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Abstract
In this paper, we show that the orbit space of the domain byetligtic Weyl
group for an elliptic root system of codimension 1 has a stmecof Frobenius man-
ifold. We also give a characterization of this structure loé t~robenius manifold
under suitable conditions.

1. Introduction

A Frobenius manifold is a complex manifold with a multipliicea and a metric
on the holomorphic tangent bundle and with two global veéitdds, the unit field and
the Euler field satisfying some integrable conditions. Théam of Frobenius manifold
was introduced by Dubrovin in order to give a geometric dpion of the integrable
structures in the topological field theory. The study of thel€nius manifolds is im-
portant from the viewpoint of mirror symmetry (cf. [6]).

On a Frobenius manifold, the tensor, called “the intersacform”, is defined. It
is a holomorphic symmetric tensor on the cotangent bundiefFrobenius manifold.
It appears first in the work of Saito ([14]) on the study of a seriversal unfolding
of an isolated hypersurface singularity. Dubrovin ([4])ngealized the definition of the
intersection form in cases of Frobenius manifolds.

In this paper we discuss the following problem:

PROBLEM. Let (M, I*, E) be a triple of a complex manifold/, a holomorphic
symmetric tensod * on the cotangent bundle dfl and the vector fieldE. Establish
the structure of a Frobenius manifold dvi such that its intersection form coincides
with the tensorl * and its Euler field coincides with the vector fiekl

If M is the complex orbit space of a finite irreducible Coxeterugrol * is the
tensor descended from the standard holomorphic metrickargdthe Euler field derived
from the standard"*-action, the problem was solved by Saito [13] and Dubrovih [4

In this paper, we solve the problem for the complex orbit spacf the elliptic
Weyl groups for the elliptic root systems of codimension thwthe tensors descended
from the standard holomorphic metrics and with the vectoldsiederived from the

2000 Mathematics Subject Classification. Primary 32G20p@eaary 32N10.
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canonicalC-action. It is a natural generalization of the complex odpbce of a fi-
nite Coxeter group. We also prove the uniqueness (uf*tcaction) of the structure
of the Frobenius manifold on the orbit spaces of the ellipieyl groups under the
condition that the intersection forrh* and the Euler vector field are fixed.

We remark that the complex orbit spaces of the elliptic Weyugs for the el-
liptic root systems occur in various contexts in the follogisubjects: the invariant
theory (I.N. Berndtm and O.V. Svarcman [1], [2], E. Looijenga [12], K. Saito [16
K. Wirthmiller [22]), the representation theory of the afihie algebras (V.G. Kac and
D.H. Peterson [11], P. Slodowy [21]), the theory of the eitip_ie groups (S. Helmke
and P. Slodowy [7]) and the theory of th®-principal bundles over elliptic curves
(R. Friedman and J.W. Morgan [5]).

We shall explain the outline of our method of the construttiéthe Frobenius man-
ifolds for our cases, which is similar to those in cases offthige Coxeter groups [4].

In [16], the normalized lowest degree vector fieds defined and the flat holo-
morphic metricJ on M was constructed by* ande.

For the construction of the multiplication, we need to retaé following facts.

The structure of the multiplication of the Frobenius malkifgives the intersection
form (step (a) in the diagram). The Levi—Civita connectiandefined for the inter-
section form and gives the Christoffel symbols (step (b)hef the structure of the
multiplication gives the Christoffel symbols (step (c)).

Multiplication
() ©

b
Intersection form ® Christoffel symbols.

The explicit description of step (c) is given as follows. Fgiven flat coordinates of
the Frobenius manifold, we have the following simple relatbetween the structure
coeﬁicientsC;‘ﬁ of the structure of the multiplication and the Christoffgirdols F;‘ﬁ
([4, p.194, Lemma 3.4]):

o, 1_ D o,
(1.1) ref = (dﬁ + T)C b

where D is a degree of the flat metric (see Definition 3.5) of the Fraleemanifold
and d? is a degree of the homogeneous flat coordin#te Thanks to the equation
(1.1), we could recover the structure of the multiplicatioom the Christoffel symbols
for some cases. This is a clue to solve our problem.

For the case of the complex orbit space of a finite irreducibdeeter group, ev-
ery factord? + (1 - D)/2 in (1.1) is non-zero. Thus ead®:’ is determined by’
Furthermore it is shown ([4]) that the set Ggff’ satisfies the conditions of Frobenius
manifold.
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For the case of the complex orbit space of the elliptic Weylugr for an elliptic
root system of codimension 1, some factdfs+ (1— D)/2 in (1.1) are zero. However
we could determine aICgﬁ’s also for this case by another condition that the normal-
ized lowest degree vector fiell must be the unit field. Then we can prove that the
set of C;fﬂ satisfies the conditions of Frobenius manifold.

Among the results of this paper, the existence of the strastof the Frobenius
manifolds on the complex orbit spaces of the elliptic Weydugs is already announced
in [18]. For the explicit construction of the flat coordinaggstem, it is done foiG,
case [17],D4 case [18] and folEg case [19]. For the explicit calculation of the struc-
ture of the Frobenius manifold, it is done f@r, case [18] and foiG, case [3].

This paper is organized as follows.

In Section 2, we review the notions which are necessary &r Is¢ctions. We re-
call the definitions in [16] such as the elliptic root systerttse elliptic Weyl groups,
the domains, the symmetric tensors on the domains, invariags and the Euler op-
erators. A signed marking and an orientation of an elliptiotrsystem are introduced
in this paper in order to give a natural definition of the damsai

In Section 3, we give the statements of the main results (fEmed.7). This the-
orem will be proved in§4 and§5. First we introduce the analytic spectrums of the
invariant rings of the elliptic Weyl groups. We call thesesfpums the (modified) com-
plex orbit spaces of the elliptic Weyl groups. On the compbekit spaces, the Euler
field is defined. Then the main theorem (Theorem 3.7) is statdgbre the existence
and the unigueness of the structures of the Frobenius nidsifin the complex orbit
spaces of the elliptic Weyl groups for the cases of “codinmnd” (see the before of
Theorem 3.7 for the definition) are asserted.

In Section 4, we prove that the complex orbit spaces haveuatste of Frobenius
manifold (Theorem 3.7 (1)). First we review the constructad the holomorphic metric
in [16]. We construct a flat pencil. We define the multiplication the tangent bundle
of the orbit spaces. We show that the Euler fields, the holphiormetrics, the multi-
plications and its unit fields constitute the structure o #robenius manifold. Here
the flat pencil is used.

In Section 5, we prove Theorem 3.7 (2), (3), which asserts ttha structure of
the Frobenius manifold with the Euler vector fiekll and the intersection formh* is
unique up toC*-action.

The author would like to thank Prof. Michihisa Wakui for hisreful reading of
the manuscript and for his continuous encouragement.

2. Invariant rings of the elliptic Weyl groups

The purpose of this section is to review the invariant ringl #me Euler operator
introduced in [16]. A sighed marking and an orientation ofedliptic root system are
introduced in this paper in order to give a natural definitainthe domains.
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2.1. Elliptic root system. In this subsection, we define the elliptic root systems
and its orientations.

