

Title	Perfect categories. I
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1973, 10(2), p. 329–341
Version Type	VoR
URL	https://doi.org/10.18910/4471
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Harada, M. Osaka J. Math. 10 (1973), 329-341

PERFECT CATEGORIES I

MANABU HARADA

(Received March 15, 1972)

Let R be a ring with identity. We assume that an R-module M has two decompositions: $M = \sum_{\sigma \in I} \bigoplus M_{\sigma} = \sum_{\beta \in J} \bigoplus N_{\beta}$, where M_{σ} 's and N_{β} 's are completely indecomposable. Then it is well known as the Krull-Remak-Schmidt-Azumaya's theorem that M satisfies the following two conditions:

I. The decompositions are unique up to isomorphism.

II'. For a given finite set $\{N_{\beta_1}, \dots, N_{\beta_n}\}$ we can find a set $\{M_{\omega_1}, \dots, M_{\omega_n}\}$ such that $M = N_{\beta_1} \oplus \dots \oplus N_{\beta_n} \oplus \sum_{\alpha_{\mp}(\alpha_i)} \oplus M_{\omega}$ and $N_{\beta_i} \approx M_{\omega_i}$ for $i = 1, 2, \dots, n$ (or $M = M_{\omega_1} \oplus \dots \oplus M_{\omega_n} \oplus \sum_{\beta_{\pm}(\beta_i)} \oplus N_{\beta}$).

Those facts were generalized in a Grothendieck category A by P. Gabriel, [5]. Recently, the author and Y. Sai have treated

II. The condition II' is true for any infinite subset $\{N_{\beta_i}\}$,

in a case of modules in [7], and shown that Condition II is satisfied for any M in the induced full subcategory \mathfrak{B} from $\{M_{\sigma}\}$ in the category \mathfrak{M}_R of Rmodules if and only if $\{M_{\sigma}\}$ is an elementwise T-nilpotent system with respect to a certain ideal \mathfrak{C} of \mathfrak{B} . Furthermore, the author and H. Kanbara have shown in [10] and [12] that Condition II is satisfied for a given M if and only if $\{M_{\sigma}\}$ is an elementwise semi-T-nilpotent system with respect to $\mathfrak{C} \cap \operatorname{Hom}_R(M, M)$.

Conditions I and II' are categorical and hence, we can easily generalize the arguments in modules to those in \mathfrak{A} (see [5] and [7]). However, the definition of the elementwise *T*-nilpotency is not categorical. Therefore, we treat, in this paper, a Grothendieck category with a generating set of small objects, e.g. \mathfrak{M}_R , locally noteherian categories and functor categories of small additive categories to the category *Ab* of abelian groups.

We shall show in the section two that almost all of essential properties in [7], [8], [9], [10], [11] and [12] are valid in such a category.

In the final section, making use of such generalized properties, we define perfect (resp. semi-prefect) Grothendieck categories \mathfrak{A} and give a characterization of them with respect to a generating set of \mathfrak{A} . This characterization gives us a generalization of [2]. Theorem P for (\mathfrak{C} , Ab), where \mathfrak{C} is an amenable additive

small category. Especially, if \mathbb{C} is a full additive subcategory with finite coproducts of finitely generated abelian groups, we show that (\mathbb{C}, Ab) is perfect if and only if the complete isomorphic class of indecomposable *p*-torsion groups in \mathbb{C} is finite for every prime *p*.

1. Perliminary results

Let \mathfrak{A} be a Grothendieck category, namely a complete, co-complete C_3 abelian category (see [14], Chap. III). We call an object A in \mathfrak{A} samll if $[A, \Sigma \oplus -] \approx \Sigma \oplus [A, -]$ and call \mathfrak{A} quasi-small if every object A in \mathfrak{A} is a union of some small subobjects A^{α} in $A: A = \bigcup A^{\alpha}$.

If \mathfrak{A} has a generating set of small objects, then \mathfrak{A} is quasi-small. For example, the category \mathfrak{M}_R of modules over a ring R is quasi-small and more generally the functor category (\mathfrak{C} , Ab) and its full subcategory $L(\mathfrak{C}, Ab)$ of left exact functors are quasi-small, where \mathfrak{C} is a small additive category and Abis the category of abelian groups, (cf. [13], p. 109, Theorem 5.3 and p. 99, Proposition 2.3). It is clear that if \mathfrak{A} is locally noetherian (see [4], p. 356), then \mathfrak{A} is quasi-small.

By J(A) we denote the Jacobason radical for any object A in \mathfrak{A} , i.e. $J(A) = \cap N$, where N runs through all maximal subobjects in A and J(A) = Aif A does not contain any maximal subobjects. A is called *finitely generated* if $A = \bigcup_{\alpha \in I} A_{\alpha}$ for some subobjects A_{α} of A, then $A = \bigcup_{\beta \in J} A_{\beta}$ for a finite subset J of I. Let N be a subobject in M. N is called *samll in* M if N+T=M implies T=M for any subobject T in M. Following to [13], we define a semi-perfect (resp. perfect) objest P in \mathfrak{A} . P is called *semi-perfect* (resp. *perfect*) if P is projective and every factor object of P has a projectove cover (resp. any coproduct of copies of P is semi-perfect).

From the proof of Lemma in [16], we have

Lemma 1. Let P be a projective object in an abelian category \mathfrak{C} . Then $J([P, P]) = \{f | \in [P, P], \text{ Im } f \text{ is samll in } P\}.$

Proposition 1. Let P be a projective object in the Grothendieck category \mathfrak{A} . Then the following statements are equivalent.

