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1. Introduction

We consider in this paper the problems of existence, uniqueness, and
asymptotic behavior of solutions of the following semi-linear evolution equa-
tion in a Banach space E:

-j-x{t) = Ax{t)+f(t, x(t)), 0<t< + oo ,

x(t) is said to be a solution of (1.1), if

X(.)(ΞC([O, oo); E)r]C\(0, oo); E)

and (1.1) is satisfied.
In (1.1), A is a closed linear operator in E with a domain D(A) which is

not necessarily dense in E. Throughout this paper, it is assumed that the
resolvent R(μ)=(A—μl)'1 exists and satisfies the estimate

S (1 2»
for Reμ2^— λ, where λ is a constant, and β=(l-\- a)"1, 0 < α < l .

W. von Wahl [9] and H. Kielhϋfer [3] studied the parabolic initial boundary
value problems, and obtained the similar estimate to (1.2) (see Section 6).

For fixed q, 0<<7<l, let Tq be the curve

It is easy to see that the resolvent exists in a region situated to the right of the
curve Tq and satisfies (1.2) with M0(l— q)'1 instead of Mo [4].

Under the assumption (1.2), the weakened Cauchy problem of the following
unperturbed linear equation
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= Ax(t), ΐ>0, x(O) = xo (1.3)
dt

is well-posed on the set D(A) [4], and the solution x(ΐ) of (1.3) is represented as

U(t)x0 for £>0, where U(t), ί>0, is the semigroup of bounded linear operators

given by

~ \ e»R(μ)dμ, t>0. (1.4)

It follows from (1.4) that U(t) satisfies the estimate [4]

\\U(t)\\^Me-λtΓ«y *>0, (1.5)

where M>0 is some constant.

For the nonlinear term f(t, x)> it is assumed that the following condition (i)

or (ii) is satisfied:

(i) f(t, x) is continuous on [0, oo)χ£' j and the estimate

\\f(t,x)-f(tyy)\\^K\\x-y\\ (1.6)

holds, where K>0 is a constant independent of t> x, and y.

(ii) f(t, x) is continuous on [0, ° ° )χ£. For each £>0 there exists a

constant k(c)>0 such that the estimate

\\f(t, x)-f(t,y)\\^k(c)\\x-y\\ (1.7)

holds for t, x> and^y satisfying t^O, \\x\\<Zc, \\y\\<*c.

In the case where A is the infinitesimal generator of Co semigroup, the

problem of existence and uniqueness of solutions of semi-linear equations was

treated by several authors, for example, by T. Kato [2], and the problem of

asymptotic behavior was treated, for example, by A. Pazy [5]. Recently W. von

Wahl [9] and H. Kielhόfer [3] considered the local solvability of (1.1) under

the same condition as (1.5) and weaker conditions for f(t, x). They also ap-

plied their results to a semi-linear initial boundary value problem within the

framework of the C°*-theory. Our main purpose is to obtain an estimate for

the asymptotic behavior of the solution of (1.1) and its derivative under the

condition (1.5). Some examples of linear partial differential equations are

worked out.

2. Existence and uniqueness of solutions

In this section it is assumed that/(ί, x) satisfies (1.6).' We consider the

problem of existence and uniqueness of the solution of (1.1) under the condition

(1.6).

Let x(t) be a solution of (1.1). Then we have the integral equation
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x(t) = I7(ί)*b+ Γ U(t-s)f(s, x(s)) ds . (2.1)
Jo

(2.1) can be uniquely solved by the successive approximations:

x0(t)=U(t)x0,

xn+ι(t) = I7(ί)*b+ Γ U(t-s)f{s, xn{s))ds, »=0, 1, - , (2.2)
Jo

= ]\mxn(t). (2.3)

If xo(=D(A), the solution x(t) of (2.1) is in C([0, oo); E). Otherwise x(t) is in
C((0, oo);£) and satisfies the following estimate in the neighbourhood of t=0:

where CjX) is some constant.
Next we shall show that the solution of (2.1) is continuously diίϊerentiable

in £>0 by posing some additional assumptions on f(t, x). Suppose that
/(£, x) satisfies the following conditions:

( ί ) -!-/(*> x)=ft(*> x) ί s continuous for (ί, Λ?)G [0, oo) x £. (2.4)
9ί

(ii) For each ί^0,/(ί, x) is Frέchet differentiable in x (Tanabe [8]), i.e.,

/(/, x+z) =f(t, x)+(Df(ty x)+Df(t, x)) z+o(\\z\\; x)

holds when ||^||-»0, where Df(t, x) (resp. Df(t> x)) is a linear (resp. anti-linear)
bounded operator in E. (2.5)

