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MULTIPLICATIVE STRUCTURES IN MOD q
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This paper is the continuation of part I, Osaka J. Math. 2 (1965),
pp. 71-115. §§ 1-5 are contained in Part I and this part consists of
§§ 6-12. We use all notations and notions defined in Part I.

In § 6 we discuss admissible multiplications μq in K{ Zq) and show
that they induce multiplications μf in periodic cohomology K*{ Zq)
Kϋnneth isomorphism K*(X Zp)®K*(Y; Zp) ^ K*(XΛ Y Zp) holds for
any prime p an important property of mod q Zf-theory, Propositions 6. 3
and 6. 4, is discussed. § 7 is devoted to the discussion of commutativity
criteria of admissible multiplications (Corollary 7. 7, Theorems 7.11 and
7.13) we can establish the existence or non-existence of commutative
admissible multiplications in K{ ;Zg) for all q>l. §8 is a preparation
mainly for § 9. The existence of associative admissible multiplications
is proved in §9 (q = 2) and §10 (#=t=2). In case q = 2y it is guaranteed
whenever T7** = O (which is required even for the existence proof of
admissible μ2 of Theorem 5. 9) (Theorem 9. 9). In case #φ2, it is proved
only under some conditions (Theorems 10.6 and 10.7). These are sufficient
to prove the associativity for every admissible multiplication of K( Zq)
(Corollary 10.8). In § 11 we discuss Bockstein spectral sequences for
general cohomologies and multiplicative structures in them. We see many
analogous properties as those of ordinary Bockstein spectral sequences.
Whenever the existence of admissible μp is guaranteed by Theorem 5. 9,
then some μp induces multiplications mr in Er-terms of mod p Bockstein
spectral sequences for each prime p. It is noticeable that dr behaves
as a derivation to mr (Theorem 11.10) even though the compatibility
of the reduction psp,p with μsp and μp is generally not proved, from
which follows Kunneth's isomorphism for each term of Bockstein spectral
sequences of periodic /f*-cohomology (Theorem 11.11). § 12 is an ap-
pendix treating some further properties of the maps a: Mq->Mr of 2.4,
not treated there.

* Research sponsored by National Science Foundation under grant GP 4069.
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6. Multiplications in mod q /Γ-cohomology.

6.1. The Atiyah-Hirzebruch if-cohomology theory of complex vector
bundles has the commutative and associative multiplication μ defined by
tensor products [2]. Thus its associated multiplications μR and μL satis-
fies (HJ — (H8). By Theorem 2.3 and Proposition 2.5 any homomorphism
/ : Zq->Zr induces a natural map

/*:£'( \Z,)-+K\ ;Zr)

for each i, and (H9) holds.
Since R\S°)^Z or 0 according as i is even or odd, we easily see

that

(6.1) Ki(S°) = PqK
i(S°;Zq)^Zq or 0

according as i is even or odd. From (6.1), for i = — 2, Theorems 2. 3,
5.9, Corollaries 3.10 and 3.11 follows

Theorem 6.1. For every integer q>l there exist just q distinct
admissible multiplications in K( Zq).

6. 2. Let g be the generator of K°(S2), given by the reduced Hopf
bundle. Bott's isomorphism

is given by the formula β = σ~2μ( ®g). Making use of μR, we define
Bott's isomorphism

(6.2) βq: RKX Zq) « K'ΛX Zq)

in K( \Zq) for each i by

βq = σfμR

in the same way as β, which is natural. βq=β as a map: Ki+2(XΛMq)->
K\XAMq), hence (6.2) is an isomorphism.

By (H4)-(H7) and (H9) we have the commutativities:

σqβq = βqσq, βqpq = pqβ

(6.3) δβq = β8, 8qβq = βq8q

f*β< = βrU

for any homomorphism / : Zq->Zr.
βq gives isomorphisms of exact sequences of mod q K-cohomology

associated with cofibrations. Consequently we can define periodic Z2-
graded mod# K^-cohomology theory by putting
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R*{X\Zq) = R°(X;Zq)®R\X;Zq)

and identifying R2\X Zq) with R\X Zq) and R2i+\X Zq) with R\X Zq)
via βι

q. By (6.3) natural maps σqy pqy δ, 8q and /* are introduced also
in the periodic theory R*( \Zq).

Let μq be an admissible multiplication in R(; Zg). By (H8),
and (Λ3) we obtain the equalities

(6. 4) μq{βq®l) = μq(X®βg) =

which imply that

(6. 5) μ̂  induces a multiplication, denoted by μ%, in the periodic cohomology
R*(;Zq) satisfying also the admissibility conditions (A1) — (A3).

By a general argument using an induction on cells and (6.1) we get
a Kϋnneth isomorphism:

Theorem 6. 2. // R*(X; Zq) or R*(Y; Zq) is a Zq-free module, then
μ% induces an isomorphism

R*(X;Zq)®R(Y;Zq) » R*(XΛ Y;Zq).

6. 3. The following proposition is important for our later discussions.

Proposition 6.3. Let η be a generator of {S2M2, S2} given in (4.1).
There holds the relation

y** = σ2βπ%*

for R-theory.

Proof. Let η be represented by a map / : S4M2->S4 such that
f(SH) = S2ηy v is the Hopf map. Then the mapping cone of / is

L = S4UfCS4M2 = S4U06U07 = SΨ[Jhe
7,

where h: S6-^SΨ is the attaching map of e7 and P is the complex
projective plane. From the cell structure of L we see easily that

Z for i = 0, 4

Z2 for i = 7

0 others,

and Sq3\H\L;Z) is non-trivial. Thus, by discussing the Atiyah-Hirze-
bruch spectral sequence with E$ = H*(L;Z) and E* = βK*(L;Z) [2],
we see that

R\L)^Q and R\L) - Z,
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Then, from the exact sequence

£o ( S 4 } i RXS*M2) > K\L)

associated with the cofibration S4-> L->S4M2, it follows that the above
η* and, via Bott isomorphism, the homomorphism η*: K°(S2)-+K0(S2M2)
are epimorphic. π* : K°(S2)->KXM2) is also epimorphic. Thus η* and
7r* are both equal to the projection: Z^Z2. Hence

ψ> = σ2βπ*

as maps: K°(S2)->K%S2M2).
For any Wand any x^K^WAS2), there exists X'ELRXW) such that

μ(x'®g) = x by the Bott isomorphism theorem. Then we have

η**x = a
= μ{

= μ(π**x®g) = σ2βπ**x . q.e.d.

6. 4. The above proposition can be generalized to the following

Proposition 6. 4. Let q be even. For any class η<= {S2Mq, S2} of (4.1)
the following relation

9** = (q/2) σ2βπ**

holds for K-theory.

Proof. Denote by η2tΞ{S2M2y S2} an element η for q = 2. Let

{S2MqyS
2M2} be the class of S 2(^2), where q]2: Mq->M2 is a map of

(2.5), i.e.,

<γ(S%) = S2i2 and (S27r2)γ = (q/2) S2πq.

We have
2ιff) = v = v2(S2i2) = yMSHq).

Then, from the exact sequence

{S\ S2} % {S2Mq, S2} —^ {S\ S2}

follows the relation

η = η2y mod v%S2πq).

Since 77** = 0 in K, we have

= σ 2/Sγ*M* = (q/2) σ2βπ** . q.e.d.
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7. (Non-) Commutativity of mod q multiplications.

7.1. In this section we use the following convention: for each
x<=h£(X;Zq), which is the same as h£+2(XAMq) by definition, we denote
x as x when we consider it as an element of hi+2(XAMq).

Let μ be a commutative and associative multiplication in a cohomo-
logy theory h and μq an admissible multiplication in h{ Zq) constructed
in §5 (assuming that η** = 0 in case q=2 (mod 4) and fixing an element
a of (4.17)). That is, for XELh\X\Zq\ y^h\Y\Zq) and w = μq(x®y),
we have

(7.1) w = σ-2yw(lwΛaT(lxΛ T'AlM)*μ(x®9) >

where W=XΛ Y and Γ' = T(Yy Mq).
Put

W = μf

q{x®y) = {-l)ijT"*μq{y®x)

for T" = T(Xy Y). μ'q is also an admissible multiplication. In fact, by a
routine calculation making use of the commutativity of μ and the natu-
rality of γ etc., we see that

(7.2) W = <r-2

Ύw(lwA(Ta)nixA TΆlM)*μ(x®$),

where T= T(Mqy Mq).
Computing the difference ffi' — w for x=y = κ1 we discuss the (non-)

commutativity of μq. To do this, we may choose κt suitably.

Lemma 7.1. We can choose κxG.ϊι(Mq\Zq) satisfying (3.7) as

(7.3) * = /50*(σ3l).

Proof. Discussing the integral cohomology map βf by using (4. 90
we see that

(7. 30 /30(1MΛi) = πA Is and βo(iΛ1M) = - I s Λ * ,

where S^S1, which show (3.7) immediately for the element κx defined
by (7. 3). q.e.d.

In this section we define κλ always by (7. 3).

Lemma 7. 2. Let q be even. There holds the relation

1 M AV = ?7i + ?72

in {S2Mq, SMq} after choosing η3 suitably in case q = 0 (mod 4).