- 1) $S_P = [P, P]$ is a local ring; $S_P / J(S_P)$ is a division ring.
- 2) Every proper subobject in P is small in P.
- 3) P is semi-perfect and directly indecomposable.

(cf. [8], Theorem 5).

Proof. 1) \rightarrow 2). Since S_P is local, $J(S_P)$ consists of all non-isomorphisms. Let N be a proper subobject of P and assume P=T+N. Since $P/T \approx N/N \cap T$, we have a diagram:

where ν and ν are the canonical epimorphisms. Since P is projective, we obtain $\alpha \in [P, N] \subseteq S_P$ such that $\nu' \alpha = \varphi \nu$. Since $N \neq P$, $\alpha \in J(S_P)$. Hence, $N = \text{Im} \alpha + T \cap N$ and $P = \text{Im} \alpha + T$. Therefore, P = T by Lemma 1.

2) \rightarrow 1). Let f be not isomorphic. If Im f=P, $P=P_0+\text{Ker} f$. Since Ker f is proper, Ker f is small in P, which is a contradiction. Hence, $\text{Im} f \neq P$. Let g be another non-isomorphism. Since Im f and Im g are samll in P, $P \neq \text{Im} f + \text{Im} g \supseteq \text{Im} (f+g)$. Hence, S_P is a local ring.

2) \rightarrow 3). It is clear from the definition.

3) \rightarrow 2). Let T be a proper subobject of P and $P' \rightarrow P/T - 0$ a projective cover of P/T. Since P is indecomposable, $P \approx P'$. Hence, T is small in P.

For the rest of this section, we always assume that the abelian category \mathfrak{A} is quasi-small in the sense given in the beginning of this section.

We shall generalize the notions of summability and elementiwse T-nilpotent systems in \mathfrak{M}_R to a case of quasi-small categories, (cf. [7] and [8]).

A set of morphisms $\{f_{\beta}\}_{\beta \in K}$ of an object L to an object Q is called summable if for any small subobject L^{n} in $L f_{\beta} | L^{n} = 0$ for almost all $\beta \in K$. Let $M = \sum_{T} \oplus M_{\alpha}$ and $N = \sum_{T} \oplus N_{\beta}$ be two coproducts in \mathfrak{A} , and let i_{α} , p_{β} be an injection M_{α} to M and a projection of N to N_{β} , respectively. Let f be any element in [M, N] and put $f_{\beta \alpha} = p_{\beta} f i_{\alpha}$. If M_{α}^{n} is a small subobject of M_{α} , $f_{\beta \alpha} | M_{\alpha}^{n} = 0$ for almost all β . Therefore, the $\{f_{\beta \alpha}\}_{\beta}$ is a set of summable morphisms of M_{α} to N and $M_{\alpha} = \bigcup M_{\alpha}^{n}$, where M_{α}^{n} 's are small subobjects in M_{α} . Since a finite union of small subobjects is again small, we assume $\{M_{\alpha}^{n}\}$ forms a directed family and $M_{\alpha} = \bigsqcup M_{\alpha}^{n}$. Furthermore, $\sum_{\beta \in I} f_{\beta \alpha} | M_{\alpha}^{n}$ gives an element in $[M_{\alpha}, N]$. Hence, we have a unique element f in [M, N] such that $fi_{\alpha}^{n} = \sum f_{\beta \alpha} | M_{\alpha}^{n}$. Thus, we have

Lemma 2. Let $M_i = \sum_{\alpha_i \in I_i} \bigoplus M_{i\alpha_i}$ be objects in the quasi-small category \mathfrak{A} for i=1, 2 and 3. Then $[M_1, M_2]$ is isomorphic to the set of row summable matrices with entries $a_{\alpha_j\alpha_i}$. Furthermore, the composition $[M_2, M_3] [M_1, M_2]$ corresponds to the product of martices, where $a_{\alpha_j\alpha_i} \in [M_{i\alpha_i}, M_{j\alpha_i}]$.

Corollary 1. Let P be projective and directly indecomposable object in \mathfrak{A} with a set of small generators. If $S_P = [P, P]$ is a local ring, then P is semi-perfect and J(P) is a unique maximal subobject of P. Hence, P is finitely generated.

Proof. Let $Q_1 \subset Q_2 \subset \cdots \subset Q_n \subset \cdots$ be a series of proper subobjects in *P*. If $P = \bigcup Q_j$, we have a diagram

$$\sum \bigoplus Q_j \xrightarrow{\nu} P \to 0 \qquad \text{(exact)}$$

$$f \qquad f \qquad P$$

, where ν is given naturally by inclusions. We obtain $f \in [P, \Sigma \oplus Q_j]$ such that $\nu f = 1_P$ and put $f = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}$ and $\nu = (i_1, i_2, \dots, i_a, \dots)$. Then $1_P = \sum i_a f_a$. However,

any of f_{σ} 's is not isomorphic, which is a contradiction (cf. [1]). Hence, we have a maximal subobject by the Zorn's lemma. Therefore, J(P) is a unique maximal, subobject of P by Proposition 1.

Corollary 2 ([6], Theorem 2.8.) Let P be projective and artinian, then P is finitely generated, and S_P is right artinian.

Proof. Since S_P is a semi-primary ring by [5], Proposition 2.7, it is clear from the above corollary. S_P is right artinian from [6], Lemma 2.6.

