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PART I: GENERAL CALCULUS
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Introduction

The aim of this paper is to study stochastic differential agguns of the type

t t
0.1) X, =xo+ / o(X,)dW, + / b (X,) ds,
0 0

whereb ,o are continuous functions such that> 0. In such a case the formal oper-
ator associated wittk is given bf  s3/2)f" +b' f'.

Equation (0.1) will be considered as a martingale problem sometimes in the
weak (in law) sense.

Diffusions in a generalized sense were studied by sevetdlbssi First, we men-
tion a classical book by N.I. Portenko ([21]) which, howevemains in the frame-
work of semimartingales. The point of view adopted in thisokads different from
ours; its aim is to start from a Markov semigroup in order tostouct solutions to
some stochastic differential equations in a generalizetseseWe choose to adopt a
direct stochastic analysis perspective without using Margroperties. At this stage,
comparing the two approaches appears to be a delicate rapalle

Relevant work in this area was done by H.J. Engelbert and V&bhmidt ([9])
who investigated solutions to stochastic differential agpns with generalized drift
remaining however in the class of semimartingales. Moreenttg, H.J. Engelbert
and J. Wolf ([10]) considered special cases of processegngolstochastic differ-
ential equations with generalized drift; those cases thel@xamples coming from
Bessel processes. Those solutions are no longer semigedetin but Dirichlet pro-
cesses. A special case of equation (0.1) with= 1 and continuous® was treated
by P. Seignourel ([29]) without defining the stochastic gsial framework in relation
with long time behaviour. This is the case of irregular medithe case of b being a
Brownian path appears also in the literature with the denatign “random medium”;
for recent results we refer to [18, 19].

After finishing the paper, we found an interesting recentepagf R.F. Bass and
Z-Q. Chen ([4]) which examines, from quite different teajues than ours, one-
dimensional stochastic differential equations with Hgldontinuous diffusion and with
a drift being the derivative of a Holder function. For thauation they establish strong
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existence and pathwise uniqueness.

The literature on Dirichlet processes in the framework ofiddiet forms is huge
and it is impossible to list it completely. We only want to rtien some very useful
monographies such as [14, 15]. The subject has shown a lagglopment in infinite
dimension starting from [2]. A later monography is [17]. Retly, the case of time-
dependent Dirichlet forms has attracted a lot of interest, [20, 30].

Our point of view of Dirichlet processes is pathwise, follog/ [13, 5]. A (con-
tinuous) Dirichlet process is the sum of a local martingdde nd @ zero quadratic
variation processA

The paper is organized as follows. First we introduce thecepth of a
Cl-generalized solution td.f & wherel € C° f € CL. Under the assumption that
there existsh € C! with Lh = 0, h’(x) # O for everyx , we can show thatf [=ad-
mits a solution for anyl € C° D, will be the subset ofc!-functions f such that
Lf = [ for somel e C°. Significant examples arise whén @&?2/2 + 3, where
«a € [0,1] and 3 is a function of bounded variation. A particular situatiofisas when
L is close to divergence type which means that

2
(0.2) b :% +4.

In Section 3, we present a martingale problem related to .itFeve state an ex-
istence and uniqueness theorem, which involves a non-ggplacondition. Moreover,
we show that the occupation time measure always admits dtygeifsl. is close to di-
vergence type then it is possible to show that the martingatdlem is equivalent to
a stochastic differential equation in the weak sense (Orire precisely, the solution
X to the martingale problem associated with  will solve

1
(0.3) X, =x0+/ o(X;)dWs + A(b),
0
where A :C°(R) — C is the unique extension of the map
lb—>/ I'(X,)ds
0
defined onC(R); C denotes the metric space of continuous processes endowied wi

the ucp topology. The existence of such an extension is iequlaby the fact that the
map £: D; — C°, defined by

£fe)= [ Lityay
can be extended uniquely ©'(R).

In Section 3, we also prove thdt is truely the infinitesimaheator associated
with the solution of a martingale problem. Moreover, we trassuitable Kolmogorov
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equation which allows to deduce that the lawXyf  admits a densi ¢+ > 0, and to
examine some properties.

In part I, see [12], we examine the Lyons-Zheng structurehef process, Itd’s
formula under weak assumptions and a semimartingale deazation.

1. Notations and recalls

If Iis a real open interval thed 7( ) will be th& -type space (adtw to the
notations of [7, Chapter 2]) of continuous functions én  emeld with the topol-
ogy of uniform convergence on compacts. ko> 0, C¥(I) will be a similar space
equipped with the topology of uniform convergence of thet firdlerivatives. IfI =R
we will simply write C, C* instead ofC R), C*(R).

We also need to introduce the following subspace< &f

Ci={fec: f(0)=0},
Cho:={f €C: f(0)= f'(0)=0}.

Furthermore, we will work with the following? -type spacekZ . denotes the space
of all Borel functions which are square integrable whenriggid to compact subsets.
W,%;C2 is the space of all absolutely continuous functiofis  adngtta densityf’ €
L2.. It is equipped with the distance which sum0)| and the distance of’ in L2 .
A subspace oW>2 will be

Woiee = {f € WeZ: £(0)=0}.

Similarly, we can consideL._ for p > 1. We denote the set af* real functions with
compact support by’* k > 0. constwill denote a generic positive constant.

T will be a fixed real number. We fix a probability spac®, (4, P). All pro-
cesses will be considered with index x The F -type space of continuous processes
equipped with the ucp topology is denoted By We recall that a sequence of pro-
cesses K, ) inC converges ucp taH if, for every” > 0, sup r |(H, — H)(1)]
converges to zero in probability. Note that  belongs auttraby to C.

For convenience, we follow the framework of stochastic el introduced
in [24] and continued in [25, 26, 27], [32, 33, 34] and [28].tLé = (X;,t € [0, T])
be a continuous process aid %, € [0, T]) be a process with paths L. We
recall in the sequel the most useful rules of calculus.

The forward integral and the covariation process are definethe following lim-
its in the ucp (uniform convergence in probability) senseemgdver they exist

! . T Xgre — X
(1.1) / Yod X, = lim / Y, T g
0 0 €

e—0+

(1.2) [X.Y], = lim C.(X.Y),
e—0+
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where
1 1
CE(X, Y), = g/ (XS+5 — XS)(YS+€ — Yg‘) ds.
0

For [X, X] we shortly write [X ]. All stochastic integrals and caiagion processes will
be of course elements of If [X, Y], [ X, X], [ Y, Y] exist we say that X, Y )has all
its mutual covariations

RemaRk 1.1. XY, =XoYo+ [y Y,d~ X, + [, X,d Y, +[X, Y], provided that two
of the three integrals or covariations exist.

RemaArk 1.2. a) If [X, X] exists then it is always an increasing procesd &n
is called afinite quadratic variation procesdf [ X, X] = 0 then X is said to be aero
quadratic variation procesgor a zero energy process).

b) Let X,Y be continuous processes such thatX ) has all its hatwvariations.
Then [X, Y] has bounded (total) variation. ff g € C* then

LA(X). (V)] = /0 F1(X)g' (V) dIX. Y].

c) If Ais a zero quadratic variation process akid is a finite catédvariation pro-
cess thenX, A EO.

d) A bounded variation process is a zero quadratic varigti@tess.

e) (Classical Itd formuld If f € C? then [, f/(X)d~ X exists and is equal to

1
1) = 00 =5 [ r'd1.
fy If fe€C*andg € C? then the forward integral, f(X)d~g(X) is well defined.

In this paper all filtrations are supposed to fulfill the usgahditions. IfF =
(F1)iero,r) is a filtration, X anF-semimartingale,Y isF-adapted with the suitable
square integrability conditions, theg]i)' Yd~ X is the usual Itd integral. IfY is an
F-semimartingale therj’o' Y d°X is the classical Fisk-Stratonovich integral and, ' ]
the usual covariation procesX, Y).

An F-Dirichlet processis the sum of arfF-local continuous martingald/ and an
F-adapted zero quadratic variation process , see [13, 5].

Remark 1.3 ([28]). LetX =M +A be a Dirichlet process. Remark 1.2 c) irapli
that [X]=(M). If f € C!then f()=M/ +A/ is a Dirichlet process, where

M/ = / X dM,
0
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and A/ :=f (X )— M/ has zero quadratic variation.

A sequence V) of (possibly infinite) F-stopping times will be said to be “suit-
able” if

U{TN >T}
N
has probability one. We will use the notation of stopped psscas usuallyx ™.

Remark 1.4. LetX be aF-adapted continuous process.
X is a semimartingale (resp. Dirichlet processes) if and dhtye stopped pro-
cessesX™ are also semimartingales (resp. Dirichlet processes).

2. Definition of the operator L
Let o, b € CO(R) such thate > 0. We consider formally a PDE operator of the
following type:

0-2 11 ! !
(2.1) Lg :?g +b'g.

By a mollifier, we intend a functionb € S(R) with [ ®(x)dx = 1. We denote
®,(x) = nd(nx), o2:=02%d,, b,:=bx*d,.
We then consider

2
On 1

(2.2) Lig =758"+ bg'.

A priori, 02, b, and the operatol., depend on the mollifier
DerniTioN. A function f € CY(R) is said to be asolution to
(2.3) Lf =,

wherel € €9 (in the Cl-generalized senydf, for any mollifier ®, there are se-
quences f, ) inC?, (,) in C° such that

(2.4) Lofy =l,, fo— finct 1,—1incC®

Remark 2.1. The previous definition and notations can be adaptech\&#his re-
placed by a real interval =a]b [oo < a < b < +o0, 0, b € CO(I) and (2.1) is
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defined on/ . We extend, b by zero on/¢ and, fog € C%(I), we define

L,g

(02)
= T'Ig” + ()18’

Then f € CY(I) is a Cl-generalized solution td.f #if (2.3) and (2.4) hold when
C! and C° are replaced byc*(7) and C(I), respectively.