(iii) Df(t, x) and Df(t, x) are strongly continuous for (£, x)^ [0, oo)χ£.
(2.6)

(iv) For ί, x satisfying O^t^c, \\x\\£c, \\ft(t, x)\\, \\Df(t, x)\\L<E,Eh a n d

\\Df(t, X)\\L(E,E)
 a r e uniformly bounded. (2.7)

The following lemma is well-known, if f(ή£ΞC\[O, oo); £) and J7(ί) is of
Co class.

Lemma 2.1. Suppose that f(t) belongs to C([0, oo); E)f]C\(0, oo); £) .

therm

have for

Furthermore, suppose that /(£) is integrable on (0, Γ), where T>0. Then we
II dt

Γ U(t-s)f(s)ds = f/(0/(0)+ Γ U(t-s)-ff(s)ds
Jo Jo αί

4-
at

(V (2.8)
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Proof. If 0^p(A), the resolvent set of A, then it is easily seen that

y(t) =

is in C([0, oo); E)Γ\C\(0, °o); E) and satisfies for ί > 0

-jfy(t) = Ay(t)+f(t)

v ' ds
andj;(O)=O. Therefore

y(t)=\tU(t~s)f(s)ds
Jo

holds for ^
If Oφp(A)y the relation (2.8) holds for

where σ^p(A). Then we can derive (2.8) by differentiating the following
equation in t:

Γ U(t-s)f(s)ds - e« Γ Uσ(t-s)fσ(s)ds . Q.E.D.
Jo Jo

The following theorem can be proved in the similar way to Sobolevskii-
Pogorelenko [7]:

Theorem 2.2. If f(t, x) satisfies (1.6) and (2.4) to (2.7), then for each
xo^D(A) the solution of (2.1) is continuously differentiable in t>0 and satisfies
(1.1). Furthermore, the estimate

~dt

holds as t tends to 0, where c2 is a constant.

Proof. By the Frechet differentiability of /(£, x) and by the fact that
), we obtain for

,xo(t))=ft(t,xo(t))+Df(t, x,
i . J\ > v\ // J i\ i v\-// i — J \ ~ i " υ \ - / / T

-j-f(t,xo(t))\Uc3Γ*,
d t II
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where c3 is a constant. Therefore it follows inductively from Lemma 2.1 that
the successive approximations (2.2) satisfy

-j-xn+ι(t) = U(t)Axo+U(t)f(O, xo)+\'U(t-s)[fs(s, xn(s))
at Jo

+ Df(s, χn(s)).JLχn(s)+Df(s, xn(s))'-f*•(*)]ds • <2 9 )
as as

Consider the integral equation

v(t) = U(t)Axo+U(t)f(O, xo)+\'U(t-s)[fs(s, x(s))
Jo

+Df(s, x(s))-v(s)+Df(sf x(s)).v(s)]ds . (2.10)

The existence and uniqueness of the solution v(t) of (2.10) and the estimate

(2.11)

are ensured by the similar arguments to (2.2). From (2.9) and (2.10) we
have

-LXn+ι(t)-v(t) = jV(f-*)[/s(*( xn{s))

^ Xn(s)).[-j-xn(s)-v(s)^ ds

, xn(s))-W*, x(s))]-v(s)ds

-*,(ί)-ϋ(i)] ds

+ Γ U(t-s)[Df(s, xn(s))-Df(s, x(s))] -v(s)ds
JO

= I+Π+IΠ+IV+V. (2.12)

By Holder's inequality we obtain

Hill fS {\'\\U(t-s)\\>ds}V»{\'\\fs(s, xn(s))-fs(s,x(s))\\<ds}V<,
Jo Jo

where l/p-\~llq=l and ap<.ί. By Lebesgue's dominated convergence theorem
| | I | | converges to 0 uniformly in *e(0, T\. For the third term of (2.12) the
estimate

ί | |ΠI|| ^\'(t-sy\\U(t-s)\\ \\[Df(s, xn(s))-Df(s, «(*))] »
Jo

\\[Df(s, xn(s))-Df(s,
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holds, where l/p+l/q=l and ap<l. Similarly ί Λ | |ΠI | | converges to 0 uniformly
in *e(0, T], and so does f*||V||. Consequently there exist c5>0 and a sequence
of positive numbers {£M}Γ=o> such that £n->0 as n-+oo9 and the estimates