2. Coproducts of completely indecomposable objects

We studied Krull-Remak-Schmidt-Azumaya's theorm for a direct decomposition of a module as completely indecomposable modules in [7], [8], [10] and [12]. We shall generalize many results in a case of modules to a case of Grothendieck abelian categories \mathfrak{A} with a set of small generators.

An object M in \mathfrak{A} is called *completely indecomposable* if $S_M = [M, M]$ is a local ring. The following lemma was given in [7], p. 343, Remark 4 without proof. We shall give here its proof for the sake of completeness.

Lemma 3. Let $M = \sum_{i=1}^{\infty} \bigoplus M_i$ and M_i 's be completely indecomposable objects in a C_3 -abelian category \mathbb{C} . Let $\{f_i\}_{i=1}^n$ be a set of morphisms $f_i \in [M_i, M_{i+1}]$. Put $M_i' = \operatorname{Im}(1_{M_i} + f_i)$. Then $M_t \cap (M'_{i_1} + M'_{i_2} + \dots + M'_{i_s}) \subseteq \operatorname{Ker}(f_n f_{n-1} \dots f_t)$ for $1 \le t \le n$ and $(i_1, i_2, \dots, i_s) \subseteq (1, 2, \dots, n)$ and $M_t \cap (M_i + \sum_{j=1}^n M_j') \subseteq \operatorname{Im}(f_{t-1} \dots f_1) + \operatorname{Ker}(f_n \dots f_t)$ for $i \le t \le n$.

Proof. We take $\{M_i\}_{i=1}^{n+1}$ and we construct a small full subcategory \mathfrak{C}_0 such that \mathfrak{C}_0 contains all M_i and kernels and images in \mathfrak{C}_0 are those in \mathfrak{C} , (see [14], p. 101, Lemma 2.7). Then there exists an exact covariant imbedding functor of \mathfrak{C}_0 to Ab by [14], p. 101, Theorem 2.6. Hence, we may assume that all of M_i are abelian groups. In this case the lemma is clear.

We shall make use of the same condition I. II and III given in [7], p. 331–332, (see the introduction). Condition I is satisfied for any two decompositions as coproducts of completely indecomposable objects in an arbitrary Grothendieck category (see [5] or [8], Theorem 7'). We are now interested in Condition II.

From now on we assume that a Grothendieck category \mathfrak{A} has a generating set of small objects, namely quasi-small in the sense of §1.

First, we shall generalize the notions of elementwise semi-T-nilpotent system defined in [7] and [8].

Let \mathfrak{C} be an ideal in \mathfrak{A} . We take a set of objects $\{M_{\mathfrak{o}}\}$ and consider morphisms $f_{\mathfrak{o}_i}: M_{\mathfrak{o}_i} \to M_{\mathfrak{o}_i+1}$, which belong to \mathfrak{C} . If for any small subobject $M^n_{\mathfrak{o}_1}$ of $M_{\mathfrak{o}_1}$ there exists *m* such that $f_{\mathfrak{o}_m}f_{\mathfrak{o}_{m-1}}\cdots f_{\mathfrak{o}_1}|M^n_{\mathfrak{o}_1}=0$, we call $\{f_{\mathfrak{o}_i}\}$ a locally right *T*-nilpotent system (with respect to \mathfrak{C}). If for any subset $\{M_{\mathfrak{o}}\}$ and any set $\{f_{\mathfrak{o}_i}\}, \{f_{\mathfrak{o}_i}\}$ is locally right *T*-nilpotent system, we call $\{M_{\mathfrak{o}}\}$ is a locally right *T*-nilpotent system. If $\alpha_i \neq \alpha_j$ for $i \neq j$ in the above, we call $\{f_{\mathfrak{o}_i}\}$ and $\{M_{\mathfrak{o}}\}$ locally right semi-*T*-nilpotent systems. Similarly, if we replace $f_{\mathfrak{o}_i}$ by $g_{\mathfrak{o}_i}: M_{\mathfrak{o}_i+1}$ $\to M_{\mathfrak{o}_i}$ and $g_{\mathfrak{o}_1}g_{\mathfrak{o}_2}\cdots g_{\mathfrak{o}_m}=0$ for some *m*, we call $\{g_{\mathfrak{o}}\}$ left *T*-nilpotent.

If we replace *elementwise* (semi-) *T*-nilpotent system by locally right (semi-) *T*-nilpotent systems in the arguments in [7], [8], [9], [10] and [12], we know that many results in them are valid in \mathfrak{A} without changing proofs. For instance, in order to prove the same result of [7], Lemma 9 for \mathfrak{A} , we can replace the relations 2) and 3) in [7], p. 336 by Lemma 3 and elements x by small subobjects, and we use the same argument, taking a projection of M to M_n if necessary.

Let $\{M_{\nu}\}$ be a set of completely indecomposable objects and \mathfrak{B} be the induced full additive category from $\{M_{\omega}\}$: objects of \mathfrak{B} consist of all coproducts of some M_{ω} (and their all isomorphic images). We can express all morphisms in \mathfrak{B} by row summable matrices $(a_{\beta\omega})$ by Lemma 2. We define an ideal \mathfrak{C} of \mathfrak{B} as follows: \mathfrak{C} consists of all morphisms $(a_{\beta\omega})$ such that $a_{\gamma\delta}: M_{\delta} \to M_{\gamma}$ is not isomorphic for all γ, δ . Then we have from Theorem 9 in [7].

Theorem 1. Let \mathfrak{A} be a Grothendieck category with a generating set of small objects, and \mathfrak{B} the induced full subadditive category from a set of completely indecomposable objects $M_{\mathfrak{a}}$. Then the following statements are equivalent.