Remark 2.2. LetI be as above. B € C°(I) and f € C?(I) is a classical solu-
tion to Lf =1 then f is immediately seen to be@-generalized solution.

We go on stating results fof R.

Proposition 2.3. There is a solutio: € C* to Lh = 0 such thath/(x) # 0 for
everyx € R if and only if

/

. b
2(x) = lim 2/ — () dy
n—o0 0 On

exists inCP, independently from the mollifier. Moreoven this case any solution f
to Lf = 0 fulfills

(2.5) f'x)=e =0 £(0).

Proof. Leth € C! be a solution toLh = 0 withh’ # 0 for everyx € R. Then
there are sequences, (" ) @ and ¢, ) in C* such thata, — 0 in C°, h, — h in C?
and L,h, =a, . Settingg, :#/ we haveg!(02/2)+g,b, =a, andg, — g =h' in CC.
Dividing by (g,02)/2, we get

an

b/
(2.6) (logg, } +2—5 =2——.
On On8n

Sinceg =i’ >0 andg,* — g~ in C° by integrating (2.6),x is well-defined and
we have

(2.7) logg () =—X(x) + const

This proves the direct sense of the implication; it also psothatk is of the type
h'(x) = h'(0)exp=(x)). The converse is clear choosing = 0 and#h, fulfill-
ing (2.6).

It remains to prove that any other solution kf =0 fulfills (2.Bet f € C* be
a solution andxp € R with f’(xg) > 0. By continuity, there is a neighbourhodg of
xo such thatf/(x) > 0 holds for everyx € Ih. By the same reasoning as before, we
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easily verify

log g (x) — log g (xo) = —X(x) + X(x0)

for every x € Iy. This establishes (2.5) of.
Since f’ is continuous, (2.7) holds for every  belonging to the clesaf J =
{x: f'(x) # 0}. This implies that

(2.8) f'(x) = f'(0) exp-2(x))

for every x € J. At this point, we have two possibilities.

a) Either f/(0) = 0 so that/ =) holds according to (2.8). Thus;’ = 0.

b) Or we havef’(0) # 0. ThenJ is non empty. Sincg® is ope®/ is not empty
except when/ =R. Let a € 9J. By continuity of ¥, we have

f'@) = lim f'(x) = £(0) exp(-%(a)) 7 0.
On the other hand, we observe
f'(@)= XJLFL]W f'(x)=0.
This contradiction implies/ R. ]

From now on, throughout the whole paper, we will suppose ttistence of this
function . We will set

h'(x) ;== exp(-Z(x)), h(0)=0.
Thus, #’(0) = 1 holds.
RemArRk 2.4. In particular, this proves the uniqueness of the prable
(2.9) Lf=l, feC fO=x [f(0)=x
for everyl € C°, xo, x1 € R.

Remark 2.5. We present three examples.
a) If b=a(0?/2) for somea € ]0, 1] then

2(x) = log(e***(x))
and

h'(x) = 072%(x).
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b) Suppose thab is of bounded variation. Then we get

| o= [ [
0 of e o oi(y) o 0%
since db, — db weakly-+ and 1/o? is continuous.

c) If o has bounded variation then we have

() = —2/0 bd ( ! ) +%(x) ~ %(0).

02
In particular, this example contains the case wherel for anyb .

Lemma 2.6. A solution to problen(2.9) is given by

f(O) = Xo, ]
/ ' * l(y)
) =) (2/0 @) +“> |

Proof. We definef, € C* such that

fﬂ(o) = Xo, ]
£1(x) = (2 | = (y)dy+x1) L (x).

2p
0 Unhn

where

oF

/ 2,
h,(0)=0 and h,(x) =exp| — »Mdy).
0
Clearly, we haveL,h, =0 andh, — h in C1. So, we observe

_ o

Lufo =S i +bLfi =1
and
fi = (2 /0 #(y) dy +xl> h'(x)
in CO. O

RemARK 2.7. Let/ € C° and xq, x1, ¢ € R. Then there is a unique solution in
the C*-generalized sense to

(2.10) Lu =1
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u(c) = xo, u'(c) = x1.

The solution satisfies

=000 (2 [ s

where i/ (x) = expE €)— Z(x)).
In the casec = O this is a consequence of Lemma 2.6 and Remarkn2the
general case the justification is analogous.

RemaRK 2.8. Let f € C1(I). There is at most oné € C°(I) such thatLf =I.
In fact, to see this, it is enough to suppose thiat = 0. Lemmar2piies that

2/0 ! (»dy=0

O’Zh/
consequently is forced to be zero.
We will denote byD; (resp. Dy (1)) the set of all f € C*(R) (resp.C*(I)) such
that there exists somec C° with Lf =1 in the C!-generalized sense. This defines
without ambiguity L :D; (resp.D.(I)) — C°.

A direct consequence of Lemma 2.6 is the following usefuliites

Lemma 2.9. D;(I) is the set off € CY(I) such there isy) € C(I) with f’ =
e T

In particular it gives us the following density proposition

Proposition 2.10. D; is dense inC*.

Proof. It is enough to show that evety?-function is theC*-limit of a sequence
of functions inD;. Let (,) be a sequence 6! converging tof’e* in CP. It follows
that

A= HO [ e P0n0)dy, xeR
0

converges tof € C! and f, € D;. [l

Corollary 2.11. Dy is dense inW>2.
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Remark 2.12. Let us consider again the case of example a) with a(¢?/2),
a €10, 1]. Setting

&)= [ o2 dy, fx)= [ o *(y)dy,
0 0

we obtainL, f, = 0 and thudf = 0 in the generalized sense. Ng is a well
defined distribution for each . HoweveLf, does not convergeeto whem — oo,
excepted for the case = 1 (divergence case).

This shows in particular thakf  cannot be defined using simjridutions the-
ory.

We need now to discuss technical aspects of the way and itsaiddBy are
transformed byr . We recall thath = 0 ard is strictly positive so that we may
denote the image of by =Im =]b [and the inverse function/by': I — R.

Let LO be the classical PDE operator

2
(2.11) L% = 0—2%5”,

where

l; -1 .
o) = { 0N > o

L% is a classical PDE map; however we can also consider it atdhaal level
and introduceD;o.

Proposition 2.13. a) h? € Dy, Lh? = h'?0?,
b) Dpo(1) = C¥(1),
c) ¢ € D;o(I) holds if and only if¢ o h € D;. Moreover we have

(2.12) L@oh)=(L%)oh
for every ¢ € C?(I).

Proof. a) can be easily justified by approximations. Here wiy give the for-
mal calculations:

2
Lhz - %(hz)//+b/(h2)/
= oh"h +0®h'* + 21'b'h
= 2hLh +0°h'"?

- O_Zh/z.
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b) Since the operator® has no drift, the corresponding functidh  vanishes; so the
result follows immediately from Lemma 2.9.
c) SinceLh =0 in theC! sense, we can choose@(R)-sequence/{, ) such that,
(h,) converges inC! to h and L,h, =a, — 0 in C° and L,g = ¢2/2)g" +b.g.

If f € D, then there is a sequence,( ) @ converging in theCl-sense tof
such thatL, f, converges i6® to somel on C° We are going to provef o h~! ¢
C?(I). We evaluate

(fuohy )" = £ o hy Y(hy )2+ £ o by M, Y

T
TN T
2L 2a, f!

= Sotont =22 lron
O’ﬂ hﬂ O’ﬂ hﬂ

Sincea, — 0 holds inC?, the previous term converges @ to

21 w_ 2Lf
Uzh/z( )= a2h2 °© :

Consequently, £, o ;)" is a Cauchy sequence ii°(7) and thusf o k=1 € C%(I).
Using b) we have proven the converse part of c). Moreoverallieg that o3(y) =
(0?h'?)(h—%(y)) for everyy € I, we have shown that

" 2 —
(Foh™"=S(Lfon™
0
This entails
(2.13) L(foh™ ) =(f)on™t.

In order to prove the direct implication of c) we have to shdwattf =¢oh €
D; holds for ¢ € C3(I). But this is obvious because of Lemma 2.9 and the fact that

f=eEg/(h).
This finishes the proof of b). O

We introduce now another operation which is obtained thinoimgegration ofLf .
We define

L:Dy,cct— O
by

Lf:= nli_>moo/0. Ly fu(y)dy,
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whenever this limit exists irC® for every mollifier @ .

Lemma 2.14. We have
(i) DLUC?C Dy,
(i) Lf(x)=J5(L)(y)dy for every f € D,
(iiy Lf(x) =[5 (02/2=b) f"(y)dy + (bf')(x) for every f € C2.

Proof. The statement is clear fgr € Dy.

Let f € C? and (f,) be a sequence ifi> converging tof inC?. Integrating by
parts, we observe

/. Ly fu(y)dy

( %, ) () dy + / (b, £)() dy
0_2
[ (?n - bn) £IG)dy +b, ]

This converges tof, (c2/2—b) f"(y)dy +bf’, whenn goes tox. O

The next question concerns the closability @finto C* with values inC°. This
does not seem to be true in general. However, we are able te mame closability
of the operator with values in the space of locally boundedatian functions, as we
will show in Part II, (see [12]).

So far, we have learnt how to eliminate the first order term iRPRE operator
through a transformation which is called of Zvonkin typee(485]). Now we would
like to introduce a transformation which puts the PDE opmrat a divergence form.