Let | be a positive integer. LeE be a real vector space of rark+ 2 with a
negative semi-definite or positive semi-definite symmebiimear forml: F x F — R,
whose radical ratl := {x € F | I (X, y) =0, Vy € F} is a vector space of rank 2. For
a non-isotropic element € F (i.e. | («, @) # 0), we puta" := 2/l (o, @) € F. The
reflection w, with respect tox is defined by

(2.1) we(U) :=u—1(,a)a (YueF).

DEFINITION 2.1 ([15, p.104, Definition 1]). A seR of non-isotropic elements
of F is an elliptic root system belonging td-( I) if it satisfies the axioms 1-4:
1. The additive group generated B in F, denoted byQ(R), is a full sub-lattice
of F. That is, the embeddin@(R) C F induces the isomorphismQ(R) ®z R ~ F.
2. l(a,BY)eZ for a, B € R.
3. wy(R)=Rfor Va € R.
4, If R=R URy, with Rf L Ry, then eitherR; or Ry is void.

For an elliptic root systenR belonging to F, |), the additive group radn Q(R)
is isomorphic toz?.

DEerFINITION 2.2. An elliptic root systenR is called oriented if thé&R-vector space
radl is oriented. A framga, b} of radl is called admissible if radN Q(R) ~ Za® Zb
and it gives the orientation of rad

REMARK 2.3. If an elliptic root systemR, F, |) comes from vanishing cycles
of a Milnor fiber of a simple elliptic singularity, then rddN Q(R) ~ H:(E, Z) for
an elliptic curveE,, at infinity (cf. [16, p.18]). Then R, F, 1) is canonically oriented
by the complex structure of the elliptic cunie,..

2.2. Hyperbolic extension and the elliptic Weyl group. In this subsection, we
define a signed marking, a hyperbolic extension and thetielliyeyl group.

DEFINITION 2.4. LetR be an elliptic root systenR belonging to F, 1). By a
signed marking, we mean a non-zero elemantf radl N Q(R) such thatQ(R) N
Ra = Za.

Hereafter we fix an oriented elliptic root system with a s@jmaarking R, a)
such that the quotient root systeR/Ra (:= ImageR — F — F/Ra)) is reduced
(i.e.a, cx € R/Ra implies ¢ € {£1}).

Let F! be a real vector space of rahk-3 and1': F!x F1 — R anR-symmetric
bilinear form. The pair F*, 1) is called a hyperbolic extension ofF (1) if F* contains
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F as a linear subspace, ral= Ra and || = |. A hyperbolic extension is unique
up to isomorphism. Hereafter we fix a hyperbolic extensib, (1).

We define a reflectiond, € GL(F!) by . (u) := u— I *(u, ")« for u e FL

We define the elliptic Weyl groupV (resp.W) by

(2.2) W:= (0, | € R) (resp.W:= (w, | € R)).
We have a natural exact sequence:
(2.3) 0— Kz > W —> W — 1,

whereW — W is given by the restriction ofV on F and K is the kernel ofW — W.
The groupKjy is isomorphic toZ.

2.3. Domain. In this subsection, we define a domdinfor the oriented elliptic
root system with the signed markind?(a) belonging to F, |) such thatR/Ra is
reduced.

For (F, 1), the set{c € R | the bilinear formcl| defines a semi-negative even lattice
structure onQ(R)} has the unique element of the smallest absolute value. Wetalen
it by (Ig:1).

Takeb € radl N Q(R) such that{a, b} gives an admissible frame. Then we could
choose an isomorphism: Z ~ K; and 1 € F!\ F such that

(2.4) eM)A) =r+na(mez), (Ig:NI, b)>o0.

By the condition (2.4),% is unique up to adding an element Bf and such an iso-
morphismp is unique.

REMARK 2.5. In the paper [16], the signature of the Hermitian fornb() is
incorrect. The correct form is

mmax

HZ ) = (Rt DM@

| RY (Z, J})

Thus the line bundld. in [16, §3.5] becomes ample relative td which is not the
desired one (see [163.6]).

In order to obtain the desired line bundle, the semi-pasibilinear formsl, Ig,
Ir- in [16] should be changed to the semi-negative ones. Thifidsréason of the
signature of the definition of in (2.4).

We define two domains:
(2.5) E := {x € Homg(F%, C) | (a, x) = 1, Im{b, x) > 0},
(2.6) H := {x € Homg(radl, C) | (a, X) = 1, Im(b, x) > 0},
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where (, ) is the natural pairing=} x (F3)* — C and F} := F1 ® C. We have a
natural projection

(2.7) m:E— H.
For a roota € R, we define the reflection hyperplane Bfby
(2.8) Hy := (X € E| (a0, X) = 0}.
We define a left action ofV on E. Forg € W andx € E, we defineg-x € E by

(2.9) {n,9-x) 1= (g7(n), x)

for n € FL.

For a complex manifoldVl, we denote byOy (resp.Qi,, ®y) the sheaf of holo-
morphic functions (resp. holomorphic 1-forms, holomoephector fields).

We define a vector fielE’ on E by the conditions

1
2n/—1
The vector fieldE’ is uniquely determined by the condition (2.4). The reasorthef

normalization ofE’ will be explained after the definition of the shaﬁﬁ" in (2.15).
We define aC-symmetric bilinear forml* on Q;?:' Since we have a canonical

isomorphismT;IE ~ C ®g (F!/Ra) for p e E, we have anO;-bilinear form

(2.10) E'x=0(YxeF), Ei=

* . 1 1 5
(2.11) 1*: QL x QL - 0;

induced froml!: FY/Ra x FI/Ra — R. We remark that.ieg: | * = 0, whereLie is
the Lie derivative.

By the condition Injb, x) > 0 in (2.5) and (2.6), the action oW on E (resp.E \
U.er He) is properly discontinuous (resp. properly discontinuansl fixed point free)

(cf. [16]), thus the orbit spacE/W (resp.(E \ U, Ho) /W) has a structure of ana-
Iytic space (resp. complex manifold). We have the followogmmutative diagram of

analytic spaces:
<IE:\ U H)/W—> E/W
oa€ER

2.12) l ”‘

H=H'

Since U, g Ho C E is locally finite, E \ J,.r He C E is open dense. Thus the mor-
phismiy is an open immersion and its image is open dense.
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Since the tensor&’ and |* on E are W-invariant, these tensors descend to the
space(E \ U,er Ho) /W:

/. 1
(2.13) B QUm0 ™ O, H)

*. 0l 1 -
2.14) " Uy ) Uy )0 T O\ 1)

2.4. Invariant rings of the elliptic Weyl groups. In order to extend the domain
of the definition of the tensors (2.13) and (2.14), we inta@lthe invariant ringS"
of the elliptic Weyl group,s% modulesszfgw, Dergw in this subsection and formulate
the tensorsE’ and 1 * by theseS" modules in the next subsection.

We define anOH-moduIeSLN of W-invariant functions parametrized bye C as
the subsheaf ofr.Og by
(2.15)

SY(U) = {f e, 0z(VU) | f(g-x) = f(x) (YgeW, Vxex}(U)), E'f =kf}

for an open set C H. By the normalization ofE’ in (2.10), k € Z.
We define theOy-graded algebras™ by

(2.16) sV.=ps).
keZ

We have injective homomorphisms

W
(2.17) S — T[*OIE/VV — JT*O(]E\U&ER Ha)/w.

