw� j � 2 Ri (resp.W WD hw� j � 2 Ri).
We have a natural exact sequence:

(2.3) 0! KZ ! QW ! W ! 1,

where QW ! W is given by the restriction ofQW on F and KZ is the kernel of QW ! W.
The groupKZ is isomorphic toZ.

2.3. Domain. In this subsection, we define a domainQE for the oriented elliptic
root system with the signed marking (R, a) belonging to (F , I ) such thatR=Ra is
reduced.

For (F , I ), the setfc 2 R j the bilinear formcI defines a semi-negative even lattice
structure onQ(R)g has the unique element of the smallest absolute value. We denote
it by (I �R W I ).

Take b 2 rad I \ Q(R) such thatfa, bg gives an admissible frame. Then we could
choose an isomorphism� W Z ' KZ and Q� 2 F1 n F such that

(2.4) (�(n))(Q�) D Q�C na (n 2 Z), (I �R W I )I 1(Q�, b) > 0.

By the condition (2.4),Q� is unique up to adding an element ofF , and such an iso-
morphism� is unique.

REMARK 2.5. In the paper [16], the signature of the Hermitian form (3.5.5) is
incorrect. The correct form is

H (z, w) D mmax

t(R)(lmaxC 1) Im(� )
I R_ (z, Nw).

Thus the line bundleL in [16, §3.5] becomes ample relative toH which is not the
desired one (see [16,§3.6]).

In order to obtain the desired line bundle, the semi-positive bilinear formsI , I R,
I R_ in [16] should be changed to the semi-negative ones. This is the reason of the
signature of the definition ofQ� in (2.4).

We define two domains:

QE WD fx 2 HomR(F1, C) j ha, xi D 1, Imhb, xi > 0g,(2.5)

H WD fx 2 HomR(rad I , C) j ha, xi D 1, Imhb, xi > 0g,(2.6)
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where h , i is the natural pairingF1C � (F1C)� ! C and F1C WD F1 
R C. We have a
natural projection

(2.7) � W QE! H.

For a root� 2 R, we define the reflection hyperplane ofQE by

(2.8) H� WD fx 2 QE j h�, xi D 0g.
We define a left action ofQW on QE. For g 2 QW and x 2 QE, we defineg � x 2 QE by

(2.9) h�, g � xi WD hg�1(�), xi
for � 2 F1C.

For a complex manifoldM, we denote byOM (resp.�1
M , 2M ) the sheaf of holo-

morphic functions (resp. holomorphic 1-forms, holomorphic vector fields).
We define a vector fieldE0 on QE by the conditions

(2.10) E0x D 0 (8x 2 F), E0 Q� D 1

2�p�1
.

The vector fieldE0 is uniquely determined by the condition (2.4). The reason ofthe
normalization ofE0 will be explained after the definition of the sheafS

W
k in (2.15).

We define aC-symmetric bilinear formI � on �1QE. Since we have a canonical

isomorphismT�
p
QE ' C 
R (F1=Ra) for p 2 QE, we have anO QE-bilinear form

(2.11) I � W �1QE ��1QE ! O QE
induced from I 1 W F1=Ra � F1=Ra ! R. We remark thatLieE0 I � D 0, whereLie is
the Lie derivative.

By the condition Imhb, xi > 0 in (2.5) and (2.6), the action ofQW on QE (resp. QE nS�2R H�) is properly discontinuous (resp. properly discontinuousand fixed point free)

(cf. [16]), thus the orbit spaceQE= QW (resp.
� QE nS�2R H��Æ QW) has a structure of ana-

lytic space (resp. complex manifold). We have the followingcommutative diagram of
analytic spaces:

(2.12)

Since
S�2R H� � QE is locally finite, QE nS�2R H� � QE is open dense. Thus the mor-

phism i1 is an open immersion and its image is open dense.
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Since the tensorsE0 and I � on QE are QW-invariant, these tensors descend to the
space

� QE nS�2R H��Æ QW:

E0 W �1
( QEnS�2R H�)= QW ! O( QEnS�2R H�)= QW,(2.13)

I � W �1
( QEnS�2R H�)= QW ��1

( QEnS�2R H�)= QW ! O( QEnS�2R H�)= QW.(2.14)

2.4. Invariant rings of the elliptic Weyl groups. In order to extend the domain
of the definition of the tensors (2.13) and (2.14), we introduce the invariant ringSW

of the elliptic Weyl group,SW modules�1
S

W , Der
S

W in this subsection and formulate

the tensorsE0 and I � by theseS
W modules in the next subsection.

We define anOH-moduleS
W
k of QW-invariant functions parametrized byk 2 C as

the subsheaf of��O QE by
(2.15)

S
W
k (U ) WD f f 2 ��O QE(U ) j f (g � x) D f (x) (8g 2 QW, 8x 2 ��1(U )), E0 f D k f g

for an open setU � H. By the normalization ofE0 in (2.10), k 2 Z.
We define theOH-graded algebraSW by

(2.16) S
W WDM

k2Z S
W
k .

We have injective homomorphisms

(2.17) S
W ! ��O QE= QW ! ��O( QEnS�2R H�)= QW.

Theorem 2.6 ([1], [2], [5], [11], [12], [22]). TheOH-graded algebraSW is an
OH-free algebra, i.e.

(2.18) S
W D OH[s1, : : : , sn�1]

for s j 2 S
W
c j (H) with c1 � c2 � � � � � cn�1 > 0 and n WD l C 2. We remark that j of

s j is a suffix.

We introduce then-th invariant sn 2 S
W
0 (H). Since an element of radI naturally

gives an element ofSW
0 (H), we definesn D b, whereb 2 rad I is introduced in Sec-

tion 2.3. We putcn D 0. Thens j 2 S
W
c j (H) for j D 1, : : : , n.

We define twoS
W-modules�1

S
W and Der

S
W .

For an open setU � H, we put

(2.19) �1
S

W (U ) WD �1
S

W(U )=C ,
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where R.H.S. is the module of relative differential forms ofaC-algebraSW(U ). SinceS
W

is anOH-free algebra,�1
S

W defines a sheaf.�1
S

W has a structure of anSW-module. We

remark that since a local section of�1
S

W determines a local section���1QE and���1QEnS�2R H�
which is QW-invariant, there exists a natural lifting map�1

S
W ! ���1

( QEnS�2R H�)= QW.

We put

(2.20) Der
S

W WD Hom
S

W (�1
S

W , S
W).

By the generators ofSW, we have

(2.21) �1
S

W D nM
iD1

S
W dsi , Der

S
W D nM

iD1

S
W ��si

.

2.5. Euler operator and bilinear form on the invariant ring. We define the
Euler operatorE as a vector field onQE defined by

(2.22) E WD 1

c1
E0.

As in the case ofE0 in (2.13), E defines a morphism

(2.23) E W �1
( QEnS�2R H�)= QW ! O( QEnS�2R H�)= QW.