Let L be a PDE operator which is formally of type (2.1)

2
o N+b/g/.

Lg = 58

Of course always at a formal level, it can be written such that second order
part appears in a divergence form. This reads

d — 02 / ' AYAN)
(2.14) L% = -8 +(%) g
where
2
(2.15) bl =b — %

Clearly, we can introduce the concept ofcd-generalized solution foL.?f #in a
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rigorous way. It is also clear thaf is @!-generalized solution td.f £if and only
if LIf=1.

Obviously, = ¢ ) = lim, o 2 [y (b}, /02)(y) dy exists inC? if and only if 9 (x) =
iMoo 2[5 (b2) /2)(y) dy exists. In that case we have
(2.16) s =% @) +loge2(x)).

Thus, we actually may identiff. anfiY and use the same notdtion

We consider aC!-functionk : R — R such thatLk = 0, k’(x) # O for everyx € R
and Lg = (62/2)g" — (b%)'g’ in the C1-generalized sense. Such a function exists since
x4 exists. Clearly, we hav& (x) = —=(x) + logo?(x). We can choosé such that

k(0)=0 and k'(x) = exp(-2(x)) = o 2(x) exp(® (x ))
RemaArk 2.15. If there is no drift term then we haw&(x) = o~2(x).

Lemma 2.16. Under the usual assumptions we chodse C* such thatk’(x) =
o~?(x) exp(= (xr)). We consider the formal PDE operator given by

o2\
(2.17) Llg= (Elg/>
where

Nok—1 .
o= {0 e

J being the image ok . Then
() g€ Dy ifandonly ifgok € Dy,
(i) for everyg € D) we haveLlg = L(gok) okt

Proof. Leto?, b, be the usual regularizations of, b2. We set

— 0-5 1 avdl
Lof = 2 f"+ 0,1,
0.2

Lif =31 = @'

for eachn € N.

Let (k,) be a sequence ¢! such thatL,k, — 0 in C° andk, — k in CL.
Let g € CY(J) such thatg o k € D;. Let (g,) be a sequence of functions & (J)
converging tog and ensuring that the sequen')cg € CO(J), defined by

Aokt = Lo(gn 0 ka),
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converges inC°(J) to some.
We now calculate

. 2 !
okt = (Glaok)) + 0D e ok

o2 K2\’
= (G ) + @ o0y

o2, )
- ( 2 W% + () gh kK,

where oy, = (0,k")(k;t). We continue to compute

3 -1 Uin / / Uin k,;/ / AVEN /
)\ﬂ © kn, = 2 8n (kﬂ) - 2 (kﬂ)ﬁgn(kﬂ) + (bn) gn(kﬂ)kn

Uin ’ / / 0'5 " dv/q,/
= 2 8n (kﬂ) - gn(kﬂ) ?kn - (bn) kn

o2\ o
2’ gn | (kn) — gy (kn)Lyk.

We have shown that

2 /
Xok™1= lim A”Ok’:l:nleoo (U;’"’g,’l) (k)

n—oo

in C° becauseLk = 0 holds in the generalized-sense. Consequently, ii%(J) we
have

. . 0'2 '
A= lim }, = lim ;’"’ g .
Setting p,, = ((ain/Z)g,g)’ and integrating, we get

y
4() = ( [ inoyaz + g;(owin(m) _

aZ ()

Since g, — g in C*(J), 0, — 1% and i, — )\, we obtain

L2 g ,
¢0)= ( /0 o) dz +g (O)crf(o)) .
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Using Lemma 2.6 and the uniqueness of tifegeneralized solution (Remark 2.4), we
conclude

Lig =\
and sog € D;1(J). On the other hand, we have also proven
(2.18) L@ok)=M\ok.

This establishes the converse implication of i). The direce follows by symmetric
analogous arguments.
Statement (ii) follows from (2.18). ]

We make still some comments on the operafor in situatioreste®lto diver-
gence form.
In general, we do not even know if T, c C! — CY is closable. We consider

L:DpcCt— CY:={f eC’R): f(0) =0,

defined by

£:fH/O'Lf(y)dy.

A priori, £ is not closable in this context. Under some particular aggioms we
know more.

Proposition 2.17. Suppose that we are given
0'2 '
219) Lr =(Gr) +os

where 8 is a continuous function of bounded variation.

(i) £ admits a continuous extension frofy to C1, denoted byZ.

(i) LetT: C} — Cjo:={f € C': f(0) = f/(0) = O} be defined byr'l = f, where

f € C&O is the unigue solution td.f =[’. ThenT admits a continuous extension to
€9 which we denote by

(i) The restriction off to C3 , is invertible onC§ and £~ =17

(iv) The operatorL: D, ¢ W2 — L2 also admits a continuous extensighto the
whole spaceW,-2.

(v) The restriction ofZ to

Woine = {f € WeZ: f(0)=0}

is also invertible T = £~ extendsT .



508 F. EanpoLl, F. Russo AND J. WOLF

Remark 2.18. a) IfL satisfies assumption (2.19) then we say that dose to
the divergence type
b) £ coincides with the expression af in C2, see Lemma 2.14 (jii).
c) To avoid overcharge of notations, in the sequel we willaderthe extension of
to W2 also by L.

Proof of Proposition 2.17. i) We first evaluaigf for f € D.. In that case,
we consider a sequence,( ) 6P-functions converging tof irC! such that, with
the usual notationsl., f, =d4f/2)f!) + /3, f! converge toLf inC° Then we have

im / Lo fu(y)dy
n—oo 0

2 X
I~ 'd )
i (G [ gas

_0-2 !/ * !/
= Srws [ ras

Lf(x)

This shows that the linear maf) is continuous orD; with respect to the topology of
C*. Therefore,£ can be extended t@'l. Thus, we get

~ 2 X
(2:20) 1) =G 1w [ fas

iy If {eC}andf =TI, using Lemma 2.6, we can write

TR epEE),

(2.21) f'(x) = exp-2(x))2 /0 220y

In particular, we have

Z(x)

X b/
lim 2/ — () dy
0 On

n—oo

logo?(x) — loga?(0) + Z/X i_—f.
0

Therefore, we get

2 X
K (x) = exp(=2(x)) = 02(0) exp(—Z/ dﬁ) ,

o?(x) 0 o?

which solves in particulai.h = 0. Now (2.21) takes the form

222) flx) = Uzi(x)exp( —2/: i—f) /0 I'(y) exp(Z/Oy i—f) dy
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Fx) = — (l(x)—exp(—Z/Oxi_—f)

o?(x)
x y
(2.23) : /0 l(y)exp(Z /0 i-f) Uzi(y)dﬁ(y)).

The right term of (2.23) is continuous with respectite CJ. This allows to define
immediately the extensioffi/.
i) By construction, we know

LTI=1
for everyl € ¢} and
TLf=f

for every f € D, NCY,. Furthermore,T can be extended frora} to €3 with values

in C§ and 7£ admits a continuous extension frofy, N C3, to C3, with values in
C} o Therefore, we havé€T =id on C§ and 7L =id on C§,. This establishes (iii).
iv) The expression (2.20) can be extendecﬂfté]’c2 because the right member of (2.20)
admits a continuous extension 57.

v) The expression (2.23) can be extendediff).. We emphasize tha€) is dense
in L2 So, C}, is dense inW;2. Thus, (2.23) defined: Wg:5, — L2, A similar
reasoning as in iii) now completes the proof. U

Corollary 2.19. In particular, if f(x) =x then

o?(x)
2

R X 2
L= [ raneGrw =50 00 = b

We need now to solve the equatidn: u= in tbé-generalized sense.
Proposition 2.20. Let ¢ € R and consider the solution to
(2.24) Lv=1 vg)=0 v'()=0.
e There is a unique solution to the equation
(2.25) Lu=u, ug)=1 u'(c)=0.
e i IS non-negative and strictly decreasin@esp. increasing on ]—oo, ¢] (resp

[c, +o0]).

(2.26) 1+v g )<u(x) <exppk)) VxeR
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Proof. Without loss of generality, we may suppose = 0. Acitgdto
Lemma 2.6, we can write

v’(x)ZZEXp(—E(x))/O %y()y»dy.
We setug =1 and, forn € N, we define recursively
227) i) = 2000620 [ S0, 0)ay

u,(0) =0

which meansLu, =u,_1, u,(0) = u,(0) = 0. Theu, are easily seen to be non-
negative, strictly increasing ol and strictly decreasing o®_. We can show by
induction that

v"(x)

n!

(2.28) up ()<

for everyx € R andn € N. Indeed, (2.28) is valid for = 0. Assuming that it is true
for n —1 > 0 and using (2.27) we get for > 0

x y
un(x) < /0 dy exp(-£(y))2 /0 dz%(zf”un_l(z)
<1 expE )
S oD 2()
1 x .
= =gy . @)

n!

X y
/ dy exp(-Z(»)2v" () / dz
0 0

for eachn € N. This implies that

> un)
n=0

converges absolutely and uniformly on compact real intervanother consequence is
that so does

Z u,(x).
n=0

The functionu § ) :=>"-2u,(x) clearly belongs taC! and we have

W)= u)(x).
n=0



SDEs wiTH DISTRIBUTIONAL DRIFT 511
Summing up (2.27), we get

T exp(E (v))
o2(y)

Sinceu is the sum ofy, , it is non-negative and strictly incregsfresp. decreasing)
on R, (resp.R_).

Lemma 2.6 now implies thatu & holds in th@'-generalized sense.

Given two solutionsu® and u? of (2.24), it is possible to show! = u? using
similar arguments and Gronwall with Lemma 2.6.

