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学 位 申 請 者      佐 藤  雅 之     

 
外部刺激に対する細胞の応答には、集団平均では見えてこない個々の細胞ごとのばらつきが存在す

る。これは細胞の応答が単に外部刺激の影響を受けるだけでなく、細胞内情報伝達ネットワークの状

態に依存しているためであると考えられる。そこで、このような細胞内情報処理過程を研究するため

には、細胞内情報伝達ネットワークの状態をモニターしながら、高精度に制御された入力刺激に対す

る細胞の応答を一細胞ごとに定量的に計測することが必要となる。入力の精度が高ければ高いほど、

細胞内情報処理システムの状態を反映した応答を定量的に計測することができるため、入力刺激の厳

密な制御は細胞内情報伝達の仕組みを調べる上で重要である。こうした高精度の入力刺激の制御が容

易な手法として、電気刺激の利用が考えられる。実際、様々な細胞は電位勾配を認識して方向性のあ

る運動を示す走電性 (electrotaxis, galvanotaxis)と呼ばれる性質を持つ。そこで、制御された入力刺激と

して電場を用い、応答として細胞運動を計測することで、上記要請に適う系を構築可能である。本研

究は高速かつ低ノイズで電位勾配を発生させることができる実験系を開発し、走電性応答における入

出力関係を明らかにした。また、このような入出力関係を実現するメカニズムを明らかにするために、

走電性応答に関与している細胞内情報伝達経路を同定した。 
走化性研究のモデル生物である細胞性粘菌Dictyostelium discoideumは直流電場下で陰極側へ移動運

動する。細胞に与える電位勾配を大きくするにつれて、陰極側へ向かう移動の効率が高くなった。そ

こで電位勾配（入力）と走電性効率（出力）の関係を明らかにするために、細胞の陰極側への移動運

動を陰極方向への平均変位速度（Mean Cathodal Displacement Speed、MCSと呼ぶ）により、定量化し

た。その結果、MCSは電位勾配の大きさE に対してシグモイダルに変化し、その入出力関係は以下の

式で記述できることがわかった。 
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ここで、Vmaxは陰極方向への最大平均変位速度である。KEはMCSが50%となる電位勾配であり、細胞

の電場感受性の指標となる。また、走電性効率は電位勾配の二乗に影響を受けることがわかった。様

々な実験条件下における走電性効率は、この電場感受性KEを用いることで議論できる。一例として、

細胞性粘菌の走化性誘引物質として働くcAMPの効果を調べた。細胞外液にcAMPを加えると走化性経

路の細胞内情報伝達ネットワークが活性化されるが、このとき走電性効率が高くなることが観察され

た。上式から、cAMP存在下では電場感受性KEは約1.3倍高くなり、細胞がより低い電位勾配を認識で

きるようになることを示している。これは走化性経路の活性化が何からの方法で走電性効率の上昇に

寄与していることを示唆している。このように、細胞の走電性応答における入出力関係は上式に従う。 
次に、走電性応答の入出力関係を実現している細胞内情報伝達経路を同定することを試みた。その

結果、阻害剤と変異体株を用いた実験から、走化性経路として知られるグアニル酸シクラーゼとPI3
キナーゼ依存性経路が走電性応答における細胞内情報伝達経路であることを見出した。PI3キナーゼの

活性が抑制されたとき、運動性に大きな変化は見られなかったが、電場方向のセンシング効率が著し

く低下した。次に、グアニル酸シクラーゼ依存性経路の分子群をノックアウトしたところ、同様に走

電性効率が低下した。さらに詳細な解析から、グアニル酸シクラーゼの酵素活性産物であるcGMPが

 



 

走電性応答における運動方向決定に重要であることがわかった。PI3キナーゼとcGMP依存性経路の活

性を同時に抑制したところ、走電性応答の運動方向が陰極から陽極側へと反転した。これらの結果は

PI3キナーゼとcGMP依存性経路が走電性応答の運動方向を決定する因子であることを示している。 
細胞内情報伝達経路の構成要素であるタンパク質分子は熱ゆらぎや発現量の少数性からくる数ゆらぎ

などによってたえずゆらぎに晒されている。しかしながら、細胞は安定にその機能を実現している。

したがって、細胞内情報伝達経路は何らかの仕組みでゆらぎを抑制もしくは利用している可能性があ

る。本研究で得られた結果をもとに、今後は走電性情報伝達分子のダイナミクスをモニターしながら、

外部から積極的に変調した入力を加えることで、細胞内情報処理の仕組みを明らかにしたい。 



 

 

 

 

 

 

 

“Only connect …” 
E. M. Forster 
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1, Introduction 
 

1.1 Preface 

Cells exist in a noisy environment. Since the size of a cell is only 10-100μm, both 

thermal fluctuations and the collision of water molecules can directly alter activity or 

structure of protein, which in turn can affect downstream intracellular signaling 

molecules and cellular function. The number of signaling molecules in a cell is 

estimated to range from a few hundred to a few thousand molecules. Thus, if a cell is 

cubic with a length of 1-10 μm, its volume is 1-1000 μm3, which contains 1010-1013 

water molecules, meaning that a 1nM concentration of intracellular signaling molecules 

potentiates 0.6-600 molecules in the cell. To sustain a steady concentration, the number 

of intracellular signaling molecules must fluctuate with the cell size. Consequently, 

noise affects various cell functions including ion channel gating, neural firing rate, 

cytoskeleton dynamics, bacteria flagella rotation, gene expression and chemotactic 

signaling, all of which are modulated by signaling molecules [1-6]. In particular, since 

intracellular signaling cascades contain many feedback loops, the influence of noise is 

often amplified [7,8]. However, despite this noise amplification, cells function stably 

suggesting mechanisms that suppress and/or utilize noise. To clarify these mechanisms, 