By [16], we have theSW-homomorphism andSW-symmetric bilinear form:

E W �1
S

W ! S
W,(2.24)

I � W �1
S

W ��1
S

W ! S
W(2.25)

with the following commutative diagrams:

(2.26)

(2.27)

where the upper line of (2.26) is induced by (2.23) and the upper line of (2.27) is
induced by (2.14). The morphisms (2.24) and (2.25) are uniquely characterized by the
diagrams (2.26) and (2.27) respectively becauseS

W ! ��O( QEnS�2R H�)= QW is injective.
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3. Results

In this section, we first define the (modified) complex orbit space QE== QW of the
action of the elliptic Weyl group QW on the domainQE, where QE and QW are defined
in Section 2. Then we assert thatQE== QW has a structure of Frobenius manifold under
some suitable condition.

3.1. The orbit space of the elliptic Weyl group. In this subsection, we define
the (modified) orbit space of the elliptic Weyl group action and study the tensors on
the orbit space.

Let QE, H be the domains andQW be the elliptic Weyl group defined in Section 2.
Let (An) and (Set) be categories of analytic spaces and sets, respectively. Let ((An)=H)Æ
be the dual category of the category ofH-objects. Since theOH-algebraS

W is of finite
presentation (Theorem 2.6), the analytic space SpecanS

W could be defined by [10]. We
define the (modified) orbit spaceQE== QW by

(3.1) QE== QW WD SpecanSW.

We denote the structure morphismQE== QW ! H also by � . The spaceQE== QW is iso-
morphic toH � Cn�1 by Theorem 2.6.

By definition of Specan, there exists a natural isomorphism:

Hom(An)=H(X, QE== QW) ' HomOX ( f �SW, OX)

for an object f W X ! H of the category (An)=H. Since there exists a canonical iso-
morphism: HomOX ( f �SW, OX) ' HomOH (SW, f�OX), we have

(3.2) Hom(An)=H(X, QE== QW) ' HomOH (SW, f�OX).

We define a ringed space (H, S
W) by the spaceH with the sheafSW. We define

a morphism of the category of ringed spaces:

(3.3) ' W ( QE== QW, O QE== QW) ! (H, S
W)

by the mapping� W QE== QW ! H and the morphism

(3.4) � W S
W ! ��O QE== QW

which corresponds to the identity element of Hom(An)=H( QE== QW, QE== QW) by (3.2).

Proposition 3.1. We have the canonical isomorphism:

(3.5) '��1
S

W ' �1QE== QW.
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Proof. We define the ringed space (QE== QWalg, O QE== QWalg) as follows: As a set,QE== QWalg D QE== QW. A topology on QE== QWalg is introduced so thatf(U , f ) � QE== QWalg j
U � HW open, f 2 0(U , SW)g becomes an open basis, where (U , f ) WD fx 2 QE== QWalg j�(x) 2 U , f (x) ¤ 0g. We define the sheafO QE== QWalg associated with the presheaf

O QE== QWalg((U , f )) WD 0(U , S
W) f for an open set (U , f ).

The morphism' W ( QE== QW, O QE== QW) ! (H, SW) factors as the composite of the mor-
phisms:

(3.6) (QE== QW, O QE== QW)
'1�! ( QE== QWalg, O QE== QWalg)

'2! (H, S
W).

We define a sheaf�1QE== QWalg on QE== QWalg as a sheafification of the presheaf

(3.7) (U , f ) 7! �1
S

W (U ) f .

Then we have a natural isomorphism

(3.8) '�2�1
S

W ' �1QE== QWalg

by a discussion of an affine morphism in scheme theory. Also wehave a natural iso-
morphism

(3.9) '�1�1QE== QWalg ' �1QE== QW
because anO QE== QWalg-locally free basis of algebraic 1-forms is regarded as anO QE== QW-
locally free basis of analytic 1-forms.

We define theO QE== QW-homomorphism andO QE== QW-symmetric bilinear form

E W �1QE== QW ! O QE== QW,(3.10)

I �QE== QW W �1QE== QW ��1QE== QW ! O QE== QW,(3.11)

by taking the pull-back of (2.24) and (2.25) by'.
We shall see the relation between (3.10) (resp. (3.11)) onQE== QW and (2.23)

(resp. (2.14)) on
� QE nS�2R H��Æ QW.

By (3.2), a natural inclusionSW ,! ��O QE= QW corresponds to the mapping

(3.12) i2 W QE= QW ! QE== QW.

Proposition 3.2. The morphism i2 is an open immersion and its image is open
dense.
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Proof. By [16], the group QW decomposes into

0! QH ! QW ! Wf ! 1,

where QH is a Heisenberg group andWf is a finite Weyl group. Then we have the
following diagrams:

where QE== QH WD SpecanS, S WDL
k2ZSk andSk is a sheaf defined bySk(U ) WD f f 2��O QE(U ) j f (g � x) D f (x) (8g 2 QH , 8x 2 ��1(U )), E0 f D k f g for an open subset

U � H. By the geometric description ofQE= QH ! QE== QH in [16], QE= QH ! QE== QH is an
open immersion and its image is open dense. We remark that we have the relationsQE= QH D L� and QE== QH D L for L�, L in [16]. Then the morphism (QE= QH )=Wf !
( QE== QH )=Wf is an open immersion and its image is open dense. Thus we have the
result.

The composite mapping
� QE nS�2R H��Æ QW i1�! QE= QW i2�! QE== QW is also an open im-

mersion and its image is open dense.
We have the following commutative diagram of ringed spaces:

(3.13)

Proposition 3.3. TheO( QEnS�2R H�)= QW-homomorphism(2.23) (resp. theO( QEnS�2R H�)= QW-

symmetric bilinear form(2.14)) is uniquely extended to theO QE== QW-homomorphism�1QE== QW ! O QE== QW (resp. O QE== QW-symmetric bilinear form�1QE== QW � �1QE== QW ! O QE== QW) and

coincides with(3.10) (resp. (3.11)).

Proof. Since the image of the open immersioni2 Æ i1 is open dense, we should
only prove that the pull-back of (3.10) (resp. (3.11)) byi2 Æ i1 coincides with (2.23)
(resp. (2.14)). The former is the pull-back of (2.24) (resp.(2.25)) by ' Æ i2 Æ i1. The
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latter could be written asE W (' Æ i2 Æ i1)��1
S

W ! (' Æ i2 Æ i1)�SW (resp. I � W (' Æ i2 Æ
i1)��1

S
W � (' Æ i2 Æ i1)��1

S
W ! (' Æ i2 Æ i1)�SW).

Then we have the result by applying the following lemma to (2.26) and (2.27)
using the fact that (' Æ i2 Æ i1)� D ��.

Lemma 3.4. Let f W (X, OX) ! (Y, OY) be a morphism of ringed spaces. Let
F , G be OY-modules. If we have� W f �F ! f �G, � W F ! G and a commutative
diagram:

(3.14)

for the natural morphismsF ! f� f �F and G ! f� f �G, then we have� D f ��.