1) For any two decompositions $M = \sum_{I} \bigoplus Q_{\sigma} = \sum_{J} \bigoplus N_{\beta}$ of any object M in \mathfrak{B} ,

Condition II in [7] is satisfied, where Q_{α} , N_{β} are indecomposable.

2) The ideal \mathfrak{C} in \mathfrak{B} defined above is the Jacobson radical of \mathfrak{B} .

3) $\{M_{\alpha}\}$ is a locally right T-nilpotent system.

Similarly from [12], Theorem or [10], Lemma 5 we have

Theorem 2. Let \mathfrak{A} , \mathfrak{B} and \mathfrak{C} be as above. Then the following statements are equivalent.

1) For given two decompositions $M = \sum_{\tau} \bigoplus Q_{\sigma} = \sum_{\tau} \bigoplus N_{\beta}$ of a given object M

```
M. HARADA
```

in \mathfrak{B} , Condition II is satisfied, where Q_{α} , N_{β} are indecomposable.

- 2) $\mathbb{C} \cap S_M = J(S_M)$, where $S_M = [M, M]$
- 3) $\{Q_{a}\}_{I}$ is a locally right semi-T-nilpotent system with respect to \mathfrak{C} .

REMARK. Using Lemmas 2 and 3, we can obtain theorems concerned with exchange properties in \mathfrak{A} in [6] and [9] if we replace *semi-T-nilpotent* by *locally right semi-T-nilpotent*.

3. Perfect categories

H. Bass defined a perfect or semi-perfect ring in [2]. Recently, M. Weidenfeld and G. Weidenfeld have generalized them to a functor category (\mathfrak{C} , Ab) of an additive category \mathfrak{C} in [17].

We shall define a perfect or semi-perfect Grothendieck category \mathfrak{A} and study some properties of \mathfrak{A} , which are analogous to ones in [2], as an application of §2.

Let \mathfrak{A} be a Grothendieck category. \mathfrak{A} is called *perfect* (resp. *semi-perfect*) if every (resp. finitely generated) object A in \mathfrak{A} has a projective cover (cf. [2]).

Let \mathfrak{A}' be the spectral Grothedieck category given in [7], p. 331, Example 2. Then every object in \mathfrak{A}' has a trivial projetive cover and hence, \mathfrak{A}' is perfect. However, \mathfrak{A}' has completely different properties from ones in \mathfrak{M}_R , where R is a right perfect ring.

We are interested, in this section, in perfect categories with similar properties of perfect rings. Hence, in order to exclude such a special perfect category we assume that \mathfrak{A} is quasi-small, namely \mathfrak{A} has a generating set of small objects.

As seen in [2] and [13], the fact $P \neq J(P)$ for a projective P in \mathfrak{A} is very important to study perfect categories. In the spectral category \mathfrak{A}' above, this fact is not true. On the other hand, that fact was shown in \mathfrak{M}_R and noted in (\mathfrak{C}, Ab) by [2] and [17], respectively.

We first generalize them as follows:

Proposition 2. Let \mathfrak{A} be a Grothendieck category and A an object in \mathfrak{A} . If A is a retract of a coproduct of either

- a) porjective objects P such that J(P) is small in P, or
- b) noetherian objects,

then $A \neq J(A)$.

We need two lemmas for the proof, the first of which is well known.

Lemma 4. Let P be a small and projective object in \mathfrak{A} . Then P is finitely generated and J(P) is small in P.

See [3], p. 105.

Lemma 5. Let $\{A_i\}_I$ be a family of objects in \mathfrak{A} such that $[A_i, J(A_i)]$ is

PERFECT CATEGORIES I

contained in $J([A_i, A_i])$ for all $i \in I$. Put $A = \sum_{\alpha \in I} \bigoplus A_i$. Then for $f \in [A, A]$ with $Ker(1-f) \neq 0$, $Im f \neq J(Im f)$.

Proof. Put $B = \operatorname{Im} f$ and assume B = J(B). Since $J(B) \subset J(A)$, $f \in [A, J(A)]$. Ker $(1-f) \neq 0$ from the assumption and hence, Ker $(1-f) \cap \sum_{i=1}^{n} \bigoplus A_{\alpha_{1}} \neq 0$ for some finite indeces $\alpha_{i} \in I$. Let e_{1} be the projection of A to $A_{\alpha_{i}}$. Since $f \in [A, J(A)]$, $e_{1}fe_{1}|A_{\alpha_{1}} \in [A_{\alpha_{1}}, J(A_{\alpha_{1}})] \subset J(S_{A_{\alpha_{1}}})$. Hence, $e_{1}(1-f)e_{1}|A_{\alpha_{1}} =$ $(e_{1}-e_{1}fe_{1})|A_{\alpha_{1}}$ is automorphic. Therefore, $A = (1-f)(A_{\alpha_{1}}) \oplus \operatorname{Ker} e_{1} = (1-f)(A_{\alpha_{1}})$ $\bigoplus \sum_{\beta \neq \alpha_{1}} \oplus A_{\beta}$ and $A_{\alpha_{1}} \cong (1-f)(A_{\alpha_{1}})$. Let e_{2} be the projection of A to $A_{\alpha_{2}}$ in the above decompositon. Then we obtain $A = (1-f)(A_{\alpha_{1}}) \oplus (1-f)(A_{\alpha_{2}}) \oplus \sum_{\beta \neq \alpha_{1}, \alpha_{2}} \oplus A_{\beta}$ and $A_{\alpha_{2}} \cong (1-f)(A_{\alpha_{2}})$. Repearting this argument, we know that (1-f)| $\sum_{i=1}^{n} \oplus A_{\alpha_{i}}$ is isomorphic, which is a contraadiction, (this argument is due to [1]).

