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0. Introduction

Let (X, Δ) be a complete, log canonical algebraic surface defined over the field

of complex numbers C. A nef and big Cartier divisor D on X is nef and log big

on (X, Δ) by definition if deg(D\c) > 0 for all irreducible components C of the

reduced part [ΔJ of Δ.

We follow the notation and terminology of [5].

In [6] Miles Reid introduced the notion of "log big" and gave the statement as

follows:

Let (M, Γ) be a complete, log canonical algebraic variety over C and L a nef

Cartier divisor on M. Suppose that aL — (KM + Γ) is nef and log big on (M, Γ)

for some a E N. Then the linear system \mL\ is free from base points for every

m » 0 .

In this paper we give a proof to this statement in the surface case.

Main Theorem. Let H be a nef Cartier divisor on X such that

aH — (Kx + Δ) is nef and log big on (X, Δ) for some a G N. Then the

complete linear system \rπH\ is free from base points for every sufficiently large

integer m.

REMARK 1. In the case where (X, Δ) is a weakly kawamata log terminal

projective surface, we gave a proof to the theorem above in [1].

REMARK 2. Under the assumption that aH-(Kχ + A) is not nef and log big

on (X, Δ) but nef and big, there exists a counterexample due to Zariski in which

the theorem is not valid ([3], remark 3-1-2).

The author would like to thank the referee for pointing out the misprints and

errors in the original version of the paper.
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1. Preliminaries

First we collect some well known results concerning normal surfaces, which

will be required for the proof of Main Theorem.

Let μ : V ->- W be a birational morphism between complete, Q-factorial,

normal algebraic surfaces over C.

Lemma 1 (Projection Formula). For Q-divisors D on V and G on W,

Lemma 2. If D is a nef Q-divisor on V, μ*D is also nef on W.

Proof. For all irreducible curves C on W, (μ*D,C) = (D,μ*C) > 0 from

Lemma 1.

Lemma 3. If D is a big Q-divisor on V, μ*D is also big on W.

Proof. For a Cartier divisor A on V, H°(V,OV(A)) <-> H°(W,Ow(μ*A)),

because V and W are normal.

Lemma 4. Let A be a non μ-exceptional prime divisor and B a nef Q-divisor

onV. (μ+A^μ+B) > (A,B).

Proof. From Lemma 1, (μ*A,μ*B) — (μ*μ*A,B). Here μ*μ*A > A, because

A is not μ-exceptional. Thus (μ*μ*A,B) > (A,B).

Lemma 5. Every complete, Q-factorial, normal algebraic surface over C is

protective.

Proof. Assume that μ is a resolution of singularities of W and A an ample

divisor on V. Then μ*A is an ample Q-divisor on W from Lemma 3 and 4 and the

Nakai-Moishezon criterion.

Next we note a well known result concerning surface singularities, which will

be used without mentioning it throughout this paper. For the convenience of the

reader we indicate a proof, which relies on the log minimal model program.

Proposition 0. // (X, Δ) is weakly kawamata log terminal, then X is Q-

factorial.

Proof. Let / : M -»- X be a log resolution of (X, Δ) such that KM + Λ - 1

F = f*(Kx + Δ) + E with E > 0 and Supp(£)=Exc(/), where F = Σ{F;; F{ is

an /-exceptional prime divisor }.

Apply the relative log minimal model program to / : (M, /~ 1 Δ + F) -> X.

We end up with a Q-factorial weakly kawamata log terminal surface (over X)

g : (Y,g^A + (F)γ) -+ X such that Kγ + g~xΔ + (F)γ is g-nef.
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Because {E)γ is a ^-exceptional g-neί divisor, (E)γ = 0. Thus Exc(g)= 0.
Therefore g is an isomorphism from Zariski's Main Theorem.

Lastly we mention variations of results by Kawamata and Keel-Matsuki-
McKernan.

Proposition 1. Suppose that (X,Δ) is a weakly kawamata log terminal

projective surface. Let R be a (Kx + A)-extremal ray. Then there exists a ra-

tional curve C G R such that (-(Kx + Δ), C) < 4.

Proof. For some r > 1, r(Kx + Δ) is Cartier. Let R be a (Kx + Δ)-

extremal ray. Put s := min{(Δ,J3); E is an irreducible component of Δ}. For

0 < ε <C /• \]_1)r, Kχ + (l—ε)Δ is kawamata log terminal and R is a (lϊχ + (l—ε)Δ)-

extremal ray.

Thus, from [2], there exists a rational curve C € R such that — {Kx + (1 —
ε)Δ).C<4.

If Δ does not include C, then (Δ,C) > 0. Hence -{Kx + Δ).C < -(Kx +

If Δ includes C, then s < (Δ,C). Hence -(Kx + Δ).C = -(Kx + (1 -
ε)Δ).C - ε(Δ, C) < 4 + (-s)ε. By the choice of ε, -(Kx + Δ).C < 4.