Proof. By the naturality off � f� ! id., we have the commutative diagram:

(3.15)

Since the composite morphismf �F ! f � f� f �F ! f �F is the identity morphism,
we have the result.

3.2. Frobenius manifold. In this section, we give the main theorem which as-
serts that the spaceQE== QW admits a structure of Frobenius manifold and it is unique up
to C� action under some suitable condition.

We first remind the definition of Frobenius manifold and its intersection form.

DEFINITION 3.5 ([8, p. 146, Definition 9.1]). A Frobenius manifold is a tuple
(M, Æ, e, E, J) where M is a complex manifold of dimension� 1 with holomorphic
metric J and multiplicationÆ on the tangent bundle,e is a global unit field andE is
another global vector field, subject to the following conditions:
1. the metric is invariant under the multiplication, i.e.,J(X Æ Y, Z) D J(X, Y Æ Z)
for local sectionsX, Y, Z 2 2M ,
2. (potentiality) the (3, 1)-tensorrÆ is symmetric (here,r is the Levi–Civita connec-
tion of the metric), i.e.,rX(YÆZ)�YÆrX(Z)�rY(XÆZ)CXÆrY(Z)�[X,Y]ÆZ D 0,
for local sectionsX, Y, Z 2 2M ,
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3. the metricJ is flat,
4. e is a unit field and it is flat, i.e.reD 0,
5. the Euler fieldE satisfiesLieE( Æ ) D 1 � Æ and LieE(J) D D � J for some D 2 C.

DEFINITION 3.6 ([4, p. 191]). For a Frobenius manifold (M, Æ, e, E, J), we de-
fine an intersection formh� W �1

M ��1
M ! OM by

(3.16) h�(!1, !2) D J(E, J�(!1) Æ J�(!2))

for local 1-forms!,!0 2 �1
M , where J�W �1

M ! 2M is the isomorphism induced byJ.

For the oriented elliptic root system with the signed marking (R, a) such thatR=Ra
is reduced, the conditionc1 > c2 is called “codimension 1” in [16], wherefc1, c2g is a
part of degrees of generators ofOH-algebraS

W in Theorem 2.6.

Theorem 3.7. If the oriented elliptic root system with the signed marking(R, a)
such that R=Ra is reduced satisfies the condition of codimension1, then we have the
following results.
(1) QE== QW has a structure of Frobenius manifold( QE== QW, Æ, e, E, J) with the following
conditions:

1. E is the Euler field defined in(3.10).
2. I �QE== QW gives the intersection form of a Frobenius manifold( QE== QW, Æ, e, E, J).

(2) For c 2 C�, ( QE== QW, c�1Æ, ce, E, c�1J) is also a Frobenius manifold satisfying con-
ditions of (1).
(3) Let ( QE== QW, Æ0, e0, E0, J 0) be a Frobenius manifold which satisfies conditions of(1).
Then there exists c2 C� such that( QE== QW, Æ0, e0, E0, J 0) D ( QE== QW, c�1 Æ, ce, E, c�1J).

REMARK 3.8. In the definition of Frobenius manifold, the homogeneity LieE(J)D
D � J for some D 2 C is assumed. By the equation (3.16),D must be 1 because
LieE I �QE== QW D 0 andLieE(Æ) D Æ.

REMARK 3.9. The existence of the holomorphic metricJ is already shown in
[16]. The existence of the multiplication is already announced in [18] in the form of
the existence of the potential.

4. Construction of the structure of the Frobenius manifold

In this section, we give a proof of Theorem 3.7 (1), that is, the existence of the
structure of the Frobenius manifold onQE== QW. In Section 4.1, we review a construction
[16] of a flat metric onQE== QW (Proposition 4.4) and flat coordinates. In Section 4.2, we
recall the notion of a flat pencil. In Section 4.3, we construct a multiplication on the
tangent space ofQE== QW. In Section 4.4, we construct a potential of the multiplication.
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In Section 4.5, we show the properties of the multiplication. In Section 4.6, we show
that these constructions give a structure of the Frobenius manifold.

Hereafter we shall calculate tensors by using indices. In that case, we use Einstein’s
summation convention, that is, if an upper index of one tensor and a lower of the other
tensor coincide, then we take summation for the same letter.

4.1. A construction of a flat metric and flat coordinates. Let QE== QW be the
orbit space of the elliptic Weyl group action defined in (3.1). Hereafter we assume
that (R, a) is codimension 1.

We prepare the relation betweenSW-modules andO QE== QW-modules.

We first define a notion of degree. Forf 2 S
W and d 2 Q, if E f D d f , then we

call d the degree of f. For f 2 S
W
k , the degree off is k=c1. Especially the degree

of si in Theorem 2.6 isdi WD ci =c1 (i D 1, : : : , n), i.e.

(4.1) Esi D di si (i D 1, : : : , n), 1D d1 > d2 � � � � � dn�1 > dn D 0.

A degree is defined also for local sections of�1
S

W and Der
S

W . They haveS
W-free

homogeneous generators by (2.21).
We have morphisms:

S
W ! '�'�SW ' '�O QE== QW,(4.2)

�1
S

W ! '�'��1
S

W ' '��1QE== QW,(4.3)

Der
S

W ! '�'� Der
S

W ' '�2 QE== QW,(4.4)

where (4.2) is� W S
W ! ��O QE== QW defined in (3.4). The morphisms (4.3) and (4.4) are

defined for a morphism' W ( QE== QW, O QE== QW) ! (H, S
W).

Proposition 4.1. The morphisms(4.2), (4.3) and (4.4) are injective. A homo-
geneous local section with respect to the Euler operator E22 QE== QW( QE== QW) of '�O QE== QW
(resp. '��1QE== QW, '�2 QE== QW) is an image ofSW (resp. �1

S
W , Der

S
W ).

Proof. The morphism' decomposes into' D '2 Æ '1 as in the proof of Proposi-
tion 3.5. For aS

W-moduleM, we haveM ' '2�'�2M because'2 is an analogue of
affine morphism of scheme theory. Also'�2M! '1�'�1 ('�2M) is injective because'1

is faithfully flat by [20]. Thus we obtain the injectivity ofM! '�'�M.
By semi-positivity of the degrees ofs1, : : : , sn, a homogeneous section of'�O QE== QW

is an image of (4.2). Since�1
S

W (resp. Der
S

W ) is a S
W-free with homogeneous gener-
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ator ds1, : : : , dsn (resp.�=�s1, : : : , �=�sn), the morphism (4.3) (resp. (4.4)) is written as

nM
iD1

S
Wdsi ! nM

iD1

'�O QE== QWdsi ,(4.5)

(resp.
nM

iD1

S
W �=�si ! nM

iD1

'�O QE== QW �=�si ).(4.6)

Then the assertion is obvious.

We prepare the notations. We putSW
k WD S

W
k (H), SW WD S

W(H). Then SW is an
OH(H)-free algebra:

(4.7) SWD OH(H)[s1, : : : , sn�1].