Theorem 2.6 ([1], [2], [5], [11], [12], [22]). The Oy-graded algebraS"is an
Oy-free algebra i.e.

(2.18) SYW =0y[sh ..., "

for sl e SY(H) with ¢! > ¢2 > ... > ¢"* > 0 and n:=1 + 2. We remark that j of
sl is a suffix

We introduce then-th invariants” e SXV(]HI). Since an element of radd naturally
gives an element OSXV(H), we defines" = b, whereb e radl is introduced in Sec-
tion 2.3. We putc" = 0. Thens! € SY/(H) for j =1,...,n.

We define twoS""-moduIessz‘lSW and Degw.

For an open set) C H, we put

1 .0l
(2.19) QLw(U) == Q5w o
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where R.H.S. is the module of relative differential formsadt-algebras"V(U). Sinces"
is anOx-free aIgebra,Q}SW defines a shean}sW has a structure of a8"-module. We

remark that since a local sectionsagW determines a local sectiomz]% andn*Q%\U Ny
aeR "o

. . ~ _. . . . . 1
which isW-invariant, there exists a natural lifting mé;jsw — n*Q(IE\UaER Ho) /W

We put

(2.20) Deggw := Homgw(QLw, SY).

By the generators o8%, we have

0

n n
(2.21) Qv =P sVds, Dergw =P Swasi .
i=1

i=1

2.5. Euler operator and bilinear form on the invariant ring. We define the
Euler operatorE as a vector field orE defined by

(2.22) E:=-FE.

As in the case ofE’ in (2.13), E defines a morphism

. 1
(2.23) B Uy H) W ™ O\ U R/

By [16], we have theS“-homomorphism and&“-symmetric bilinear form:
(2.24) E: Qv — 8V,
(2.25) [*: Q‘lsw X Q‘lgw .
with the following commutative diagrams:

1 E i )
T\ U )10~ ¥ O\, 1)/

(2.26) ] T

1 E
Ql, sV,

% . 1 1 - -
P 7 U )0 T U@, 1)) 0~ T O @\ Uy 1)/

S

I*: Qig“/ X Q‘ISW sV,

where the upper line of (2.26) is induced by (2.23) and theeugme of (2.27) is
induced by (2.14). The morphisms (2.24) and (2.25) are @hjgoharacterized by the
diagrams (2.26) and (2.27) respectively becaS%é — n*O(]E\U o )W is injective.
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3. Results

In this section, we first define the (modified) complex orbiaeplE//W of the
action of the elliptic Weyl groupV on the domaink, whereE and W are defined
in Section 2. Then we assert thay/W has a structure of Frobenius manifold under
some suitable condition.

3.1. The orbit space of the elliptic Weyl group. In this subsection, we define
the (modified) orbit space of the elliptic Weyl group actiondastudy the tensors on
the orbit space.

Let E, H be the domains antlV be the elliptic Weyl group defined in Section 2.
Let (An) and Se) be categories of analytic spaces and sets, respectivety(An)/H)°
be the dual category of the categoryldfobjects. Since th€y-algebras%is of finite
presentation (Theorem 2.6), the analytic space SpS¢arould be defined by [10]. We
define the (modified) orbit spade//W by

(3.1) E//W := SpecarS".
We denote the structure morphisity/W — H also by . The spacek//W is iso-
morphic toH x C"! by Theorem 2.6.

By definition of Specan, there exists a natural isomorphism:

Homyan,u (X, E//W) ~ Homo, (f*S%W, Ox)

for an objectf: X — H of the category An)/H. Since there exists a canonical iso-
morphism: Horp, (f*SW, Ox) ~ Homp, (SY, f.0x), we have

(3.2) Homan, i (X, E//W) ~ Home, (SW, £.0x).

We define a ringed spacéi(S") by the spacetl with the sheafS". We define
a morphism of the category of ringed spaces:

(3.3) ¢o: (E//W, O i) — (H, 8Y)

by the mappingr: E//W — H and the morphism

(3.4) ¢: 8V - 1.0z

which corresponds to the identity element of Haw(E//W, E//W) by (3.2).
Proposition 3.1. We have the canonical isomorphism

*ol ol
(3.5) P Ugw SZ]E//W.
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Proof. We define the ringed spac&/(W9, O ) as follows: As a set,
E//W39 = E//W. A topology onlE//Wa9 is introduced so that(U, f) c E//Wa9 |
U C H: open, f e I'(U, 8W)} becomes an open basis, whet, ) := {x € E//W?29 |
n(x) € U, f(x) # 0}. We define the sheaDj,,j.; associated with the presheaf
Oz pivas((U, 1)) :=T(U, 8W)¢ for an open setly, f).

The morphismy: (E//W, Oj ;) — (H, S*) factors as the composite of the mor-
phisms:

(3.6) E//W, Og ) => (B//WA9, Oz jas) = (H, SW).
We define a sheam% s ON [E//W?39 as a sheafification of the presheaf
(3.7) U, )= Qgu(U)r.

Then we have a natural isomorphism

*ol ~ ol
(38) (pZ QSW — ]E//V'Valg
by a discussion of an affine morphism in scheme theory. Alschexe a natural iso-
morphism

(3.9) 01

~ Ol
/o = 2

/W

because arOg yas-locally free basis of algebraic 1-forms is regarded as(in,y-
locally free basis of analytic 1-forms. ]

We define theOy \5-homomorphism and; .\ -symmetric bilinear form

. 1 S
(3.10) B9 w — O
. 1 1 .
(3.11) 2w e < R = O

by taking the pull-back of (2.24) and (2.25) lpy

We shall see the relation between (3.10) (resp. (3.11))EgAW and (2.23)
(resp. (2.14)) on(E \ U,cg Ho) /W.

By (3.2), a natural inclusios"W — 7Oy corresponds to the mapping

(3.12) i: E/W — E//W.

Proposition 3.2. The morphism is an open immersion and its image is open
dense
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Proof. By [16], the groupV decomposes into
0>H->W-— Wi — 1,

where H is a Heisenberg group and/; is a finite Weyl group. Then we have the
following diagrams:

E/H ——E//H

| |

E/H)/ Wy —— B//H)/ W,

| |

/W ——— W,

whereE //H := Specais, S := @, , Sk and Sx is a sheaf defined by (U) := {f €
7. Op(U) | f(g-x) = f(x) (Vg e H, Vx € #7}(U)), E'f = kf} for an open subset
U C H. By the geometric description ai/H — E//H in [16], E/H — E//H is an
open immersion and its image is open dense. We remark thatawe the relations
E/H = L* andE//H = L for L*, L in [16]. Then the morphism®&/H)/W; —
(E//H)/W; is an open immersion and its image is open dense. Thus we have t
result. O
The composite mappingk \ U,.g He) /W 5 E/W 3 E//W is also an open im-
mersion and its image is open dense.
We have the following commutative diagram of ringed spaces:
(3.13)

((fE\ U Ha)/W, O(]E\UaER Hﬂ)/w) SEN (E/W, OfE/W) BN (]E//W, OfE//W)

(H, Om) (H, On) «— (H, 8™).