The relation (2.26) obviously follows from

Ww)=®@GEQDZA u(y)dy.

v (x)

n!

1+v(x) = 1+us(x) < iun(x) =u(x) <Y

[eS)
n=0 n=0

Similarly to problem 5.27 and 5.28 of [16], we need the follogv result.
Lemma 2.21. Letv, be the solution td.v =1, v.(c) =v’(c) =0, v = vo.
(i) If h(+o0) = +oo then v.(+o0) = +oo holds for everyc € R.
(i) If h(—o0) = —oc0 then v.(+c0) = +oo holds for everyc € R.
(i) vdx) = vda)+ v;(a)fax exp(—2X2(y)) dy +v,(x) holds for everya, ¢ € R.
(iv) We havev.(£o0) < oo if and only if vp(£oo) < oo.

Proof. i) Forx > c¢+1, we have

_ [ / o2
vp(x)—/p dyh(y)[ mdl

X , c+1 2
> [0 [ s
c+l 2
= /p WUZZ (h(x) —h(C+1)).
If h(+00) = +oo then v, (H00) = +oc.

Statement ii) follows similarly to (i), whereas (iii) is a meequence of the explicit
expression

X y 2
— !/
ve(x) —/p dyh (y)/p 070 dz.
For the proof of (iv), we rewrite (iii) as

Ve(x) = va(x) = vi(a)(h(x) — h(a)).

If v(+o0) < +oo thenh (40) < +oo holds by i), thus showing, ) < +oo. U
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3. A suitable martingale problem

In this section, we consider a PDE operator satisfying thraes@roperties as in
the previous section, i.e.
0.2
3.1) Lg ==g"+1'g,

whereos > 0 andb are continuous. In particular, we assume that
X b/
(3.2) ()= lim 2/ U—';(y)dy
n—00 0 n

exists in C° independently from the chosen mollifier. Thén  defined W) :=
exp(X(x)) andk (0) =0, is a solution tdz =0 with’ # 0.

DeriniTion. A processX is said to solvethe martingale problenrelated to L
with initial condition Xg = xg, xo € R, if

ﬂxrvuw—ALﬂmMs

is a local martingale forf € D, and Xg = xo.
More generally, fors > 0, x € R, we say that X;**, r > 0) solves the martingale
problem related ta. with initial value at time if
iy Xx&*=x,
(i) for every f € Dy,

ﬂmﬂ—ﬂm—/Lﬂmﬂm,rZs

s

is a local martingale.
We remark thatX** solves the martingale problem at tsme  if anlgt dnX, = X;~
solves the martingale problem at time O.

Remark 3.1. (i) In general,f X ) = does not belong 1?,. In part Il, see [12]

we will give necessary and sufficient conditions dn so tkiat a isemimartingale.
(i) We are interested in the operators

A: Dy — C, given by A(f) :/.Lf(XS)ds
0
and

A:Cl =, given by A ():/ I'(Xy)ds.
0
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We may ask whethed and A are closable i€t and in C°, respectively. We will see
that A even admits a continuous extensiond@d. However,A can be extended @@’
continuously when. is close to divergence type.

(iii) For the moment, we continue to work with the domai@i$ or C° because we do
not need to examine in detail the fundamental solutionstedldo L which will be
in fact the densities of the laws of the considered proces3ase, we will take into
account the information of those densities. Thérwill be extended tows2; if L is
close to divergence typed  will be extendedtd..

The first result on solutions to the martingale problem eslato L is the follow-
ing

Proposition 3.2. Let I =]a, b[ be the image oh o0 < a < b < +oc0. A pro-
cessX solves the martingale problem relatedlto if and only # A(X) is a local
martingale with values i which solves weakly the stochbadifferential equation

t
(3.3) Y, =Y+ / oo(Ys) dWs,
0

where Yo = h(Xo) and oo(y) = (ch’)(h ().

Remark 3.3. (i) Y always stays in the intervdl
(i) Let T > 0 and ¢, )>0 be a process. We denote lfy= F, the natural forward
filtration of Z, given byF, = o(Z, : s <'t), clearly, we haveFy = Fy.
(iii) Since Y is a local martingale, we know from Remark 1.3ttha= 2~1(Y) is a
Dirichlet process with martingale part

X - ’ -1y — ’
M; —/O(h )(YS)dYS—/0 o(Xs) dW;.

In particular, X is a finite quadratic variation process with

t
[X, X] = [M¥, M¥],= / o?(X;)ds.
0
Proof of Propositon 3.2.  First, leX be a solution to the nmaydile problem
related toL . Sincé: € D, and Lh =0, we know that # X ) is a local martingale.
In order to calculate its bracket we recall that € D; and Lh? = o%(h')? hold by
Proposition 2.13 a). Thus,

2 e
H2(X,) /0 (oh'Y(X,) ds
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is a local martingale. This implies

[¥], = /0 (oh'Y(hX(¥,)) ds = /0 o2(¥,) ds.

Finally, Y solves weakly the SDE (3.3) with respect to the d#ad Fy-Brownian mo-
tion W given by

|
W, = ——dY;.
! /0 UO(YS) ‘

Now, let Y =h(X) be a solution to (3.3) angd € D,. Proposition 2.13 b) says
that ¢ := f o h~ € Dyo = C?, where

2
(3.4) L% = %(b” = (Lf)oh.
So we can apply 1td formula to evaluat€Y) which coincides withf X ). This gives
t l i
o) =org+ [ $0av+; [ o way.
0 0

Using d [Y ], = 03(Y,) ds and taking into account 3.4, we conclude

t 1
35) P =60+ [ (Foxdws [ Licx)ds
0 0
This establishes the proposition. U
Corollary 3.4. The map.A admits a continuous extension fro; to C! with
values inC which we will denote again byd. Moreover A(f) is a zero quadratic
variation process for every € C2.
Proof. A has a continuous extension because of (3&)f) is a zero quadratic
variation process becausé is a Dirichlet process with ngate part; o(X,)dW;

and because of Remark 1.3. Ol

Remark 3.5. The extension of (3.5) t6! gives
(3:6) FE) =100+ [ (FaX)aW:+ AP,
Choosingf =id in (3.6), we get

1
X, = Xo+ / o(X,)dW, + A(id).
0
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We would now like to ask ifA(f) corresponds toA /() for somee C°. In that
case,X would turn out to solve a stochastic differential éqnawith diffusion ¢ and
generalized drift’. Unfortunately, for the moment, we cannot answer the comest
such a general framework. However, we will provide an ansivdr is close to diver-
gence type. Moreover, even If  is not of that type, we get tesoih local time.

Proposition 3.6. If X solves the martingale problem with respect ko  then it
admits a local time(as a density of an occupation time mea3ure

Proof. Let/ e C°. Forh defined as before, we have
i1 i1
[ixyas = [1on-iyas
0 0
t
= / (Y (s))d[Y, Y],
0

where ® ) := (o h~1)/((ch")? o h~1)(y). Using the occupation time density formula,
we get

1 _ v
@7 | 1xyas= [ imewyay,
whereL" is the local time of (in the sense of Tanaka formulaenl{3.7) becomes
l /
/L,Y(h(x))%h (x)dx = /]L,X(x)l(x) dx,
whereLX (x) = LY (h(x))/(c?(x)h' (x)). O

Now the following question arises. Under which conditions i is L* a good
Bouleau-Yor integrator? In other words, under which cdodi doesdL; integrate
continuous functions? For this, we would need to extend theraiorA to the whole
spaceCO(R).

Remark 3.7. If L is close to divergence type theh [ i~ [ I'(X,)ds admits a
continuous extension t@9 and therefore taC® because ofA (= A(I + cons).

In fact, if [ € C} then A () =A(T!), whereT is defined in Proposition 2.17 (i).
Since T admits a continuous extensidnto C§ with values inCj,, the operatorA
can be extended t6Q by Ao 7. We still denote this extension by

An example of a procesX  solving a martingale problem withpeesto L ,
where L is close to divergence type, is given by a solution ofoahastic differen-
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tial equation of the following type,

t t
X, =xo+/ U(Xs)de+/ Y(Xy)ds,
0 0

where o is Lipschitz, positive andy € Li.

Let X be a stochastic process for which there is a mapping’® =~ C which
extends continuously — [, /'(X;)ds from C. X is said to fulfill the Bouleau-Yor
property if [ g(X)d~A(l) exists for everyg € C2 and everyl € C°.

Remark 3.8. LetS be a continuous semimartingale. We recall that &mwland
Yor [6] have proved the existence of an integral

/ f(a)LS(da)

for f bounded Borel real function. This procedure allowednth® extend the map
f =[5 f/(8)d (S) from C* to bounded Borel functions.

Lemma 3.9. If X is a solution to a martingale problem related to a PDE oper-
ator which is close to divergence typien it fulfills the Bouleau-Yor property.

Proof. Let/ € C°. There isf € C! such thatlf =1. Since f ) equals a local
martingale plusA (), it remains to show that

(3.8) /0 g(X)d™ f(X)
exists for anyg € C2. Integrating by parts previous integral, (3.8) equals
(8/)(X.) — (8/)(X0) — /0 FX)d~g(X) — [f(X), g(X)].

Remark 1.2 b), f) tells that the right member is well-defined. U

Lemma 3.10. Let X be a process having the Bouleau-Yor property. Tl@nev-
ery g € C? and everyl € C° we have

(3.9) / G(X)dA(l) = A(@(s. 1))
0
where

(3.10) P e, k) =klE)— (eD)(0) - /Ox(lg’)(y) dy
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Proof. The Banach-Steinhaus theorem for F-spaces (seeh[7Z2]kimplies that,
for every g € C?