Proof. By Theorem 4.1 we may put
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for x, y, and z<=Z2> where 2 = 0 in case q = 2 (mod 4). Composing Sπ on
both sides from the left we see that

η(S2π) = πAv = (Sπ)(lMAv) = yv(S*π) .

Thus y = 1. Similarly, composing S2i from the right, we obtain that
x=l. In case q = 0 (mod 4), replacing y3 by v3 + vl if necessary, we see
that η39 hence ηx and y2y can be chosen so that 2 = 0. q.e.d.

7.2. First we discuss the case g = 2. Put

(7.4) yf = (1Λ *>i(l Λ π) and yf' = (1Λ ι> 2 (l Λ n),

which belong to {M2ΛM2y M2ΛM2}. By (4.3),

7̂r = (i Λ f)^(l Λ π) and -η" = (1Λ O (̂τr Λ π).

Proposition 7. 3. (i) {M2ΛM29 SM2} ^Z2-\-Z2 + Z2 with generators
), ^2(lΛτr) and (Si)vβ0.

(ii) {M2ΛM2, M2/\M2) ^Z^-\ Z^rZ2 with generators 1MΛM>
 aofio and v'

(iii) There hold the relations

= 2 a0β0 and (aoβo)(aoβo) = (aoβo)y' = yfyf = 0 .

Proof, (i) In the exact sequence of (1.7):

0 - {S2M2i SM2}
 (iΔ^Γ{M 2ΛM 2 y SM2}

 ( - ^ ϊ Tor ({SM2) SM2}, Z2) - 0 ,

(lΛi)*((Si)vβo) generates Tor ({SM2, SM2} Z2) since (lΛθ*((Sί)^/So) =
(Si)η(Sπ) = 2 1 S M . And 2 (Si)i7/80=0. Thus the above sequence splits and
(i) follows from Theorem 4.1.

(ii) In the exact sequence

0 - {M2ΛM2, SM2}
 ( - ^ ϊ {M2ΛM2, M2ΛM2}

 ( i Δ ^ { M 2 Λ M 2 , S2M2} - 0,

((1.70, the above (i) and (4.10)), {M2ΛM2, S2M2} is generated by
= (lΛτr)*l M Λ M and (S20/30=(lΛ7r)*α0/30 by (4.10) and (4.90- Here

2 1 M Λ M = 1MΛ(2 1M) = 1MΛ(/V)

) by Lemma 7.2

by (i) and the above exact sequence, and

2 αo/3o= (ίΛι>/So by (4.150

= (lΛi)*(Sι>/90 * 0
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by (i) and the above exact sequence. Thus (ii) follows.
(Hi) βoa^pβάϊ1=p~i1 = O by (4.9) and (4.7). Thus (aoβo)(aoβo) = O.

βo(iΛi) = (Sπ)(Si) = O by (4.90- Thus (aoβo)v' = O. (πΛπ)ao=(S2π)(SH) = O
by (4.90, hence v"(aoβo) = O; 2-a0β0=(2ΛMΛM)a0β0=(η' + v//)^oβo=v\a0β0).
η'η' = (lΛi)v(lΛπ)(lΛi)vQ-Λπ) = O. Hence (iii) is proved.

Theorem 7.4. For T=T(M2f M2) there holds the relation

T= 1 M Λ M + « O A + ^ mod2 {M2ΛM2, M2ΛM2} .

Proof. Set

T = xΛMAM+yaoβo+z-η'y x, y(ΞZ4 and *<ΞZ2 ,

by Proposition 7. 3, (ii). By (4. 90 and (4.11) we have

(lΛτr) + (S2/)/30 = (lΛπ)T=x-(lΛπ)+y(S2i)β0.

Thus

(* ) x = y = 1 (mod 2)

by (4.10). Next, if 2 = 0,

= T2 = x2ΛMAM+(2xy)-a0β0

by the above setting and Proposition 7.3, (iii), which implies that xy=0
(mod 2) contradicting to (*), i.e.,

z = 1. q.e.d.

Corollary 7. 5. Ta=a + η'a mod 2 {Λζ,, M2 Λ M2}.
Because: β0a=pβaj=pj = 0 by (4. 7).

7.3. New we compute ffi' — ffi of (7. l)-(7.2) for x=y = κ1 in case
q = 2. Since 2*μ(ic1®ϊc1) = 0 by Proposition 3.2,

W'-w = σ ^ ( ^ ) (
by Corollary 7.5 for W=M2ΛM2

for Γ 1 = T(M2,S0 and S^S1

by (7.3), (7.30, (4.90, (4.180

μ(<r2l®<r2l)®σ2l)

by Lemma 5.2, (i) and T(S\ S x ) ^

μ(τrVl(g)7rVl)®^*l) .

Thus, putting



88 S. ARAKI and H. TODA

5 = 9*1, a£Ξh-%S°;Z2)y

Wr — W = μL(μ(π*σ2l®π*σ2l)®a)

= μ2(p2μ(π*σ2l®π*σ2l)®a)

= μ2(a®μ2(κ2®κ2)) ,

from which we deduce the following

Theorem 7. 6. Let h be equipped with a commutative and associative
multiplication μ and ?7** = 0 in h. For any admissible multiplication μ2

in h{ Z2), putting

a = a{μ2),

there holds the relation

a = y*l.

Proof. The above formula and (3.13) imply that the theorem is true
for a suitably constructed μ2. Since 2-b(μ2, μ'2) = 0 for any two admissible
multiplications μ2 and μ'2 by Proposition 3.2, (3.18) implies that the
theorem is true for any admissible μ2. q.e.d.

Since ?;*l = 0 if and only if ^** = 0 in hy we have

Corollary 7. 7. Under the assumption of Theorem 7. 6, the necessary
and sufficient condition for the existence of commutative admissible μ2 in
fc( Z2) is that η** = 0. When this condition is satisfied, every admissible
μ2 is commutative.

Because of Proposition 6.3 and 7rf*Φθ in K, we have

Corollary 7.8. K( Z2) has no commutative admissible μ2. / / we
denote the two distinct admissible multiplications in K(;Z2) by A and Λ',
respectively, then

T*(yΛx) = xΛ'y = xΛy + β2(δ2xΛδ2y)

for x<ΞK*(X;Z2\ ytΞK*(Y;Z2) and T=T(X, Y).
This corollary means that the admissible multiplication in K( Z2) is

essentially unique.

7.4. Next we discuss the case q^2 (mod 4).
Nq = S2VS2Mq and Nq = SMqVS2Mq by (4.6), (i). Let

ϊ : S2Mq -> Nqy V : S2Mq -> Nq

and
π'\Nq-*S\ τr':Nq->SMq

q

be the inclusions and the maps collapsing S2Mq, respectively. Besides
(5. 2) we have the relations
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( ? = ji', </ = (&V, *Ψ = 0,

p = (Sπ)π', ix = ϊ(SH) and τc% = 0 .

In the present case we choose γ0 as

γ 0 = π'*σ2l.

Then 7 w satisfies (5. 4').
Put

(7.6) i" = αι ' : S2M, -» Mqt\Mq, ^ = ^ : Mqf\Mq

then we obtain the relations

(7.7) ^ ^ = 0, τr"(lMΛs) = ISM

by Lemmas 4.3, (ii), (4. 7), (5. 2) and (7. 5).
By (4. 6), (i), we see immediately

Proposition 7.9. In case q^2 (mod 4), (lMΛi)*> *"* >
7r//ίic ^r^ monomorphiCy and we have the following direct sum decompositions

( i ) {W, M.ΛMJ =(1Λ/)*{WΓ, S M J Θ ^ ί ^ , S2MJ,
(ii) {M,ΛM,, W}=(lΛτr)iiί{S2M,, ^ θ r^ίSM,, ΐ^}
αwjy W> and in particular
(iii) {MqΛMq, MqΛMq} = (lΛi)*x"*{SMq9 SMq}θi^π"*{SMqy S2Mq}

UlΛπr{S2Mq, SMq}®iϊ(l/\π)*{S2Mqy S2Mq}.
By Proposition 7. 9, (iii), we can put

LMΛM = (1Λ ϊ)axπ" + i"tf27r" + (1Λ 0« 3 ( l Λ π) + iv /^4(l Λ ar)

with έ^e {SM ,̂ SMJ, ^ 2 e {SMg, S
2MJ, «3e {S2M ,̂ SMq} and ^ 4 e {S2M ,̂

S2MJ. Compose lΛτr on both sides from the left, then by (7. 7) we get

hence
^ 2 = 0 a4 = 1 S 2 M

by Proposition 7.9, (ii), for T7=S2M^. Similarly, composing π" from
the left, we get

#i = ISM and Λ3 = 0.

Thus we obtain

(7. 8) 1MΛM = i"d A π) + (1Λ iV7.