We defineSW-modules:

DerSW WD Der
S

W (H),(4.8)

�1
SW WD �1

S
W (H).(4.9)

We put

Derlowest
SW WD fÆ 2 2 QE== QW( QE== QW) j [E, Æ] D �Æ, Æ is non-singularg,(4.10)

�Æ WD �! 2 �1QE== QW �� LieÆ ! D 0
	

for Æ 2 Derlowest
SW ,(4.11)

V WD �Æ 2 Derlowest
SW

�� Æ2I �QE== QW(!, !0) D 0, 8!, !0 2 �Æ	.(4.12)

Using generatorss1, : : : , sn in Theorem 2.6, we have Derlowest
SW D O�(H) �=�s1 by

Proposition 4.1.

Proposition 4.2 ([16]). V is non-empty and for anyÆ 2 V , we have

(4.13) V D C�Æ.
REMARK 4.3. We remind the problem in the beginning of the induction.For the

construction of the structure of the Frobenius manifold for(M, I �), one of the impor-
tant point is to construct the unit fielde.

For the case of the complex orbit space of the finite irreducible Coxeter group,e
is characterized up toC� multiplication as a lowest degree vector field. So we could
construct the unit fielde by this characterization.

For the case of the complex orbit space of the elliptic Weyl group for the elliptic
root system of codimension 1, we could not characterizee only by its degree. But as
we will see in Proposition 5.1,e must be an element ofV . The above proposition
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shows that the conditione2 V characterizee up to C� multiplication. This character-
ization is a key point of our construction.

However in general cases (e.g. the complex orbit space of thereflection group for
the root system with indefinite inner product) whose reflection group invariants contains
negative degree ones, we do not know any characterization ofe. This is one of the
difficulties of the generalization of our construction.

The following proposition gives a flat metric onQE== QW.

Proposition 4.4 ([16]). Take an arbitrary elementOe of V. Then there exists a
unique non-degenerateSW-symmetric bilinear form

(4.14) OJ W Der
S

W � Der
S

W ! S
W

such that theO QE== QW-symmetric bilinear form:

(4.15) OJ W 2 QE== QW �2 QE== QW ! O QE== QW,

obtained by the pull-back of(4.14) by ' in (3.3) satisfies the condition

(4.16) OJ�(!1, !2) D OeI�QE== QW(!1, !2)

for the dual metric of (4.15) and !1, !2 2 � Oe. The O QE== QW-symmetric bilinear form

(4.15) is homogeneous of degree1, i.e. LieE( OJ) D OJ. Furthermore, the Levi–Civita

connectionr OJ for OJ is flat andr OJ OeD 0.

We introduce flat coordinates. SinceQE== QW is simply-connected, we could take
functions whose differential are flat with respect toOJ�. In Lemma 4.5, we show that
they generate the ringSW, thus they give global coordinates forQE== QW.

Lemma 4.5. (1) There exist holomorphic functions t1, : : : , tn 2 SW such that
(i) fdt1, : : : , dtng gives aC-basis of flat sections of�1QE== QW with respect to OJ� on

QE== QW.
(ii) t1, : : : , tn are homogeneous elements of SW with degree di (i.e. Eti D di t i ),
where di is defined in(4.1).
(iii) tn D sn, where sn is defined afterTheorem 2.6.
(iv) OeD �=�t1.

(2) For t1, : : : , tn, we have the following results:
(i) S

W D OH[t1, : : : , tn�1].
(ii) t1, : : : , tn give global coordinates onQE== QW.
(iii) �1

SW DLn�D1 SW dt�. We remark that we use Greek letter for the suffix.
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(iv) We prepare elements�=�t� 2 DerSW by (�=�t�)t� D Æ�� . Then we haveDerSW DLn�D1 SW �=�t� .

Proof. Since QE== QW is simply-connected, the space

(4.17) H1 WD �! 2 0� QE== QW, �1QE== QW� �� r OJ! D 0
	

is n-dimensional. We see that any element ofH1 is closed becauser OJ is torsion-free.

SinceLieE OJ D OJ, a tensorr OJ E is flat ([8, p. 147]). ThenE acts onH1. Thus H1 is
identified with

(4.18) H2 WD �! 2 0�H, �1
S

W

� �� r OJ! D 0
	
,

by (4.3). Since' is faithfully flat, the sequence

(4.19) 0! C ! S
W ! �1

S
W ! �2

S
W ! � � �

is exact. Thus we have an exact sequence

(4.20) 0! C ! SW ! �1
SW ! �2

SW ! � � �
because each homogeneous part of each graded module of (4.19) is coherent and the
domainH is Stein. Then we could taket1, : : : , tn 2 SW satisfying (1) (i). We could
take t1, : : : , tn 2 SW so thatt1, : : : , tn are homogeneous of degree degt1 � � � � � degtn.
Since the Jacobian�(t1, : : : , tn)=�(s1, : : : , sn) is not 0, degrees oft i must bedi . For
a proof of (1) (iii) (iv), see [16].

We prove (2). For a proof of (2) (i), we first list up the set of degree ofs�.
Put fd1, : : : , dng D fp1, : : : , pmg such that 1D p1 > p2 > � � � > pm D 0. We put

Qi D f� j d� D pi g.
We shows� 2 OH(H)[t1, : : : , tn�1] for � 2 Qi by induction oni , that is, we show

it in the order ofi D m, i D m� 1, i D m� 2, : : : inductively.
If i D m, then Qm D fng and we havesn 2 OH(H), thus the assertion is proved

for this case.
If i D m�1, then for� 2 Qm�1, we havet� DP�2Qm�1 f��s� with f�� 2 OH(H).

The matrix (f��) of size #Qm�1 is invertible because the Jacobian (�t�=�s� ) of size n
is upper-triangular and invertible. Thuss� 2 OH(H)[t1, : : : , tn�1] for � 2 Qm�1.

We assume thats� 2 OH(H)[t1, : : : , tn�1] for � 2 QiC1 (1� i � m� 2).
Then by the parallel discussion as above, we could show thats� (� 2 Qi ) is a linear

combination oft� (� 2 Qi ) moduloOH(H)-coefficient polynomialss
 with degs
 < pi .
By the assumption of induction, we haves� 2 OH(H)[t1, : : : , tn�1] for � 2 Qi . Thus
we have (2) (i).

(2) (ii), (2) (iii), (2) (iv) are direct consequences of (2) (i).
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We call these elementst1, : : : , tn 2 SW with the properties of Lemma 4.5 (1)the flat
coordinates.

4.2. Flat pencil. The purpose of Section 4.2 is to recall the notion of a flat
pencil. We obtain special properties of the Christoffel symbols with respect to flat co-
ordinates by the technique of a flat pencil by the parallel discussion of [4]. They are
summarized in Proposition 4.8. They will be used to construct a multiplication in Sec-
tion 4.3. and its potential in Section 4.4.