Proposition 3.3. TheO(]i\U . Hu)/\;\,—homomorphisnoz.23) (respthe(’)(]i\U H) W
symmetric bilinear form(2.14)) is uniquely extended to th€;, .;-homomorphism
SZI%E//W — O iy (resp Og,y-symmetric bilinear foer%//W x SZI%E//W — Og/\y) and
coincides with(3.10) fesp (3.11)).

Proof. Since the image of the open immersigrv i; is open dense, we should
only prove that the pull-back of (3.10) (resp. (3.11)) byo i1 coincides with (2.23)
(resp. (2.14)). The former is the pull-back of (2.24) (re@25)) byg cis 0i;. The
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latter could be written a: (¢ 0 iz 0 i1)*QLy — (¢ 0iz0i1)*SY (resp.I*: (poizo
i) QL X (poizoir) QL — (poizoiy)*S™).

Then we have the result by applying the following lemma td®262.and (2.27)
using the fact thatgoisois), = m.. O

Lemma 3.4. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed spaceset
F, G be Oy-modules If we haveo: f*F — f*G, B: F — G and a commutative
diagram

fof F L5 fpg

(3.14) T T
B

F——G
for the natural morphismsF — f, f*F and G — f,f*G, then we havex = f*8.
Proof. By the naturality off * f, — id., we have the commutative diagram:

f*]: o f*g

T f* fra

(3.19) T I F ——= [ f"G

L, ]

Since the composite morphish*F — f*f, f*F — f*F is the identity morphism,
we have the result. O

3.2. Frobenius manifold. In this section, we give the main theorem which as-
serts that the spade//W admits a structure of Frobenius manifold and it is unique up
to C* action under some suitable condition.

We first remind the definition of Frobenius manifold and itsemsection form.

DEFINITION 3.5 ([8, p.146, Definition 9.1]). A Frobenius manifold is apke
(M, o, e E, J) where M is a complex manifold of dimensior 1 with holomorphic
metric J and multiplicationo on the tangent bundleg is a global unit field andE is
another global vector field, subject to the following coiudis:

1. the metric is invariant under the multiplication, i.el(X oY, Z) = J(X,Y o Z)
for local sectionsX, Y, Z € Oy,

2. (potentiality) the (3, 1)-tensdvo is symmetric (hereV is the Levi—Civita connec-
tion of the metric), i.e..Vx(YoZ)=YoVx(Z)—Vy(XoZ)+ XoVy(Z)—[X,Y]oZ =0,
for local sectionsX, Y, Z € Oy,
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w

the metricJ is flat,
e is a unit field and it is flat, i.eVe = 0,
5. the Euler fieldE satisfiesLieg(o) = 1-0 andLieg(J) = D-J for someD € C.

E

DEFINITION 3.6 ([4, p.191]). For a Frobenius manifoldi( o, e, E, J), we de-
fine an intersection forn*: Qf, x QY — Om by

(3.16) h*(w1, w) = J(E, I*(w1) o I*(w2))
for local 1-formsw, o’ € Qf,, whereJ*: QY — Oy is the isomorphism induced by.

For the oriented elliptic root system with the signed magkiR, a) such thatR/Ra
is reduced, the condition! > ¢? is called “codimension 1” in [16], wheréc!, ¢?} is a
part of degrees of generators 6f;-algebras"/in Theorem 2.6.

Theorem 3.7. If the oriented elliptic root system with the signed mark{iR) a)
such that RRa is reduced satisfies the condition of codimensigrthen we have the
following results
(1) E//W has a structure of Frobenius manifofid //W, o, e, E, J) with the following
conditions

1. E is the Euler field defined i(3.10).

2. Ig//w gives the intersection form of a Frobenius manif¢ity/W, o, e, E, J).

(2) ForceC*, (E//W,c o, ce E,c1J) is also a Frobenius manifold satisfying con-
ditions of (1).

(3) Let(E//W, o, €, E’, J') be a Frobenius manifold which satisfies conditiongHf
Then there exists € C* such that(E//W, o/, &, E/, J') = (E//W, ¢ 1o, ce E, ¢ 1J).

REMARK 3.8. In the definition of Frobenius manifold, the homogenkitg(J) =
D - J for someD e C is assumed. By the equation (3.16), must be 1 because
Lieg Ig//w = 0 andLieg(oc) = o.

REMARK 3.9. The existence of the holomorphic metidcis already shown in
[16]. The existence of the multiplication is already annceohin [18] in the form of
the existence of the potential.

4. Construction of the structure of the Frobenius manifold

In this section, we give a proof of Theorem 3.7 (1), that i® #xistence of the
structure of the Frobenius manifold d@y/W. In Section 4.1, we review a construction
[16] of a flat metric onk //W (Proposition 4.4) and flat coordinates. In Section 4.2, we
recall the notion of a flat pencil. In Section 4.3, we consgtraanultiplication on the
tangent space df//W. In Section 4.4, we construct a potential of the multipiivat
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In Section 4.5, we show the properties of the multiplicatibm Section 4.6, we show
that these constructions give a structure of the Frobeniasifoid.

Hereafter we shall calculate tensors by using indices. &b ¢hse, we use Einstein’s
summation convention, that is, if an upper index of one teasal a lower of the other
tensor coincide, then we take summation for the same letter.

4.1. A construction of a flat metric and flat coordinates. Let E//W be the
orbit space of the elliptic Weyl group action defined in (3.BHereafter we assume
that (R, a) is codimension 1.

We prepare the relation betweet'-modules andDz \j-modules.

We first define a notion of degree. Fére SWandd € Q, if Ef =df, then we
call d the degree of f For f € 8\, the degree off is k/c!. Especially the degree
of s in Theorem 2.6 i :=c' /¢! (i =1,...,n), i.e.

(4.1) Ed =ds (i=1,...,n), 1=d*>d®>>...>d"*>d"=0.

A degree is defined also for local sections sa;w and Degw. They haveS"-free
homogeneous generators by (2.21).
We have morphisms:

(4.2) SV > 9.0*8V ~ 0,05,
(4.3) SZ}SW — (p*go*SZ‘lsW ~ w*Q%//W,
(4.4) Dersw — (p*(p* Dersw >~ (p*GHj://W,

where (4.2) isp: SW — 7.0z defined in (3.4). The morphisms (4.3) and (4.4) are
defined for a morphisnp: (E//W, Oz ) — (H, 8Y).

Proposition 4.1. The morphismg4.2), (4.3)and (4.4) are injective A homo-
geneous local section with respect to the Euler operatae (H]E//W(]E//W) of 9.0z )y
(resp (p*Q]%//W, 9.0z ) is an image ofSV (resp Qfgw, Dergw).

Proof. The morphismp decomposes intp = ¢, 0 ¢; as in the proof of Proposi-
tion 3.5. For aS"-module M, we haveM ~ @203 M becausep; is an analogue of
affine morphism of scheme theory. Algg M — ¢1,¢; (¢35 M) is injective because;
is faithfully flat by [20]. Thus we obtain the injectivity oM — @, p* M.