Proof of Proposition 2. It is clear for the case a) from Lemmas 4 and 5 and [10], Proposition 1. Let A be a noetherian object. Then $A \neq J(A)$ and J(A) is small in A. Hence, 1-f is epimorphic for any f in [A, J(A)]. Therefore, 1-f is unit, since A is noetherian. Thus, $[A, J(A)] \subset J(S_A)$.

Corollary 1 ([2] and [17]). Let \mathfrak{A} be a Grothendieck category which is one of the following types :

- a) \mathfrak{M}_R for some ring R,
- b) (\mathfrak{C} , Ab), where \mathfrak{C} is a small additive category,
- c) Locally noetherian.

Then $P \neq J(P)$ for every non-zero projective obejcet P.

Corollary 2. Let \mathbb{C} be an artinian abelian category and $L(\mathbb{C}, Ab)$ the left exact functor category. Then $Q \neq J(Q)$ for every retract Q of any coproduct of generators $\{H^A\}_{A \in \mathbb{C}}$, where $H^A(-) = [A, -]$.

Proof. $L(\mathfrak{C}, Ab)$ is locally noetherian by [4], Proposition 7 in p. 356.

For the study of perfect categories, we recall an induced category. Let $\{M_{\alpha}\}_{I}$ be a given set of some objects in a Grothendieck category \mathfrak{A} . By \mathfrak{G}_{f} we denote the full subadditive category of \mathfrak{A} , whose objects consist of all finite coproducts of M_{α}' which is isomorphic to some M_{β} in $\{M_{\alpha}\}_{I}$. We call \mathfrak{G}_{f} the *finitely induced additive category from* $\{M_{\alpha}\}$, (see [7]). If all M_{α} are completely indecomposable, \mathfrak{G}_{f} is amenable (see [3], p. 119) by [7], Theorem 7'.

Let A be an object in \mathfrak{A} . By S(A) we denote the socle of A, namely S(A) =the union of all minimal subobjects in A.

Following to [15], we call \mathfrak{A} semi-artinian if $\mathbf{S}(A) \neq 0$ for all non-zero object A in \mathfrak{A} .

If \mathfrak{A} is a Grothendieck category with a generating set of small projective, then \mathfrak{A} is equivalent to (\mathfrak{C}, Ab) by Freyd's theorem (see [14], p. 109, Theorem 5.2), where \mathfrak{C} is a small additive category. In this case, \mathfrak{A} is also equivalent to a subcategory of modules by [4]. We give here categorical proofs in the following for some properties in \mathfrak{A} , however we note that we can prove them ring-theoretical (see Remark below).

First, we generalize [15], Proposition 3.2.

Proposition 3. ([15]). Let \mathfrak{A} be a Grothendieck category with a generating set $\{P_{\mathfrak{a}}\}$ of small projective. Then \mathfrak{A} is semi-artinian if and only if 1) $\{P_{\mathfrak{a}}\}$ is a left T-nilpotent system with respect to $J(\mathfrak{A})$ and 2) $S(A) \neq 0$ for every non-zero quotient object A of $P_{\mathfrak{a}}/J(P_{\mathfrak{a}})$ for all α .

Proof. If \mathfrak{A} is semi-artinian, 2) is clear. The following agrument is similar to one in [2], p. 470. Let $\{f_i\}$ be a set in $J(\mathfrak{A})$ and $f_i: P_{i+1} \rightarrow P_i$. We define inductively a series of subobjects K_{α} of P_{α_1} as follows: $K_0 = 0, K_1 = S(P_1)$, $K_2/K_1 = S(P_1), \cdots$. If α is a limit, $K_{\alpha} = \bigcup_{\beta < \alpha} K_{\beta}$. Since \mathfrak{A} is a Grothendieck category, $P_1 = K_{\gamma}$ for some γ . Put $I_i = \operatorname{Im} f_1 f_2 \cdots f_i$. Then I_i is finitely generated, since so is P_{i+1} . Let α_i be the least number such that $K_{\alpha_i} \supset I_i$. If α_i is a limit, then $I_i = \bigcup_{\beta < \alpha_i} (K_{\beta} \cap I_i)$ and hence, $I_i \subset K_{\beta}$ for some $\beta < \alpha_i$. Therefore, we can express $\alpha_i = \delta_i + 1$. Since $K_{\alpha_i}/K_{\delta_i}$ is semi-simple, $J(K_{\alpha_i}/K_{\delta_i}) = 0$ and $\operatorname{Im} f_{i+1} \subset J(P_i)$ by Lemma 1. Hence, $\operatorname{Im} f_1 f_2 \cdots f_{i+1} = \operatorname{Im} ((f_1 f_2 \cdots f_i) f_{i+1}) \subset K_{\delta_i}$. Therefore, $\alpha_i > \alpha_{i+1}$ which means that $\{f_i\}$ is a left T-nilpotent. Conversely, we assume 1) and 2). We show that for any non-zero object A, there exists P_1 and $f \in [P_1, A]$ such that $f(J(P_1)) = 0$ and $f \neq 0$. If it were not true, we would have some P_1 and $f \in [P_1, A]$ such that $f(J(P_1)) \neq 0$. If we consider an exact sequence,

we have some P_2 , $f_1' \in [P_2, f(J(P_1)] \text{ and } f_1 \in [P_2, J(P_1)] \text{ such that } f_1' = ff_1$. Since $f_1'(J(P_2)) \neq 0$, we can find P_3 and $f_2 \in [P_3, J(P_2)]$ such that $f_2' = ff_1 f_2 \in [P_2, A]$ and $f_2'(J(P_2)) \neq 0$. Repeating this argument we have $f_n' = ff_1 \cdots f_n \neq 0$ and $f_i \in [P_{i+1}, J(P_i)] \subset J(\mathfrak{A}) \cap [P_{i+1}, P_i]$ for all n by Lemma 1, which contradicts to 1). Hence, \mathfrak{A} is semi-artinian from 2).