First we introduce the rational extensions both of a symmetric SW-bilinear form
and its Levi–Civita connection. LetK (SW) be the quotient field of the integral domain
SW. We define�1

K (SW) and DerK (SW) by

(4.21) �1
K (SW) WD K (SW)
SW �1

SW , DerK (SW) WD K (SW)
SW DerSW .

Let g�W �1
SW ��1

SW ! SW be a symmetricSW-bilinear form with 0¤ detg�(ds�, ds�) 2
SW. It induces theK (SW)-linear extension ofg�:

g� W �1
K (SW) ��1

K (SW) ! K (SW),(4.22)

which is non-degenerate because detg�(ds�, ds�) is a unit in K (SW). The Levi–Civita
connection and its dual:

rg�W DerK (SW) � DerK (SW) ! DerK (SW),(4.23)

rg�W DerK (SW) ��1
K (SW) ! �1

K (SW)(4.24)

are defined and characterized by the metric conditionrg�g� D 0 and torsion free con-

dition rg�Æ Æ0 �rg�Æ0 Æ D [Æ, Æ0] for Æ, Æ0 2 DerK (SW). We call theK (SW)-bilinear form g�
flat if the curvature ofrg� vanishes, i.e.

(4.25) rg�Æ rg�Æ0 � rg�Æ0 rg�Æ D rg�
[Æ,Æ0]

for any Æ, Æ0 2 DerK (SW).
We shall come back to our situation. We remind that

(4.26) I � W �1
SW ��1

SW ! SW

is defined as a global section of (2.25).
The K (SW)-linear extension ofI � is non-degenerate and flat becauseI �QE== QW is non-

degenerate and flat on the open dense subset
� QE nS�2R H��Æ QW � QE== QW by Proposi-

tion 3.3.
Taking a global section onH of the dual tensorOJ� of OJ in (4.14), we have

(4.27) OJ� W �1
SW ��1

SW ! SW.
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The K (SW)-linear extension ofOJ� is non-degenerate and flat by Proposition 4.4.
We denote the Levi–Civita connections forK (SW)-linear extensionsI � and OJ� byr I � andr OJ� respectively.
Hereafter we use the flat coordinatest1, : : : , tn 2 SW introduced in Lemma 4.5 (1).
We fix some notations. We simply denote�=�t� by ��. Thus OeD �1. We put

(4.28) ��� WD OJ�(dt�, dt�) 2 C.

We have det(���) ¤ 0 because the setfdt1, : : : , dtng is an SW-free basis of�1
SW , andOJ is non-degenerate. The complex numbers��� are determined by the property

(4.29) �����
 D Æ
� ,

where we take summation for the same letter.
We put

(4.30) g�� WD I �(dt�, dt�) 2 SW.

We put

(4.31) 0��
 WD I �(dt�, r I �
 dt�) 2 K (SW), where r I �
 WD r I ��
 .

Proposition 4.6. Let t1, : : : , tn be the flat coordinates defined as above.
(1) 0��
 is an element of SW.

(2) g�� and 0��
 satisfy

(4.32) �2
1(g��) D 0, �2

1(0��
 ) D 0.

(3) det(�1g��) is a unit in SW.

Proof. (1) is a direct consequence of the results of [16]. We only give the out-
line. By [16, p. 43, (6.7)],r I �
 dt� becomes a logarithmic form in the sense of [16].

Meanwhile I �(!, !0) is an element ofSW for ! 2 �1
SW and a logarithmic form!0 by

[16, p. 38, (5.5.1)]. Thus we obtain the assertion of (1).
For a proof of (2), we first check the degrees of (�1)2g�� and (�1)20��
 . We have

(4.33) deg(�1)2g�� D d� C d� � 2� 0, deg(�1)20��
 D d� C d� � d
 � 2� 0.

Their degrees are 0 only when� D � D 1, 
 D n. In this case, (�1)2g11 D ( Oe)2g11 DOe�11 D 0. We show (�1)2011
n D 0. Since

011
n D I ��dt1, r I �

n dt1
� D 1

2
�n I �(dt1, dt1) D 1

2
�ng11,
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it follows that (�1)2011
n D (1=2)�n(�1)2g11D 0. In the case where degrees are negative,

then (�1)2g�� D (�1)20��
 D 0.

For a proof of (3), we remind thatOJ� is non-degenerate. Thus detJ�(dt�, dt�) D
det(�1g��) is a unit in SW.

We show that I � and OJ� give a flat pencil in the sense of [4, p. 194, Defini-
tion 3.1].

Proposition 4.7. K (SW)-linear extensions

I � W �1
K (SW) ��1

K (SW) ! K (SW),(4.34)

OJ� W �1
K (SW) ��1

K (SW) ! K (SW)(4.35)

form a flat pencil[4, p. 194 (3.35)].Namely, if we put I�� WD I �C� OJ� for any � 2 C,
we have the following.
(1) I �� is non-degenerate and flat.
(2) Let r� be the Levi–Civita connection for I�� . Then the equality

(4.36) I �� �!1, r�Æ !2
� D I ��!1, r I �Æ !2

�C � OJ��!1, r OJ�Æ !2
�

holds for!1, !2 2 �1
SW , Æ 2 DerSW .

Proof. A proof is completely parallel to Lemma D.1 in [4, p. 227].
We assert that for any (r , s) 2 C2 n f(0, 0)g, the tensorrg�� C s �1g�� is non-

degenerate, flat and its Christoffel symbol0��(r ,s)
 equalsr0��
 C s �10��
 .
We show that the proposition follows from this assertion. Weobtain (1) by (r ,s)D

(1, �) because�1g�� D ��� . If (r , s) D (0, 1), then we see that�10��
 is a Christoffel

symbol of �1g�� D ��� . Thus we obtain (2) by (r , s) D (1, �).
We show the assertion. Using the flat coordinates, we regardg�� and0��
 as func-

tions on flat coordinates, i.e.

(4.37) g��(t1, : : : , tn), 0��
 (t1, : : : , tn).

We assume thatr ¤ 0. Thenrg��(t1C s=r , t2, : : : , tn) is non-degenerate, flat and
its Christoffel symbol isr0��
 (t1Cs=r , t2, : : : , tn). Sinceg��(t1, : : : , tn), 0��
 (t1, : : : , tn)

are polynomial functions of degree 1 with respect tot1 by (4.32), we have

rg���t1 C s

r
, t2, : : : , tn

� D rg��(t1, : : : , tn)C s �1g��(t1, : : : , tn),(4.38)

r0��

�

t1 C s

r
, t2, : : : , tn

� D r0��
 (t1, : : : , tn)C s �10��
 (t1, : : : , tn).(4.39)
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Thus we proved the assertion for the caser ¤ 0.
For the case ofr D 0, s �1g�� D s��� is non-degenerate and flat becauses ¤ 0.