(3.11) I — /O.g(X)d‘A(l)

is continuous fromC® to C. Note that® is a continuous bilinear map frofit x C°
to C0. SinceA :C° — C is continuous, the mapping— A(®(g, 1)) is also continuous
from C° to C. In order to conclude the proof, we need to check the iderf8t9) for
I € C. In that case, by differentiation df anéi  both members of )(@qual

/().(gl’)(XS) ds. O

We are now going to investigate the relation between theingaie problem as-
sociated withL and stochastic differential equations wiltributional drift.

Proposition 3.11. Suppose that. is close to divergence formXIf  solves the
martingale problem with respect tb  then it is a solution te stochastic differential
equation

(3.12) X, =Xo+ /’ a(Xs)dW; + A(b),
0

whereb = 02/2 + 3.

Proof. If X solves the martingale problem relatedto  then, 3p)

(3.13) ) =F (o) + /0 (F'o)(Xs) dW, + A(L f)

holds for everyf € D.. Remark 3.7 and Proposition 2.17 allow us to extend (3.13)
to any f € CL. Then A Cf) is replaced withA(Lf).
If f=idthen Lf =b holds in view of Corollary 2.19. U

At this stage, it seems natural to ask whether the converderafosition 3.11 is
true. In other words, ifX solves (3.12), is it a solution to tireartingale problem
related toL ? The answer is not immediate. We still suppose th# close to di-
vergence type. We know the answer onlyXf  fulfills the Boulé@u property. Let
f € C?. By Corollary 3.4 and Proposition 2.17, we know thath ( ) hasozguadratic
variation. SinceX solves (3.12) anf§ f'(X,)d~ X, always exists by the classical Itd
formula (see Remark 1.2 e) of Chapter 1) we know tjﬁﬁf’(X)d_A(b) also exists
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and is equal tof, f'(X)d~ X — [,(f'0)(X)dW. Therefore, this Itd formula says that
f(Xi) = f(Xo)+/ f’(Xs)a(Xs)dWﬁ/ F1(X)d~A(b)
0 0

1/ " 2
#3 | Feartds

holds.
Let L, be the PDE operator defined in Section 2 byg  02/Q)g” +b'g’'. By
Lemma 3.10, the linearity of mapping and Lemma 2.14 we get

! !/ — l ! 11
| reoaawy+3 [ rodeas

Ao+ [ (e as

/0 (0% — B)(X) F"(X,) ds + AQS’) = ALS)
This shows

1
(3.14) D=1+ [ (P W AL
Because of Remark 2.18 c), the previous expression can obede prolongated to
any f € C Taking f € D, it follows that X fulfills a martingale problem with
respect toL .
Corollary 3.12. Let the PDE operatorL be close to divergence type. Then

solves the martingale problem related fo  if and only if itvesl the stochastic dif-
ferential equation

(3.15) X, :X0+/’ o(Xs)dW; + A(b)
0

and X has the Bouleau-Yor property.

Proof. The statement follows from Lemma 3.9, Propositiohl3.and from the
considerations above. O

Now we are going to examine existence and unigueness (anexpiosion).

Proposition 3.13. Let v be the unique solution tdv = 1, v(0) = v'(0) = 0.
Then for any horizor?" > 0, there exists a unique solution to the martingale problem
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related to L with prescribed initial conditiop € R if and only if
(3.16) v (~oo) = v(+o0) = +oo.

Remark 3.14. The previous result is a generalization of the Felst for explo-
sion stated for instance in [16, Theorem 5.29].

Proof of Proposition 3.13. LeX be a solution to the martingpfoblem re-
lated to L . Then Proposition 3.2 says thHat A= ( ) solves thehststic differential
equation

1
(317) YI :y0+/ UO(Ys)de
0

for yo=h(xo) € I =Imh.

At this level, we can apply the results of [9] stated also i®,[Theorem 5.7]
(Engelbert-Schmidt theorem). According to their notagiowe haveZ 4g) = I¢, which
means that the set of zeros @f is 7°. On the other hand, the set

dy
I(Uo)={xE]R:/ 7=+oo}
(—e&,¢) U(%(x +y)

is equal to/¢ . In fact, since is strictly positive and continuous andl  is open, we
have I C I(0o)°. If x € I° then og is zero in some neighbourhood ef and so
belongs tol §o). Thus, we havel o) = Z(og) = I so that the Engelbert-Schmidt
theorem ensures that (3.17) has a unigue solution.

Let Y be the solution to (3.17). We remark that this solutiomrm explode,

see [16, Problem 5.2]. So, if = Imn R, Proposition 3.2 will yield existence for
the martingale problem related ®© . Howevé&r, could redth quivalently 01.
The following lemma now completes the proof. U

Lemma 3.15. For yp € I, the solutionY to(3.17)remains in/ a.s. if and only
if (3.16) holds.

Proof. We recall tha” remains ih if and only ¥ I=Y(Y) is always finite,
whereh is extended t® with values inl.
Form, n € N, we define
X" = Xinrang, and Y™ =Yinrng,,

where

T = inf{r >0:X, < —-m},
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on = inf{t >0:X, >n}

Let u € Dy; we know i =uoh~1 € D;o = C? in view of Proposition 2.13. Then, by
the classical Itd formula, we calculate

i1 1
z = vy =it0) + | oot ()aw,+ [ 1%(r)ds.
0 0
Setting Z"" :=Znr,ne,, WE geL

[ AT Ay AT Ay
Z™" = ii(yo) +/ ooit’ (V) dW, +/ LOi(Y,) ds.
0 0

m,n

Using Proposition 2.13, foZ; # Minr,ng,), WE Obtain

t AT Ay EAT Apn
ZM™" = u(xo) +/ ou'(X;)dW; +/ Lu(X,)ds.
0 0

Let us now supposd.u =« according to Proposition 2.20. Integyap"" =
expt A1n A ¢,)Z"" by parts yields

A Tin A
M = Mgt +/ exps)u’(Xs)o(Xs) dW;
0
1
= My + [ e (X o aw.
0

Therefore M™" is a local martingale which, by definition, is nmgative. Hence,
M™" is a supermartingale.

We consider the stopping times:=lim, ., ¢, andr :=lim,,_ ., 7,,. We observe
that the processes

M = lim M™" = expt A ¢ A T)u(Xingar,),
n—oo
M, .

lim M =expt Ao A T)u(Xinpnr)
n—oo

are also supermartingales. Therefore, for every 0,

(3.18) ML = Ilim M" as,
(3.19) My = Ilim M; a.s.

exist and are finite.

After these preliminaries, we suppose first that (3.16) wolthen (2.26) in Propo-
sition 2.20 impliesu f00) = +oo. By (3.19), M, = +oo holds on{¢ A 7 = +oo}. This
entailsP({T A ¢ < +o0}) =0. Hence,Y remains id a.s.
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Conversely, let us suppose th&t does not explode and (3al6) for instance
supposer (40) < +oo. Let ¢ € Z such thatxg > ¢. By Lemma 2.21 (iv),v. (#0) is
finite. This implies that the unique solutian ®u = u,c () = 4(c) = 0 fulfills
u(+o0) < oo, see (2.26) in Proposition 2.20. The continuous process

T =expt ATe A Qu(Xiprng)s t >0,

is a bounded supermartingale. But it is also a local markingad hence, a martingale
in L. The convergence (3.18) holds also fit. Consequently, we have

u(xo) = E(expt=c A @)u(Xr.p))-
Since¢ = +o0 a.s., X being always finite, we have
u(xo) = E(expc)u(Xr,))
= E(1{r.<+o0y EXPET)u(X7)) < uc).
This contradicts the fact that is strictly increasing end Therefore,v (o) = +c0

holds. A similar reasoning works far —(0) = —oc. U

We would like to finish this section with two consideratiorihe first one con-
cerns in which sensé can be looked upon asetktended infinitesimal generatof
a processX solving the martingale problem related.to . Therskone concerns the
Kolmogorov equatiorassociated with the law of

a) The extended infinitesimal generator. We recall the notatiorC*  standing for
the set ofC* -functions with compact support.

Lemma 3.16. For every f € D, satisfyingLf € C? there is a sequencgf,) in
Dy N CL with lim,_., f, = f in the sense of the graph norm.

Proof. Letf € Dr. Then foh~1 € C? holds by Proposition 2.13. Sinc€2()
is dense inC2(I), wherel =Imk , we find a sequencg,] in C3(I) such thatf, —
foh~tin C2 Clearly, f, =7, oh is a sequence ifD, N C! which tends tof in
C*. Moreover,Lf, = (ré},,f’/Z)o h are continuous functions with compact support and
converge to LOf)(f)=Lf. O

Let (X;,# > 0,x € R) be a random field which is measurable inx; w) such
that Xj = x. We say thatL is itdnfinitesimal generatoif

(3.20) Lf &) = im TE(F(X) ~ £(0)

holds for everyf € D, N C?P.
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Remark 3.17. If (X7, ¢ > 0) solves the martingale problem relatedto  with ini-
tial condition x then we know thal,* :& X ) solves the stochastftedential equa-
tion

(3.21) Yy =h()+ / (oh) o AT W,
0

By the classical theory of stochastic differential equadidhere is a version which
is measurable with respect to, £, w); so the same holds fak

RemaArk 3.18. X* solves the martingale problem relatedZto  with inidahdi-
tion x if and only if

1
(3.22) £ 16) = [ wneyas
is a martingale for everyf € C1ND;.

