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Abstract

Parallel distributed processing neuroimaging in the Stroop color word interference task in five healthy subjects was

studied. The total reaction time was set at 650 ms with a time window of 200 ms in steps of 50 ms. Spatially filtered

magnetoencephalography analysis, as used in synthetic aperture magnetometry, was used. Neural activation began in

the left posterior parietal-occipital area (150–250 ms post-stimulus), followed by the right prefrontal polar area (250–350

ms), the left dorsolateral prefrontal cortex (250–400 ms), and the mid- to lower- primary motor area (350–400 ms).

Successive and temporally overlapping activation of various cortical regions were successfully estimated within a

short 200 ms time interval, contrary to previous positron emission tomography and fMRI studies.

q 2002 Elsevier Science Ireland Ltd. All rights reserved.
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The Stroop color word interference task is utilized to

assess frontal lobe functions [6,14]. Previous lesion studies

demonstrated functional involvement of the left dorsolateral

prefrontal cortex (DLPFC) [15] and left/right lateral frontal

regions [9,17] in this task. Positron emission tomography

(PET) and fMRI studies have consistently showed increased

activity in the anterior cingulate cortex (ACC) [1,2,8,10]

with one recent study demonstrating it in the left DLPFC

[5]. The dissociation between the neuropsychological and

the neuroimaging approaches is thought to be due to parallel

distributed processing (PDP) in multiple cortical regions,

subserving the sequential information processing from

perception, attention, read inhibition and vocalization

which are temporally overlapping. Time intervals of 100

ms are necessary for PDP visualization, since reaction

times are approximately 650 ms. PET functional activity

could not be measured to better than 10 s and event-related

fMRI studies of whole brain were measured within a 1650

ms cycle.

Magnetoencephalography (MEG) analysis can directly

probe neural activity within a few milliseconds. The equiva-

lent current dipole (ECD) MEG analysis is often used, but

this method is only valid for discrete small spatial extent

sources. Synthetic aperture magnetometry (SAM) is a novel

spatial filtering technique based on the nonlinear

constrained minimum-variance beam former [11]. This

technique can estimate unambiguous three-dimensional

source mapping. Taniguchi et al. reported the relative colo-

calization of event-related desynchronization (ERD) of the

mu rhythm estimated by SAM with ECD and fMRI activa-

tion [16]. Using SAM, we have previously reported the

frontal midline theta rhythm related focused attention task

was generated in ACC [3]. In these studies, steady states

were assumed to last for 10–20 s.

In this study, MEG data were acquired in 650 ms time

periods to better simulate real time activity. The time
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sequence began with the introduction of the stimuli in the

Stroop task, then subsequently analyzed using SAM with a

200 ms time window in 50 ms steps.

The subjects were five healthy right-handed [7] volun-

teers (22–27 years of age), whose native language was Japa-

nese. Written consent was given by all subjects. The Stroop

task required subjects to perform color naming instead of

word reading. Incongruent stimuli, in which the word indi-

cating the name of a color was written in a color different

than that of the word (e.g., the word ‘red’ was printed in

‘blue’ ink), made subjects inhibit word reading. Twelve

incongruent and four congruent stimuli using red, blue,

yellow and blue colors were written in Japanese kanji char-

acters. Each stimulus set consisted of an eye fixation period

of 500 ms and an incongruent/congruent stimulus period of

1250 ms (Fig. 1). An eye fixation black cross and the visual

stimuli were alternately presented on a 15-inch TFT liquid

crystal display placed 2 m away from the subjects. Incon-

gruent and congruent stimulus sets were presented pseudo-

randomly to avoid habituation. Subjects were instructed to

name the color quickly and accurately in a manner mini-

mizing motion artifacts.

A helmet-shaped 64-channel superconducting quantum

interference device (SQUID) sensor array (NeuroSQUID

Model 100; CTF Systems Inc., Port Coquitlam, Canada)

was used for the MEG measurements. MEG signals were

digitized at 250 Hz, filtered using a combined 60 Hz notch

filter and 1–80 Hz band pass filter. The signals were

recorded on a disk and analyzed off-line. One hundred

unaveraged, incongruent stimulus sets without artifacts,

were analyzed (Fig. 2).