I sought to examine the role of noise in intracellular signaling cascades by quantitatively 

measuring the relationship between the input and output under various conditions 

(Fig.1-1). In a uniform condition or in the absence of an external signal, cells migrate in 

random directions or show slow morphological change. These observations reflect the 

innate internal activity of a signaling cascade (Fig.1-1A). When an external signal is 

presented, cells show some responses such as directional migration, rapid 

morphological change and protein synthesis (Fig. 1-1B). In this case, the output is 

composed of the aforementioned internal activity and additional activity corresponding 

to the response. Specific external signal conditions (e.g. strength, speed, or periodicity) 

may synchronize with the internal time scale of the signaling components, enhancing or 

diminishing the output (Fig.1-1C). Additionally, a signal effect can be manipulated by 

genetic or pharmacological manipulation (Fig.1-1D). This last feature is very useful in 

identifying the roles of specific components in an intracellular signaling cascade. Taking 
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advantage of this, I applied a series of electrical inputs and analyzed the corresponding 

outputs, expressed as cell migration. 
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1.2 Bioelectricity 
Here, I used an electric signal as a precise and stable input stimulation method allowing 

us to manipulate parameters such as strength, speed and waveform. Because a protein is 

a polymer chain with a charge, its structure should respond to an electric signal. Such 

structural changes affect molecule recognition and enzyme activity. In fact, it has been 

reported that particular electric field frequencies increase ion pump activity and promote 

cytoskeleton depolymerization in living cells [9,10]. Also application of electric field to 

the cells induces membrane potential change [11]. The function of the cell membrane 

includes selective permeation or active transport of ions or substrates; sensing, 

amplifying and transmiting an environmental signal; energy conversion; and recognition 

of cell-cell interaction. Therefore, changes in membrane potential potentially have many 

biological implications. 
Long history of bioelectricity has clarified the importance of electric signal on 

many physiological phenomena including embryogenesis, neurogenesis, wound healing 

and regeneration [12-15] (Fig. 1-2). These physiological electric fields are thought to be 

generated in general by a simple mechanism where an asymmetric ion distribution 

through a thin membrane, which generates a large electro-chemical gradient. For 

example, consider a biological cell membrane with 5 nm thickness. Since cells maintain 

a membrane potential around -60mV, the strength of the electric gradient can reach ～

120000 V/cm. Once the membrane permeates ions through a pore, ions flow to achieve 

an equilibrium state leading to an electric field. The most important point here is that 

this is not limited to the case of a single cell. In vivo, a cell itself can behave as a 

boundary. The surface of most organs is covered with a sheet of epithelial cells whose 

thickness is about ～20 μm and are tightly connected to each other by tight junctions 

[13]. This sheet’s impermeability is so strong that even ion or water molecules cannot 

pass freely. Typical epithelial cells constitute a monolayer with Na+ channels localized 

on the apical plasma membrane and K+ channels and Na/K–ATPase pumps localized on 

the basolateral membrane (Fig. 1-3). Consequently, this system sustains an asymmetric 

ion distribution resulting in an electrical gradient. Such an electrical gradient is referred 

to as trans epithelial cells potential (TEP). A vibrating electrode system, which can 

detect small electric fields, has clarified that TEPs exists in various regions in vivo 
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including the prostatic epithelial duct, amphibian neural tube and in wounded skin. 

Furthermore, electric field strengths have been measured as 5 V/cm in the duct, 0.45-16 

V/cm in the tube, and 1.5-2.0 V/cm in a wound [16-18]. Consider the case of wounded 

skin where the ion flow forms an “injury current” that generates an electric field, as first 

described by Emil DuBois-Reymond about one century ago [19]. It has been gradually 

realized that such physiological electric fields affect cellular functions such as the cell 

cycle, cell division and protein synthesis [20-22], all of which are pertinent to wound 

healing. One typical cell response to an electric field is directed cell migration, also 

known as electrotaxis or galvanotaxis, which describes the phenomenon where cells 

sense an electric field and migrate towards the anode or cathode [12-14]. A variety of 

cells can show electrotaxis. The migration direction and threshold of electrotaxis are 

dependent on the cell type as summarized in Table 1. However, the following questions 

remain largely unanswered. What kind of signaling molecules are involved in 

electrotaxis? How do cells sense the electric field direction? And how do they integrate 

this sensing into the motile apparatus for directional cell migration? Answering these 

questions is necessary to utilize electrical signals when investigating intracellular 

signaling pathways quantitatively. 
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Table 1 Property of electrotaxis in various cells 

Cell type Response direction Threshold [V/cm] Reference 

Neural crest cells    

Quail Cathode 0.1 Nuccitelli & Erickson (1983)

Xenopus Cathode 0.1 Stump & Robinson (1983) 

Fibroblasts    
Mouse NIH3T3 and SV101 Cathode ND Brown & Loew (1994) 

Cornea    

Rat epithelial Cathode ND Song et al. (2002) 

Rabbit epithelial Cathode 4 Soong et al. (1990) 

Rabbit endothelial Anode 2 Chang et al. (1996) 

Bovine Cathode 1 Zhao et al. (1996) 

Human Cathode 1 Farboud et al. (2000) 

Lens    

Bovine Cathode/Anode 0.5/1.5-2 Wang et al. (2003) 

Human granulocyte Anode 1 Rapp et al. (1988) 

Human leukocyte Cathode/Anode ND Fukushima et al. (1953)

Human macrophage Anode ND Cho et al. (2002) 
Rat prostate cancer cell line Cathode 0.1 Djamgoz et al. (2001) 

Epidermal cells    

Xenopus embryo Cathode ND Luther et al. (1983) 

Fish scale Cathode 0.5 Cooper & Schliwa (1986)

Human skin Cathode 0.1 Nishimura et al. (1996)

Neurons    

Xenopus Cathode >2.5 Patel & Poo (1982) 

Mouse No 0.5 De Boni & Anderchek (1986)

Zebrafish No 1 Cormie & robinson (2007)

Melanocyte No 1 Grahn et al. (2003) 

Amoebae    

Amoebae proteus 
Dictyostelium discoideum 

Cathode 

Cathode 

<3 
1-2 

Korohoda et al. (2000)
Sato et al. (2007) 

ND: Not determined. This table is based on reference 13. 