On Christoffel symbol, we see that0��(r ,s)
 � [r0��
 C s �10��
 ] is a rational function
with respect to (r , s). Since it is 0 on the domainr ¤ 0, we see that it is 0 for any
(r , s) 2 C2 n f(0, 0)g. Thus we proved the assertion.

The following is a direct consequence of Proposition 4.7 (cf. [4, p. 226, (D.1a),
(D.2)]) and (4.20).

Proposition 4.8. (1) There exists a homogeneous element f� 2 SW satisfying the
following relations

(4.40) 0��
 D ��� ���
 f � (�, 
 D 1, : : : , n).

(2) We have

(4.41) 0��
 0
 Æ� D 0�Æ
 0
�� (�, �, Æ, � D 1, : : : , n).

We use the following results in Section 4.4 and 4.5.

Lemma 4.9. We have

gn� D �1nd�t�,(4.42)

0�n� D 0,(4.43)

0n�� D �1nd�Æ�� .(4.44)

Proof. For (4.42), we should prove

(4.45) I �(dtn) D �1nE.

We define theSW-isomorphism

(4.46) DerSW
��! �1

SW , Æ 7! OJ(Æ, � )
induced by OJ W DerSW � DerSW ! SW and denote it also byOJ. By [16, p. 51, (9.8),
Assertion (iii)] and [16, p. 52, (9.9), Corollary], we have

(4.47) I �( OJ( Oe)) D E.

We remark that the Euler fieldE in [16, p. 38, (5.4.3)] corresponds to our operatorE0.
Then bydtn D �kn OJ(�=�tk) D �1n OJ(�=�t1) D �1n OJ( Oe), we have the result.
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For (4.43), we should prove

(4.48) r I �� dtn D 0

because0�n� D I ��dt�, r I �� dtn
�

by definition. Since we have

r I �� dtn D r I �� (I �)�1(�1nE) D �1n(I �)�1(r I �� E) D 0

by (4.45) andr I �� E D 0 (cf. [16, p. 43, (6.6)]), we have the result.
For (4.44), we have

(4.49) ��gn� D I ��r I �� dtn, dt��C I ��dtn, r I �� dt�� D 0�n� C 0n�� .

By (4.42) and (4.43), we have (4.44).

4.3. A construction of a multiplication. The purpose of this subsection is to
define a multiplication. The following proposition gives a motivation of Definition 4.11

Proposition 4.10. Let t1, : : : , tn be the flat coordinates defined right afterLem-
ma 4.5.We assume that there exists a multiplicationÆ on the tangent bundle ofQE== QW
such that( QE== QW, Æ, Oe, E, OJ) becomes a Frobenius manifold whose intersection form is
I �QE== QW. We put the structure coefficients C��
 (�, �, 
 D 1, : : : , n) with respect to the

O QE== QW-free basis OJ�(dt1), : : : , OJ�(dtn) by the equations:

OJ�(dt�) Æ OJ�(dt�) D C��
 OJ�(dt
 ).

Then we have

0��
 D d�C��
 ,(4.50)

C�n
 D �1nÆ�
 .(4.51)

By the equations(4.50), (4.51)and the fact that d� ¤ 0 if � ¤ n, we see that the
structure of the multiplication is unique if it exists.

Proof. By the uniqueness of the Levi–Civita connection withrespect to the ten-
sor I �QE== QW and the discussion of [4, p. 194, Lemma 3.4], we have (4.50). Also by the

equation OJ�(dtn) D �1n�1 D �1n Oe, we have (4.51).

DEFINITION 4.11. We define the multiplicationOÆ by the equations:

(4.52) OJ�(dt�) OÆ OJ�(dt�) WD OC��
 OJ�(dt
 )
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where

(4.53) OC��
 WD
8><
>:

1

d� 0��
 , if � ¤ n,

�1nÆ�
 , if � D n.

This definition does not depend on the choice of the flat coordinatest1, : : : , tn.
By S

W-linear extension, we have

(4.54) OÆ W Der
S

W � Der
S

W ! Der
S

W .

By taking a pull-back of (4.54) by' in (3.3), we define a multiplication

(4.55) OÆ W 2 QE== QW �2 QE== QW ! 2 QE== QW.

We shall show that (QE== QW, OÆ, Oe, E, OJ) becomes a Frobenius manifold in the fol-
lowing subsections.

4.4. Existence of a potential. The purpose of this subsection is to show the
existence of a potential for the multiplication defined in Section 4.3. We give it in
Proposition 4.12 adding to the ambiguity of a potential.

We explain the idea of the construction of a potentialF . We construct a poten-
tial of the multiplication by a technique of a flat pencil which is similar to the finite
Coxeter group case [4]. But our multiplicationOÆ is defined in a case by case manner
(cf. (4.53)). Thus we need to check the compatibility conditions also in a case by case
manner.

Let t1, : : : , tn be the flat coordinates defined right after Lemma 4.5.

Proposition 4.12. (1) There exists F2 SW of degree2 such that

(4.56) OJ(X OÆ Y, Z) D XY Z F

for flat vector fields X, Y, Z on QE== QW with respect to OJ. Such F is unique up to
adding c(t1)2 for some c2 C.
(2) For any F 2 SW satisfying(4.56), we have

(4.57) I �QE== QW(!, !0) D E OJ�(!) OJ�(!0)F
for flat 1-forms !, !0 on QE== QW with respect to OJ. Conversely any degree2 element
F 2 SW satisfying(4.57) satisfies(4.56).

Proof. The assertions are all linear with respect to flat 1-forms !, !0 and a flat
vector field X, Y, Z. Then we should only prove the following assertions (a), (b), (c):
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(a) There existsF 2 SW of degree 2 such that

OC��
 D �����������
 F (�, �, 
 D 1, : : : , n),(4.58)

g�
 D E����
�����F (�, 
 D 1, : : : , n).(4.59)

(b) An elementF 2 SW satisfying (4.58) is unique up to addingc(t1)2 for somec 2 C.
(c) An elementF 2 SW satisfying (4.59) is unique up to addingc(t1)2 for somec 2 C.

Here we used notations such asg�� etc. defined after Lemma 4.5.
We prove (a) in five steps.
As the first step, by Proposition 4.8 (1), we could take a homogeneous element

f 
 2 SW satisfying the following relations

(4.60) 0�
� D ��� ���� f 
 (�, � D 1, : : : , n).

We put

(4.61) F
 D
8>><
>>:

f 

d
 , if 
 ¤ n,

1

2
�1n��� t�t� , if 
 D n.

We show thatF
 satisfies

(4.62) OC�
� D ��� ���� F
 (�, � D 1, : : : , n).

If 
 D n, it is O.K. by definition of C�n� . If 
 ¤ n, then it is O.K. by (4.60) and
(4.61). F
 2 SW is homogeneous of degree 1C d
 D 2� (1� d
 ).

As the second step, we shall check the equation:

(4.63) g�
 D (d� C d
 )��� ��F
 .