This follows from the fact that, by Lemma 3.1@); N C! is dense inD;
and from (3.5) in the proof of Proposition 3.2 which says th{&t22) equals
Jo(f'0)(X;)dW, and so it is truely a martingale if € CL.

Proposition 3.19. Let (X;,r > 0) be a random field as above such that
solves the martingale problem related fo  for every initi@ndition x. ThenL is

its infinitesimal generator.

Proof. Letf € C1ND,. Taking the expectation in the martingale (3.22), we get

(329 TR = f@) =7 [ B 1> o0

where X =X* . We denote the law dff lby. Now (3.23) can be rewritten as

(3.24) %/0 ds vg(Lf).

But ¢ — 1,(g) is a continuous function for every € C° so that (3.24) equals;(Lf),
§ € [0, t]. Therefore, the previous term convergesig x ( ). U

b) The Kolmogorov equation. Now we want to discuss the Kolmogorov equa-
tion corresponding to a random fiel&k{*,+ > s > 0,x € R) such thatX** solves
the martingale problem related #to  with initial conditian tabe s. Again, L, will
be the same regularizing PDE operators as in Section 2.
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We define the set/, of bounded functionst =u(t(x .y > 0,x € R) in
C°([0, T] x R) such that there are bounded functiosfs v’, € C°([0, T] x R) and
a sequencer, =uf t(x ,} >0,x € R)in C*¥[0, T] x R) satisfying
0 u, — u,

(i) Ou, /0t — v°,

(i) Lou, — v”

pointwise. In this case we say thad, ¢ L)(x) = v* +v” holds in theC®-generalized
sense.

Remark 3.20. If u € CY(R+ x R) with u(z, -) € D, for everyt > 0 thenu € Uy
holds.

It is also possible to consider the case of Dirichlet boupdamditions.

Given a bounded intervab , we define similarly to the abovenitedn, the set
UL (D) of functionsu = ¢ ¢ x)t > 0,x € D) such that there are bounded func-
tions v7, v? € C°(0, T] x D) and a sequence, =tk .)€ [0,T],x € D) in
ct([0, T] x 5) with zero Dirichlet boundary conditions fulfilling point8), (ii), (iii)
above. In this case we say thal € L)(u) = v*+v” holds (in theC®-generalized sense)
with zero Dirichlet boundary conditions.

Theorem 3.21. Suppose thatX** solves the martingale problem relatedLto
with initial condition z at times .
(i) Letu=(u(t,z),t €[0,T],z€R)in U,. Then we have

T
(3.25) u,z) =E(T, X39)+ / E((a, + L) (u(s, Xf’*"))) dr,

(i) Letu = (u(t,z),t € [0,T],z € R) be inU (D) such that(o, + L)) = 0 holds
with zero Dirichlet boundary conditions. Then we have

u(s, 2) =E (u(T, X35) 1 (x2ep viepo, 1)) -

Proof. In the case of (i), we can prolongate  with zero owsld to get a
function in Uf;.

We setu;, (, vy ) :=u, {, h;1(y)), where @, )C C? satisfiesL,h, — 0 in C°, h, —
hin CY, h,(0) = 0, #/(0) = 1. We can apply the classical Itdo formula #g 7, X, ),
whereY =h ) andX =X** . We recall that

(3.26) Y, =h ) +/I oo(Ys) dW;
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holds, whereog = (ch') o h~1. Therefore, we have

Ol

or

u,(t,Y,) = ﬁ,,,(s,h(z))+/l

1 [ iy
+ =
2 ), 0x?

1 ~
(r, Y,)dr +/ %(r, Y, )oo(Y,)dW,

(r, hn(Xr))Ug(Yr)dr,

where L° only acts ony . Coming back t& and settihg /4rzo 2%, we calculate

un(t, in(X1)) = ua(s, in(Xy)) +/’ 8;

s

“(r, in(X,))dr

r

(3.27) + / . (X ool (X)) W,

1/ . o3 .
+ > Lyun(r, in(Xr))——(in(X,)) dr,
s a

O,n

where oo, = (0,h}) o h;. The last integral could be transformed using Proposi-
tion 2.13.
Given a bounded intervah  containing , we define the stoppimeg t

T=inf{t €[s,T]: X, ¢ A} A(T +1).
Stopping the procesX at time we obtain
INT 81/!,1
un(t A7, in(Xinr)) = un(s, in(X7)) +/ 8—”'(r, in(Xr)lix,eny dr
INT 817!,1 *
o[ X Vool (X ), W,
i INT ) 0_2
+ > / Lyun(r, ln(Xr))O_TOl{X,GA} dr.

SAT O,n

Since the stochastic integrand with respect to the Browmation is bounded, its ex-
pectation is zero. Therefore, we get

E (a7 A T (X)) — a0, in(X,)

_ TNT 81/[,1 - - 0_5
) E(/ Lix,enp (G0 in(X) + Lot zn(xr»g(x,)) dr).

We remark that the expectation exists since all integramdsbaunded. Passing to the
limit n — oo and usinge?/c3, — 1 in C° we obtain

(3.28) E(u(r AT, X:ar)) —u(s, z) = E (/TM(a,u + Lu)(r, X;°%) dr) .
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() For N >0, we setA =[N, N], 7 =7V, the sequencer(') defines a “suitable”
sequence of stopping times in the sense defined before RetiawrkVe letN — o
in (3.28) and the result follows.

(i) We set A :=D . According to the assumption we get

u(s,z) = E@(r AT, Xrar))

/ u(T, X3°)dP
{X;*eD,Vvt€[0,T]}

+/ u(t, X2%) dP
{

LT} N——
0
This allows to conclude. O

Corollary 3.22. Letu = (u(t, x),t > 0, x € R) be of classC' and g continuous
and bounded such that
() u(t,-) € DL for everyt > 0,
(i) w(T,2) = g(2),

(iii) u solves the parabolic PDE
(3.29) g—l:(t, J+Lu(t,)=0

in the C!-generalized sense.
Then we have

u(s, z) = B(g(X77)).

where X*¢ solves the martingale problem relatedito  with initahditionz ats .

4. A general result on finite quadratic variation processes

Let X be the solution to a martingale problem relatedZto  wititidh condition
xo. In the following section, we are also interested in the dilet-Fukushima struc-
ture of £ (X) f € W2 Under some assumptions enandb it should be possible to
obtain a Fukushima-decomposition ¢f X () using a Dirichletrfomethod. However,
since we are potentially interested in applications to Markovian processes, we will
implement here a technique which is based on “pathwise kstwand on the exis-
tence of the density with respect to Lebesgue measure. Weegdloin two steps.

I) We construct a general tool related to finite quadratidaiimms processes.
II) We observe that the law o, ¢ > 0 has a density which fulfills some basic
estimates, fitting to 1).
Point I) will be a refinement of Remark 1.3. It will be the oljex this section.
Point Il) will be treaten in the next section.
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In this section we consider a continuous process, (o fdapted to some filtration
F = (F1)iepp,71- We make the following assumptions on the law &f (X, ).
H1) For each O< s < ¢, the law of X,, X, ) has a densityg(; x{, x2)).
H2) For everyT > 0, § > 0, we suppose that the following quantity is well-defined
for X1 75 X2

T
Ps(x1, x2) = / ds g s+s(x1, X2).
0
H3) For everyD > 0 such thatixo| < D there is a constanf such that

X1 7 X2, |x1|, |x2| <D= sup \/S(bg(xl, X2) <C.
0<6<1

We start with a technical lemma.

Lemma 4.1. Let (X,),>0 be a process fulfillingd1), H2), H3).Let Y be a con-
tinuous process such th&k, Y) has all its mutual covariations. Then

LF(X). Y], = /0 FI(X)d[X, Y],

1,2
holds for everyf € W ..

Proof. We observe thaL2 (R) is an F -type space which includes'(R) as a
dense subset. We consider the maps

T., T: Li, — C
defined by

() = C(00, 1)
T(f) = / FI(X)dIX. V],
0

provided previous expressions make sense. We aim at agpBamach-Steinhaus the-
orem, see [7], Chapter 2.1, to conclude that for evgne L2, T.(f) — T(f) in
the ucp topology. For this, it remains to show the following.

a) T., T are well-defined. OrC?, they are defined because of Remark 1.2 b).

b) For everyf e C?*

LA(X). Y], = /0 FI(X) X, Y],

c) For every fixedf € W,f;cz, (T-(f)) is a bounded sequence in tlie -type spéce
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We start with c¢). Cauchy-Schwarz implies that

(4.1) C(f(X). Y) < C(Y, Y)C(f(X), f(X))

so that we will prove that ¢.(f(X), f(X)) is bounded inC. Since X has locally
bounded paths, by localisation it will be enough to show thaff(X), /(X)) is
bounded on the seR,, = sug.;|X/| < M/2 for eachM > 0.

To prove thatC.(f(X), f(_X))lgM is bounded inC, it will be enough to show that
C.(f(X), f(X))rlg,, is bounded in probability. We will even show

supE (10, [ (10 — SO <o

e>0

The expectation above is bounded by

(4.2) /0 ' % /0 lda E(lQM (X +a(Xgre — Xo))(Xgee — XS)Z),

We setg =f'. The expectation in (4.2) is bounded by

M M
/ dx/ dy g0 +a(y — D)0 — ) dssee(x. ).
-M -M

So (4.2) gives

[aa ["av ["ay @tvaten(22) o

Using assumption H3) there is a constafit such that previopsession is

bounded by
e [ [ are
— da dx d x+taly—x .
) da | ax [y @era - ()

We replaceg withg” =gl y, g% € L2 Therefore definingy(z) =
C1;—2m,2u1(z), previous term is bounded by

! _ 2
\/ig/o da /dx /dy (Ve +aly — )Ly ),

Settingy” = ¢ — x)/+/c we gety =¥ +x, dy =+/edy and thus one obtains

1
~ 1 My2 ~\~2 ) 2
/Oda /dx /dy (8")2(x + a v 5)5%0(G2)
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-/ ' da a5 5206 [ ax o

This establishes point c) because previous quantity isefinit

b) is contained in Remark 1.2 b).