In order to characterize some perfect Grothendieck categories, we give some notes here. For a project object P such that $P \neq J(P)$ we obtain from [13], Theorem 5.2 that $P = \sum \bigoplus P_a$ is semi-perfect if and only if P_a 's are semi-perfect of $J(P_a) \neq P_a$ and J(P) is small in P. Further if P is semi-perfect, $P = \sum \bigoplus Q_a$

by [13], Corollary 4.4, where Q_{α} 's are completely indecomposable. Similarly from Lemma 5 and [10], Proposition 1 and Corollary 1 to Theorem 3 we obtain

Lemma 6. Let \mathfrak{A} be a quasi-samll Grothendieck category and $\{P_{\mathfrak{a}}\}_I$ a family of semi-perfect objects in \mathfrak{A} . Then $P = \sum_{I} \bigoplus P_{\mathfrak{a}}$ is semi-perfect (resp. perfect) and $P \neq J(P)$ if and only if $\{P_{\mathfrak{a}}\}_I$ is a locally right semi-T-nilpotent (resp. T-nilpotent) system with respect to J([P, P]) and $P_{\mathfrak{a}} \neq J(P_{\mathfrak{a}})$ for all α .

Theorem 3. An abelian category \mathfrak{A} is a Grothendieck category with a generating set of finitely generated objects and is semi-perfect if and only if \mathfrak{A} is equivalent to $(\mathfrak{C}_{f}^{0}, Ab)$, where \mathfrak{C}_{f} is the finitely induced sub-additive category from $\{P_{\alpha}\}_{I}$, where P_{α} 's are completely indecomposable objects in \mathfrak{A} .

Proof. Let $\{G_{\alpha}\}$ be a generating set of finitely generated objects. If \mathfrak{A} is semi-perfect, we have a projective cover P_{α} of $G_{\alpha}; 0 \to K_{\alpha} \to P_{\alpha} \xrightarrow{f} G_{\alpha} \to 0$ is exact and K_{α} is small in P_{α} . Furthermore, P_{α} contains a finitely generated subobject P' such that $f(P')=G_{\alpha}$. Hence, $P_{\alpha}=K+P'$ implies that P_{α} is also finitely generated. Therefore, \mathfrak{A} has a generating set of projective small P_{α} . We have $P \neq J(P)$ for every projective object P by Proposition 2. Thus $P_{\alpha}=\sum_{i=1}^{n_{\alpha}} \oplus P_{\alpha_i}$ by [13], Corollary 4.4, where P_{α_i} 's are completely indecomposable. Let \mathfrak{C}_f be the induced subadditive category from $\{P_{\alpha_i}\}$. Then \mathfrak{A} is equivalent to $(\mathfrak{C}^{\circ}, Ab)$ by Freyd's Theorem. Conversely, if $\mathfrak{A} \approx (\mathfrak{C}^{\circ}, Ab)$, $\{H_C(-)=[-, C]\}$ is a generating set of finitely generated projective objects by Lemma 4. Further \mathfrak{A} is semi-perfect by Proposition 1 and [14], Corollary 5.3.

If a ring R is right artinian, then \mathfrak{M}_R is right (semi-) perfect. Similarly, we have

Proposition 4. Let \mathfrak{A} be a Grothendieck category with a generating set $\{P_{\mathfrak{a}}\}_I$ of projective objects with finite length. Then \mathfrak{A} is semi-perfect. \mathfrak{A} is perfect if and only if $\sum \oplus P_{\mathfrak{a}}$ is semi-perfect, (cf. Remark 2 below)

Proof. We may assume that \mathfrak{A} has a generating set of completely indecomposable and small projective objects P_{σ} . Then P_{σ} is semi-perfect by Proposition 1 and hence, \mathfrak{A} is semi-perfect. If $\sum_{T} \bigoplus P_{\sigma}$ is semi-perfect, then $\sum \bigoplus P_{\sigma}$ is perfect by Lemma 6 and [6], Proposition 2.4.

Analogously to Theorem 3, we have

Theorem 4. An abelian category \mathfrak{A} is a Grothendieck category with a generating set of finitely generated objects and is perfect if and only if \mathfrak{A} is equivalent to $(\mathfrak{G}_{f}^{\circ}, Ab)$, where \mathfrak{G}_{f} is the finitely induced additive category from a set of some completely indecomposable objects $P_{\mathfrak{a}}$ such that $\{P_{\mathfrak{a}}\}$ is a right T-nilpotent system

with respect to $J(\mathbb{G}_f)$.

Proof. If \mathfrak{A} is a perfect Grothendieck category as above, then $\mathfrak{A} \approx (\mathfrak{C}_{f}^{\circ}, Ab)$ by Theorem 3. It is clear from Lemma 6 that $\{P_{\alpha}\}$ is a right *T*-nilpotent system with respect to $J(\mathfrak{C}_{f})$, since P_{α} is small. Conversely, if $\mathfrak{A} \approx (\mathfrak{C}_{f}^{\circ}, Ab)$, \mathfrak{A} is a perfect category as in the theorem by Lemmas 4 and 6.