Magnetic resonance (MR) images were obtained at 1.5 T

(Magneton Impact; Siemens, Erlangen, Germany) with fidu-

cial skin markers at the subject’s nasion and bilateral

preauricular points. Before and after MEG measurements,

the position of the subject’s head relative to the sensor array

was measured using three small coils generating magnetic

signals affixed to the same points. With these points, the

images obtained from MEG could be superimposed on the

subject’s MR images.

The tomographic distributions of the activated regions

were determined based on the unaveraged MEG measure-

ments using a spatial filtering technique, SAM. Since MEG

signals result from the spatial superposition of fields gener-

ated by neural source activity, spatial filtering is used to

enhance the signal-to-noise ratios of spontaneous MEG by

reduction of spatial superposition [11]. Using SAM, three-

dimensional images from current source density (CSD)

mappings of MEG signal sources can be estimated. A statis-

tical parametric map (SPM) can be produced using voxel-to-

voxel comparison using the Student’s t-test of the images

taken in the control and active states. Functional images can

be obtained by superimposing SPM on MR images [3,16].

The 650 ms post-stimulus period was analyzed with a

time window of 200 ms and a moving step of 50 ms for a

total of ten active states. Reaction times ranging between

450–650 ms had been measured in three out of the five

subjects with chin muscles electromyograms. The 200 ms

period in which the subjects were looking at the eye fixation

cross just before the presentation of the incongruent stimuli

was regarded as the control state (Fig. 1). SPM was gener-

ated for five frequency bands with a 5 mm voxel resolution:

1–4, 4–8, 8–13, 13–25 and 25–60 Hz. Images of cortical

regions in which CSD significantly increased or decreased

were examined. The reduction of CSD corresponded to

ERD caused by the neural activation [3,16].

In the 25–60 Hz band, SAM statistical imaging revealed

significantly localized ERD. ERD began in the left parietal-

occipital area (POA) at 150–250 ms post-stimulus; here-

after, the time given was the median of each time window.

This was followed by the right prefrontal polar area (PPA) at
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Fig. 1. CSD maps were estimated for each 200 ms time window

with 100 incongruent stimulus data sets. The ten statistical

imaging sets to demonstrate CSD changes from control to ten

active states were produced with a sliding step of 50 ms. In this

example of incongruent stimulus, a Japanese kanji character

representing “green” is printed in “red” ink.

Fig. 2. An example of MEG signals in an incongruent stimulus set

in Subject 1. One hundred epochs of MEG signals were filtered

into five frequency bands and then submitted to SAM analysis.

In this subject, signals from SL51, SR41, SR42 and SR51 were

excluded from SAM analysis because of mechanical troubles of

the sensors. Inspection of raw MEG signals cannot detect any

MEG activity specific to the neural activation in the Stroop task.



250–350 ms, the left DLPFC at 250–400 ms, and the bilat-

eral mid- to lower- primary motor areas (M1, cortical larynx

area) at 350–400 ms with interindividual variability. Subse-

quently, ERD terminated at 300–400 ms, 400–500 ms, 350–

550 ms, and 400–550 ms, respectively (Figs. 3,4).

ERD in the left DLPFC was found in all five subjects, and

that in the right in three. ERD in the left POA was found in

three subjects, and that in the right PPA and the bilateral M1

in two subjects. The subjects were classified into two

groups: three subjects (Subjects 1, 2 and 3) showed ERD

in POA without that in M1, and the other two (Subjects 4

and 5) showed ERD in M1 without that in POA (Fig. 4).

ERDs in the 1–4, 4–8, and 8–13 Hz bands did not show

any common trends among the subjects. Although neuroi-

maging of the 13–25 Hz and the 25–60 Hz bands was simi-

lar, Student’s t-test values of the 13–25 Hz band were

smaller than those from the 25–60 Hz band. In the five

frequency bands tested, no significant CSD decrease could

be measured that corresponded to event-related synchroni-

zation.