In the section of response direction, “No” means random cell migration. 
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1.3 Dictyostelium discoideum  

Model organism 
Dictyostelium discoideum have been used to investigate various cell biology systems 

including cell movement, cell division, differentiation and chemotaxis [23-27]. Because 

Dictyostelium cells also exhibit strong electrotactic movement towards the cathode in a 

direct current electric field (dcEF), here I used Dictyostelium cells as a model organism 

for investigating the mechanism behind the interaction between an electric signal and 

living cells [28,29]. Compared to mammalian cells, Dictyostelium cells have many 

experimental advantages. For example, there is a wealth of knowledge regarding the 

chemotactic signaling pathway of Dictyostelium cells. Because both chemotaxis and 

electrotaxis exhibit directed cell migration, there is a possibility that the signaling 

pathways are shared to some extent. Several chemotactic signaling components like G 

protein coupled receptor, hetero trimeric G proteins, the Ras family, PI3-kinase and 

PTEN have been identified while actin, myosinⅡ and many related proteins have been 

identified as components of the motile apparatus [23-27]. Also, established genetic 

techniques make this organism more attractive. Dictyostelium cells are haploid creatures 

meaning homologous recombination occurs frequently such that mutant or knockout 

cells are easier to produce than in mammalian cells. Unlike mammalian cells, 

Dictyostelium cells show highly motile activity meaning exposure time to the electric 

field can be minimized (Mammalian cells; 1-5 μm/hours, Dictyostelium cells; 

600-900 μm/hours). This allows us to minimize heating and exposure to toxic 

byproducts from the electrode. Finally, we can obtain a cell population whose response 

to the environment and motility is synchronized. This is important when measuring the 

input-output relationship of a cellular system quantitatively. Thus, Dictyostelium cells 

are an attractive organism for investigating the mechanism of electrotaxis as well as 

chemotaxis. 

 

Life cycle 

Here, we briefly introduce the lifecycle of Dictyostelium discoideum (Fig. 1-3). In a 

nutrient rich condition, Dictyostelium cells posses a round shape and proliferate, but 

with low motile activity (vegetative stage). When the nutrient is removed, they enter the 
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developmental stage leading to offspring (developmental stage). As development 

progresses (typically about 4 hours later), the cells become chemotactic competent cells, 

taking a polarized polarization shape and showing increased motile activity. They can 

sense extracellular cAMP emitted by other neighboring cells and move towards a higher 

concentration area causing aggregation. Afterwards, about 105 cells form a 

multi-cellular organism, called a slug and move to a more habitable area determined by 

temperature and humidity. Finally, the slug morphs into a fruiting body. The fruiting 

body consists of mainly two parts, a stalk and a spore [24,27]. When environmental 

conditions are adequate, cells spread from the spore and start to proliferate again. In all 

experiments in this study, only starved cells were used. 
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Possible meaning of electrotaxis in Dictyostelium cells 
Electric potentials have been found on the surface of multicellular system such as skin, 

embryos and neural tubes. Therefore, the effects of electric signal in Dictyostelium cells 

may be applied to these multicellular systems. It has been already demonstrated that 

ions flow during the multicellular stage of Dictyostelium cells as Jaffe et al. 

demonstrated Ca2+ efflux at the center of a slug and influx at the tail and head regions by 

using a vibrating electrode system [30]. Recently, along with confirming these results, 

Reid et al. also detected ion flux at the mound stage as shown in Fig. 1-3 [31]. One 

characteristic of multicellular stages is the appearance of differentiated cells. In 

Dictyostelium cells, differentiation at the multicellular stage determines the position of 

the cell within a slug or mound. For example, the tip of a cell within a slug becomes the 

spore while the remainder becomes the stalk. Additionally, some researchers have 

pointed out the relationship between cell differentiation and its electrical property [32]. 

Yabuno reported that the electrical property of membrane of differentiated cells was 

different from undifferentiated one [33,34]. Since it has been suggested that electrical 

property of cells affects the electrotactic response, there is a strong possibility that the 

electric signal may sort cells by manipulating the electrotactic movement efficiency 

among differentiated cells within the slug or mound stage. 
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Fig.1-1 Investigation of logic of intracellular signaling from input-output relationship.
Cells migrate in random direction even when an external signal is absent (A). When stable input is applied, 
cells show a coordinated output which contains the rich information about intracellular signaling cascade (B). 
(C) Modulated inputs can change the property of intracellular signalig cascades positively or negatively.
This can be controlled by using genetic manipulation technique or pharmacological treatment (D).  
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Fig.1-3 Biological battery. Schematic representation of the skin epitheria of a frog. 
Note that in the case of humans, a wound is exposed to air instead of the pond water. 
RA and RB are resistances of apical and basolateral area, respectively. (Upper) The combined 
activities of Na+ channels and Na+/K+ pumps create  a charge differential resulting in the inside 
of the skin having a high electric potential (red region) with respect to the outside (Blue region). 
This charge difference is known as a trans-epitheial potential (TEP). The whole system behaves 
as a biological battery. The unidirectional transport of Na+ across epitherial sheet precludes the 
completion of the circuit. (Lower)  Generation of an electric field by a wound. When epitherial 
sheet is broken, ion leakage causes in an outward-directed current and creates an electric field. 
Since positive charge (Na+) flows towards the site of the wounded area, the wounded area is 
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2, Methods & Materials 

 
2.1 Cell preparation 
For electrotactic assays, Ax2 cell line was used as the wild type. Ax2 cells were grown 

on a culture dish (Petridish, φ=90 mm, height=20 mm, INA-OPTIKA) filled with 10 

ml HL5 medium (30.8 g glucose, 14.3 g yeast extract, 28.6 g proteose peptone, 0.485 

g/l KH2PO4, 1.28 g/l Na2HPO4·12H2O, 0.2 μg/ml folic acid, 0.06 μg/ml Vitamin B12 in 

total 2 liter) with 10 μg/ml streptomycin [1]. Cells were grown in a static culture 

condition at 21 oC. Particular attention was given to avoid a confluent culture condition 

since a high cell density risks generating a heterogeneous population. In addition to the 

wild type, the following 7 knockout cell lines were used including guanylyl cyclase 

double knockout cells (gca-/sgc-), soluble guanylyl cyclase deletion catalytic domain in 

gca-/sgc- cells (sgcΔcat in gca-/sgc-), guanylyl cyclase deletion N-terminus domain in 

gca-/sgc- cells (sgcΔN in gca-/sgc-), cyclic GMP binding protein A and B null cells 

(gbpA-/gbpB-), cyclic GMP binding protein C and D null cells (gbpC-/gbpD-), cyclic 

GMP binding protein C null cells (gbpC-) and a series of KI mutant cells (KI-5, KI-8, 

KI-10). Except for the KI mutants, knockout cell lines were grown in HL5 culture 

medium supplemented with 10 μg/ml streptomycin lines. Selection markers for each 

cell are summarized in Table 2. KI mutant cells could not grow in HL5 culture medium. 