\tφ-s)-wH(s)ds, (2.13)
Jo

ίe=(0, T], n=0, 1, ...

hold, where zon(t) are given by

wn(t) = -xn{t)-v{t) \\, t>0.
dt

From (2.13) it follows inductively that

^ V * . (2.14)

Since wo(t)^c6Γ*, 0 < ί ^ Γ , by lettingy=w in (2.14), it follows that t*wn(t) are
uniformly bounded in ί^(0, T] and in ny i.e.,

wjβ^cit-, ίe(0, T], »=0, 1, - . (2.15)

It follows from (2.14) and (2.15) that

+Γ(l-α) Σ kra-^^V,, (2.16)
V ;«>r((Λ+l)(lα)) "

For any £>0, choosey sufficiently large so that

[the first term of (2.16)]< —, O^t^T

holds. Next take a large number N(S) so that

[the second term of (2.16)]<—, O^t^T

holds for any n>N(£). Consequently, for any δ>0, wn(t) converge to 0 uni-
formly in ί^[δ, T]. Therefore x(t) is continuously differentiable in *e(0, T]
and the following equation holds:
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jjx(t) = U(t)Axo+U(t)f(O, Xo) + \'U(t-s)4-Ks, x(s))ds
at Jo as

= A[U{t)xo+\ U(t-s)f(s, x(s))ds]+f(t, x(t)),
Jo

where the second equation follows from Lemma 2.1.

i follows from (2.1

Q.E.D.

Since x(t)=v(t)y the estimate in the Theorem follows from (2.11).
dt

3. Asymptotic behavior I

Now let us consider the asymptotic behavior of the solution of (1.1) and

(2.1). In this section we assume that f(t, x) satisfies (1.6).

It follows from the successive approximations (2.2) that for

(3.1)

In the case where α—0 and the Cauchy problem of (1.3) is uniformly well-

posed, (3.1) is reduced to the inequality

sup \\f(sy 0)|\Me—— l , (3.2)
O^S^T KM—X

In particular, if/(£, x)=Bx, where B is a linear bounded operator in E, we have

the well-known result [1], [4] from (3.2):

\\UA+B(t)\\^Mexp {Λί||5||-λ}ί, t^O,

where UA+B(t) is the semigroup generated by the Cauchy problem

d -x{t) = (A+B)x(t), t^O, x(0)=x0.
dt

Now let us return to (3.2). Suppose that

KM<X, sup | |/(ί,0) | |< + oo.
0^S<+oo

By considering x(t~\-t0) instead of x(t) in (3.2), where to>Oy we have for t^
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1 _ /
1Ht+to)\\£Me-^^t\\x(to)\\+ sup \\f(s, 0)||M

Therefore it follows that

. M
sup \\f(s, U)|| .

Λ»—J\.1V1 ^o—s

Since t0 is arbitrary, from the above inequality we obtain

M
lim \\f(t, 0)|| . (3.3)

If α > 0 , it seems difficult to obtain the asymptotic behavior of x(t) from
(3.1). In what follows, we derive the similar estimate to (3.3).

The following lemma is easily proved:

Lemma 3.1. Suppose thatf(t) is a real valued continuous function of £^0,
and that ϊίrrΐ/(0= + o o Then we can choose a sequence {tn}°Z=i such that

t

)^f(tH) = n, for

t^t^-^t^-, li

Proof. Let us define

By the assumptions the sets Sn are closed and nonvoid. Further let

tn = inf {t: t<=Sn} .

Then { ί j ^ i is the sequence stated in the lemma. Q.E.D.

Now let us prove one of our main results.

Theorem 3.2. Suppose that (1.6) is satisfied and that

[°°KMe-χtΓ»dt = KMX*-ψ(l-a)<l . (3.4)
Jo

Then we have the following estimate for the solution x(t) of (2 A):

t, 0)|| . (3.5)

Proof. If Πm ||/(ί, 0)|| = + oo, then (3.5) is clear. Therefore we as-
sume henceforth that Km \\f(t> 0) | |< + oo. We set y(t)=x(t+ί) and yo=x(l).
Then y(t) satisfies (2.1) and continuous in t ̂ 0 .