By semi-positivity of the degrees af,...,s", a homogeneous section 10z,
is an image of (4.2). Sincéz‘lSW (resp. Degw) is a 8"-free with homogeneous gener-
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atordst,...,ds" (resp.d/ds?, ..., d/ds"), the morphism (4.3) (resp. (4.4)) is written as

n n
(4.5) P sVds - P 0.0z s,
i=1 i=1
n ) n -
(4.6) (resp. @B 8" 9/0s' > @D ¢. 0 9/99)).
i=1 i=1
Then the assertion is obvious. O

We prepare the notations. We pg}' := S)V(H), SV := SW(H). Then SV is an
Og(H)-free algebra:

4.7 SV = Og(H)[sh, ..., s" Y.

We defineS“-modules:

(4.8) Dergw := Dergw (H),
(4.9) Qg = QL (H).
We put
(4.10) Dergi®':= {8 € ©3,,y(E//W) | [E, 8] = —3, & is non-singulay,
(4.11) Q= {w e Qg ;| Lieso =0} for & e Dergi®,
(4.12) V := {5 € Derdi®| szlg//w(w, @) =0, Yo, o € Qs}.

Using generators?, ..., s" in Theorem 2.6, we have DgI*'= O*(H) 3/3s* by
Proposition 4.1.

Proposition 4.2 ([16]). V is non-empty and for an§ € V, we have
(4.13) V = C*s.

REMARK 4.3. We remind the problem in the beginning of the inductiBor the
construction of the structure of the Frobenius manifold (e, 1*), one of the impor-
tant point is to construct the unit fielel

For the case of the complex orbit space of the finite irredac{oxeter groupe
is characterized up t&€* multiplication as a lowest degree vector field. So we could
construct the unit fielde by this characterization.

For the case of the complex orbit space of the elliptic Weylugr for the elliptic
root system of codimension 1, we could not characteeizly by its degree. But as
we will see in Proposition 5.1¢ must be an element of. The above proposition
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shows that the conditiom € V characterizee up to C* multiplication. This character-
ization is a key point of our construction.

However in general cases (e.g. the complex orbit space ofetthection group for
the root system with indefinite inner product) whose reftatgroup invariants contains
negative degree ones, we do not know any characterization dthis is one of the
difficulties of the generalization of our construction.

The following proposition gives a flat metric db//W.

Proposition 4.4 ([16]). Take an arbitrary elemené of V. Then there exists a
unique non-degenerat8"V-symmetric bilinear form

(4.14) J: Dergw x Detgw — 8W

such that theOy \5-symmetric bilinear form

(4.15) J: 05,0 % O = Og

obtained by the pull-back of4.14) by ¢ in (3.3) satisfies the condition
(4.16) J* (w1, ) = €12 (@1 @2)

for the dual metric of (4.15) and wq, w, € Q. The OE//W—symmetric bilinear form

(4.15) is homogeneous of degreke i.e Lieg(J) = J. Furthermore the Levi-Civita
connectionV? for J is flat andV7é = 0.

We introduce flat coordinates. Sind//W is simply-connected, we could take
functions whose differential are flat with respectjé. In Lemma 4.5, we show that
they generate the ring"’, thus they give global coordinates far//W.

Lemma 4.5. (1) There exist holomorphic functions,t . ., t" € SV such that

(i) {dtl,...,dt"} gives aC-basis of flat sections cﬁz]%//w with respect toJ* on
E//W.
(i) t, ..., t" are homogeneous elements of ®ith degree d (i.e. Et' = d't'),

where d is defined in(4.1).
(iiiy t" = 8", where § is defined afterTheorem 2.6.
(iv) & = a/dt,.
(2) For tt,...,t", we have the following results
() SV =0t ..., "1
(i) t%, ..., t" give global coordinates ofi //W.
(i) Q% = P,_, SV dt*. We remark that we use Greek letter for the suffix
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(iv) We prepare elementy at* € Dersw by (3/3t%)t? = §2. Then we hav®ersw =
@h_, SV a/at,.

Proof. SinceE//W is simply-connected, the space

(4.17) Hy:= {w e D(E//W, QI%E//W) | Vo = 0}
is n-dimensional. We see that any elementhf is closed becaus¥? is torsion-free.

SinceLieg J=1J, a tensorVYE is flat ([8, p.147]). ThenE acts onHj;. ThusHj is
identified with

(4.18) Hp := {0 € T(H, QLu) | Viw =0},
by (4.3). Sincey is faithfully flat, the sequence

(4.19) 0->C—8Y—>al, >, >
is exact. Thus we have an exact sequence

(4.20) 0-C—->S"—>Ql - Q% -

because each homogeneous part of each graded module of igl.d8herent and the
domain H is Stein. Then we could také, ..., t" e SV satisfying (1) (i). We could
taket!,...,t" € SV so thatt?,...,t" are homogeneous of degree deg - -- > degt".
Since the Jacobiaf(t?, ..., t")/a(s!, ..., s") is not 0, degrees of must bed'. For
a proof of (1) (iii) (iv), see [16].

We prove (2). For a proof of (2) (i), we first list up the set ofgdee ofs”.

Put{d!,...,d"} ={p% ..., p™} such that 1= p' > p?>>--- > p™ = 0. We put
Q =f{a|d*=p'} ,

We shows® € Oy (H)[t,...,t"1] for « € Q' by induction oni, that is, we show
it in the order ofi =m, i =m—1, i =m—2,... inductively.

If i =m, thenQ™ = {n} and we haves" € Oy (H), thus the assertion is proved
for this case.

If i = m—1, then fora € Q™ !, we havet® = > pegmt fupS? with fus € On(H).
The matrix (f,s) of size #Q™! is invertible because the Jacobiatt*(/ds’) of sizen
is upper-triangular and invertible. Ths§ € Oy (H)[tY, ..., t"] for g € Q™ L.

We assume thas® € Oy (H)[t?, ..., t" 1] for e € Q'+ (1 <i <m—-2).

Then by the parallel discussion as above, we could showsthat € Q') is a linear
combination oft* (« € Q') modulo Oy (H)-coefficient polynomials” with degs” < p;.
By the assumption of induction, we hasé € Oy (H)[t%, ..., t"Y] for « € Q'. Thus
we have (2) (i).

(2) (i), (2) (iii), (2) (iv) are direct consequences of (). ( O
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We call these elements, .. ., t" € SV with the properties of Lemma 4.5 (ihe flat
coordinates

4.2. Flat pencil. The purpose of Section 4.2 is to recall the notion of a flat
pencil. We obtain special properties of the Christoffel bphs with respect to flat co-
ordinates by the technique of a flat pencil by the paralletulsion of [4]. They are
summarized in Proposition 4.8. They will be used to consteumultiplication in Sec-
tion 4.3. and its potential in Section 4.4.