Next, put

Γ = (1Λ 0*i*" + %'W + (1Λ 0*s(l Λ TΓ) + ίv/δ4(l Λ π)
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with b^iSM^SM,}, b2^{SMq,S
2Mq}, bze{S2Mq, SMq} and b^{S2Mqy

S2Mq) for T=T(Mqy Mq). Compose l/\π on both sides from the left.
By (4.11), (i) and (7. 7) we get

Here
(SH)β0 = (S2Ϊ)P(3 = (S2i)(βπ)π"

by (4.9), (7.5) and (7.6). Thus, by Proposition 7.9, (ii), for W=S2Mq

we get

b2=(SH)(Sπ) and b4 = lS2M.

Similarly, composing lΛ* from the right and making use of (4.11), (ii),
with a remark that

ao(Sπ) = aUSπ) = i"(SH)(Sπ) ,

Proposition 7.9, (i), for W=SMq, implies that

K = - ISM

Therefore we see that

T = -(lΛi)π" + i"(S2i)(Sπ)π" + i"

with ξ<={S2Mq, SMq}, from which follows

T2 = (l

Since T2 = 1MAM, by (7.8) and Proposition 7.9, (ii), we obtain

(SH)(Sπ)ξ = 0 and ξ(SH)(Sπ) = 0.

These relations, Theorem 4.1 and Corollary 4.2, (i), imply

if q is odd

(mod 4)

with Sq^Z2. Thus we obtain

Theorem 7.10. In case q^2 (mod 4) there holds the relation

T = -

{ 0 if q is od

εq.(Si)η\S2π) if <7=0 (r

for T=T(Mqy Mq), where Sq^Z2 in case q = 0 (mod 4) and Sq=0 in case
q odd.

7.5. Now we compute ffi' — ffi of (7. l)-(7.2) for x=y=κ1 in case
(mod 4). By our choice of γ0, <γw=(lw/\ϊ)* by (5.40- Thus
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(7.9) yw(lwAaniwA(lAiWT = 0

since (lΛiV'αϊ^αΛiVϊ^O by (7.5), (7.6) and (4.18). Also

(7.10) i"(S*i)(Sπ)π"a = 0

because of (7.5), (7.6) and (4.18). Making use of (7.8)-(7.10) and
Theorem 7.10, a parallel computation to the case of q = 2 implies

W'-W = μ(μ{π*σ2l®π*σ2l)®8q*π*V2*l) .

Thus, putting 5 = τrV*l, *e#~ 2 (S 0 ;Zg), we have

w' — W = μq(Sq aξZ)μq(κ2®κ2)) ,

from which by (3.13) we conclude

(7.11) a(μq) = Bq a, a = ττV*l .

Therefore,

Theorem 7.11. Lβ/ μ be a commutative and associative multiplication
in h. By a suitable construction of §5 in case q^2 (mod 4) we can obtain
a commutative admissible multiplication μq if q is odd or if q=0 (mod 4)
and (v

2

π)** = 0.
This theorem for q odd asserts a slightly different thing from

Corollary 3.11, i.e., the unique commutative admissible μq can be con-
structed by the manner of §5, which is necessary for the proof of the
existence of a commutative and associative admissible μq later in § 10.

In case q=0 (mod 4) it is an open question whether we can choose
a such that 6g=0 or not. If we can do so, then the existence of a
commutative admissible μq without any condition follows.

In case j?-cohomology, (^2τr)** = 7̂ *17**17** = 0. Thus

Corollary 7.12. If q=0 (mod 4) there exist just two distinct com-
mutative admissible multiplications μq in K( Zq).

7. 6. In case q=2 (mod 4), from Theorems 7.6, 7.11 and 3.14 follows

Theorem 7.13. Let H be equipped with a commutative and associative
multiplication μ and v** = 0 in h. If q = 2 (mod 4), a necessary and
sufficient condition for the existence of a commutative admissible multi-
plication in h(;Zq) is that ^** = 0 in h for η^{S2M2y S2}.

Corollary 7.14. If q=2 (mod 4), there exist no commutative admissi-
ble multiplications in R(;Zq).
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8. Stable homotopy of some elementary complexes. II.

8.1. Let P be the complex projective plane, i.e., P=S2{Jve\ Let
iP:S

2-+P and πP : F - ^ S 4 be the inclusion and the map collapsing S2. We
have a cofibration

From Puppe's exact sequence and its dual, (1. 5) and (1. 5'), associated
with (8.1) for X and Y spheres, we obtain

(8. 2) the groups {Sn+k+\ SnP} and {SnP, Sn-k+3},k^3, are both isomorphic
to the corresponding groups in the following table:

generators of

{Sn+k + 3} snP}

ίS»P,S"-k + *}

k^-2

0

k=~l

Z

ip

πjp

k=0

0

k = l

z

ζ

ζ

k=2

z12

vπp

k = 3

0

where ζ and ζ are defined by

(8. 3) πPζ - 2 l r t + 4 and ξiP = 2 lM+2, lm^ {Sm,Sm} .

Theorem 8.1. The groups {F, SΨ}, 0 < / < 2 , and {SP, P} are iso-
morphic to the corresponding groups in the following table:

{P, S2P}

{P, SP}

{P, P}

{SP, P}

z

0

Z 0 Z

Z6

generators

(S2iP)πP

l p , ζπp (or iP0

ipv(SπP)

We have relations

(8.4)

and

(8.5)

for v(Ξ{S\S0}.

= 3 iPv(SπP)

Proof. From (8. 2), (1. 5) and (1. 57) suitably used, we see easily the
results for {P, SΦ}, 0<i<2. Then, by (8. 3), we obtain the relation (8. 4).

Now we observe an exact sequence (1. 5) associated with (8.1):
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v* (Sπ )* (Si )*
(*1) {S4, P) — > {S5, P} K—^U {SP9 P} ±-?U {S\ P} .

(8. 2) and the fact that every element of ??*-images is at most of order
2 show that

(*2) {SP, P} ^ Z6 or Z12 with the generator iPv(SπP).

And we can put

(*3) lPAv = a.{SiP)v(S2πP)ϊΞ {SΨ, SP}

for some integer a, v^{S\ S1} and v<^{S\ S3}.
By Theorem 1.1 and (*3),

, M= Mx.

If a were even, then 2 l P Λ M = 0 since i2 is of order 2; then

in the stable range, which is but a contradiction because Sq4 Φ 0 in
PΛM2ΛM2 whereas =0 in S(PAM2)VS\PAM2). Hence

(*4) a is odd.

Next, by (8.1), (8. 2), (*1), and (*3),

0 = (SπP)*v*ξ = (SπP)*(ζAv) = (lPζπP)Av

= (1 P Λ y)ζπP = 2a iPvπP ,

which implies via (*2) that

«: = 3 and {SP, P} ^ Z6. q.e.d.

8.2. From now on through this section M, /, and π stand for M2,
i2, and τr2. We shall compute the groups {M2AP, StM2} for 2 < / < 4 .
We have

M2AP= M2Λ(S2U,CS3) - S2M2U1 Λ,CS3M2, 1 = 1 M .

From its associated exact sequence (1.5) for X=SiM2:

{S3M, S'M} - ^ Γ { S 4 M , S*M} ( — * { M Λ P , S'M}

follows the exact sequence
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(8. 6) 0 - Coker (1Λ v)Ϋ-ι ( l Δ ί ί {MA P, &M} ( ^ d K e r (1Λ v)T - 0 ,

where (lAv)f stands for (lMΛv)* : {Sn+2M, Sn+iM} -> {Sn+3M, Sn+iM}, n = 0
or 1. Marking use of the relations in Corollary 4.2, (ii), and the relation
of Lemma 7.2 we have

iin) = 2ΛM> (1MΛ v)*lM = v1 + V2

and

Then, from Theorem 4.1. follow

(8.7) ( i ) Ker (1Λ v)t = Ker (1Λ 7̂)3* = 0,
(ii) Ker(lΛv)ί^Z2 generated by 2 1M,
(iii) Coker(lΛv)*~Z2 generated by the class of 1M,
(iv) Coker(lAv)*~Z2 generated by the class of ηx (or v2)>
(v) Coker(1Λ^)*=Z2 generated by the class of ivπ.

Theorem 8. 2. ( i ) {M2ΛP> S4M2}^Z2 generated by lMΛτrP.
(ii) {M2ΛP, S3M2}^Z2 generated by ^(1MΛτrP) = ̂ 2(1MΛτrP).
(iii) {M2ΛP,S2M2}^Z2®Z2 generated by (SH)v(πAπP) and lMΛξ,

where v^ {S\ S3} and ξ^ {P, S2}.
(iv) We have the relation vϊO-MA πP) = VIO-MΛ

 πp)= 0

Proof, (i) and (ii) follow from (8. 6) and (8. 7). (iii) follows from
(8.3), (8. 6), (8. 7), and the following :

2 1MΛ? = (ivπ)Λξ = (SH)(vΛξ)(πΛlP), V^ {S\ S1} ,

= 3-(S2i)(lsΛξ)(lsΛip)v(πΛπP) by (8.5)

= 6 (S2i)v(πΛπP)tΞ2.(lΛπP)*{S4M, S2M} = 0 .

(iv) follows from

Q-MΛv)*Vi = VΪ, i = 1, 2 . q.e.d.

Next we compute the group {M2f\P> M2/\P}.