Therefore, these cells were grown on a 5LP plate (0.5% lactose, 0.5% proteose peptone, 

1.5% agar) with Escherichia coli B/r at 21 oC [2]. 

To examine the behavior of molecules involved in the electrotactic signaling 

pathway, guanylyl cyclase (GC) and phosphatidylinositol-3-OH kinase (PI3K) 

dependent signaling molecules fused to green fluorescent protein (GEP) were observed 

by fluorescence imaging. sGC-GFP in GC-double null cells and GbpC-GFP in GbpC 

null cells were gifts from Dr. Peter Van Haastert. The GFP fused PHAkt/PKB-domain 

plasmid was a gift from Dr. Taro Q. P. Uyeda. The PI3K2-GFP plasmids were 

constructed in our laboratory. These plasmids were introduced into the cells by 

electroporation (Electro Square Porator, ECM830, BTX) at a rate of one pulse per 

 12 



second (voltage 500 V, 15 pulses, 100 μs pulses). Again, selection markers for each cell 

line are summarized in Table 2. 

 

Table 2 Cell lines for electrotactic assay 

Cell type 
Selection marker 

(concentration) 

cAMP pulse 

stimulation time [hr]
Resource 

gca-/sgc- Blasticidin S (10 μg/ml) 3 Dicty Stock Center1)

sgcΔcat in gca-/sgc- G418 (10 μg/ml) 3 Van Haastert Lab.2) 

sgcΔN in gca-/sgc- G418 (10 μg/ml) 3 Van Haastert Lab.2) 

gbpA-/gbpB- Blasticidin S (10 μg/ml) 6 Dicty Stock Center1)

gbpC-/gbpD- Blasticidin S (10 μg/ml) 6 Dicty Stock Center1)

gbpC- Blasticidin S (10 μg/ml) 3 Van Haastert Lab.2) 

sGC-GFP in gca-/sgc- G418 (10 μg/ml) 5 Van Haastert Lab.2) 

GbpC-GFP in gbpC- G418 (10 μg/ml) 4 Van Haastert Lab.2) 

PI3K2-GFP / 

PTEN-Halo in Ax2 
G418 (10 μg/ml) 

Blasticidin S (10 μg/ml) 
3 - 

PHAkt/PKB-GFP in Ax2 G418 (10 μg/ml) 3 - 

1) Dicty Stock Center; http://dictybase.org/StockCenter/StockCenter.html 

2) Van Haastert Laboratory; http://www.rug.nl/gbb/research/researchgroups/cellBiochemistry/index 

 
To shift from the vegetative to starvation stage, all cell lines were treated as follows: 

1) HL5 was removed by aspiration. 10 ml developmental buffer （DB, 10 mM Na/K 

PO4, 2 mM MgSO4, 0.2 mM CaCl2）was added. 

2) 1 min after, DB was removed and 3 ml DB was added. 

3) Cells were peeled away from the dish by pipette and placed in a centrifuge tube (15 

ml, centrifuge tube, IWAKI). 

4) Additional 2 ml DB was added into the dish to extract residual by the same 

procedure in 3. (Total 5 ml cell suspension) 

5) Centrifugation (2-3 min, 4 oC, 1500 rpm). 

6) After removing the supernatant by aspiration, 5 ml DB was added and gently mixed 

the cell pellet by using a pipette. 
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7) Centrifugation (2-3 min, 4 oC, 1500 rpm). 

8) Operation 6 and 7 were repeated twice. 

9) Cell density was adjusted to 5x106 cells/ml by adding DB. 

10) 1 ml cell suspension was injected into the plastic culture dish (35 mm, Iwaki) and 

placed on an incubator at 21 oC for 1 hour. 

11) After 1 hour, cells were pulse stimulated with 100 nM cAMP at 6 min intervals for 

3-5 hours on a rotating shaker (SL3D, SeouLin Bioscience). This pulse stimulation 

system was constructed with a timer and liquid flow pump (SJ-1211, ATTO). The 

pulse stimulation accelerated cell synchronization. As a result, the cell population 

shifted to the developmental stage faster (about 3 hours) than that of untreated cells 

(normally 5 hours-). 

12) After 3-5 hours, cells were removed from the dish by using a pipette and correct in a 

centrifuge tube. 

13) Centrifugation (2-3 min, 4 oC, 1500 rpm). 

14) After removing the supernatant by aspiration, 5 ml DB was added and mixed gently 

with the cell pellet by using a pipette. 

15) Operation 13 and14 were repeated twice. 

16) 6 ml DB was added to the cell pellet and gently mixed. This dilution made the cell 

density appropriate for observing single cell migration in an electrotactic chamber. 

17) After mixing the cell suspension with ligands such as cAMP or inhibitors, 75 μl of 

the cell suspension was injected into an electrotactic chamber from one well (Fig. 

2-1A). Caffeine was added to reduce cell-cell interactions by inhibiting adenylyl 

cyclase activity, except in KI mutant cell lines [3]. 

18) After 10 min, the inside of the chamber was washed with DB containing the same 

composition from operation 17 three times to remove the non-adhered cells. 

19) A salt bridge was set into the chamber well. After adding 40 μl DB into the other 

well, a salt bridge was placed there as well. 

20) After 20 min, the attachment and motile activity of the cells were observed. The 

electric field was then applied. 

 

After cAMP pulse stimulation, the cells became chemotactic competent cells and often 
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started to aggregate. Once cells form a multicellular organism, they cannot be used for 

electrotactic assays. So, we delayed development by keeping cells at a low temperature 

(4 oC). This treatment kept the cells in an ideal condition for electrotactic experiments 

for 3-4 hours. 

1) After cAMP pulse stimulation, the cell density was adjust to 5x106 cells/ml.  

2) The cell suspension (650 μl) was placed into the culture plate (24 well plate, 

Nunclon™Δ surface) at 4 oC. 

3) Before use, cells were removed from the plate by using a pipette. 

4) Temperature was raised to 21 oC for 20-30 min resulting in active cell motility. 