First we prove that ||j>(£)|| is bounded. If not so, by Lemma 3.1 we can
choose a sequence {tn}^ι such that
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n=\\y(tn)\\^\\U(tn)yo\\+\''\\U(tn-s)[\[K\\y(s)\\M\Ks+l,O)[\]^
Jo

sup \\f(s, 0)\\\~ \\U(s)\\ds+nκ\~ \\U(s)\\ds .
OSs Jo Jo

This is a contradiction by (1.5) and (3.4). Therefore there exists some con-
stant cs>0 such that

\\y(t)\\£c,, ί^O. (3.6)

Let

a = M λ ' - ' Γ ( l - α ) , b = fiϋi ||/(ί, 0)||M λ - T ( l - α ) .

For any £>0, there exists Γ(£)>0 such that the inequality

(3.7)

holds for any t0^ T(£)y and t>0.
Let #0(*)=*(*+*0), where t^O and ίo^max {1, Γ(6)}. Then by (3.6) and

(3.7) we have the estimate

||«°(OII^II^(O^o)ll+^+f(l-e)+i, t^O. (3.8)

Take 7 > 0 such that a+y<l. Then, from (1.5) and (3.8), there exists
^ > 0 such that the estimate

IW*+*o)H = \\x°(t)\\^φ+Ύ)+ε(l-a)+b (3.9)

holds for any t>tx. Consequently for any integer m>0, we can find inductively

*o> î) '"> tm+i> s u c n t n a t t n e estimate

Σ ̂ ll^^+^^+^i-^+έ] Σ ̂  (3.10)
j=0 ; = 0

holds for any t^tm+1. From (3.10) it can be concluded that there exists t(S)>0
such that the estimate

| |40ll^2ε+i(l-^)-1 (3.11)

holds for any t^t(S): Clearly (3.11) implies that the estimate (3.5) holds.

Q.E.D.

If f(t, 0) tends to 0 when t->°°, the following theorem holds:

Theorem 3.3. Suppose that the assumptions of Theorem 3.2 are satisfied,
and let x(t) be the solution of (2.1).

(i) If there exist c> 0 and δ > 0 such that the estimate
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||/(ί, 0) | | ^^Λ t>0 (3.12)

holds, then x(t) satisfies the estimate

(3.13)

where c>0 and δ > 0 are some constants.

(ii) If there exist c>0,an integer n ̂  0, and β, 0 ̂  β < 1, such that the estimate

-+p> (3.14)

holds when t-+ooy then x(t) satisfies the estimate

) ( 3 1 5 )

when t-^oo} where c>0 is some constant.

(iii) If there exists c>0 suck that the estimate

(3.16)

holds when t->oo} then x(t) satisfies the estimate

\\x{t)\\^e{lntyι (3.17)

when t-^oo, where c>0 is some constant.

Proof, (i) Let us take z>>0 so that the inequalities

*<min(δ, λ), KM(X-v)«-ιT(\-ά)<\ (3.18)

hold. It follows from (2.1) that the estimate

e"\\x{t+1)|I£^<|lU{t)x{\)\\ + ̂ ML^ple^lfts+l, 0)\\ds

(3.19)

holds for t>0. From (1.5), (3.12), and (3.18), the first and the second terms

of (3.19) are bounded for t>0 and tend to 0 exponentially as £->°o. In the

same way as Theorem 3.2, (3.18) and (3.19) imply that

where £ 9>0 is some constant. Clearly the above inequality implies that the

estimate (3.13) holds.

(ii) L e t r c ^ l . Using the relation f^(t—s)β+sβ, O^s^ty 0^/3<1, we

obtain
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t«+β\'\\U(t-s)\\\\f(s+\,O)\\ds
Jo

\'\\U(t-s)\\ Σ ,Cy(i-i)-V+"| |/(i+l, 0)11* . (3.20)
Jo ; = o

It follows from (1.5) and (3.14) that the right-hand side of (3.20) is bounded on

(0, oo).

From (2.1) we obtain the estimate

t\\x(t+ί)\\^t\\U(t)x(l)\\+t['\\U(t-s)\\\\f(s+l, 0)\\ds
Jo

+ [>K\\U(t-s)\\s\\x(s+l)\\ds. (3.21)
Jo

It follows from (1.5), (3.5), and (3.20) that the first, the second, and the third

terms of (3.21) are bounded on (0, oo). In the same way as Theorem 3.2,

(3.21) implies that tx(t-\-ί) is bounded on (0, oo). It follows inductively that

the estimate

t"\\x(t+l)\\^cw, t^0 (3.22)

holds, where c10 is some constant. Consider the inequality

t"^\\x(t+l)\\^t"^\\U(t)x(l)\\+tM'\\U(t-s)\\\\f(s+iy0)\\ds
Jo

K\\U(t-s)\\ ±
j=o

±
j=o

\lK\\U(t-s)\\'i}nCj(t-s)*-V+*\\x{s+l)\\ds
Jo y=i

K\\U(t-s)\\s»+B\\x(s+ί)\\ds, ί > 0 . (3.23)

From (1.5), (3.20), and (3.22), the same argument as Theorem 3.2 implies that

x(t) satisfies the estimate (3.15) when ί-^oo.