We have immediately from Corollary to Lemma 2, Proposition 3 and Theorems 3 and 4

Corollary 1. Let \mathfrak{A} be a Grothendieck category with a generating set of finitely generated. Then \mathfrak{A} is semi-perfect if and only if \mathfrak{A} has a generating set $\{P_{\mathfrak{a}}\}$ of completely indecomposable projective objects. In this case $\{P_{\mathfrak{a}}\}$ is right (resp. left) T-nilpotent if and only if \mathfrak{A} is perfect (resp. semi-artinian).

Let \mathfrak{A} be a Grothendieck category as in the above. Then the induced category from $\{P_{\alpha'}/J(P_{\alpha'})\}_J$ is equivalent to $\sum_{J} \oplus \mathfrak{M}_{\Delta \alpha'}$, where $\Delta_{\alpha'} = [P_{\alpha'}/J(P_{\alpha'}), P_{\alpha'}/J(P_{\alpha'})]$, where $\{P_{\alpha'}/J(P_{\alpha'})\}$ is a complete isomorphic representative of $\{P_{\alpha}/J(P_{\alpha})\}$. Hence, we have

Corollary 2. A (semi-) perfect Grothendieck category with a generating set of finitely generated is equivalent to \mathfrak{M}_R with R (semi-) perfect if and only J is finite.

From Theorems 3 and 4, we may restrict ourselves to a case of functor categories (\mathfrak{C} , Ab), if we are interested in perfect Grothendieck categories. First, we note

Proposition 5 ([17]). Let \mathbb{C} be an amenable additive and small category. Then (\mathbb{C}, Ab) is semi-perfect if and only if every object in \mathbb{C} is finite coproduct of completely indecomposable objects.

Proof. It is clear from Theorem 3 and [3], p. 119.

For a ring R, $_{R}\mathfrak{M}$ (resp. \mathfrak{M}_{R}) is naturally equivalent to (R, Ab) (resp. (R^{0}, Ab)). Hence, an analogy of [2], Theorem 2.1 is

Corollary. Let \mathfrak{C} be as above. Then (\mathfrak{C}, Ab) is semi-perfect if and only if $(\mathfrak{C}^{\circ}, Ab)$ is semi-perfect.

Our next aim is to generalize Theorem P of [2] to a case of (\mathfrak{C}_f, Ab) . First we shall recall the idea given in [4], Chapter II. Put $R = \sum_{X,Y \in \mathfrak{C}_f} \bigoplus [X, Y]$ and we can make R a ring by the compositions of morphisms in \mathfrak{C} . If we denote the indentity morphism of X by I_X , I_X is idemoptent and $I_X I_Y = I_Y I_X = 0$ if $X \neq Y$. Hence, $R = \sum_{X \in \mathfrak{C}} \bigoplus RI_X = \sum_{X \in \mathfrak{C}} \bigoplus I_X R$. In general, R does not contain

the identity. We know by [4], Proposition 2 in p. 347 that the covariant functor category (\mathfrak{C} , Ab) is equivalent to the full subcategory of $_R\mathfrak{M}$ whose objects consist of all left *R*-modules *A* such that RA=A. Similarly, we know the contravariant functor category (\mathfrak{C}° , Ab) is equivalent to the full subcategory of \mathfrak{M}_R with AR=A.

Lemma 7. Let \mathbb{C}_f and $R = \sum \bigoplus [X, Y]$ be as above. Then $J(R) = \sum \bigoplus ([X, Y] \cap J(\mathbb{C}_f))$.

Proof. Let x be in J(R). Then there exists a finite number of objects X_i such that $x = (\sum I_{X_i})x(\sum I_{X_i}) \in (\sum I_{X_i})J(R)(\sum I_{X_i}) = J((\sum I_{X_i})R(\sum I_{X_i}))$. On the other hand $(\sum I_{X_i})R(\sum I_{X_i}) \approx [\sum \bigoplus X_i, \sum \bigoplus X_i]$. Hence, $x \in \sum ([X, Y] \cap$ $J(\mathfrak{C}_i))$ by [7]., Lemma 8. The converse is clear from the above argument.

We can prove the following theorem by the same method given in [2], Part 1 even though R does not contain the identity (see Remark 1 below). However, we shall give here the proof rather directly (without homological method).

Theorem 5 (cf. [2]. Theorem P). Let \mathfrak{A} be an arbitrary Grothendieck category, $\{M_{\mathfrak{a}}\}_I$ a set of completely indecomposable objects in \mathfrak{A} and \mathfrak{C}_f the finitly induced additive subcategory from $\{M_{\mathfrak{a}}\}$. Put $R = \sum_{\mathfrak{C}_f} \bigoplus [X, Y]$ as above. Then the following conditions are equivalent.

- 1) (\mathfrak{C}_f, Ab) , is perfect.
- 2) $\{M_{\alpha}\}$ is a left T-nilpotent system with respect to $J(\mathfrak{G}_{f})$.
- 3) J(R) is left T-nilpotent.
- 4) R satisfies the descending chain condition on principal right ideals in J(R).
- 5) Every object in $(\mathbb{S}^{\circ}_{f}, Ab)$ contains minimal subobjects.

We have the similar result for $(\mathfrak{G}_{f}^{\circ} Ab)$.