 

2.2 Equipment for electrotactic assay 
The electrotactic assay system is shown in Fig. 2-1. 

(1) Microscope and image capturing 

Cells in the chamber were observed with an inverted microscope, Olympus IX-71, 

equipped with differential interference contrast (DIC) optics or phase contrast (PH) 

optics. The objective lens depended on the optics (UPIanApo, 20x/0.8, oil, 

LVCPIanFLN; 20x/0.45 Ph1, Olympus for DIC and LUCPIanFLN; 20x/0.45 Ph1, 

Olympus for PH). Images were captured with a cooled CCD camera (Micro Max, 

Princeton Instruments.inc) through the relay lens (x2.5). MetaMorph (Molecular 

Devices) was used to control the CCD camera. Data acquisition started 5 min after 

applying electric field to the cells. Images were acquired at 5 sec intervals for 20-30 min. 

To visualize GFP fused proteins, cells were examined through an inverted microscope 

(TE2000-PFS, Nikon) with an Apo TIRF 60×/1.49 oil immersion lens. Confocal 

images were obtained using a CSU10 scanner unit (Yokogawa) at an excitation 

wavelength of 488nm from a DPSS laser (Sapphire 488-200 CDRH, COHERENT) with 

an EM-CCD camera (Andor technology ixon+ DU-897). A barrier filter was used to 

detect emissions greater than 522 nm. The image was captured with Andor IQ software. 
 

(2) Electrotactic assay chamber 

Figure 2-1A illustrates the configuration of the electrotactic assay chamber. The 

chamber requires certain properties. 1) The substrate of the chamber does not harm the 
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cells; 2) The dimension of chamber is constructed in a highly reproducible manner; and 

3) Unavoidable joule heating generated by applying the electric field to the insulator is 

minimized. To satisfy these demands, we made an silicon chamber 

(CX-32-2297-No1,No2, Shin-Etsu Silicones or SYLGARD 184 Silicone Elastomer kit, 

Dow Corning). No.1 and No.2 liquids were mixed at a weight ratio of 1:10 in a 15 ml 

centrifuge tube. After mixing these thoroughly, they were centrifuged to release trapped 

air from within the mixed gel (20 min, 4 oC, 1500 rpm). The gel was then gently 

introduced into a wax-block mold that was processed by using a milling machine. The 

gel containing mold was placed in an incubator at 37 oC overnight. The next day, the 

mold was heated (60 min, 90 oC) in a drying oven (DO-300A, As ONE). After cooling 

down, the silicone chamber was removed from the mold and preserved in 100% EtOH. 

Before use, the chamber was washed with miliQ. At the bottom of the chamber was a 

40x50 mm coverslip. Above the chamber, a 10x18 mm coverslip was placed (Fig. 2-1A). 

The coverslips were sonicated in 70 % EtOH for 15 min, washed 10 times with miliQ 

and blow dried. In every experiment, a new glass coverslip was used. To attach the 

chamber to the bottom coverslip, vaseline (white, high pure, Wako) was painted on the 

bottom of chamber uniformly. To seal, we gently pressed the chamber from above. Next, 

the upper area of the chamber was also painted with vaseline uniformly. The second 

coverslip was placed on the chamber and this was also pressed gently from above. Final 

volume of the cell attached apace between coverslips was 20x3x0.25 mm3 (length x 

width x height). The completed chamber was placed on the microscope stage via a 

silicon sheet to suppress slipping (Fig. 2-1A). To keep chamber moist, wet papers 

surrounded chamber and whole apparatus was enclosed with modified plastic dish (Fig. 

2-1D). This chamber was not harmful to cells in DB and allowed for long periods of 

observation. Moreover, the chamber was constructed in a highly reproducible manner 

because of the mold. To minimize the joule heating, the volume to surface area ratio in 

the chamber was adjusted carefully to resemble that from other electrotactic 

experimental systems [4]. In addition, since all experiments were done in a 

temperature-controlled room (21 oC), temperature change was minimal (<1 oC) meaning 

little Joule heating in our experimental system was due to rapid heat dissipation from 

the glass surface of the chamber. 
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(3) Salt bridge 

Because several byproducts generated on the electrode surface by applying a voltage are 

toxic to cells, electrodes should be separated from the cell attached area. Therefore, 

electric fields were applied to the cells through the salt bridges. Solution containing 100 

ml DB and 2 g agarose for electrophoresis (Nnacalai tesque) was stirred and warm up 

repeatedly until gel to be invisible. Next, as shown in Fig.2-2, a silicon tube (φ=8 mm) 

was connected to a modified glass tube to remove gel from the beaker (Fig. 2-2). 

Immediately, the glass tube was cooled using a water flow. Too rapid cooling makes an 

opening between the gel and glass tube. Since this should be avoided in order to 

perform a stable electric field application, salt bridges were first sunk in miliQ at room 

temperature and then preserved at 4 oC. Just before using, excess gel was cut and 

removed by a razor. 
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(4) Generation of electric fields 

An electrical field generation system was developed to apply electric field to cells at a 

high speed and with low noise (Fig. 2-1B). A function generator (Type 8025, Tabor 

Electronics) transmitted an optimal electric signal, made by a wave generator 

(ARB-software, Tabor Electronics) through a bipolar voltage amplifier (BOP500M, 

KEPCO or A400, FLC electronics). The electric signal was passed through the Ag/AgCl 

electrodes and salt bridges. The rising time of the voltage generation by the bipolar 

power supply was within 30 μsec while the changing rate of the supplying voltage and 

load were 0.0005 % and 0.0005% at constant voltage, respectively. The ripple and noise 

was less than 10 mV (rms) at 10-100V. These properties insured a fast and highly stable 

electric field. 

 

(5) Manufacture of Ag/AgCl electrode 

Ag/AgCl electrodes are preferred for their stability, easy manufacturing and easy 

handling. For these reasons, Ag/AgCl electrodes have been widely used in 

electro-chemistry and biology. Here, the silver line (circular section; 0.8 mm diameter; 

Nilaco) was used connected to the copper line. The silver line was immersed in sodium 

hypochlorite solution, NaClO (Wako), overnight to coat the AgCl thin layer. Before use, 

Ag/AgCl electrodes were washed with miliQ well. 