Theorem 8. 3. {M2Λ P, M2/\ P) = ZA®Z2 generated by 1 M Λ F and
lM/\iPζ. We have a relation

Φ 0.

Proof, Let us consider an exact sequence (1.57):
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{MAP, S3M} (-ί^!*{MΛP, S2M}(^-d*{MΛP, MAP}

is epimorphic since (1Λ7ΓP)*1MΛP = 1Λ7ΓF generates {MAP, S4M}
(Theorem 8.2, (i)). ( 1 Λ * P ) *

 i s monomorphic since {MΛP,S3M} is
generated by Vi(lA7rP) and (lAv)*Vi(lAπp) = ViO.AπP)

:=O (Theorem 8.2,
(ii) and (iv)). The image group (lAiP)*{MAP, S2M} ^Z2@Z2 is generated
by ^AiAipζ and (i/\iP)v(τt/\πP) (Theorem 8.2, (iii)). Finally, by Theorem
8.1,

πP) = (i/\iP)v(π/\πP)

since it is of order 2 at most. Thus the theorem is proved.

8.3. We shall discuss some structures of M2/\N2 and M2ΛM2ΛM2.

Let π1:N2->P be the map collapsing S3 such that

(8. 8) πjo = ίP

stably. We have a cofibration

(8.80 Sz-^->N2—^P.

Proposition 8. 4. There exists a stable homotopy equivalence

ε<Ξ {S3M2V(M2ΛP),

that ( I M A ^ S /5 ̂ αδ/jv homotopic to the projection of SZM2V(M2/\P)
onto M2ΛP.

Proof. By (4.6), (ii), there exists a homotopy equivalence SN2^
S4U*< CP such that Sπt is equivalent to the map S4 U2-*P CP-+SP collapsing
S4 to a point. Denoting iV2 by N9

S(MΛN) = MΛSN^MΛφΌ^CP) = S4Mu lMΛ,,pC(MΛP).

By Theorem 8. 2, (i), lMΛ2 7rP = 2.(lMΛ7rP)e2 { M Λ P , S4M} =0. Thus,
by a general argument (cf., the beginning part of the proof of Lemma
4. 3) we can conclude the proposition.

Proposition 8. 5. Choosing an element a of Lemma 4. 3, we have a
stable homotopy equivalence

a<EΞ{S*M2V(M2ΛP)VS3M2, M2/\M2/\M2)

such that
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where S is the stable map of Proposition 8.4 and k: S3M2V(M2AP)-+
S3M2V(M2AP)VS3M2 the inclusion to the first two factors.

Proof. For 1 M Λ 2 /0<EΞ {S2M, MΛN} we have

1MΛ2 /O = 2ΊMAi0 = (iyπ)Λi0 = (iπ)ΛvΛi0

= (iπ)Λ2 i1 = (2-iπ)Ah = 0 .

Thus

MAN = MA(ND2.ioCS2) = (MAN)ΌlMA2.ioCS2M

is stably homotopy equivalent to (MAN)VS3M preserving the subspace
MAN, i.e., we have a stable homotopy equivalence S^iMAN, (MAN)
VS3M} such that S1(lMAj) = koy the inclusion map: MAN^(MAN)VS3M.

Put

which is a stable homotopy equivalence. And

ak - ( I M Λ ^ Γ 1 ^ = (lMAa)(lMAj)ε by Proposition 8. 4

= (lMAa)S. q.e.d.

By Theorems 8.2, 8. 3, Propositions 8. 4 and 8. 5 we have

Theorem 8. 6. ( i )
(ii) {M2AP, M2A&

8.4. The

Lemma 8.
the relations:

(8.9)

and

(8.10)

following

{M2ΛP, M2ΛN2}

two lemmas will be

7. We can choose an element i

(S2πo)po

(lpΛτr)T for T

v 4 φ z 2 φ z 2 .

used in the

>oe {M2/\P, S

,) = S2(ί07r)

= T(M2, P).

next

W2}

section.

satisfying

Proof. Consider the complex MAP/S^S2. It has the same cell
structure as SW, hence we have a homotopy equivalence MAP/S^S2

- S W . The map collapsing SαΛS 2 followed by the homotopy equivalence
gives rise to a map p'Q: MAP^S2N such that

S3 =

is a coίibration. The candidates for p0 are pό and PΌ+PΌO-MΛ ζπP),
ζ^L {S\ P}. First we see easily that both candidates satisfy (8. 9) because
both sides of the equalities induce the same mod 2 homology maps,
and {MAP, S4M}^Z2 and {S2M, S2N}^Z2 as is easily seen.
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i Λ1
Discussing an exact sequence (1.5) for the cofibration S*ΛP >̂

MAP + S2ΛP and X=S 2 P by making use of Theorem 8.1, we see
that

{MAP, SΨ} ^ Z2®Z2 generated by (lPΛτr)Γ and (S2ξ)(πPΛπ)T.

Thus

or
(#2) (SVO^ί = (lpΛπ)T+(S2ξ)(πPΛπ)T

since {S2π^)pΌ induce a non-zero mod 2 homology map. If (#1) holds,
then putting p=pΌ we finish the proof. If (#2) holds, then put

Since

(XPAπ)T{lMAζπP) =

and

{πpAτt)T{lMAζ7tP) = (πPAπ)(ζπPAlM)

= 0,

we see that

(S2πt)p0 = (S'πJ

= (lPAπ)T+(S2ζ)(πPAπ)T

+ (1PΛ TΓ) T(1MΛ ξπP) + (S2r)(^PΛ TΓ) T ( 1 M Λ ΓTΓP)

q.e.d.

Lemma 8. 8. For any α e {N2y M2AM2} satisfying (lMAπ)a = π0 there
exists an element κ = κa^{M2APf M2AN2} such that

(8.11) (lMΛτr> - 1 M Λ P and (lMΛτr0> = (S2a)p0.

Proof. Consider the following commutative diagram of exact rows :

{MAP, S2M} ( lΔ! i {MAP, MAN} ( ^ i * {MΛF, MAS2M}

{MAP, S2M} ̂ -^s^ {MAP, MAP} —^> {MAP,

The group {MAP, MAS2M} has 4 elements because of Theorem 8.2,
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(i) and (ii), and (1.7'). By Theorems 8.2, (iii), and 8. 6, (i), the groups
{MAP, S2M} and {MΛP, MAN} have 4 and 16 elements, respectively.
Hence (lΛττ0)* is epimorphic and there exists an element κf<E.{MAP,
M/\N} such that

(1Λ*O)**' = (S2a)p0.
Now

(lΛτrP)*lM Λ P = lΛτrP = (S2π0)p0 by (8. 9)

= (lΛS2π)(S2a)p0 by assumption

= (lA*p)*(lAari)**' by (8.8).
Thus

for some element x<= {M/\P, S2M}. Put

then

(lΛτr>

= (1A *0**' + (1A iP)*x by (8. 8)

and

(1ΛTΓO)Λ; -

- (S2α)A. q.e.d.

9. Associativity of mod 2 multiplications.

9.1. Let μ be a commutative and associative multiplication in k> and
assume that ?7** = 0 in h. Under this assumption the exact sequence of

% associated to the cofibration S2 —^->P—^>S4 of coefficients breaks into
the following short exact sequences

(9.1) 0 -> h\WAS^-^thk{WAP) ^^^kk(WAS2) -> 0

for any W and k. In particular, for W=S° and k = 2, we can choose
an element j^hXP) such that

(9.2)

Put

(9. 3) γ0 = π*Ύί.
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Then, because of (8.8), γ0 defined by (9.3) satisfies (5.3). Hence any
multiplication μ2 constructed in §5 by making use of the above γ0 is
admissible. We discuss the associativity of such a μ2.

Choosing an element y1 satisfying (9.2), we define a homomorphism

7 = Ύw HWΛP) - h\WΛS4)

for any W by

(9. 4) jw{x) = (Iw^πp)*-Xx-μ{σ-\lwΛiP

x(Ξh\WΛP). Since

i) = μ(σ-\lwf\iP)*X®σ2l)

x — μ(σ~2(lwΛiP)*x®Ύi) is in the kernel of (lwAiP)*. By (9.1)
is monomorphic. Thus γ is a well-define homomorphism.

Similarly as in Lemma 5.2, (i) and (ii), we see

Lemma 9.1. ( i ) Ίw is a left inverse of (l
(ii) 7 is natural in the sense that

for f: W—W.

9.2. The following lemmas are crucial in later discussions. We
define yw by using πfji as y0.

Lemma 9.2. For the element />oe {M2ΛP, S2N2} of Lemma 8. 7 there
holds the relation

Proof. For any x<ahk(WΛNΛS2) we have

by (8. 9) and (9. 3)

for Γ 1 =Γ(i ϊ ,S 2 )

(lw/\Po)*X-(lπΛπΛlP)*μ((XπΛio)*<r-*x®Ύd by (8.10)

(lwAPo)*x-μ(σ'2O-wΛMAip)*(lwAPo)*x®Ύ1) by (8.9)

O-wΛMΛπP)*yWAM(lwΛpo)*x by (9.4).
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Since (I^ΛMΛTΓP)* is monomorphic, the proof is complete.