Proof. 1) \leftrightarrow 2) is nothing but Lemma 6. 2) \rightarrow 3). Let x_n be in J(R). Then $x_n = \sum x_{n,j(n)}, x_{n,j(n)} \in [X_{j(n)}, Y_{j(n)})] \cap J(\mathfrak{G}_f)$. by Lemma 7, where we may assume that X, Y are isomorphic to ones in $\{M_a\}$. Hence, $\{x_n\}$ is left T-nilpotent by König Graph Theorem. 3) \rightarrow 4) \rightarrow 2) is clear.

2) \leftrightarrow 5) is given by Proposition 3.

REMARK 1. We can prove Theorem 5 by making use of idea in [2], Part 1. For instance, let $\{a_i\}$ be a sequence of elements in R. There exist indempotents I_i such that $I_i a_i = a_i$, $a_{i-1}I_i = a_{i-1}$. Then we denote by $[F, \{a_n\}, G]$

1) $F = \sum_{i=1}^{\infty} \bigoplus RI_i x_i$, 2) The subgroup G of F generated by $\{I_i x_i - a_i I_{i+1} x_{i+1}\}$, where x_i is a base. Then this $[F, \{a_i\}, G]$ takes the place of $[F, \{a_n\}, G]$ given in [2], p. 468, even though R does not contain the identity. From those

arguments we can shown that we may take out the assumption "in J(R)" in 4), (cf. [17], Proposition in p. 1571).

REMARK 2. Let $\{R_i\}_I$ be a set of perfect rigns. Then \mathfrak{M}_{R_i} is perfect and $\prod \mathfrak{M}_{R_i}$ is also perfect, however $\prod R_i$ is not a perfect ring if I is infinite.

If a ring R is right artinian, then \mathfrak{M}_R has a generator R of finite length and \mathfrak{M}_R is perfect. However, in gneral categories with a generating set of projective and finite length need not be perfect. For instance, let K a be field and I the set of natural numbers. We define an abelian category $[I, \mathfrak{M}_K]$ of commutative diagrams as follows; the objects of $[I, \mathfrak{M}_K]$ consist of all form $(A_1, A_2, \dots, A_j, \dots)$ with arrow $d_{kj} \colon A_j \to A_k$ such that $d_{kj} = 0$ for k > j, where $A_i \in \mathfrak{M}_K$. Then $[I, \mathfrak{M}_K]$ is an abelian category with a generating set of projective objects $(K, K, \dots, K, 0, \dots) = U_i$ of finite length (see [11], Proposition 2.1 and [14], p. 227). We have natural monomorphisms $f_i \colon U_i \to U_{i+1}$. Hence, $[I, \mathfrak{M}_K]$ is not perfect, however $[I, \mathfrak{M}_K]$ is semi-artinian by Proposition 3.

Finally, we shall give the following corollary as an example.

Corollary. Let \mathcal{C} be a full additive amenable subcategory with finite coproduct in the category of finitely generated torsion abelian groups. Then the following statements are equivalent.

- 1) (\mathfrak{C} , Ab) is perfect.
- 2) (\mathbb{C}° , Ab) is perfect.
- 3) Every object in (C, Ab) contains minimal subobjects.
- 4) Every object in (C⁰, Ab) contains minimal subobjects.

5) The completely isomorphic representative class of indecomposable p-torsion objects in \mathbb{C} is finite for all p.

6) (\mathbb{C}_{f} , Ab) is equivalent to $\prod \mathfrak{M}_{R_{a}}$, where R_{a} 's are right artinian rings.

Proof. The indecomposable objects are left (or right) T-nilpotent with respect to $J(\mathbb{C})$ if and only if 5) is satisfied.

OSAKA CITY UNIVERSITY

References

- [1] G. Azumaya: Correction and supplementaries to my paper concerning Krull-Remak -Schmidt's theorem, Nagoya Math. J. 1 (1950), 117–124.
- [2] H. Bass: Finitestic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1962), 466-488.
- [3] P. Freyd: Abelian Categories, Columbia University, New York, 1962.
- [4] P. Gabriel: Des catégories abéliennes, Bull Soc. Math. France. 90 (1962), 323-448.

PERFECT CATEGORIES I

- [6] M. Harada: On semi-simple abelian categories, Osaka J. Math. 7 (1970), 89-95.
- [7] ——: and Y.Sai: On categories of indecomposable modules I, Osaka J. Math. (1970). 323-343.
- [8] M. Harada: On categories of indecomposable modules II, ibid, 8 (1971), 309-321.
- [9] ——: Supplementary remarks on categories of indecomposable modules, to appear.
- [10] and H. Kanbara: On categories of projective modules, Osaka J. Math. 8 (1971), 471-483.
- [11] -----: On special type of hereditary abelian categories, ibid, 4 (1967), 243-255.
- [12] H. Kanbara: Note on Krull-Remak-Schmidt-Azumaya's theorem, Osaka J. Math. 9 (1972), 409–413.
- [13] B.E. Mares: Semi-perfect modules, Math Z. 83 (1963), 347-360.
- [14] B. Mitchell: Theorey of Categories, Academic Press, New York and London, 1965.
- [15] C. Nastasesuc et N. Popescu: Anneaux semi-artiniens, Bull. Soc. Math. France 96 (1968), 357-368.
- [16] R. Ware and J. Zelmanowitz: The radical of the endomorphism ring of projective module, Proc. Amer. Math. Soc. 26 (1970), 15-20.
- [17] M. Weidenfeld and G. Weidenfeld: Idéaux d'une catégories préadditive, application aux catégories semi-parfects, C.R. Acad. Sci. Paris, 270 (1970), Série A, 1569– 1571.