The main result of this study was that of the four regions:

the left POA, the right PPA, the left DLPFC, and bilateral

M1, each were activated in a regular sequence with a time

lag between 50 and 150 ms. PDP from POA to M1 via PPA

and DLPFC was visualized with temporal overlap.

The activation of the left DLPFC was observed in all five

subjects, and that of the right in three subjects. Subjects

were asked to inhibit word reading [6,14]. It had been

reported that the performance of the Stroop task was

reduced in prefrontal head-injured patients [9,15,17],

suggesting the involvement of DLPFC in this inhibition.

The go/no-go studies also reported that DLPFC was

involved in inhibition. The no-go potential was observed

on the dorsal bank of the principal sulcus of monkeys,

which was equivalent to human DLPFC [12]. ECD was

estimated in the dorsal part of bilateral frontal lobes at a

latency of 135 ms in human MEG go/no-go studies [13].

The involvement of DLPFC had not been indicated by the
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Fig. 3. The statistical imaging of CSD changes in the 25–60 Hz

band during the Stroop task for Subject 1 and 5. In Subject 1, left

POA, left insula, right PPA and left DLPFC showed significant

CSD decrease (corresponding to neural activation) with its maxi-

mum t value at 300 ms, 300 ms, 350 ms and 450 ms respectively.

In Subject 5, left DLPFC (350 ms), right DLPFC (350 ms), left M1

(400 ms) and right M1 (450 ms) showed significant CSD decrease

with maximum t value. The voxels exhibiting statistically signif-

icant changes were color coded in red. Notice this MRI coordi-

nate system is different from conventional ones. The horizontal

slice is parallel to the plane including the nasion and bilateral

preauricular points. The coronal slice is perpendicular to hori-

zontal one. The time given is the median of each time window.

The yellow arrows show the corresponding activated regions.

POA, parietal-occipital area; PPA, prefrontal polar area; DLPFC,

dorsolateral prefrontal cortex; M1, mid- to lower- primary motor

area.

Fig. 4. Time course composite maps of activated regions during

the Stroop task in all subjects. Thick line with arrows indicates

significantly activated period. The time given is the median of

each time window. POA, parietal-occipital area; PPA, prefrontal

polar area; DLPFC, dorsolateral prefrontal cortex; M1, mid- to

lower- primary motor area.



block-designed PET [1,2,8] or fMRI studies [10], as was

first reported using event-related fMRI with a time interval

of 1.65 s [5]. This is probably due to the requirement of short

time periods of 50–200 ms necessary to detect the transient

activity in DLPFC. However, there were limitations even in

this event-related fMRI method to estimate PDP in real time

because of the time lag of 3–8 s between the actual activa-

tion and signal changes.

Activation in the right PPA was observed in two subjects.

An fMRI study reported that bilateral fronto-polar prefron-

tal cortex was activated when subjects had to keep in mind a

main goal while performing concurrent (sub) goal [4], indi-

cating the allocation of attention. Since the main goal was

color naming and the concurrent subgoal was inhibition of

the habitual reaction of word reading, the activation in this

area might be earlier than that in DLPFC.

The subjects were classified into two groups (Fig. 4). The

regions related to visual information processing, allocation

of attention and inhibition were activated in POA Dominant

Group, while the regions related to inhibition and vocaliza-

tion were activated in M1 Dominant Group. MEG SAM

analysis enabled us to investigate inter-subject differences

in the psychological strategy.

The activation of ACC was not observed in the present

study. Presumably, SQUID sensors have difficulty in detect-

ing magnetic fields from ACC, because: (1), Bilateral

medial surfaces of ACC are positioned face to face and

make cancellation of their magnetic fields; (2), The deeper

location of ACC causes weaker MEG signals from reaching

the sensors. Since PET, fMRI and MEG had advantages and

disadvantages, these methods should complement each

other in future studies.
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