Lemma 9.3. For a(={N2y M2AM2} and κ=κΛ<={M2AP, M2ΛN2} of
Lemma 8.8 there holds the relation

Proof. For any

O-WAMAK

for T^TiP.S2). Then, by (8.11),

(lw/\Po)*dwAS2a)*yWAMx

- (lwΛκ)*x-x',

where xf = σ'2(lWAMA(i0Alp)T1)^μ(x®71). Here

Hence

Thus

by Lemma 9.2,

i.e.,

q.e.d.

9.3. For any element £ e {M2ΛF, M 2 Λ M 2 Λ M 2 } we define a in

(9. 5) τ e : ̂ ( X ; Z2)®ϊι\Y; Z2)®tik(Z;Z2) -> %'+*+*{W\ Z2)

as the composition
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(9. 50 T ί = σ-i?WΛMξ**U*μ0 ®μ) I

h\X Z2)®hKY Z2)®hk(Z Z2)

= hi+\Xf\M2)®hi+2(Y/\M2)®hk+χZ/\M2)

-> hi+j+k+6(XΛM2Λ YΛM2ΛZΛM2)

-> hi+j+k+6(WΛM2ΛM2ΛM2)

= hi+j+KW;Z2),

where W = XΛYΛZ and U:Wf\M2/\M2ΛM2-^Xf\M2/\Y/\M2ΛZ/\M2

is the map given by a permutation of factors as U(x, y, z, m, m\ m") —

(xy m, y, m\ zy m"). Tξ is defined for all (/, j> k) and natural with respect

to three variables X, Y and Z by Lemma 9.1.

Denote by Γ(2, h) the set of all triple products τ$, ξ^{M2/\Py

M2ΛM2ΛM2}. τξ = τξ' if and only if they are equal as natural trans-

formations for all (/,/, k). Clearly

Thus T(2, h) forms an additive group. Define a map

(9. 6) τ 2 : {M2ΛP, M2ΛM2ΛM2} -* Γ(2, A)

by τ2(£) = τg. Then, by definitions,

(9. 60 τ2 fί αw epimorphism of groups.

Since A( Z2) is a functor of Z2-modules by Proposition 3.2, T(2, A) is
a Z2-module. Thus, by Theorem 8. 6, (ii), and (9. 60,

(9.7) Γ(2, A) ί5 a factor group of Z2®Z2®Z2®Z2.

9.4. Let o:G{iV2,M2ΛM2} be an element of (4.18) and μ2 be the

multiplication in h( ;Z2) defined by (5.6) by making use of this a and

70 of (9.3). By (4.180 and Proposition 4.7, (i), both a and a!=Tay

T= T(M29 M2), satisfy the condition of Lemma 8.8. Let κ = κΛ and κ' = κΛr

be the elements satisfying (8.11) for a and α', respectively.

Lemma 9.4. μ2(X®μ^ = τt and μ2(μ2®l) = τζ for ξ = (lMAoc)κ and
ζ= T\lMΛay, T= T(M2y M2ΛM2).

Proof. By definition
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for Γ, = T(Z, M2) and T2 = T(YΛZ, M2)

by Lemma 5.2, (iv)

for W=XΛYΛZ and f/=the map of (9.5')

by Lemma 9.3

Next, using the commutativity and the associativity of μ, we have

μ(μ2®l)(x®y®z) = Tfμ(z®μ2(x®y)) for T3 = T(XΛYΛM, ZAM)

7«**(lzΛΛfΛχΛ TtΛlM)*μ{z®μ{x®y))

for T 4 =

for T5 = T(ZΛM, XΛMΛ YAM)

S 2 1 M )*7^ Λ M (T'(1 M Λ«))

for T6=T(ZΛM,XΛY)

for T 7 = T(M,ZΛM).

Thus,

T'0.MΛct))*U*μ0.®μ)

(χwA T'(luΛa))*U*μ{l®μ)

by Lemma 9. 3

= τζ. q.e.d.

Let μ'2 denote the admissible multiplication defined by

= T"*μ2(y®X)

for x^hl(X; Z2), y<=h\Y; Z2) and T'= T(X, Y). Then, by (7.2) and the
similar computations as above, we obtain

Lemma 9. 5. μ2(l®μ'2) = T^, ^2(1 ® μ2) = τί"» μ2(i" 2® 1) = τ ί '
μ'2(μ2®l) = τζ" for ξ' = {lMAa')κ, ξ" = (lMAa)κ', ζ'= T'(lMAa')κ' and
ζ"=T'(lMAa)κ.

9.5. Here we discuss first the case of h = K.
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Lemma 9.6. In case h = Ky β2μ2(μ2®l)(l®82®82), β2μ2(μ2®ΐ)(82®l
®82) and β2μ2(μ2®l)(82®82®l) are triple products.

Proof. By Corollary 7. 8 and (Λ3) for μ2 we have

β2μ2(μ2®ί)(S2®82®l) - μ2(

and

β2μ2(μ2®l)(S2®l®δ2)

= μ/

2(l®μ2)
Jrμ2(l®μ2)

Jrβ2μ2(μ2®l)(δ2®δ2®l)

Thus, as sums of triple products, they are triple products. q.e.d.

Lemma 9.7. μ2(μ2®l), β2μ2(μ2®l)(l®δ2®82), β2μ2(μ2®l)(82®l®82)
and β2μ2(μ2®l)(δ2®δ2®l) form a base of Γ(2, K).

By Proposition 3.4, μ2(μ2(ιci®κj)®ιtk)> ^-^h j \ k^2y form a base of
K*(M2ΛM2ΛM2;Z2). Applying the four triple products on /C^K^K^

κ1®κ2®κ1 and κ1®κ1®κ2 we see their linear independence. Then, by
(9. 7), we conclude the lemma and see also that

(9. 8) 7(2, K) s Z 2 ΘZ 2 ΘZ 2 ΘZ 2

and

(9. 80 in case h - K, ^ ( O ) = 2 {M2ΛP, M2ΛM2ΛM2} .

Lemma 9.8. μ2(μ2®V) = μ2(l®μ2) in case h = K.

Proof. By the above lemma we can express μ2(l®μ2) as a linear
combination of μ2(μ2®l)y β2μ2(μ2®V)(l®82®S2)y β2μ2(μ2®l)(82®l®82) and
β2μ2(μ2®l)(82®82®ΐ). By (Λ3) μ2(l®μ2) and μ2(μ2®l) have the same
values on κ2®κ1®κly κί®κ2®/clf and ^ ( g ) ^ ® ^ , which means theat

μ2(X®μ2) = μ2(μ2®l)

by the argument in the proof of Lemma 9. 7. q.e.d.
By (9. 80, Lemmas 9. 4 and 9. 8 we see that

{M2ΛP, M2ΛM2ΛM2} ,

that is,

Tξ = Tζ

for any h satisfying >?** = 0. Hence we obtain
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Theorem 9. 9. Let μ be a commutative and associative multiplication
in h and η** = 0 in h. There exists an associative admissible multiplication
μ2 in h{ Z2).

By Corollary 7. 7 and Theorem 9. 9 we have

Corollary 9.10. Under the assumption of Theorem 9.9 and ^** = 0,
there exists a commutative and associative admissible μ2 in h( Z2).

10. Associativity of mod g multiplications (ςrφ2).

10.1. Let h be given with a commutative and associative multi-
plication μ. For each element ξ (= {S4Mq, Mq/\Mg/\Mg} we define a
triple product

(10.1) τ a : W(X\Zq)®W(Y\ Zq)®hk(Z;Zq) -> hi+j+k(W;Zq)

as the composition

(10.10 n = σ-4ξ**U*μ(l®μ)'

h\X\Zq)®h\Y\ Zq)®h\Z\Zq)

= hi+2(XΛ Mq) ® hj+\ YA Mq) ® hk+2(ZΛ Mq)

- hi+i+k+6(XΛMqΛ YΛMqΛZΛMq)

- hi+j+k+XWΛMqΛMqΛMq)

->hi+j+k+2(WΛMq) = hi+j+k(W;Zq),

where W=XΛYΛZ and U: WΛMqΛMqΛMq-+XΛMqΛYΛMqΛZΛMq

is the similar map as the corresponding one in (9. 5'). τέ is defined for
all (/, i, k) and natural with respect to three variables X, Y and Z.

Similarly to 9. 3 we denote by T(q, h) the set of all triple products
τ$, ξ^{S4Mqy Mq/\Mqf\Mq}. By an easy relation

= Tξ + Tζ

T(q, h) forms an additive group, and the map

(10. 2) τq : {S4Mq, MqΛMqΛMq} - T(g, h)

defined by τq{ξ) = τ$ satisfies

(10. 2') τq is an epimorphism of groups.

10.2. We shall discuss the case q^β2 (mod 4). Choosing an a of
(4.17) and using notations of (7. 6), by Proposition 7. 9, (i), we have a
direct sum decomposition
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(10. 3) {S<Mg,

S'M,, S3M9}

θ(lΛ*v/(S2ί))*{S4M?, S3M9}θ((lΛnS2ί")*{S4M?, S'M,}

if q is odd

®{Zg®Z2) if q=0 (mood 4)

by Theorem 4.1, where (lΛiΛ*)*, (ί"Λ*)*, (lΛιv/(S2ί))* and ((lΛf")S2ι")*
are all monomorphic.