First we introduce the rational extensions both of a symimes'-bilinear form
and its Levi—Civita connection. Lef (SV) be the quotient field of the integral domain

S". We defineQ iy and Degsw) by

(4.21) Qo) = K(S") ®sw Qgu,  Derg(smy 1= K(SV) @gv Dergn .
Let g*: Qi x QL — SV be a symmetricS"-bilinear form with 0% detg*(ds*, dsf) e
SY. It induces theK (SW)-linear extension ofy*:

(4.22) g*: Qkem X ey > K(SY),

which is non-degenerate becausegiétls®, ds”) is a unit in K(S"). The Levi—Civita
connection and its dual:

(4.23) V9" Dery(swy x Dery swy — Defi¢(sw),

(4.24) V9 Dersw) X Qi gy = D (am

are defined and characterized by the metric condi%éng* = 0 and torsion free con-
dition Vy 8" — V3 § = [8, 8] for 8, §' € Dergsw). We call theK (SW)-bilinear form g*
flat if the curvature ofV9" vanishes, i.e.

(4.25) Vi V§ = Vi V) =V

for any g, 8’ € Defy (gwy.
We shall come back to our situation. We remind that

(4.26) 1*: Q& x Qgu — SV

is defined as a global section of (2.25).
The K (SV)-linear extension of * is non-degenerate and flat becath}%gw is non-

degenerate and flat on the open dense suf&tl J,.g Ho) /W C E//W by Proposi-
tion 3.3.
Taking a global section ofil of the dual tensold* of J in (4.14), we have

(4.27) Jo ol x @l — W
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The K (SV)-linear extension ofj* is non-degenerate and flat by Proposition 4.4.
We denote the Levi—Civita connections f&r(SV)-linear extensiond * and J* by
v!" and VI respectively.
Hereafter we use the flat coordinatgs. . ., t" € SV introduced in Lemma 4.5 (1).
We fix some notations. We simply denaig¢ot* by d,. Thusé = 9;. We put

(4.28) n® = J*(dt*, dtf) e C.

We have det{*’) # 0 because the sétit', ..., dt"} is an S"-free basis of2},, and

J is non-degenerate. The complex numbegys are determined by the property

(4.29) Napn”” =81,

where we take summation for the same letter.
We put

(4.30) g* = 1*(dt*, dt’) e SV.

We put

(4.31) re? = 1*(dt*, v, dt’) e K(S"), where V) := v},:.
Proposition 4.6. Let t!,...,t" be the flat coordinates defined as above

(1) 1% is an element of &
(2) g and T satisfy

(4.32) 7Z(g) =0, () =o0.
(3) detp;g*f) is a unit in SV,

Proof. (1) is a direct consequence of the results of [16]. Wy give the out-
line. By [16, p.43, (6.7)],V,” dt’ becomes a logarithmic form in the sense of [16].

Meanwhile | *(w, o') is an element ofS" for w € Q%, and a logarithmic formw’ by
[16, p.38, (5.5.1)]. Thus we obtain the assertion of (1).

For a proof of (2), we first check the degrees 8f){g** and @1)2F;’,‘f‘. We have
(4.33)  degh)’g” =d*+d’—2<0, degf) T =d*+d’ —d’" —2<0.

Their degrees are 0 only when= g =1, y = n. In this case, §)%g** = (6)°g'* =
én'!l = 0. We show §)°T'}! = 0. Since

. 1 1
It = 1*(dtt, v} dth) = > anl *(dtt, dtt) = > angt,
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it follows that @1)°I'! = (1/2)3,(31)?g*! = 0. In the case where degrees are negative,
then 01)°g* = (3.1)°T% = 0.

For a proof of (3), we remind thal* is non-degenerate. Thus dEy(dt®, dtf) =
det(:9*#) is a unit in SW. O]

We show thatl* and J* give a flat pencil in the sense of [4, p.194, Defini-
tion 3.1].

Proposition 4.7. K(SV)-linear extensions

(4.34) 1*: Q@ gwy X ey = K(SY),
(4.35) 3% Qf gy x Qi (amy — K(SY)

form a flat pencil[4, p.194 (3.35)].Namely if we put L* :=[* +1J* for anyx € C,
we have the following

(1) 1} is non-degenerate and flat

(2) Let V* be the Levi-Civita connection for*l Then the equality

(4.36) If(wl, Vga)z) = I*(wl, V;*wz) +J* (a)l, V(Sj*wg)

holds for wy, w2 € Q4 § € Dergw.

Proof. A proof is completely parallel to Lemma D.1 in [4, p722

We assert that for anyr (s) € C?\ {(0, 0)}, the tensorrg® + s9,g*# is non-
degenerate, flat and its Christoffel symhtﬂ‘fs)y equalsrI'¥# 4 s 9,TeF.

We show that the proposition follows from this assertion. d%¢ain (1) by (,s) =
(1, 1) becaused;g*¥ = n*f. If (r,s) = (0, 1), then we see thau T’ is a Christoffel
symbol of 9;g*# = n*#. Thus we obtain (2) byr( s) = (1, ).

We show the assertion. Using the flat coordinates, we regéréind I“;fﬂ as func-
tions on flat coordinates, i.e.

(4.37) gr(th, ... 1), T ... t").
We assume that # 0. Thenrg*?(t* + s/r,t?,...,t") is non-degenerate, flat and

its Christoffel symbol i T#/(t* +s/r,t2,...,t"). Sinceg*’(t',...,t"), T (t%,...,t")
are polynomial functions of degree 1 with respecttdby (4.32), we have

(4.38) rg* (tl + ? t2, ..., t”) =rg®(t, ..., t") +so.g¥(t%, ..., t"),

S
(4.39) rre’ <t1 + o t2,. .., t“) =Pt ) st Lt
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Thus we proved the assertion for the casg 0.
For the case of = 0, s3:9* = sy* is non-degenerate and flat becawss¢ 0.

On Christoffel symbol, we see thzitf‘r‘fs)y —[r F;’ﬁ + sall“;iﬁ] is a rational function
with respect tor(, s). Since it is 0 on the domain # 0, we see that it is O for any
(r,s) e C2\ {(0, 0)). Thus we proved the assertion. ]

The following is a direct consequence of Proposition 4.7 [&f p.226, (D.la),
(D.2)]) and (4.20).

Proposition 4.8. (1) There exists a homogeneous elemefte fSV satisfying the
following relations

(4.40) ref =n*o.0,t7 (2, y =1,...,n).
(2) We have
(4.41) ey =re’r’? (a, .8, w=1,...,n).

We use the following results in Section 4.4 and 4.5.

Lemma 4.9. We have

(4.42) g™ = n™"d“t,
(4.43) re" =0,
(4.44) g = n'"dsg.

Proof. For (4.42), we should prove
(4.45) | *(dt") = p'"E.
We define theS"-isomorphism
(4.46) Degw — Q&y, 8+ J(5, -)

induced by J: Dergw x Dersw — SV and denote it also byl. By [16, p.51, (9.8),
Assertion (iii)] and [16, p.52, (9.9), Corollary], we have

(4.47) 1*(J(@) = E.