Proposition 2. Suppose that (X, Δ) is α weakly kawamata log terminal

projective surface. D is a nef Q-divisor, but Kx + Δ is no£ nef. Set λ :=

sup{λeQ; D + \(Kχ+Δ) is nef}.

Then λ is a rational number and moreover there is a (Kx + Δ) -extremal ray
R such that {D + λ(Kx + Δ)).R = 0.

Proof. From Proposition 1 and [4], the proof of 2.1, the assertion follows.

2. Proof of the main theorem

From a result by Shokurov ([5], 17.10) (cf. [7], 9.1) and Lemma 5, we may

find a weakly kawamata log terminal projective surface (Y, S + B) and a birational

morphism g : Y ->• X such that Kγ + S + B = g*(Kx + Δ), where S is the

reduced part of 5 + B. We note that g*(aH - (Kx + Δ)) is nef and log big on

O^&ΓHΔJ + B). In the case where 5 = ̂ [ Δ J , [1] implies the assertion. Thus

we may assume that S — g~λ [Δ\ > 0.

We consider the following exact sequence for m EN:

0 -> OY(mg*H - (S - g*1 |ΔJ)) -> Oγ(mg*H) -> Os_g-i[A} (mg*H) -+ 0

Here mg*H - (S - g~ι [Δ\) - (Kγ + g~ι [Δ\ + B) = mg*H - (Kγ + 5 + B) =

(ΛΓx + Δ)) = g*(m - a)H + ̂ *(αίf - (i£"χ + Δ)) is nef and log big on
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{Y,g~ι [A\ + B) for m>a. Thus from [1],

H1(Y,Oγ(mg*H-(S-gϊ1lA\)))=0

Therefore the homomorphism

H°(Y, Oγ(mg*H)) -> H°(S - g'1 LΔJ, Os_g-i L Δ J (mg*H))

is surjective. Because dim g(S — g~ι \_A\) = 0,

(***) 1

Now run (Ky +g~λ [ΔJ + £)-Minimal Model Program with extremal rays that

are #*iJ-trivial (cf. [3], lemma 3-2-5 and [4]).

We have three cases:

Case (A). We obtain the morphism p : Y -> Z such that g*H — p*(p*g*H),

p*g*H is Cartier, (Z,p^(g~1[A\ + B)) is a weakly kawamata log terminal

projective surface and Kz +p*(^~1[ΔJ + B) gives a non-negative function on

{C eNE(Z);(p*g*H,C) =0}.

We put λ := sup{λ GQ; p*g*H + \{KZ +p*(g*1 [A\ + B)) is nef }.

If Kz + P*(g*λ [A\ + B) is nef, then λ = oo. If Kz + p+ig*1 [A\ + B) is not

nef and λ = 0, then there exists a (Kz + P * ^ 1 |_ΔJ + i?))-extremal ray R such

that (p*g*H,R) — 0 from Proposition 2, but this is a contradiction ! Thus λ > 0.

We note that m(p*g*H) - p*(5 - g-1 LΔJ) = p*{g*(mH) - (5 - g~ι LΔJ)) =

Kz+P fc1 LΔJ + B) +p*(9*(mH) - (Kγ + 5 + 5)) = Kz^p^g~λ LΔJ + B) +
p.(g*(mH - (Kx + Δ))) = Kz +P*fc1l*\ + B)+p*(g*(aH - (Kx + Δ))) +
p*(g*(m - a)H) is nef for m such that m — a > j . Here p*(g*(aH — (Kx + Δ)))

is nef and log big on (Z1p^(g~1 [A\ + B)) from Lemmas 2,3 and 4.

Thus \m(r(p*g*H) - t(p*(S - ^~1LΔJ)))| is base point free for m > 0 from

[1], where t is a positive natural number such that t(p*(S — g~λ LΔJ)) is a Cartier

divisor and r is a sufficiently large prime number.

Therefore Bs\m(p*g*H)\ Qp*{S- g~ι LΔJ) for every sufficiently large integer

m (cf. [3], the proof of theorem 3-1-1). Noting the fact that g*H = p*{p*g*H), we

come to the conclusion that Bs\m(p*g*H)\ = 0 from (***).

Case (B). We obtain the morphism p : Y ->- Z, where Z is a smooth curve

and g*H ~ p*P for some divisor P on Z.

If deg(P) > 0, then \mP\ is base point free for m > 0. Thus \mH\ is base

point free.

If deg(F) = 0, then g*H is numerically trivial. From (***), \g*(mH)\ / 0 for

m > a. Thus πiH is linearly trivial.
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Case (C). We obtain the morphism p : Y —>• Z, where Z is a point and g*H

is linearly trivial.
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