Here we make an assumption that

(10. 4) (ηπg)** = (vπg)** = (lMAy)** = 0 in h, where η and v are Hopf maps
of 1st em and 3-stem respectively, and M=Mg.

Under this assumption (iηπ)** = (ivπ)** = (iη2π)** = 09 (Vi + v2)** =
(IMΛ ??)** = 0 by Lemma 7. 2, ?f** = (ivπv3)** = 0 and η\** = feV)** = 0 by
Corollary 4.2, (i). Thus, defining A as a subgroup of {S47l^, Mq/\Mgf\Mq}
generated by QΛiΛi)*(ivπ) in case #odd, or by {(lΛiΛθ*""im age s °f
of 7Ϊ,i7i and iW, (ιv/Λi)*- a n d (lΛί^C S^J^-images of 171 + ̂ 2 a n d *V*r,
((lΛi'OS2^)*^^)}^ w e s e e t h a t τ^ factors through the projection:
{SAMg, MqΛMqΛMg} ^ {S*Mgy MqΛMgΛMg} /A = B, say, and induces an
epimorphism

(10.5) τ'q:B

Now, by (10.3) and the definition of A we have

(10.50 B ^ \ Z q if , is odd
I Z2®Z2φZ2®Zq if q=0 (mod 4).

Putting γo = τr/*(σ2l), define an admissble μq by (5. 6'). Then it satis-
fies (5.6"). Remarking that α// = /// by (7. 5)-(7. 6), routine calculations
give a proof of the following

Lemma 10.1. μg(l®μg) = τt and μq{μq®l) = τζ for ξ = (lMΛi")S2i"
and ζ=(i"ΛlM)0-MΛT)S2i"y where M=Mg and T=T(Mg,S

2).
In case ^ Ξ 0 (mod 4), define elements

Ί'£Ξ{S2Mg,Ng} and τtf^

by

if = if + ioη and π' =

Then, the obvious relation l = iϋπ' + i'π0 (which was used in the proof of
(5.40) a n ( i 2-^ = 0 (in the present case) imply the relation



106 S. ARAKI and H. TODA

We define γw as γw of (5.4) making use of π'*(σ2l) as %, the above
relation implies the formula

y'w = (1WΛΪT

as in the proof of (5. 4'). Define an admissible μq by (5. 6') making use
of the a and the γ^, then we have

Lemma 10.2. μg(l®μq) = τξy μq(l®μg) = τξ" and μg(μ'q®l) = τζ' for
r = (lMΛαi0S2i", Γ = (lMΛΓ)S2(αf0 αifJ ζ' = (aϊ'/\i")Q.M/\ T)SH", T =
T(Mqy S2).

The proof is routine likely as Lemma 10.1.

10. 3. We shall discuss in a parallel way to 9. 5, i.e., first the case
h = K. In this case the assumption (10.4) is satisfied by Theorem 2.3.

Lemma 10.3. In case h = K and q=0 (mod 4),

and (q/2) βgμg(μg®l)(δg®δg®l)

are triple products.

Proof. By definitions

μq-μg= σ-2(m>7)**(l*Λ TΛ lM)μ for T = T(Y, Mg)

= σ-2η**(iΛi)**(lχΛ TMM)μ by (4.180

= (q/2)-βπ**(ίΛi)**(lχΛTΛlM)μ by Proposition 6.4
= (q/2).βgμg(δg®δg).

Then, as differences of triple products, the following are also triple
products:

μg(l®μq)~μg(l®μg) = μg(l®(μq~ μg))

= (q/2)-μg(l®βgμg(δg®δg))

= (q/2)-βgμg(l®μg)(l®δg®δg)

= (q/2)^βgμg(μg®l)(l®δg®δg) by (Λ3),

μg(μq®l)-μΛμ*®l) = (<ϊ/2) βgμg(μg®l)(δg®δg®l) ,

μ'q(l®μg)-μg{l®μg) = (q/2) βgμg(δg® δgμg)

= (q/2)-βgμg(μg®ΐ)(δg®δg®l + δg®l®δg). q.e.d.

Lemma 10.4. In case q = 0 (mod 4),

μg{μg®l\ (q/2).βgμg(μg®l)(l®δg®δg) , (q/2) βgμg(μg®l)(δg®l®δg)

and (q/2).βgμg(μg®l)(δg®δg®l)

generate T(q, K).
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The linear independence of the four triple products (with μq(μq®V)
replaced by (ql2) μq(μq®l)) over Z2y can be seen in the same way as
in the proof of Lemma 9. 7. Since μq(μq®l) is exactly of order q as is
easily seen, the proof is completed by (10. 5'). We can also conclude that

(10. 6) τΓ\0) - 0

by (10.50 in case h = K and q^2 (mod 4).

Lemma 10.5. In case h = K and q^2 (mod 4)

μq(μQ®l) = μq(l®μq).

Proof. A similar discussion as the proof of Lemma 9. 8 shows that

μq(l®μq) = S μq(μq®l)

for SΞJΞO (moάq). Then (Λ3) implies that

5 Ξ 1 (mod q). q.e.d.

10. 4. Lemma 10. 5 and (10. 6) imply that

ξ = ζ mod A ,

i.e.,

Tξ = Tζ

for any h satisfying (10.4) for the case q^2 (mod 4). Thus μq is as-
sociative under the assumption (10. 4). Since we can choose the μq used
in §7 as the same one used here, we obtain

Theorem 10. 6. Let % be given with a commutative and associative
multiplication. In case ^ $ 2 (mod4), if fi satisfies (yπq)** = (yπq)** =
(lAfΛ^)**=0, M=Mqy then there exists a commutative and associative
admissible multiplication in h( Zq)> which is unique in case q odd.

The conditions of Theorem 10. 6 are satisfied always if q is prime
to 2 and 3, or if q is odd and {yπq)** = 0.

In case q = 2 (mod 4), from Theorems 3.14, 9.9 and 10.6 follows

Theorem 10. 7. Let fi be equipped with a commutative and associative
multiplication μ and q = 2 (mod 4). // H satisfies η** = ̂ ^ = 0 (or η** =
v** = η** = 0)y then there exists an associative (or a commutative and
associative) admissible multiplication in h( Zq).

By Corollary 3.13, (6.1), Theorems 9. 9, 10. 6 and 10. 7 we have

° ary 10. 8. For any integer q>l every admissible multiplication
is associative.
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In case q odd, KO( Zq) has a unique admissible μq (since KO~2(S° Zq)
^0) and satisfies the assumption of Theorem 10. 6. Hence

Corollary 10. 9. For q odd, the unique admissible multiplication in

KO( Zg) is commutative and associative.

11. Multiplications in Bockstein spectral sequences.

11.1. Let h be a cohomology theory and p a prime. Define a
(mono-graded) exact couple [11]

CX{X\ Zp) = {Df(X; Zp\ £t(X; Zp\ ilf j l 9 ftj

by putting

DKX Zp) = Σ Di(X Zp\ Ef(X Zp) = Σ E(X Zp),

fiί(X; Z )̂ = %\X)9 Eί(X; Zp) = X'(X; Z^)',

ί'i = A Ji = P^ and ^ - δ A o ,

where ^ is a map sending every element to its p times. The exactness
of (2.3) shows that C^X; Zp) is an exact couple. From the successive
derived couples

Cr(X; Zp) = φ*{X; Zp\ E*(X; Zp\ iry j r y kr} ,

we obtain a (mono-graded) spectral sequence

r>l} with dr=jrkr,

which is called the mod p Bockstein spectral sequence of X for %
The naturality is clear. Replacing X by X+ we obtain the mod p

Bockstein spectral sequence {Ef{X\ Zp), r>l) of X for h. By the
definition of derived couples we see that

for r > l .

When h is of finite type, i.e., hι (a point) is finitely generated for
each i, then h*(X) is of finite type for any X (finite CTF-complexes)
thus every Bockstein spectral sequences for h converge to an ^ί-term.

11. 2. The Bockstein spectral sequences for h have many analogous
properties to the ordinary Bockstein spectral sequences. The proofs
are also similar to the ordinary cases if we use (2. 3), (2. 7) and (2.10)
(instead of the choice of canonical basis as is often seen in literature).
So we give only a sketch of them and the proofs are left to readers.
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Proposition 11.1. ?prp : h'iX; Zpr) -> fr(X; Zp) and Pp:h
i(X)->

h*(X Zp) induce homomorphisms

and qr'.

and the following diagram

δρr o 9ρf ~-/V •? \

TrXX; ZPr) — > TAX) r " h\X;έp')

εrfe\ Zp) A, Λx;ZP) ±+ EM; zt)

is commutative for all i and r > l , where pr~λ is a map sending
to pr-^x^D'r(X;Zp).

The proposition is clear for r=l by putting I1 = id and qi = Pp. By
an induction on r, we can prove this proposition.

Proposition 11.2. (i) q71(0) = δpr-i0h
i-\X; Zr-χ)+p-W(X).