The proof of a) has common features with the one of c). Corregrine existence
of T.(f), f € Wt2 (4.1) says that it is enough to show th@t(f(X), f(X)) exists.
This is a byproduct of c).

Then we observe that far 4 € R,

[X, Y], — [X, Y]a| < ([X]p — [X])([ Y] — [Y]d).
So, to prove thafl' [ ) exists it is enough to show that
T
4.3) / F2(Xs)d[X]s < 00, a.s.
0
For (4.3) similar arguments as for c) will again apply. U
A consequence of Lemma 4.1 and polarization is the following

Corollary 4.2. For every f, g € W2 we have
(4.4) L0800k = [ (X8 (X)X,

This leads us to the following Dirichlet characterization:

Proposition 4.3. Let (X,);>0 be an (F)-Dirichlet process withM as local mar-
tingale part. We make again assumptiokd), H2), H3) on the law of X . Let
f € Wé’cz. Then (f(X,)), is again a Dirichlet process with martingale pam,f =
Jo f1(Xs)d M.

Proof. We aim at proving that
Al = r(x,) - M/
is a zero quadratic variation process. Using the bilingaoit the covariation, we have
[A/]=[AX)], = 2[f(X), MT]+[M7];

we recall that K ] =(M).
(4.4) implies

LFCO1, = /0 FIX P2 dIX], = /0 F(X)2d (M),
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Corollary 4.2 says that

LF(X). M), = / F1(X)dIX, M1,
0
Since
(X, M'] = [M, M'],= (M, M),

: /0 FIXd{M),.

it follows that [f(X), M/, = [ f'(X;)?d(M),. Classical stochastical calculus also
says that

1
)= ), = [ preegain.
0
This concludes the proof of the Proposition. U

5. Dirichlet structure of the solution to a martingale problem

Let X be the solution to a martingale problem relatedZto  wititidh condition

X0.
We first suppose that is of divergence type which means
2 2\’
(5.1) b :% such that Lg :(g/%> .

We recall the fundamental lemma in this situation.

Lemma 5.1. We suppos® < ¢ < 02 < C. Leto,, n € N, be smooth functions
such that0 < ¢ < 02 < C and o2 — o2 in C° as at the beginning oBection 2 We
set L,g = ({02/2}g’). There exists a family of probability measurgs(dx, y),t >
0,y € R), resp. ¢'(dx, y),t > 0, y € R), enjoying the following properties
() wldx,y)=pi(x,y)dx, vi(dx, y) = pi(x, y)dy.

(i) (Aronson estimat@sThere existsM > 0 with

1 M|x — y|? M Ix —y[?
- - 7 1< < — — .
exp( . pi(x, y) \/;exp ;

(iii) We have

ov

(5.2) >

(" y):LVl(" y)’ VO(" y):5y
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and

ov'
ot
v (resp.v") is called the fundamental solution related to the previoasapolic linear

equation.
(iv) We have

("y):LﬂVln("y)’ Vg("y):(SY'

0

EV,(X, )= Lv(x, ")
0

o ) = Lat"(x, )

(v) The map(t, x, y) — p;(x, y) is continuous from0, oo[ x R? to R.

(vi) The p" are smooth of0, oo x R?.

(vii) We havelim, .. p'(x,y) = pi(x,y) uniformly on each compact subset of
10, oo x R2.

(viii) pdx,y = pdy,x) holds for everyr > 0 and everyx, y € R.

(ix) The semigroup property holds, i.e. for positiver we have

/p: (x, Y)ps (v, 2) dy = pras(x, 2).

Remark 5.2. (i) Aronson estimates, which were established in [hply in par-
ticular

| llim pi(x, y) = | llim pi(x, y)=0.

y|—o0 X[—00

(i) The continuity ofy — p,(x, y) (¢ > 0, x € R) entails that
e [ niar) 1)

is continuous for every bounded Borel functigh
(iii) (5.2) has to be understood in the following distritarial way:

¢ 2
(5.3) vildx,y) f(x) = f(y)— [ ds [ dx U—(X)E(Ps(x, IS ().
0 27 0x

(iv) We can replace, with any probability measurgg. The solution to (5.2) is then
given by

wuw:/mmmnwmy

(v) The maps { y }— p:(x,y) are in L%(]0, T] x R?) again because of the Aronson
estimates.
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Proof. The proof is essentially contained in [31, ch. Il.3]dathe references
therein. Aronson estimates are established in [1]. Statérfwdi) is a consequence of
the fact thatL is self-adjoint. U

Let X solve the martingale problem related 2o  with initial ddion x. For¢ >
0, we denote the law ok, by,. Our aim is now to show that its law has a density
(p:/(x,y),t >0, x,y € R) enjoying the property of Lemma 5.1.

Proposition 5.3. Let L be of divergence typgsee(5.1)), g € C1 N D, such that
Lg € C2. We use the same notation asliemma 5.1and define

v(t, 7) =/1/,(dx,z)g(x).

Then u: (t,z) — v(T —t, z) belongs tolf;,. Moreover d,u + Lu = 0 holds in the
CC-generalized sense.

Proof. First of all,u € C°([0, T] x R) follows from Remark 5.2 ii) and v) be-
causev € C9([0, T] x R). Moreover,v is bounded because of

(5.4) /p, (x,y)dx =1

Let (g,) such thatL,g, =Lg .g» (0) ¢ (0)g,(0) = g’(0). Then by Lemma 2.6g,
converges tog inC%. We define

(5.5) un €, 2) =/V,”(dx,Z) 8n(x)

are smooth because so gs& . Moreover, by Lemma 5.1 (vii), we ha
(5.6) 0.2)= [ e Dedx — [ e el
sinceg is bounded.

It remains to prove thad,v, and L, v, converge pointwise to some continuous and
bounded functions® and” on,[@ X R. For this, we calculate

o, (/]R P}"(x,z)g,,,(x)dx> ) /81177(1’ xX)gn(x) dx
- /Ln,xp;l(z’ xX)gn(x) dx
- / Pz ) Lnga(x) dx.
R
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This quantity converges pointwise to

(5.7) v ) = pi(z, x)Lg(x)dx.
[0,T]xR

Again v is bounded because of (5.4). Moreover, it is contirsuou
The proof of the convergence df,v, w0 &  follows from previousifier

cation and Lemma 5.1 (iii). Therefore, we havee U, and Q,u + Lu = 0 in the
C°-generalized sense.

Corollary 5.4. Let L be of divergence type as {6.1) with 0 < ¢ < 0? < C. Let
X be the solution to the martingale problem relatedito  withigicondition z. Then
the law of X;, t > 0, has a density which we denote by(x, z). Moreover p,(x, z)
coincides with the density introduced iremma 5.1

Proof. We start withp, X,z ) introduced in Lemma 5.1 agde D; N C?! such
that Lg has compact support. The function

(5.8) Ur ¢, z) =/pr_,(x,1)g(X) dx
coincides with

(5.9) E(g(X7))

by Theorem 3.21. Sincég € D, NCL: Lg € C°} is dense inD, which is dense in
C!, the law of X7 is completely determined by equality (5.8) an®)5 U

In the following lines, we will show that the law of, ¢ > 0, has always a den-
sity if X solves the martingale problem related to aby  satigfythe conditions of
Section 2, with a supplementary technical assumption.

In the sequel of this section we will use the same notations &ection 2.0, b
will be continuous functions such that> 0, o2, b, will be regularizations o> and
b with the same mollifierL,, will stand for

0-2 12 ! !
Lng=7"'g +b,g'.

We suppose that
X b/
(5.10) @)= lim 2/ O_—';(y)dy
n—oo 0 n

exists in C%. We recall that, by Proposition 2.3, there is a unique C* such that
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Lh =0 andh (0) = 0,h'(1) = 0. It can be represented as
(5.11) K (x) = exp(=2Z(x)).

A family (p,(x,-),t > 0,x € R) of probability densities is said to fulfill théocal
Aronson estimate#, for every continuous functiory with compact support, there is
someM > 0 such that

1 Ix — y|°M
Wi exp (_f> x(x =)

< pi(x, Y)x(x = y)

Y
(5.12) < %exp(—'x i

7 ) X(x — ).

Let X be the solution to the martingale problem related.to  iitial condition xo.
At this level, we need to formulate a technical assumptiof).(Tt will suppose
there are positive constantés C, , such that

eZ

(TA) c<—<C.

o
Remark 5.5. If the condition of non explosion (3.16) stated in Prsifion 3.13
is fulfilled then an easy calculation will show that (TA) isrified.

We will show that, under (TA), for > 0, the law of X, admits a density fulfilling
the local Aronson estimates. However we first need to recafiesnotations and facts
from Sections 2 and 3.

By Section 3, we know that, fopy := h(xo), we haveY, =yq+ fé oo(Ys) dWs,
where W is aFy-Brownian motion andr = (oh’) o h~1. By the classical Itd formula,
Y solves the martingale problem related i8, where

1
LOf = Sobh'Vf".
By Proposition 3.19/° is also the infinitesimal generator &f
We denote again by the image set/of . We consider agairCthapplicationk

defined at Lemma 2.16. We defije ksh~'; j mapsI onJ : we can easily establish
that j (0) = 0 andj’(y) = (1/03)(y). We consider again the formal PDE operator

2 /
Lif = (%f’) , Whereoy = (0k") o k™ = (0gj) 0 j L.