If 
 ¤ n in (4.63), then we should only prove the equation

(4.64) d
 g�
 D (d� C d
 )��� ��(d
 F
 )

becaused
 ¤ 0. We use the torsion freeness ofr I � (cf. [4, p. 193, (3.27)]):

(4.65) g��0�
� D g��0�
� .

We take� D n. Then L.H.S. of (4.65) becomes

(4.66) g��0n
� D g�� (�1nd
 Æ
� ) D �1nd
 g�
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by (4.44). R.H.S. of (4.65) becomes

(4.67)

gn�0�
� D (�1nd� t� )(��� ���� f 
 ) by (4.42) and (4.60)

D �1n(d� t� �� )(��� �� f 
 )

D �1n(d� C d
 )(��� �� f 
 ) by deg��� �� D �(1� d�).

Then by�1n ¤ 0, we have (4.64).
If 
 D n in (4.63), then we should prove the equation

(4.68) g�n D (d� C dn)��� ��Fn.

L.H.S. is �1nd� t� by (4.42). R.H.S. isd���� ��Fn by dn D 0. Then (4.68) is a con-
sequence of the definition ofFn.

As the third step, we show that there exists a homogeneous element F 2 SW of
degree 2d1 D 2 such that it satisfies the following equation:

(4.69) F� D �����F .

By (4.20), we should only prove the integrability conditions

(4.70) ��� ��F
 D �
 � ��F�
for � ¤ 
 . Since� ¤ 
 , we haved� C d
 ¤ 0. Then by (4.63), the assertion (4.70)
reduces to the property of metricg�
 D g
� .

As the fourth step, we have (4.59) becauseE����
�����F D (d�Cd
 )����
�����F
for E F D 2F .

As the fifth step, we have (4.58) because of (4.62) and (4.69).
Thus we finished a proof of the part (a).
We prove the part (b). LetF1 and F2 be degree 2 elements ofSW satisfying the

condition (4.58). ThenF3 WD F1 � F2 satisfies 0D �����������
 F3. Thus F3 is a
polynomial of t1, : : : , tn of degree less than or equal to 2. But by the degree condi-
tion, F3 must be constant times (t1)2. Thus we see the ambiguity ofF satisfying the
condition (4.58).

We prove the part (c). LetF4 andF5 be degree 2 elements ofSW satisfying the condi-
tion (4.59). ThenF6 WD F4�F5 satisfies 0D E����
�����F6 D (d�Cd
 )����
�����F6,
where the last equality comes from the degree condition. Thus we have

(4.71) ����
�����F6 D
�

0, if (�, 
 ) ¤ (n, n),
f , if (�, 
 ) D (n, n)

for some elementf 2 SW of degree 0. ThusF6 D (1=2) f (t1)2C g, whereg 2 SW is a
linear combination oft1, : : : , tn plus constant. But by the degree condition,g must be
0. Applying the equation (4.71) for the case of (�, 
 ) D (1, n), we see thatf must be
a constant. Thus we see the ambiguity ofF satisfying the condition (4.59).
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4.5. Property of the multiplication. The purpose of this subsection is to show
the properties of the multiplication.

Proposition 4.13. For vector fields X, Y, Z on QE== QW, we have
(1) X OÆ Y D Y OÆ X.
(2) Oe OÆ X D X.
(3) (X OÆ Y) OÆ Z D X OÆ (Y OÆ Z).

Proof. Let t1, : : : , tn be the flat coordinates defined right after Lemma 4.5.
For (1), it is a direct consequence of Proposition 4.12.
For (2), we need to show

(4.72) OJ�(dt�) OÆ OeD OJ�(dt�) (� D 1, : : : , n).

By definition, we have

OJ�(dt�) OÆ OJ�(dtn) D OC�n� OJ�(dt�) D �1nÆ�� OJ�(dt�) D �1n OJ�(dt�).

Since OJ�(dtn) D �1n Oe and �1n ¤ 0, we obtain (4.72).
For (3), we need to show

(4.73) OC��
 OC
 Æ� D OC�Æ
 OC
�� (�, �, Æ, � D 1, : : : , n).

We show (4.73). We have

(4.74) 0��
 0
 Æ� D 0�Æ
 0
�� (�, �, Æ, � D 1, : : : , n)

by Proposition 4.8 (2).
We show

(4.75) 0��
 D d� OC��
 .

If � ¤ 0, it is O.K. by (4.53). If� D 0, it is O.K. because both hands are 0 bydn D 0
and (4.43).

By (4.75), we have

(4.76) d�dÆ OC��
 OC
 Æ� D d�dÆ OC�Æ
 OC
�� (�, �, Æ, � D 1, : : : , n).

Therefore we obtain (4.73) for the cased�dÆ ¤ 0.
For the cased�dÆ D 0, the index� or Æ must ben. Then we haveOC�n
 D �1nÆ�


by definition. Then the assertion (4.73) is apparent.
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4.6. Construction of the structure of the Frobenius manifold. The purpose
of this subsection is to construct a structure of the Frobenius manifold.

Proposition 4.14. The tuple( QE== QW, OÆ , Oe, E, OJ) is a Frobenius manifold satisfying
the conditions ofTheorem 3.7 (1).

Proof. We shall check the properties of Frobenius manifold.
We check OJ(X OÆ Y, Z) D OJ(X, Y OÆ Z) for local fields X, Y, Z. We may assume

that X, Y, Z are flat. Then OJ(X OÆ Y, Z) D XY Z F. Also we have OJ(X, Y OÆ Z) DOJ(Y OÆ Z, X)Y Z X F. Since XY Z FD Y Z X F, we have OJ(X OÆ Y, Z) D OJ(X, Y OÆ Z).
We check that the (3, 1)-tensorOr OÆ is symmetric. We should only proveOrX(Y OÆZ)DOrY(X OÆ Z) for flat vector fieldsX, Y, Z. We prove OJ( OrX(Y OÆ Z), W) D OJ( OrY(X OÆ Z), W)

for a flat vector fieldW. Since OJ( OrX(Y OÆ Z), W) D X OJ(Y OÆ Z, W) D XY ZW F andOJ( OrY(X OÆ Z), W) D Y OJ(X OÆ Z, W) D Y X ZW F, we have the result.
The flatness ofOJ and the propertyOr OeD 0 are asserted in Proposition 4.4.
Homogeneity conditionsLieE( OÆ ) D 1 � OÆ and LieE( OJ) D OJ (i.e. D D 1) are conse-

quences ofLieE F D 2, LieE OeD [E, Oe] D �Oe and LieE I �QE== QW D 0.

We prove I �QE== QW(!, !0) D OJ(E, OJ�(!) OÆ OJ�(!0)) for local 1-forms!, !0. We may

assume that!, !0 are flat. By Proposition 4.12 (2), we have

OJ(E, OJ�(!) OÆ OJ�(!0)) D E OJ�(!) OJ�(!0)F D I �QE== QW(!, !0).
5. Uniqueness of the structure of the Frobenius manifold

In this section, we give a proof of Theorem 3.7 (2) (3), that is, the uniqueness of
the structure of the Frobenius manifold onQE== QW.