(ii) l7\0) = δpr-l prfr'XX; Zpr-ή+P^hKX; Zpr-l) fθT

p* : h\X; Zpr~^h\X\ Zpr) of (2. 6).

(iii) lr is epimorphic.

(iv) lr?Pr^yh\X ZPr+i)- d7\0) in E'r{X Zp).

In the above proposition we regard h*{X Zpo) = {0}. Properties
(i)-(iv) of the above proposition can be proved by a simultaneous
induction on r.

Corollary 11.3. If h is of finite type, then the homomorphism

ί β β : V{X)-+El(X;ZJ

is induced by pp for each i and epimorphic, and

qz\0) = Σ δ * . J i ' - χ x ; zps)+p h>{X).

For any abelian group G we identify Tor (G, Zq) with the subgroup
of G consisting of all x^G such that q x = 0. Then, by the exactness
of (2. 3)

Spr^-KX; Zpr) = Tor (h\X\ Zpr).

Thus

(11.1) ^(0) = Tor (h\X\ Zp,-i)+p-K'(X)

and
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(11.2) lr\0) = Pr Tor p

for all i. If h is of finite type, then

g-\0) = g Tor (%\X\ ZpS)+p.h\X)

= tors hi{X)Jrp'h\X),

where tors G (or />-tors G) denotes the subgroup of G consisting of all
torsion elements (or of all torsion elements of ^-primary order). Thus
we have

Theorem 11. 4. If h is of finite type, then

Eί(X; Zp) ^ (S'(X)/tors h\X))®Zp

for all i.
lr, qr and 8pr0 induce the corresponding maps in the following

diagram (denoted with primes):

Er\X;Zp) -1+ El(X;Zp)y

which is commutative by Proposition 11.1. /£ is isomorphic and q'r is
monomorphic by Proposition 11.2. Thus

drε;-χx; zp)»δί,t0{K'-\X; zpr)/ι7\0))
^ (Tor ψ{X\ Zpr)+p.HKX))/(Joτ
- Tor {h\X\ Zpr))l(Ύoτ {h\X\ Z^

by which we obtain

Theorem 11.5. drEi~\X; Zp) is a Zp-module for every i and
When h is of finite type, then dim drE\r\X\ Zp) is equal to the number
of direct summands isomorphic to Zpr in a direct sum decomposition of
tors h*(X) into cyclic groups of primary orders.

By Theorems 11. 4 and 11. 5 we see that, in case h is of finite type,
if we know Bockstein spectral sequences for all prime p then we can
determine H*(X) additively.

11.3. Let / > b e a prime and q=pr, r>l. Denote π0: Ng^S2Mq by
πQ>q and, in case qΦ2y ϊ: S2Mq^Nq and π': Ng-+S2 by i'q and π'q respec-
tively. Choosing a sequence {aq}y aq<= {Nq, MqΛMg} of (4.17) we get
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a sequence {aq}f aq=aqj^{Nqy Mq/\Mq}y of elements of (4.18).
Let h be given with a commutative and associative multiplication

μy and assume that ?7** = 0 in h when p = 2. Put yQ = rγoq=πf

q^{σ2l) in
case #φ2 (cf., (5.40), a n d 7o = 7o2 = πiί7i *n case g = 2 after choosing
y^hXP) such that i%rγ1 = σ2l (cf., 9.1). Making use of aq and γ0<7

chosen above, we define an admissible multiplication μ̂  for each q by
(5. 60. μq is associative (or commutative and associative) under suitable
conditions for h (Theorems 9. 9, 9.10, 10. 6 and 10. 7).

μp defines a multiplication in Ef( \Zp). Since d1 = Sp is a derivation
by (Λ2), the term Ef{\Zp) has a multiplication induced from μp. Our
next task is to prove that μp induces multiplications into successive
terms E*(;Zp), r > 3 , so that {E*{\Zp)y r>l} becomes a functor of
spectral sequences with a multiplicative structure.

11. 4. Consider the following diagram (in the stable range) for r>2 :

By an easy calculation making use of (2. 5) we see that the right square
is commutative, i.e.,

(11. 3) ( IΛTΓ.XΪΛΪ) = ^

The left square is generally not commutative. Nevertheless,

(1Λ τzq)* {aqi'q(S2ΐ)π0 p - (ΪΛ Ί)ap}

= π0tqφ
2l)π0tP - (S2I)(1 Λ πp)ap by (4. 180

= (SΊ)τr0 p~(S2ϊ)π0fP = Ό by (4.180 and (5.2),

that is, there exists an element

bq(Ξ{NpySMq}

such that

(11.4) (1Λ/,)A = agi'q(S2l)πoP-aAΪ)ap.

We have



112 S. ARAKI and H. TODA

and

where T , = T{Y, Mq), W=XΛ Y and yw: hk{WΛNp)^hk{WΛS2Mp).
Thus by (11.4) we have

(11.5) Pg,Pμp-μp{pg,p®Pg,P) = σ-*<γw{{lAiq)bq)**(lA TqAl)*μ •

11.5. Here we shall discuss the groups {Np,SMt} for r>2.
The case p=2. By a similar discussion as the proof of Theorem

4.1 we see that

(11.6) {SM2, SMg} s* Z2φZ2

with generators Sϊ and (Siq)v{Sπ2), and

(11.7) {S2M2> SMg} « Z 4ΘZ 2

generators (Siβ)η (of order 4) αrcc? (SI)^(SV2) (of order 2),
{S2M2, S

2} αwrf ^ e {S4, SM2}.
Consider the following exact sequence (1.5) associated to the cofibra-

tion S2-+N2-+S'M2:

{S\ SMg}
 ( i ? ( S * {S2M2, SMg} - i {N2, SM9}

> {S2, SMq} •* {SM2, SMβ} .

{S3, SM9] e*Z2 generated by (Si<,)y (by (4.2)), and

(v(S2π2))*(Sig)V = (Sig)v2(S2π2)

= 2.(Sig)η by (4.20;

thus by (11.7) we see

(11. 8) πf {S2M2> SMβ} » Z2®Z2

with generators {Siq)ηπ02 and (Sΐ)v(S2π2)π02.
Next, {S2,SM9}^Zg generated by Si, ((4.2)) and (v(Sπ2))*(Si9) =

(Siq)v(Sπ2) is non-zero and of order 2 by (11. 6) hence

(11.9) it{N2,SMg}^Zq/2

generated by 2-Siq.

Lemma 11.6. {N2, SMq}s*Z2(BZq with generators (Sig)ηπQ2 {of order
2) and (Si^ξπ, {of order q) for q=2", r>2, where ? e {P, S2} (cf., (8.3)).
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Proof. First look at the group {P, SM2}. We compute this group
in two ways. Discussing an exact sequence (1.5') for S1^M2->S2

y we
see by (8.2) that

{P, SM2} ^ Z2 with a generator (βi2)ξ.

On the other hand, discussing an exact sequence (1. 5) for S2^P->S* we
see by (4.2)-(4.2') that

{P, SM2} ^ Z2 with generator ηπP .

Thus we see that

ηπP = (SQξ.

Then

= (SlXSQξπ, by (2. 5)

= (SΪ)y(S2π2)π0>2 by (8. 8).

And

ίίKSiΛSO = (Si,)ξiP by (8.8)

- 2-Siq by (8.3).

These, combined with (11. 8) and (11. 9), prove the lemma.
The case

decomposition
The case p odd prime. Since Np=S2VS2Mpy we have the direct sum

{NP9 SMg} ^ τr£*{S2, SMq} ®π%tP{S2Mp, SMg} ,

where π'p* and π%p are monomorphic. Here, {S2, SMq} ^Zq generated by
Sig ((4.2)), and {S2Mp, SMq}^0 as is easily seen from an exact sequence
(1. 5). Thus we obtain

(11.10) {Npy SMq}^Zq generated by (Siq)π'p for p an odd prime and

q=tT, r>2. '

11. 6. Now we shall discuss the deviation

9q%Pμq - μp(pg,p ®Pq,P), Q = Pr and r > 2 .

The case p = 2. First we prove

Lemma 11. 7. There exists a relation

for ξtΞ {P, S2} and ηtΞ {S2M2, S2}.

Proof. Discussing an exact sequence (1.5) for M2/\S2->M2/\P^>MβA

by (4.2) and (4,2') we see that
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{M2ΛP, S4} S* Z2 generated by (S2y)(lMΛπP) .

On the other hand, discussing an exact sequence (1.5) for S1

M2ΛP->S2ΛP by (8.2) we see that

{M2ΛP, S4} ^ Z2 generated by π2ί\ξ.

Thus the lemma follows.
By Lemma 11.6 the element bq^{N2f SMq} can be written as

with £<=Z2 and S'(ΞZq. Then, by (11.5)

Tq/\l)*μ

Here

by Lemma 5.2, (i)

where T^ S1) and S = S\ and

Tq/\l)*μ

δ̂ o) by Lemma 9.2

5,.o) by (8.10) for T=T(M2,P)

since l(o j o ) ^ : 1

5̂  0) by Lemma 11. 7

by Lemma 9.1, (i).