The assumption (TA) o  implies that is lower and upper bounded by a pos-
itive constant; so it fullfills the basic assumption of Lem®4.
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We set againZ % X ), sothaf £Y( ).

Lemma 5.6. Z solves the martingale problem related Id with initial condition
20 = k(x0) = j (yo).

Proof. Letf € D;1(J). We know thatf =fo j € CI) by Proposition 2.13.
Therefore we get

_ i , i 0
rwy=ro0+ [ rwars [anwas.
SinceY, =j~%Z,) and f = f o j, we conclude
7(z) = Feo+ [ (Foiyryar,
0
LYFoj '_lZY ds,

o [ LG o DMz as

which completes the proof of the Lemma. U

Theorem 5.7. Suppose thafTA) is verified.
(i) For everyr > 0, the law of X, has a densitp = p,(xo, -).
(i) p satisfies the local Aronson estimates dindx, y) — p,(x, y) is continuous from
10, oo[ x R? to R.

RemaArk 5.8. Fabes and Kenig ([11]) prove the existence of a diffugiwith in-
homogenous diffusion term) whose law density is singulathwespect to Lebesgue
measure (even if it is non-atomic). Theorem 5.7 tells us thigtis not possible in the
case of homogeneous coefficients.

Proof. The law ofZ{® (+ > 0) has a density, zf, -) by Corollary 5.4. Since
X =(hoj )Z)andY =j"Y2), fort > 0 the law ofX,, resp. oft, , has a den-
sity p;(xo, -), resp.q: fo, ), where j o) = (k o h)(xo) = zo. Those densities can be
calculated. In fact, iff € C° is bounded and’ =Y, Z%* = Z, we get

E(f(Y®) = E(f o j {(Z{))
= / (f 0 i H@r(zo0. 2) d

= / Fai(yo, y)dy,
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where
(5.13) 4 60, 3) = e G00) JONI'0) = re (G 50)s J ) e
Uo()’)

In the same way, we verify

(5.14) pi (o, x) = 1y (k(x0), k(x))K'(x).

This establishes (i) and (ii) of the theorem.
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O

Concerning the Dirichlet-Fukushima decomposition, it igsgible to relax the

technical assumption (TA). Fa¥ > 0, and a real functiory we set
f) i x| <M
My=q ) if x>M
f(=M) ifx<-M

We can show that

n—oo

- @)Y
lim /0 (072 (y) dy
is well-defined inC° (independently of the mollifier) and it equas¥

that for the PDE mapg. M ), defined formally by

M\2
L(M)g — (0'2) g// +(bM)/g/,

the assumption (TA) is fulfilled.
We consider the event

Qy ={w: X, (w) € [-M, M],Vt €[0, T}
and the stopping time
™ =inf{t € [0, T] | X, ¢ [-M, M]} A (T +1)

(r™) is a “suitable” sequence of stopping times.

. It is obvious

Lemma 5.9. Let M > 0O such thatxg € ]-M, M[. On Q, the processX co-
incides with the stopped process&s". On the same eventhis one coincides with
a stopped proces¥(M)™" where X(M) is the solution to the martingale problem re-

lated to L(M) with initial condition xo.
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Proof. Proposition 3.2 allows us to consider the stochatifferential equation

t
YI = YO +/ UO(YS)dWS‘5
0
which is solved byY := X ). The time changed process
BI = YT/,

where 7, = A; ! is the inverse of4, ::fé o5(Y,)ds, is easily checked to be a
Brownian motion. Furthermore, by [8, Proposition 5.2], weow

1
T; = / _Z(Bv) ds.
0 Op

Now we define
oo(y) if |y| < h(M)
o) =4 ooM) if y>h(M)
oo(—M) if y < h(—M)

and consider

! 1
M = / (B,)ds
0

(052
-1 "

and ASM) = T,(M) . By [8, Proposition 5.2], the process M(; ) B,u then solves
the stochastic differential equation

! ~

Y = Yo+ [ oGO0 () ),

0
for some Brownian motiorW. From B, =Y we deducg,™ = T, on {r < A},
hence

A =AM on {1 <7}

Thus, we conclud€; .., = Y(M),A,. FOr a more detailed discussion on construction
of solutions to SDEs without drift we refer to [8]. U

We formulate now the two dimensional marginal laws of a sofuto the martin-
gale problem related ta@.

Proposition 5.10. Let X = X* be a solution to the martingale problem related
to L with initial condition xo such that(TA) is realized. The joint law ofX}°, X7°),
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0< s < T, has a density given by
(x1, x2) = ps(xo0, x2) pr—s(x1, x2).
Proof. Let f € CO(R?) with compact support. We have to evaluate
E(f(Xy, X71)) = E(E(f (X;, X7)|X))

for 0 < s < T. In order to calculate the previous conditional expectatiee need
some preliminary results. The first one is an adaptation afofém 3.21. O

Lemma 5.11. Let u € U, such that(9, + L)u = 0 holds in theC°-generalized
sense. Then we have

E(T, X1)|F) = u(s, X;)
a.s. In particulay (u(t, X,)) is a FX-martingale.

Proof. The same as for Theorem 3.21, but we take conditioxaéatations in-
stead of expectations oki*c starting from zero instead of . ]

We focuse now on the case that is of divergence typey lf, y( ) ésftinda-
mental solution associated with , we set

[dx pr—i(x,2) f(x1,x) : t <T;

u(x, t,z) = { f(x, 2) t=T.

We already knowu X1, -) € Uy by Proposition 5.3 andd + L)u(x1, ¢,-) = 0 in the
CC-generalized sense. Using the above lemma, we now have

E(f(XS, XT)) = E(E(f(xv’ XT)|XS‘))
= Eu(Xs, s, X))

= /dxl ps(z, x1)u(xy, s, x1)
= /dxlps(z, xl)/dxzpr_s(xz, x1) f(x1, x2).

This proves the result if. is of divergence type.

In the general case, we set again k:X ( ), where CY(R) and L! are defined
in Lemma 2.16 and recalled before Lemma 5.6/l C°(R?) with compact support
then we have

E(f(Xs, X)) = E(f(k~H(Zy), k~H(Z1)))
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(5.15) = /le dzar(zo, 20)rr—s(21, 22)
F(kHz2) f (k™ H(z2)),

where ¢; ¢, -)) is the law density ofZ; which solves the martingale problestated
to L' which is of divergence type.
According to (5.14), (5.15) equals

/dzl dzz ps(x0, k™ Hz1)) pr—s(k~(z1), k™~ Hz2))k' (kM (z))K (k" (22)).
Using the change of variables *=(z;), i =1, 2, we complete the proof. O

We conclude the paper with the following theorem on the BlatFukushima
structure of f § ), whereX is the solution to the martingale probrelated toL .

Theorem 5.12. Let X = X* be a solution to the martingale problem related to
L with initial condition xo and f € W-2 Then £(X) is an (F,)-Dirichlet process with
martingale part

M/ = /I F'(Xs)o(Xs) dW.
0

Proof. We recall thatk isX;)-Dirichlet with martingale partV; :fé o(Xy)dW;.
First we will assume that the technical assumption (TA) isifieel. We aim to apply
Theorem 4.3. For this we need to check conditions H1), H2), éf3revious section.

Proposition 5.10 says that

s (x1, x2) = ps(xo, x1) pr—s(x1, x2),

so H1) is verified.
Let T, M > 0. Let x1, x2 € R, § > 0. Using local Aronson estimates it is imme-
diate to show that the quantity

T T
/ gs,s+5(x1, x2) ds = ps(x1, x2) / Ds(x0, x1) ds
0 0

is well defined and

T

sup ps(x0, x1) ds < o0;
|X1|§M 0

also there is a constarit > 0 such that, fors > 0

(2 — x1)?

V3 ps(x1, x2) < Cexp(— Co

)<c
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for |xi|, |x2| < M. Consequentlyf X ) is anA)-Dirichlet process if assumption (TA)
is verified.

Suppose now that (TA) is not verified, and & > 0 with |xo] < M. We de-
fine Qy, 7™, L(M) as before Lemma 5.9. According to the same lemmaQgn , the
stopped proces¥™" coincides withX ¢/ J where X (4 ) solves a martingale prob-
lem related toL # ). Using local Aronson estimates we easilytigat

[ e = [ rocongzas <
almost surely. Therefore
wl = [ roa)aw,
is well-defined. We define
Al = f(X0) — flxo) — M/

Now A/ is a zero quadratic variation process since,op , it co@w with

A= PN = fo) = [ (Foxndw,
and assumption (TA) is fulfilled fol. M ). O

Corollary 5.13. Let X be a solution to the martingale problem relatedio
(i) The mapA: D, — C defined byA(f) = [,(Lf)(X;)ds can be extended contin-
uously toW2.
(i) If L is close to divergence typghen A: | — [ I'(X;)ds can be continuously
extended fronC! to L2 ..

RemaArRk 5.14. Point (i) means that wheh is close to divergence tjpe,term
JI'(a)L¥(da) can even be extended .

Proof of the Corollary.  Point (i) is an immediate conseq@ent Theorem 5.12.
In fact the extension will be given by

A = F(X) — f(Xo) — /0 F(X)o(X) AW,

Concerning point (ii), Proposition 2.17 implies that foe L2

loc

A(l) = A(T)),
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where T is the inverse of the extension of the operafoto W2 Since A and T are
continuous, the result follows. O
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