 

(6) Electric field strength measurement 

The circuit of the experimental system is drawn in Fig.2-3A. In electrotactic 

experiments, the electric field strength is often calculated by Ohm’s law. However, since 

direct measurement of the electric field strength is more reliable, as described by 

Nuccitteli and Erickson, here the electric field strength was measured directly by a Pt 

electrode connected to a high impedance probe [5]. If the internal resistance of the 

measurement system is not sufficiently large, current flows into it. In such cases, when 

the measurement system is connected to the sample, the combined resistance (Rcmp), 

which consists of the measurement system resistance (Rm) and the chamber resistance 

(Rs), is lower than the actual value meaning that the electric field is not accurately 

measured. Thus, one needs to know the internal resistance of the measurement system 
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in order to accurately measure the field strength. The combined resistance can be 

expressed as 
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Here, Rs and Rm represent the resistance of the chamber and measurement system, 

respectively. The relationship between Rm/Rs and Rcmp / Rs can be expressed by rewriting 

equation (2.1), 
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The plot of this equation is shown in Fig. 2-3B. When Rm/Rs is 100, the measurement 

system has little impact on the field strength. Since the resistance of chamber area was 

measured to be around 200 kΩ, ideal resistance of measurement system is 20ΩM. Here 

digital multimeter (10 MΩ internal resistance, 50 resistance ratio, Type R6341B, 

ADVANTEST) or digital oscilloscope (10 MΩ internal resistance, Type TDS2014, 

Tektronix) was used to measure the electric field strength. When these measuring 

systems were connected to the chamber, it was predicted that the voltage decreased by 

about 2% voltage. However, such tiny changes can be ignored. The current meter 

(digital multi meter, SC-7401 IWATSU) was placed in series to monitor the stability of 

the applied electric field during the experiments. Thus, although such a high resistance 

system that includes the solution makes precise measurements difficult in general, I 

could measure the electric field strength in my system within 2% accuracy. 

 

 

 

 

 19 



2.3 Analysis of cell migration 
(1) Analysis 

Data acquisition began 5 min after applying the electric field. Cell images were acquired 

at 5 sec intervals for 20-30 min. To analyze the motile activities of the cells under 

electric fields, cell images were processed automatically by using lab-developed 

software called “Tsuiseki-kun” developed by Dr. T. Watanabe in which images are 

converted into binary images by setting an optimal threshold value for brightness. The 

center position of the brightness of the cells was determined in X,Y-coordinates. Not all 

cells in the view were analyze for the whole observation time. Cells which were 

observed for a short time (less than half the observation time) and interacted with other 

cells were removed from the analysis. Next, the two dimension coordinate data was 

processed using a Perl-language program to evaluate cell migration. This was done by 

calculating positional change, which include motile properties such as migration 

velocity, cell motility efficiency, directedness and asymmetric index (Fig. 2.4A). 

Migration velocity was calculated by dividing the total path length of cell migration 

(trajectory) by the observed time. Cell motility efficiency was defined as the ratio of the 

net displacement to the total path length, so that the efficiency becomes unity when a 

cell moves along a straight line in one direction. Directedness of a cell with respect to 

the electric field was defined as cosθ, where θ is the angle between the direction of 

the cell’s net displacement and the direction of the electric field. Average directedness 

for the cell population was obtained by calculating i
n

n

i
∑
=1

)(cos1 θ , where n is the total 

number of cells analyzed. Thus, a randomly moving population of cells will have an 

average directionality of zero. When all the cells migrate toward the cathode, the 

directionality will have unity. The asymmetric index was defined as the ratio of the total 

number of cathode biased cells to the total number of anode biased cells at the end of 

electric field application. 

 

(2) Mean displacement analysis 

Mean displacement analysis was introduced to quantify the bias degree of directed cell 

migration. Here, each cells are considered as a single particle that moves randomly in 

 20 



two dimensions. 

 

Definitions 

N - total steps 

τ- time for one step 

l - distance of one step 

T - observation time  

kx - number of steps towards the positive X-axis (see Fig. 2-4B) 

px- probability of migration towards plus direction in X-axis 

qx - probability of migration towards minus direction in X-axis (px+qx=1) 

 

Assume a particle is positioned at the origin. Here, only steps towards the X-direction 

are considered. After N steps, the position of the particle along the X-axis can be 

expressed as ( )( ) lkNkX xx ⋅−−= . Therefore,  

lNkX x ⋅−= )2(                        (2.3) 

Because N and l are constant, mean displacement, X  can be expressed as 

( ) lNkX x ⋅−= 2                       (2.4) 

Here, the degree of bias degree, b, is introduced as follow, 

bqp xx =−                            (2.5) 

Therefore, we obtain, 

2
1+

=
bpx                              (2.6) 

Also, by definition, 

τ⋅= NT                               (2.7) 

xx pNk ⋅=                              (2.8) 

Using (2-6), (2-7) and (2-8), (2-4) can be rewritten as TlbX ⋅⋅=
τ

, where 
τ
l

 represents the 

migration velocity of one step, which I call  such that v
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TvbX ⋅⋅=                             (2.9) 

 

Equation (2.9) tells us that the mean displacement X  linearly depends on time when 

the extent of bias on cell migration is constant with time. The mean displacement X  

can be obtained experimentally by measuring the positional changes of cells under an 

electric field. When X  is plotted as a function of time, the slope  reflects the 

extent of the bias. Because the velocity of cell migration was almost constant in the 

presence of an electric field (See chapter 3.1), the migration velocity, , can be 

assumed to be constant. The same analysis can be applied to the cell’s migration along 

the y-axis. Therefore, by analyzing the dependency of the slope  on electric field 

strength, the extent of the bias on the directional migration induced by an electric field 

can be obtained. This analysis provides the input-output relationship to electrotactic 