Therefore, for and y^h\Y\Zq\

where £r = £ + (£/ mod2)eZ2 and <7 is an element of h~2(S° Z2) such that
Λ = ^ * 1 w« the identification h~2(S° Z2) = h\M2). Since S2>otf = <r?7*l-O,
there exists an element ao<=h~2{S2) such that a = p2a0. Thus we obtain
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Proposition 11.8. Let q=2\ r>2, χ(=h\X;Zq) and y<=h\Y\ Zq).
There holds the relation

for an element ao^k~%S°) {independent of r) and Sr^Z2. Ifη** = 0inh,
then the right hand side becomes zero.

The case p odd prime. By (11.10) the element bq^{Np, SMq} can
be written as

bq = εq-(Siq)π'p

with Sq<=Zq. Then, by (11.5)

Tq/\l)*μ

= €g-σ-2i'p**πί**(tqΛiq)**0.Λ T,Λ1)V by (5. 40
= 0 by (5.2).

Thus we obtain

Proposition 11.9. Let p be an odd prime and q=pr> r>2. There
holds the relation

PQ,P = VP(PQ,P®P<I,P) -

11.7. μp gives a multiplication mλ on E*('Zp) by putting m1 = μp.
Since δ^ is a derivation for μpy dλ is also so for mx hence mx induces
a multiplication m2 in Et( Zp) passing to quotients. Assume that m, ,
2<i<ry is defined so that mt induces mi+1 passing to quotient l<i<r — 1.
Propositions 11.1, 11. 8 and 11. 9 show that

)-mr{lrx®lry)

JO if p odd

1 Sr mr{mr(drlrx ®drlry) ®qra0) if q = 2

for any x^%\X\ Zq) and y^hJ'(Y; Zq)y where q=pr

y Sr^Z2 and a0 is an
element of h~\S°). The right hand side of (11.11) vanishes if drlrx = 0
or drlry = 0; in particular

mr{mr(drlrx ®drlry) ®qra0)

= mr(mr(lr8qx®lrSqy)®lrpqa0) by Proposition 11.1

= lrSgμq(μq(x®Sqy)®pqa0)

= drmr(mr(lrx®drlry)®qra0).
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Hence

drmr(lrx®lry) = lr8gμg(x®y)

= mr(drlrx ®lry) + ( - iymr(lrx ®drlry),

where degx = i. Since lr is epimorphic by Proposition 11.2, (iii), the
above formula shows that dr is a derivation for mr. Therefore mr

induces a multiplication mr+1 in Z?*+1( Zp) by passing to quotients. Thus,
by an induction on r, mr is defined for all r>l.

We saw also that dr is a derivation for mr and for all r > l .
Next we shall discuss the commutativity of mr for p = 2 and r>2.

Since μq is commutative for r>2, by (11.11) we have

mr{lrx ®lry) + Sr mr{mr{drlrx ®drlry) ®qra0)

= lrT*μg(y®x) = T*lrμg(y®x)

£r.mr(T*rnr(drlry®drlrx)®qra0),

where T= T(X, Y) and the naturalities of lr and mr are used. This
formula shows first that the commutativity relation holds if drlrx = 0 or
drlry = θl in particular

T*mr{drlry®drlrx) = mr(drlrx®drlry).

Thus

mr(lrx®lry) = T*mr(lry®lrx)

for any #eA'(X; Z )̂ and y<=hj(Y; Zg), i.e., mr is commutative for p = 2
and r>2 by Proposition 11.2, (iii).

Summarizing the above discussions we have

Theorem 11.10. Let h be given with a commutative and associative
multiplication μ, and assume that 97** = 0 in h in case p = 2. For every
prime p a suitable admissible multiplication μp induces a multiplication

mr: Ei(X\ Zp)®Eί{Y\ Zp) -* E>r+
j(XΛ Y; Zp)

{in the sense that it is defined for any i, jy X and Y such that i) linear,
ii) natural and iii) has a bilateral unit 1<=E%S° Zp)) for each r > l .
mr is compatible with μ in the sense that

mr{qr®Qr) = Qrμ

dr is a derivation for mr and mr induces mr+1 by passing to quotients
(m1 = μp). mr is commutative for r>2. (If p is odd or if η** = Q in h
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then m1 is also commutative.) If pΦ3 or if (p7r3)** = 0 in h then mr is
associative.

11. 8. Finally consider the case h = K. Since K* (a sphere) is torsion-
free, every Bockstein spectral sequence of a sphere for K collapses by
Theorem 11. 5, i.e., denoting the Z-graded r-th term by El in this case,
we have

(11.12) E*r(Sn;Zp)^Kl(S";Zp) for l<r<oo .

In the present case, since η** = v** = 0 in if, £#( Z^) has an associative
multiplication mr for every p and r>l with properties described in
Theorem 11.10. Through the isomorphism (11.12) we have a natural
map

(11.13) βPtΨ: El{X\ Zp) -> E*r-\X\Zp),

defined by

(11.130 βp,r = mλ ®Qr*-2g)

for any i and Xy where g is the reduced Hopf bundle over S2. Clearly

(11.14) βPl = βp y the mod p Bott isomorphism,

(11.15) drβPr = βPtrdr and βPr induces βPr+1 by passing to quotients.

Since βp is an isomorphism ((6.2)), (11.14)-(11.15) imply

(11.16) βPtr is an isomorphism for every p and r>l.

From (6. 4) follows

(11.17) mr(βp>r®l) = mr{l®βPtr) = βPrmr .

Thus, identifying Eι

r(X;Zp) with Eι

r~
2(X; Zp) by βPr, we obtain a functor

of Z2-graded spectral sequences

£*( Zp) = E% Zp)φEl( Zp),
p) = E% Zp)φEl( Zp)

for each prime p with Ef( Z^) = 2?*( Zp) and with a multiplication
induced by {mr}, which coincides of course with the mod^ Bockstein
spectral sequence for K*. Since dr is a derivation for m*, m*+1 is
induced by m* and mf = μ*y the Kϋnneth isomorphism (Theorem 6.2)
implies inductively

Theorem 11.11. In case h=K, m* induces an isomorphism

E*(X;Zp)®E*(Y; Zp) « E?(XΛ Y; Zp)
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for any X and Yy l < r < o o , and for each prime p.

12. Appendix.

12.1. We consider here some properties of the maps a of (2. 5).

Lemma 12.1. Let a be any integer. The element d<= {M2y M2} satisfies
the relation

LM

1 M if a is odd

0 if a is even.

Proof. Let Pn be real projective ^-spaces and %: M2 = P2aPz the
inclusion. Then, for d:M2-*M2

{id} GΞ[M2, P
3 ] ^ [M2, P - ] ^ H\M2 Z2) ^ Z 2 .

Thus

id ^ ib if and only if a = b (mod 2) .

The homomorphism

{M2, M2} ^ Horn (ίθ(M 2 ), «5(M2))

defined by the assignment a->a* is an isomorphism, and the map

i*: KO(P3)-+KO(M2) is also an isomorphism [1]. Hence a=b (mod 2)
implies that (id)* = (ib)*, whence d* = b*, whence d = b. Here, taking
ί = 0 or 1 we obtain the lemma.

Theorem 12.2. Let a be any integer. The element d<={Mq, Mq]
satisfies the relation

aΛM if #ΞjΞ

iqVπg if q = 2 (mod 4).

_ (

Proof. By an exact sequence (1.5) for Sλ^Mq-^S2 we see easily
that

a =

for Λ;GZ 2 , where x = 0 in case q odd. In case q even, for q/2: Mq—>M2,

On the other hand

(q/2)d = d(q/2) = a2, (q/2)

by Lemma 12.1. Thus
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x-i2πq = a(a—ϊ) (q/2).

Here
0 if q=0 (mod 4)

i2ηπq if q = 2 (mod 4)

by (4.130. Therefore

_ JO if q=0 (mod 4)
X ~~ I a(a-l)/2 (mod 2) if q=2 (mod 4). q.e.d.

12. 2. From the above theorem we obtain the following corollaries.

Corollary 12. 3. // #Ξ|Ξ2 (mod 4) or if 17** = 0 in hy then

r*(x) = r-x

for any integer r and r*: h*(X; Zq)->h*(X; Zq).

Corollary 12.4. Let d={qyr) and {MqyMr}^qjd (a generator). For

a(q/d)(={Mq, Mr}, we have

[a q\d if q^2 or if r^2 (mod 4)
a(q/d) = <

la q/d-\-(a(a — l)/2) irηπq if q=r=2 (mod 4).

Corollary 12.5. For ay b and a + b of {Mq> Mr}y

[a

[a
if q^2 or if r^2 (mod 4)

if tf=r=2 (mod 4).

Corollary 12.6. Propositions 2.4 and 2.5 hold under the assumption
that q^2 or r ΐ 2 (mod 4) or 17** = 0 in h.

Corollary 12.7. The terms E*y r>2, of mod 2 Bockstein spectral
sequences are Z2-modules. (If p is odd or if v** = 0 in hy then E*( Z )
for h are Zp-modules for r>l.)

Because: for r>2,

whence Proposition 11.2, (iii), proves Corollary 12. 7.
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