In the case where n—0, we also obtain the same conclusion,

(iii) Consider the inequality

(3.24)
o

Here we have used the inequality
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2, x>0, y>0.

It follows from (3.16) that the right-hand side of (3.24) is bounded on (0, °o).

Therefore the estimate (3.17) follows from, the following inequality:

o

+ \' {\ln(ί~s)\+ln(s+ί)+ln2}K\\U(t-s)\\\\x(s+l)\\ds.
Jo

Q.E.D.
4. Asymptotic behavior II

In this section it is assumed that/(£, x) satisfies (1.7). Furthermore it is

assumed that λ > 0 in (1.5) and that for the simplicity k(c) satisfies

k(c)^Kca

9 c>0, (4.1)

where K>0 and α > 0 are some constants. Then the following lemma holds:

Lemma 4.1. Suppose thatf(t, x) satisfies (1.7) and (4.1) and that the estimate

p = -^[(a+\)KM\«-Ύ{\-a)Yιίa-MX«-Ύ{\-ά)

sup||/(*,0)||>0 (4.2)

holds. Then the global solution x(t) of (2.1) uniquely exists for xo^D(A) satisfying

\\AxQ\\^p[\\A-i\\+M\«-ψ(l-a)yι, (4.3)

and satisfies the estimate

Proof. In the successive approximations (2.2), let

en = s u p I\xn(t)\\ (4.4)
ί^O

Since xn(t) satisfy the estimates

Jo

it follows that the estimates

a) sup \\f(t, 0)\\+KM\«-ιΓ(l-a)en

a+1 (4.5)

hold for w^O. On the other hand, we obtain

a), t>0 (4.6)
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from the equation

U(t)A'1 = A~ι+[ tU(s)dsy f > 0 .
Jo

It follows from (4.2), (4.3), (4.5), and (4.6) that

+
eQ<[(a+\)KMXΛ-ιT(\-a)γι/a. (4.7)

(4.7) implies that

en<[(a+l)KMΛ»-ψ(l-a)]-1/a, n^O. (4.8)

Therefore xn(t) converge to x(t) uniformly on any finite closed interval in [0, °°).
Clearly x(t) is the unique solution of (2.1). Q.E.D.

If the conditions (2.4) to (2.7) are satisfied, it is clear that x(t) is the unique
solution of (1.1) under the conditions in Lemma 4.1. Thus we have arrived
at the following assertion:

Theorem 4.2. Suppose that the assumptions of Lemma 4.1 are satisfied
and that f(ty x) satisfies (2.4) to (2.7). Then there exists the unique solution x(t)
of (1.1) for xQ satisfying (4.3) and x(t) satisfies the estimate

)|| . (4.9)

Proof. For any £>0 choose to>O so large that the estimates

hold for t^t0. Then for t>0 we have

1
^\\U(t)x{to)\\+-±~{lim\\x(t)\\+£}+M\"-ir(\-a)

(4.10)

It follows from (4.10) that

1 rπ-{lim|
a-\-l t +oo

Since £ > 0 is arbitrary, the above inequality implies that (4.9) holds. Q.E.D.
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Corresponding to Theorem 3.3, the following theorem holds. The proof

can be carried out in the same way as that of Theorem 3.3 with some modi-

fications.

Theorem 4.3. Suppose that (1.7) and (4.2) are satisfied. Let x(t) be the

solution of (2.1) with x0 satisfying (4.3).

(i) If there exist c>0 and δ > 0 such that the estimate (3.12) holds, then x{t)

satisfies the estimate

\\x{t)\\^ce-s\ f^O, (4.11)

where c>0 and § > 0 are some constants.

(ii) If there exist c>0, an integer w^O, and β> 0 ^ / 3 < l , such that the esti-

mate (3.14) holds when t->o°, then x{t) satisfies the estimate (3.15) when ί-»oo.