response. Here I refer to the slope  as mean cathodal displacement speed (MCS). 
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Fig.2-1 Experimental setup for electrotactic assay 
(A) Configuration of electrotaxtic assay chamber. Electric fields were generated between salt bridges. 
Cell behaviors were observed by an inverted microscope and recorded by a CCD camera connected to a 
personal computer. (B) Apparatus for electric field application. "A" denotes digital multimeter (ampere mode).
Pictures represent cross-current flow chamber (C) and normal experimental setup for electrotactic assay (D).
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Fig.2-2 Construction of salt bridge
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Fig.2-3 Experimental setup of the electrotactic assay 
(A) Circuit of the experimental system for electrotactic assays. Vs and Vapp represent applied voltage for 
the sample and whole system, respectively. RB and Rs indicate the resistance of the salt bridge and the 
chamber, respectively. Rm is the internal resistance of the measurement system. Combined resistance, 
Rcmp, is a sum of Rs and Rm. Current of this system can be expressed by Vapp=I・(2RB+Rcmp).
(B) When the ratio of resistance of the measurement system and the chamber (Rm/Rs) is 100, connection 
of the measurement system does not cause voltage decline. Actual resistance of chamber was almost 
200 kΩ.Therfore, the measurement system with 20 MΩ internal resistance is ideal. Red arrow indicates 
the value of Rm/Rs in this system.
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Fig.2-4 Cell migration analysis
(A) The geometric center of the cell is represented in X,Y-coordinates by red circles. The X axis 
denotes the direction of the electric field. Net displacement and total path length of the cell are 
expressed by an arrow and dashed line, respectively. (B) Particles undergoing one-dimentional 
random movement with a bias. The X axis denotes the direction of the electric field. Step size is 
l with a constant time interval t. Probabilities towards X and the opposite direction are px and qx 
for each step, respectively. The bias can be expressed by the difference between px and qx. 
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3, Results 

 
3.1 Input-output relationship in the electrotactic response of 

Dictyostelium cells  
 

Abstract 
Under a direct current electric field, Dictyostelium cells exhibit migration towards the 

cathode. To determine the input-output relationship of the cell’s electrotactic response, I 

developed an experimental instrument in which electric signals applied to the cells are 

highly reproducible and the motile response are analyzed quantitatively. With no 

electric field, the cells moved randomly in all directions. Upon applying an electric field, 

cell migration velocity became about 1.3 times faster than those in the absence of an 

electric field. Such kinetic effects of electric fields on the migration were observed for 

cells stimulated between 0.25 to 10 V/cm of the field strength. The directions of cell 

migrations were biased toward the cathode in a positive manner with field strength, 

showing electrotactic response in a dose-dependent manner. Quantitative analysis of the 

relationship between field strengths and directional movements revealed that the biased 

movements of the cells depend on the square of electric field strength, which can be 

described by one simple phenomenological equation. The threshold strength for the 

electrotaxis was between 0.25 and 1 V/cm. Electrotactic efficiency reached to 

half-maximum at 2.6 V/cm, which corresponds to an approximately 8 mV voltage 

difference between the cathode and anode direction of 10-μm wide, round cells. Based 

on these results, possible mechanisms of electrotaxis in Dictyostelium cells were 

discussed. This development of experimental system, together with its good 

microscopic accessibility for intracellular signaling molecules, makes Dictyostelium 

cells attractive as a model organism for elucidating stochastic processes in the signaling 

systems responsible for cell motility and its regulations. 
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3.1.1 Introduction 
Living cells can sense and respond to environmental signals flexibly and adaptively 

through dynamic processes in intracellular signaling networks. Recently, studies 

examining stochastic processes in living cells in various biological signaling systems 

including transcriptional regulatory networks and chemotactic signaling networks [1-11] 

have found that intracellular molecular processes are noisy. Hence, a fundamental 

question regarding the intracellular signal transduction is, “How do 

stochastically-operating biomolecular networks work reliably to process environmental 

signals under stochastic and thermal noise”? To gain insights into the signaling 

mechanisms, it is important to reveal a quantitative relationship between signal inputs 

and the corresponding output in living cells. For this purpose, signal inputs should be 

applied to cells in a highly reliable and reproducible manner and the output response of 

the cells should be measured and analyzed quantitatively. One of the best experimental 

systems for elucidating the quantitative relationship between signal inputs and outputs 

is to measure the cell directional motile response to a given electric signal. This 

phenomenon is known as electrotaxis or galvanotaxis [12, 13].  

 Since electrotaxis in living cells was first described over a century ago [14, 

15], this fascinating response has been found in various cell types including neurons, 

fibroblasts, leukocytes, macrophages, neural crest cells, cancer cells and slime molds 

[16-19]. The social amoeba Dictyostelium discoideum, a well known chemotactic model 

organism, also exhibits strong electrotaxis [20,21]. Cells can move preferentially toward 

the cathode or anode under direct current electric fields. In developing and regenerating 

animals, the importance of electric signals on tissue generation and maintenance has 

been gradually realized. In fact, electrotaxis is thought to have important roles in 

various physiological processes such as embryogenesis, neurogenesis, regeneration, 

wound healing and metastasis (18,22-26). This response includes intracellular signaling 

processes by which cell migration is somehow biased directionally in response to the 

electric field. Because cell migration depends on the actin cytoskeleton and its 

regulatory proteins, electric signals ultimately give rise to various intracellular signals 

that stimulate actin polymerization at the leading edge of the cells for pseudopod 
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formation and myosin II assembly at the rear for tail retraction. Still, the underlying 

molecular mechanisms of electrotaxis remain largely unknown.  

 Dictyostelium discoideum is a well-established model organism for 

elucidating the molecular mechanisms and regulation of amoeboid movements [27-32]. 

Besides the general advantages of this organism in molecular and cellular biology, 

which include well-established genetic engineering techniques, advanced microscopic 

techniques and complete sequences of the genome, there are several specific reasons to 

use this model for cellular motility research. For example, Dictyostelium cells exhibit 

fast amoeboid movements with a velocity of 10~20 μm/min on glass substrates; their 

motile behaviors have been well documented by microscopic observations [33-35]; and 

they exhibit remarkable chemotaxis at the aggregation stage during their life cycle. 

Upon starvation, Dictyostelium cells start to undergo their developmental program and 

then become chemotactic-competent at the aggregation stage. About one hundred 

thousand of the competent cells moves directionally toward the aggregation center by 

chemotactic migration and then form one aggregate, which is an essential process for 

the generation of spores (See Fig. 1-3). Because Dictyostelium cells are highly 

synchronized during the developmental progress, more than 99% of these cells can 

exhibit chemotaxis at the aggregation stage, making it possible to prepare highly 

homogeneous cell populations. These advantages make Dictyostelium cells attractive as 

a model system for cellular motility as they have already offered tremendous insight in 

the roles of actin cytoskeleton and microtubule systems on cellular motility [27,36-40]. 