Theorem 3.7 (2) is trivial. Theorem 3.7 (3) reduces to Proposition 5.2. We prepare
the following proposition.

Proposition 5.1. Let (M, Æ, e, E, J) be a Frobenius manifold with intersection
form I�. Put

F WD f! 2 �1
M j Liee ! D 0g,(5.1)

T WD f f 2 OM j e( f ) D 0g,(5.2)

�1r
M WD f! 2 �1

M j r! D 0g,(5.3)

wherer is the Levi–Civita connection for J. Then
(1) F � �1r

M and it inducesF ' T 
C �1r
M .

(2) e is non-singular and[E, e] D �e.
(3) e2I �(!, !0) D 0 for local sections!, !0 2 F .
(4) eI�(!, !0) D J�(!, !0) for local sections!, !0 2 F .
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Proof. We show (1). First we show thatF � �1r
M . We take a local flat 1-form� 2 �1r

M . For a local flat vector fieldY, we have (Liee �)(Y) D e(�(Y))� �([e, Y]) D 0
because [e, Y] D reY � rYeD 0. This givesLiee � D 0. Thus� 2 F . We see easily
that the isomorphism�1

M ' OM 
C �1r
M inducesF ' T 
C �1r

M .
We show (2). Sincee is flat, e is non-singular or 0. Ife D 0, then any vector

field X must be 0 becauseX D X Æ eD X Æ 0D 0, which is a contradiction. Thuse
is non-singular. Also we have [E, e] D �e because the Lie derivative ofeÆ eD e by
E gives LieE(e) D �e sinceLieE(Æ) D 1 � Æ.

We show (3) and (4). We first remark that the local existence off 2OM such that

(5.4) J(X, Y Æ Z) D XY Z f

for local flat fieldsX, Y, Z is well-known (cf. [8, p. 147]).
Then for local flat 1-forms!, !0, we have

eI�(!, !0) D eJ(E, J�(!) Æ J�(!0))
D eE J�(!)J�(!0) f

D (eC Ee)J�(!)J�(!0) f

D J�(!, !0)C E J�(!, !0)
D J�(!, !0)

becauseJ�(!, !0) is a constant for flat 1-forms!, !0. Then we havee2I �(!, !0) D
eJ�(!, !0) D 0.

By the result of (1), it is sufficient to show (3) and (4) only for !, !0 flat 1-forms,
because (3) and (4) are linear over the ringT . Thus we have the result.

Proposition 5.2. Let ( QE== QW, Æ, e, E, J) be any Frobenius manifold which satisfies
the conditions ofTheorem 3.7 (1).Let ( QE== QW, OÆ, Oe, E, OJ) be a Frobenius manifold
constructed inProposition 4.14.Then there exists c2 C� such that

(5.5) (QE== QW, c�1 Æ, ce, E, c�1J) D ( QE== QW, OÆ, Oe, E, OJ).

Proof. By Proposition 5.1 (2), we havee2 Derlowest
SW . By Proposition 5.1 (3),e2

V , whereV is defined in (4.12). By (4.13), we haveeD c�1 Oe for somec 2 C�. We
have�e D � Oe, where�e is defined in (4.11) fore2 Derlowest

SW .

By Proposition 5.1 (4),J�(!, !0) D c�1 OJ�(!, !0) for !, !0 2 �e D � Oe. Since�e

contains anO QE== QW-free basis of�1QE== QW by Proposition 5.1 (1), we haveJ� D c�1 OJ�.

Thus we haveJ D c OJ.
By Theorem 3.7 (2),

(5.6) (QE== QW, Æ0, e0, E, J 0) WD ( QE== QW, c�1 Æ, ce, E, c�1J)
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is also a Frobenius manifold satisfying the conditions of Theorem 3.7 (1). We need to
prove (QE== QW, Æ0, e0, E, J 0) D ( QE== QW, OÆ, Oe, E, OJ). We already havee0 D Oe, J 0 D OJ.

Since these structures of the Frobenius manifold have the common intersection
form I �QE== QW, the structure of the multiplication of the Frobenius manifold is uniquely

determined by the data of the unit vectore, the Euler fieldE and the flat metricJ by
Proposition 4.10. Therefore we have the result.
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[2] I.N. Bernštĕın and O.V. Švarcman: Chevalley’s Theorem for Complex Crystallographic Coxeter
Groups and Affine Root Systems, Seminar on Supermanifolds 2,edited by Leites,22, Matem.
Inst. Stockholms Univ., 1986.

[3] M. Bertola: Frobenius manifold structure on orbit space of Jacobi groups, II, Differential
Geom. Appl.13 (2000), 213–233.

[4] B. Dubrovin: Geometry of2D topological field theories; in Integrable Systems and Quan-
tum Groups (Montecatini Terme, 1993), Lecture Notes in Math.1620, Springer, Berlin, 1996,
120–348.

[5] R. Friedman and J.W. Morgan:Holomorphic principal bundles over elliptic curves, II. The
parabolic construction, J. Differential Geom.56 (2000), 301–379.

[6] A.B. Givental: Homological geometry and mirror symmetry; in Proceedings of the International
Congress of Mathematicians,1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 472–480.

[7] S. Helmke and P. Slodowy:Loop groups, elliptic singularities and principal bundles over el-
liptic curves; in Geometry and Topology of Caustics—CAUSTICS ’02, BanachCenter Publ.
62, Polish Acad. Sci., Warsaw, 2004, 87–99.

[8] C. Hertling: Frobenius Manifolds and Moduli Spaces for Singularities, Cambridge Tracts in
Mathematics151, Cambridge Univ. Press, Cambridge, 2002.

[9] C. Hertling: t t� geometry, Frobenius manifolds, their connections, and the construction for
singularities, J. Reine Angew. Math.555 (2003), 77–161.

[10] C. Houzel: Géométrie Analytique Locale, Séminaire Henri Cartan, 13ième année, 1960/61.
[11] V.G. Kac and D.H. Peterson:Infinite-dimensional Lie algebras, theta functions and modular

forms, Adv. in Math. 53 (1984), 125–264.
[12] E. Looijenga:Root systems and elliptic curves, Invent. Math.38 (1976/77), 17–32.
[13] K. Saito: On a linear structure of the quotient variety by a finite reflexion group, RIMS Preprint

288 (1979), Publ. Res. Inst. Math. Sci.29 (1993), 535–579.
[14] K. Saito: Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci.19 (1983),

1231–1264.
[15] K. Saito: Extended affine root systemsI, Publ. Res. Inst. Math. Sci.21 (1985), 75–179.
[16] K. Saito: Extended affine root systemsII, Publ. Res. Inst. Math. Sci.26 (1990) 15–78.
[17] I. Satake: Flat structure for the simply elliptic singularity and Jacobi form, Complex ana-

lytic geometry and related research—mathematical physicsand complex geometry, S̄urikaiseki-
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