(iii) If there exists c>0 such that the estimate (3.16) holds when t->oo) then

x(t) satisfies the estimate (3.17) when £->°°.

5. Asymptotic behavior III

In this section it is assumed that/(£, x) satisfies (2.4) to (2.7) and either (1.6)

or (1.7) and that there exists the unique solution of (1.1)..

Theorem 5.1. Suppose that the solution x(t) of (1.1) satisfies the estimate

p = M λ - T ( l - α ) ΪEΓ||Z)/(f, x(t))+Df(t, x(t))\\L(E,E)<l . (5.1)
t -> oo

Then we have the estimate

dlim
dt

-x(t)
t(t, x(t))\\ . (5.2)

REMARK 1. Let A (resp. B) a linear (resp. anti-linear) bounded operator.

Then ||-4+J3|L(jϊ,je) is understood to be

REMARK 2. Suppose that the estimates

\\Df(t, xϊ-ψfryyi^^kMWx-yW ,
\\Df(t, x)-Df(t, y)\\L(E,E)^k2(c)\\x-y\\

hold for t, x, and y satisfying t^O, \\x\\<^c, \\y\\^cy where kx(c) and k2(c) are

monotone non-decreasing functions of c > 0 which are right continuous. Then

the condition (5.1) can be written in the more concrete form by combining the

above inequalities with (3.5) or (4.9).

Proof. (5.2) is clear in the case where ϊϊrn I !//(*> #(0)1.1 = = + o°* Therefore
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we assume that lim I !//(*> #(0)11 <H~°° Consider the inequality
t +oo

χ(t+t0)

347

dt
5Ξ 11 U(t) -j-x(to)\ \ + \'\\ U(t-s)\ 11 \fs(s+t0, x(s+tB))\ I ds

at Joat

\\U(t-ή\\\\Df(s+t0, x(s+t0))

Df(s+t0, x{s + tβ))\\nE.E)
ds

ds.

where to>O and ί > 0 . Take any £>0 so that the inequality

p+M\*-ψ(l-a)ε<\

holds. Next take ίo>O so large that the following inequalities hold:

sup \\fs(s, x(s))\\<ϋm\\ft(t, x(t))\\+ε ,

sup \\Df(s, x(s))+Df(s, x(s))\\LiE.E)

t, x(t))+Df(t, x(t))\\L(E,ε)+ε .

(5.3)

(5.4)

(5.5)

(5.6)

Then it follows from (5.3), (5.5), and (5.6) that

d

dt
χ(t+t0) t, x(t))\\+6}dS

X
ds

, χ(t))+Df(t, χ

x(s+t0) ds, t>0. (5.7)

In the same way as Theorem 3.2, the inequalities (5.4) and (5.7) imply that

"'" ' " λ is bounded on [0, °o). If necessary, take tQ>0 so large that the

inequality

sup
ds

x(s)
dt

x{t) (5.8)

holds. It follows from (5.7) and (5.8) that

lim
dt

χ(t) ^M\a-1T(\-a){\im\\fl{t,x(t))\\+ε}+M\a-ψ(l-a)

{lim \\Df(t, x(t))+Df(t, x(t))\\L(E,E)+ε} {lim
dt

x(t) +£} • (5.9)

Q.E.D.Since £ > 0 is arbitrary, (5.9) implies (5.2).

Next suppose that/(ί, x) satisfies the following condition: For each c>0,
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there exists a bounded measurable function k(ty c) of t which is integrable on
(0, oo) and k(t, c) satisfies

(5.10)
i, x)\\£k(t, c), \\x\\£c,

lim k(ty c) = 0.

From (5.10) we find that there exists a continuous function foo(x) such that
f(t> x) converges to /«,(#) as t^oo uniformly on each bounded set in E.

Theorem 5.2. Suppose that f(t, x) satisfies (5.10). // the solution x(t) of
(1.1) is bounded on [0, oo) and satisfies the estimate (5.1), there exists x(oo)
which satisfies the equation

x(oo)) = 0 (5.11)

and x(t) converges to #(°o) as t^oo.

Proof. Let \\x(t)\\^c, t^O. Then it follows from (5.2) and (5.10) that

lim x(t)l = 0 . (5.12)
*-><*> dt II

Take to>O so large that the inequality

M λ - T ( l - α ) sup \\Df(s, x(s))+Df(s, x(s))\\L(E,E)<p+S<l (5.13)

holds, where £>0 is arbitrary.
By integrating the both sides of (5.3) with respect to t from 0 to T, we

obtain

Jo II dt dt
+\"k(t, c)dt]

Jo

dt,

where T > 0 is arbitrary. Therefore (5.14) implies that

d
dt< + °o .