We remark that the Euler fiel& in [16, p.38, (5.4.3)] corresponds to our operafodr
Then bydt" = pknJ(9/0tk) = »"J(9/0tL) = »"J(&), we have the result.
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For (4.43), we should prove
(4.48) Vy dt"=0
because§" = 1*(dt*, Vy'dt") by definition. Since we have
v dt® = V) (1) 0 ME) = (1) (V) E) = 0

by (4.45) andV} E = 0 (cf. [16, p.43, (6.6)]), we have the result.
For (4.44), we have

(4.49) 9pg™ = 1*(Vy dt", dt®) + 1*(dt", V'dt*) = T'§" + T}
By (4.42) and (4.43), we have (4.44). 0

4.3. A construction of a multiplication. The purpose of this subsection is to
define a multiplication. The following proposition gives atiwation of Definition 4.11

Proposition 4.10. Let t', ..., t" be the flat coordinates defined right afteem-
ma 4.5.We assume that there exists a multiplicatioron the tangent bundle d//W
such that(E//W, o, & E, j) becomes a Frobenius manifold whose intersection form is

Ig//w. We put the structure Coefﬁcien@fC(a, B,y =1,...,n) with respect to the

O w-free basisJ*(dtY), ..., J*(dt") by the equations
J*(dt*) o J*(dt?) = 2 J*(dt").
Then we have

(4.50) ref =dfcy,
an _ lnga
(4.51) Cyn =7 ”(Sy.

By the equationg4.50), (4.51)and the fact that & # 0 if B8 # n, we see that the
structure of the multiplication is unique if it exists

Proof. By the uniqueness of the Levi—Civita connection witspect to the ten-

sor Ig//w and the discussion of [4, p.194, Lemma 3.4], we have (4.5030 Ay the
equationJ*(dt") = p"9, = n"&, we have (4.51). O

DEFINITION 4.11. We define the multiplicatioh by the equations:

(4.52) J*(dt*) 6 J*(dtf) := C# J*(dt)
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where
1
R —r%  if n,
(4.53) Cof = {dP Y e
771n57°/‘, if B=n.
This definition does not depend on the choice of the flat coatdst?, . . ., t".

By S™-linear extension, we have
(4.54) 6: Dergw x Dergw — Dergw.
By taking a pull-back of (4.54) by in (3.3), we define a multiplication
(4.55) 5: O,/ * Oz — O /w-

We shall show that//W, &, & E, J) becomes a Frobenius manifold in the fol-
lowing subsections.

4.4. Existence of a potential. The purpose of this subsection is to show the
existence of a potential for the multiplication defined inc&m 4.3. We give it in
Proposition 4.12 adding to the ambiguity of a potential.

We explain the idea of the construction of a potenfal We construct a poten-
tial of the multiplication by a technique of a flat pencil whidcs similar to the finite
Coxeter group case [4]. But our multiplicatignis defined in a case by case manner
(cf. (4.53)). Thus we need to check the compatibility candi also in a case by case
manner.

Let t1, ..., t" be the flat coordinates defined right after Lemma 4.5.

Proposition 4.12. (1) There exists Fe S" of degree2 such that
(4.56) J(X38Y,Z)=XYZF

for flat vector fields XY, Z on E//W with respect toJ. Such F is unique up to
adding ¢t')? for some ce C.
(2) For any F e SV satisfying(4.56), we have

(4.57) (0, @) = EJ*(w)J*()F

I *
E/W

for flat 1-forms w, o’ on E//W with respect tod. Conversely any degre2 element
F e SW satisfying(4.57) satisfies(4.56).

Proof. The assertions are all linear with respect to flatrinfow, «’ and a flat
vector field X, Y, Z. Then we should only prove the following assertions (a), (b):
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(@) There exist& € SV of degree 2 such that

(4.58) C¥ = y*nP"8.0,0,F (o, By =1,...,n),
(4.59) o = Enfnprrd o, F B,y =1,...,n).

(b) An elementF e SV satisfying (4.58) is unique up to addimgt')? for somec e C.
(c) An elementF e SV satisfying (4.59) is unique up to addimgt')? for somec e C.

Here we used notations such @¢ etc. defined after Lemma 4.5.

We prove (a) in five steps.

As the first step, by Proposition 4.8 (1), we could take a hcnegus element
fv e SV satisfying the following relations

(4.60) Y =n*9.0, fV (a,0=1,...,n).
We put

fr

. if y#n,
(4.61) FV =

%nlnnaﬂt“tﬂ, if y=n.

We show thatF” satisfies
(4.62) CY = n*3,8,F” (¢,0=1,...,n).
If y =n, itis O.K. by definition of C¢". If y # n, then it is O.K. by (4.60) and
(4.61). F” € SV is homogeneous of degreetdd” = 2 — (1 —d”).

As the second step, we shall check the equation:
(4.63) g’ = (df + d”)pfo. F7.

If y #nin (4.63), then we should only prove the equation
(4.64) d7g?” = (d + d")nf<d.(d” F")
becausad” # 0. We use the torsion freeness 6t~ (cf. [4, p.193, (3.27)]):
(4.65) g Tk = gforer.
We takeB = n. Then L.H.S. of (4.65) becomes

(466) ga(rl—wgy — gaa(nlndyag) — r’lndygay
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by (4.44). R.H.S. of (4.65) becomes

g™ T = (n"d°t7)(n* 0.9, f¥) by (4.42) and (4.60)
(4.67) = n™"(dt79,) (% 3. f7)
= p™"(d* +d")(n*d. f7) by degn*ad. = —(1—d*).

Then byn!" £ 0, we have (4.64).
If y =nin (4.63), then we should prove the equation

(4.68) g’ = (d? + d")pf< 4. F".

L.H.S. is p"d?t# by (4.42). R.H.S. isd?nf<5.F" by d" = 0. Then (4.68) is a con-
sequence of the definition d¥".

As the third step, we show that there exists a homogeneousesteF € SV of
degree &' = 2 such that it satisfies the following equation:

(4.69) FP=nfry,F.
By (4.20), we should only prove the integrability conditson
(4.70) nP€a.FY = n7€d.FF

for B # y. Sincep # y, we haved? + d” # 0. Then by (4.63), the assertion (4.70)
reduces to the property of metrgf” = g”*.

As the fourth step, we have (4.59) becalis¢n"* 8.9, F = (df +d")nfn"* 9.9, F
for EF = 2F.

As the fifth step, we have (4.58) because of (4.62) and (4.69).

Thus we finished a proof of the part (a).

We prove the part (b). LeF; and F, be degree 2 elements @V satisfying the
condition (4.58). ThenF; := F; — F, satisfies 0= n*»#*9.9,0,Fs. Thus F3 is a
polynomial oft!,..., t" of degree less than or equal to 2. But by the degree condi-
tion, F3 must be constant times!f2. Thus we see the ambiguity d¥ satisfying the
condition (4.58).

We prove the part (c). Lef, andFs be degree 2 elements 81" satisfying the condi-
tion (4.59). TherFs := F,— Fs satisfies 0= Enf<n’* .9, Fs = (d? +d")nf<n"* 9.9, F,
where the last equality comes from the degree conditionsTi® have

0, if (B, y)#(n),

(4.72) ’7‘“’7”863“%:{1‘ it (8, y)=(n,n)

for some element € SV of degree 0. Thuss = (1/2)f (t*)? + g, whereg e SV is a
linear combination ot?!, ..., t" plus constant. But by the degree conditianmust be
0. Applying the equation (4.71) for the case & {) = (1,n), we see thatf must be
a constant. Thus we see the ambiguityFofsatisfying the condition (4.59). ]
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4.5. Property of the multiplication. The purpose of this subsection is to show
the properties of the multiplication.