Consequently it follows that there exists jc(oo)e£ such that

X(t)-*x(oo), f(t, «(t))-/-(«(~)) ( ί - ~ )

From (1.1), (5.12), and (5.16), we obtain x(o°)<=D(A) and (5.11).

(5.14)

(5.15)

(5.16)

Q.E.D.

Corresponding to the degree of decreasing of k(t, c), the following theorem
holds:
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Theorem 5.3. Suppose that the assumptions of Theorem 5.2 are satisfied.

(i) If for each e>0 there exist d>0 and δ > 0 such that the estimate

k(t9 c)^de~8\ t>0 (5.17)

holds, then the solution x(t) o/(l.l) satisfies the estimate

\\x(t)-x(oo)\\^de-^f * > 0 , (5.18)

where d>0 and δ > 0 are some constants.

(ii) If for each c>0 there exist d>0, an integer n^ί, and β, 0</35Π, such

that the estimate

k(t, c)<dr<*+» (5.19)

holds when £—>°o, then x(t) satisfies the estimate

\\x(t)-x(°o)\\^dt-(»+β-v (5.20)

when t->°°, where d> 0 is some constant.

Proof. In the same way as Theorem 3.3, (i), it follows that £ w | — x(t) I is
II dt ||

bounded when t^ooy where z>>0 is some constant. Therefore (5.18) follows

from the equation

ΛJ(OO)—χ(t) = I x(τ)dτy

h dr

The proof of (ii) is similar to the above arguments. Hence we omit it. Q.E.D.

Corollary 5.4. Suppose that f(ty x) is independent of t. If the solution x(t)

of (1.1) satisfies the estimate

MλΛ-T(l-α)l^||D/(40)+D/W0)ll^^)<l, (5.21)

then there exists #(°o) G D ( i ) which satisfies the equation

Ax(oo)+f(x(oo)) = 0 (5.22)

and x(t) converges to x(oo) exponentially.

Proof. The proof is carried out in the same way as that of Theorem 5.2

and Theorem 5.3. Hence we omit it.

6. Examples

In this section we give some examples of linear partial differential equations

whose semigroups satisfy the estimate (1.5).
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EXAMPLE 1. Consider the initial boundary value problem of the heat

equation

-|-u(ί, *) = - | l « ( ί , *), />0, 0 < Ξ ^ l , (6.1)

w(0, x) = uo(x), O^Λ ̂ I , (6.2)

±-u(t,0) = ^-u(t, l) = 0. (6.3)
OX OX

Let E=C«([0, 1]), where 0 < α < l . The norm in E is given by

I \u\ L = sup I u(x) I + sup J Ψ 0 - < y ) l . (6.4)

The operator A and the domain Z)(̂ 4) are given by

An = -f u, D(A) = ;-|-z/(0) = A-«(l) = 0} . (6.5)

The resolvent i?(μ) of -4 exists in the complex plane except for the non-positive

real semiaxis and is represented as follows:

cosh
Sinh \f μ J

2
\f μ Jo

μ JxV μ Sinn \/μ

Let any i > 0 and any 6, 0<S<π/2y be given. In the following we shall

estimate ||/?(μ)||α on the sector Σ ί

Let μ=reiθ and /?^cos — . It is easy to see that the estimate

(6.7)

holds, where || | |0 denotes the supremum norm of C([0, 1]).

Let 0^y<x^l. Then from (6.6) we have

\u(x)-u(y)\^ 1

\*-y\ x—y\ \/μ SΪ

1

\χ-y\
} \

V μ Sinn x' μ J y

; χ,y)dξ.f(y)
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\x— y\*\\/μ sinh

where

g(ζ I χ> y) — cosh \/μ (x— 1) cosh

It is easy to see that the estimate

[the first term of (6.

holds. Since the equation

\'g{ξ;χ,y)dξ = ~±
* y τ"\/

holds, we obtain the estimate

[the second term of (6.8)]

2{23 / 2"* I sin -^ I * +

For the third term of (6.8), we obtain

[the third term of (6.8)]^ {I3'1'" sin

Similarly we obtain

[the fourth term of (6.8)] ̂  {23/2"α sin —

Therefore (6.7) and (6.9) to (6.12) imply that the estimate

, (6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

holds, where M Σ > 0 is some constant. It is easily seen that (6.13) implies (1.2).

REMARK. In this example we can shift the path of the integration in (1.4)
from Tq to 3 Σ Therefore the semigroup U(t) of (6.1), (6.2), and (6.3) satisfies
the estimate

»/2, t>0, (6.14)



352 T . NAMBU AND Y. SAKAWA

where M > 0 and γ are some constants.
In the following Examples 2, 3, and 4, E is considered to be CQ>([0, 1]) and

A is considered to be d2ldx2, respectively.

EXAMPLE 2. Consider (6.1) and (6.2) under the boundary condition

u(t, 0) = A ^ t , 1) = o . (6.15)
OX

The domain D(A) of A is given by

D(A) = {u(ΞC2+"; U(0) = — κ ( l ) = 0} . (6.16)
ax

The resolvent i?(μ) of A exists in the same region as in Example 1 and is re-
presented as

u(x) = R(μ)f= _cosh
v μ cosn

v μ cosn

In the similar way to Example 1, R(μ) satisfies the estimate (6.13) on Σ

EXAMPLE 3. Consider (6.1) and (6.2) under the boundary condition

-£-u(t,0) = u(t, l) = 0. (6.18)

The domain Z)(̂ 4) of A is given by

Z)(i4) = {ί/GC2+Λ; —«(0) = ιι(l) = 0} . (6.19)
ax

Then the resolvent R(μ) of A exists in the same region as in Example 1 and is
represented as

u(x) = R(μ)f= βinh
V μ cosn

f i s i n h ^ - ^ _ 1 } . / ( ? ) ^ . (6.20)
\J μ

In the similar way to Example 1, Λ(μ) satisfies the estimate (6.13) on 2 .

EXAMPLE 4. Consider (6.1) and (6.2) under the boundary condition

u(t, 0) = u(t, 1) = 0 . (6.21)

The domain Z)(̂ 4) of 4̂ is given by
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D(A) = { M G C 2 + Λ ; U(0) = u(\) = 0} . (6.22)

Then the resolvent R(μ) exists in the same region as in Example 1 and is re-

presented as

(6.23)

u(x) = R(μ)f= siπhv^(*-l) Γ s i n h
V μ sinh v μ Jo

V μ si

In the similar way to Example 1, R(μ) satisfies the estimate (6.13) on

REMARK. For Example 4, more general results have been obtained. Con-

sider the parabolic equation

=0,

where Ω is a domain of Rn with a sufficiently smooth boundary and the coeffi-

cients aβ(x) are smooth. Let E= CΛ(Ω). W. von Wahl [9] obtained the estimate

(6.13) in the case where Ω is bounded. In the case where Ω is unbounded, H.

Kielhϋfer [3] obtained (6.13).

EXAMPLE 5 ([4], p. 161). Consider the following initial value problem of

a system which is parabolic in the sense of Silov:

8 92 9 . 8 3 . 92 _ π

dx3 dx2dt dx2 dt

V l (0, x) = φx(x)9 v2(0, x) = φ2{x\ x<=R*. (6.24)

Let E=L\Rι). Then the semigroup U(t) of (6.24) satisfies (1.5) with

α = l / 2 .

EXAMPLE 6. Consider the following initial value problem of a system

which is parabolic in the sense of Silov:

τ v 1 A v l 9 w v 2

ot ot \ 2

»i(0, x) = φi(*), v2(0, x) = φ£x), x<ΞR\ (6.25)

where Δ denotes the Laplacian in R2. Let E=L\R2). By the PlanchereΓs

theorem, (6.25) is equivalent to the following system of ordinary differential

equations in L\R2):
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at at

P = (puP2)<ER\ ϋxφ,p) = up), HO,P) = UP), P^R2»(6-26)

where $(p) denotes the Fourier transform of φ(x)^L2(R2). The semigroup

U(t) of (6.26) is the bounded operator of multiplication by the matrix U(t; p)

r e-φp\)t : o Ί
U(t;p) = \ 2 2 2 2 (6.27)

[t{p\+pl)e^Pί+Pύt e-tf+Φ'J

||f/(<)ll is calculated according to the formula [4]

ί > 0 , (6.28)

where \\U(t; p)\\2 is the norm of the matrix U(t; p) as an operator in R2. As

is easily seen, the formula (6.28) implies that U(t) satisfies the estimate (1.5)

with α=l/2 .
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