Proposition 4.13. For vector fields XY, Z onE//W, we have
(1) XaY=YoX.
(2) éo X =X.
(3) XoY)oZ=X5o(Y3d2).

Proof. Lett!, ..., t" be the flat coordinates defined right after Lemma 4.5.
For (1), it is a direct consequence of Proposition 4.12.
For (2), we need to show

(4.72) JHdt)sée=J*dt*) (@=1,...,n).

By definition, we have

J*(dt*) 8 J*(dt") = Cx"J*(dt?) = n™"s5 I*(dtF) = " I*(dt).

Since J*(dt") = p"é and n™ % 0, we obtain (4.72).
For (3), we need to show

(4.73) CefCre =CeCrF (a, B, 8, n=1,...,n).

We show (4.73). We have

(4.74) refrr =rerr? (o, B,8, n=1,...,n)
by Proposition 4.8 (2).
We show
ap _ s
(4.75) r’ =d’Cr.

If B#0, itis O.K. by (4.53). Ifg =0, it is O.K. because both hands are 0diy=0
and (4.43).
By (4.75), we have

(4.76) P’ CHCY’ = dPd’CHCHP (B, 8, n=1,...,n).

Therefore we obtain (4.73) for the cadéd?® # 0.
For the casa?d® = 0, the indexg or § must ben. Then we havdf‘,;f” = "5
by definition. Then the assertion (4.73) is apparent. ]
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4.6. Construction of the structure of the Frobenius manifoll. The purpose
of this subsection is to construct a structure of the Fralsmnianifold.

Proposition 4.14. The tuple(E//W, &, &, E, j) is a Frobenius manifold satisfying
the conditions ofTheorem 3.7 (1).

Proof. We shall check the properties of Frobenius manifold.

We checkj(x oY, 2) = j(X, Y 6 Z) for local fields X, Y, Z. We may assume
that X, Y, Z are flat. Thenj(x 3Y,Z) = XYZF Also we havej(X, Yo Z)=
J(Y32Z,X)YZXFE SinceXYZF=YZXF, we haveJ(X3Y, Z) = J(X, Y 6 2).

We check that the (3, 1)-tens‘§’r6 is symmetric. We should only pr0\f§X(Y6 Z)=
Vy(X 6 Z) for flat vector fieldsX, Y, Z. We proveJ(Vx(Y 3 Z), W) = J(Vy(X & Z), W)
for a flat vector fieldW. Since J(Vx(Y  Z), W) = XJ(Y 8 Z, W) = XY ZW Fand
J(Vy(X82Z), W) =YJ(X52Z, W)=YXZWFE we have the result.

The flatness ofJ and the propertyvé = 0 are asserted in Proposition 4.4.

Homogeneity conditiongieg(3) = 16 andLieg(J) = J (i.e. D = 1) are conse-
guences olieg F = 2, Lieg é=[E, §] = —é and Lieg |} . = 0.

E/W
We provel? (o, ) = J(E, J*(») 8 3*(»')) for local 1-formsw, «'. We may

assume thab, o' are flat. By Proposition 4.12 (2), we have

J(E, (@) 8 I*(0) = EJ*(@)I"(@)F = 1}

(w, @). O

5. Uniqueness of the structure of the Frobenius manifold

In this section, we give a proof of Theorem 3.7 (2) (3), thattie uniqueness of
the structure of the Frobenius manifold &n/W.

Theorem 3.7 (2) is trivial. Theorem 3.7 (3) reduces to Pritjors5.2. We prepare
the following proposition.

Proposition 5.1. Let (M, o, ¢, E, J) be a Frobenius manifold with intersection
form I*. Put

(5.1) F = {we Q) | Lieew = 0},
(5.2) T:={f €Oy |e(f)=0}
(5.3) Q= {weQy | Vo =0},

where V is the Levi-Civita connection for.JThen

(1) Fo @Yy and it inducesF ~ T ®c Q%Y.

(2) e is non-singular andE, €] = —e.

(3) €1*(w, ') = 0 for local sectionsw, o' € F.

4) el*(w, @) = IJ*(w, ') for local sectionsw, o’ € F.
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Proof. We show (1). First we show tha D QLY. We take a local flat 1-form
n € QY. For a local flat vector field!, we have Liesn)(Y) = e(n(Y)) —n([e, Y]) =0
becaused, Y] = V.Y — Vye = 0. This givesLiecn = 0. Thusn € F. We see easily
that the isomorphisn®2l, ~ Oy ®c Q1) inducesF ~ T ®¢ Q4 .

We show (2). Sincee is flat, e is non-singular or 0. Ife = 0, then any vector
field X must be 0 becaus¥ = X oe = X o0 = 0, which is a contradiction. Thue
is non-singular. Also we haveE|, ] = —e because the Lie derivative &o e = e by
E givesLieg(e) = —e sinceLieg(c) = 1-o.

We show (3) and (4). We first remark that the local existencé efOy such that

(5.4) J(X,YoZ)=XYZf

for local flat fields X, Y, Z is well-known (cf. [8, p.147]).
Then for local flat 1-formsy, ', we have

el*(w, ») = eJ(E, J*(w) o IJ*('))
=eEJ(w)J* (o) f
— (e+ EQJI*(w)J* (o) f
= J¥(w, @) + EJ*(w, o)

= J¥(w, o)

becausel*(w, ') is a constant for flat 1-forms, «’. Then we haveg?l *(w, o) =

eJ(w, ) = 0.
By the result of (1), it is sufficient to show (3) and (4) only o, «' flat 1-forms,
because (3) and (4) are linear over the ring Thus we have the result. L]

Proposition 5.2. Let (E//W, o, e, E, J) be any Frobenius manifold which satisfies
the conditions of Theorem 3.7 (1).Let (E//W, &, & E, J) be a Frobenius manifold
constructed inProposition 4.14Then there exists € C* such that

(5.5) E//W,c o, ce E,c 1) = (E/W, 5, & E, J).

Proof. By Proposition 5.1 (2), we hawec Der‘gx,vesﬁ By Proposition 5.1 (3)e €
V, whereV is defined in (4.12). By (4.13), we hawe= cé for somec € C*. We
have Q¢ = Qs, Where Qe is defined in (4.11) for € Der‘é’v‘cveSt.

By Proposition 5.1 (4),J*(w, ') = ¢ 1J*(w, &) for w, o' € Qe = Q. Since e

contains anOgi-free basis ofsz]%//w by Proposition 5.1 (1), we havé* = ¢ 1J*,

Thus we havel = cJ.
By Theorem 3.7 (2),

(5.6) E€//W, o, €, E, J):=(E//W, cto, ce E, c1J)
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is also a Frobenius manifold satisfying the conditions oéditem 3.7 (1). We need to
prove E//W, o, €, E, J) = (E//W, &, & E, J). We already have' =&, J' = J.

Since these structures of the Frobenius manifold have tmemmmn intersection

form Ig//w, the structure of the multiplication of the Frobenius malifis uniquely

determined by the data of the unit vecerthe Euler fieldE and the flat metricJ by
Proposition 4.10. Therefore we have the result. O
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