Multiple molecular components required for chemotactic response in Dictyostelium 

cells have been identified including G protein-coupled receptors, hetero trimeric G 

proteins, Ras proteins, phospholipase A2 (PLA2), phophatidylinsitol-3-OH kinases 

(PI3K), tumor suppressor phosphatase and tensin homolog (PTEN) and guanylyl 

cyclases [31,41-44]. Furthermore, imaging analysis of cytoskeletal proteins and their 

regulatory molecules by fluorescence microscopy has revealed the dynamic behaviors 

of these molecules in response to chemotactic stimulation. In one particular case, the 

signaling molecules have been observed at the single molecule level in living cells, 

demonstrating the stochastic nature of molecules in intracellular signaling processes 

[3,11]. Thus, Dictyostelium is a preferred model organism for elucidating the molecular 

mechanisms of electrotaxis. 
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Here I report the input-output relationship quantitatively in the electrotactic 

response of Dictyostelium cells. Results revealed that the relationship can be described 

by one simple phenomenological equation and that the electrotactic efficiency of the 

cells depends on the square of the electric field strength. 
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3.1.2 Electrotaxis of Dictyostelium cells  
Cells were prepared from a population adopting the aggregation stage of the 

Dictyostelium lifecycle. The cells had an obvious morphological polarity with one 

pseudopod at the leading edge and one tapered tail at the rear end, which is typical of 

chemotactic competent cells (Fig. 3-1A). The cell size was about 20 μm long and 7 μm 

wide. Trajectories of cell migration were tracked in the absence or presence of dcEFs 

semi-automatically and analyzed (Fig.3-1B). With no electric field, cells moved 

randomly in all directions with a migration velocity of 11.6+ 0.8 μm/min (n=36) (Fig. 

3-1C and 3-4A). We first studied the effects of relatively larger field strength on the 

cell’s behaviors because the response was easier to detect.  

Upon application of a 10 V/cm dcEF, cells exhibited cathodal migration, like 

that reported by Zhao et al. (2002) (Fig. 3-1D). The cells adhered on the substrate and 

moved with a migration velocity of 16.4 + 0.7 μm/min (n=58). The cell shapes were 

indistinguishable from those in no electric field. Cells sometimes moved perpendicular 

to the electric fields or in the anodal direction, but such cells would eventually reorient 

themselves by extending a pseudopod toward the cathode. When the electric field was 

reversed, the cells transiently ceased their movements and within a minute reoriented 

themselves toward the new cathode. In polarized cells with one pseuodpod and one tail 

at their opposite sides, the reorientation was achieved by U-turn with maintaining their 

morphological polarity in most case (Fig. 3-2A). Cells with multiple pseudopods 

reoriented by adjusting the pseudopod extensions to the direction of the new cathode 

(Fig. 3-2A, See No3 and No5). Such reorientation was achieved within minutes of 

reversing the electric field (Fig. 3-2B). Thus, Dictyostelium cells follow the directional 

changes of the electric fields. 
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3.1.3 Effects of electro-osmotic flow on electrotaxis 

To establish whether the directional migration of cells were caused by electric fields and 

not by artifacts such as a chemical gradient in the medium, fluid flow, or temperature 

changes, cross-current fluid flow experiments were done in which the medium was 

flowed across the chamber in the direction perpendicular to the electric field (Fig. 2-1D). 

In the absence of cross-current fluid flow, electric osmotic flows (EOF) were clearly 

observed when microsphere beads were included in the chamber (0.9 μm diameter; 

polyacrolein microspheres, Poly science. Inc.)(Fig. 3-3A and B). The movements of the 

beads reflect the fluid flow because the effects of the electric osmotic flow are much 

stronger than that of electrophoresis. Thus, from these results, the charge of the beads 

can be ignored. The water layer just above the surface of the coverslip where cells were 

placed flowed toward the cathode, while the upper water layer flowed toward the anode. 

The flow rates of the surface layer and upper layer at 10 V/cm were 5.5 + 0.5 μm/sec 

(n=22) and 8.2 + 0.9 μm/sec (n=22), respectively (Fig.3-3C). A 60 μm/sec cross-current 

fluid flow was applied to the cells in the chamber, which is a rate much larger than that 

of the EOF. In this situation, cells still moved towards the cathode, parallel to the 

electric field. Cell migration analysis revealed that the motile properties such as 

migration velocity, cell motility efficiency, directedness and asymmetric index were not 

affected by the cross-current fluid flow, indicating that cells have no sensitivity to fluid 

flow. Furthermore, since the medium was continuously exchanged by the application of 

cross-current fluid flow, this experiment also demonstrates that any field-induced 

changes in the medium such as chemical gradients and temperature changes have no 

significant effects on the directional movements of cells under an electric field. Under 

an electric field, cells sometimes aggregated with each other because of chemotaxis. 

Thus, cells were treated with 4mM caffeine, which inhibits adenylate cyclase activation 

and thereby excludes chemotaxis towards cAMP gradients but also has no effect on 

cathodal migration (See ref.[3] in chapter2).  

Because Dictyostelium cells have been known to exhibit shear flow-induced 

directional motility [45], we further examined the effects of electric osmotic flow on 

cell motility by estimating the strength of shear stress applied to the cells. By observing 

beads in the flow induced by electric osmosis, the height and the velocity of the flowed 
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layer at the glass surface was estimated to be about 50 μm and 5.5 μm/sec at an electric 

field of 10 V/cm. Because the width of the chamber was 3 mm, the flow rates of the 

medium around the cells were calculated to be about 8.3 x 10-7 ml/sec (50 μm x 3 mm x 

5.5 μm/sec). Shear stress, σ  [Pa], is given by the following equation [46,47], 

 

2
6
bh

Qμσ =                            (3.1) 

, where μ is fluid viscosity [Pa·sec], Q is flow rate [ml/sec], b is chamber width [cm], 

and h is the height of the fluid layer [cm]. The sheer stress was calculated to be 0.66 

mPa assuming the viscosity of water was 1.002 mPa·sec at 20 oC and a field-induced 

flow of 8.3 x 10-7 ml/sec. This value is three magnitudes lower than the reported 

Dictyostelium cell threshold for shear stress (0.8 Pa) [45], indicating that shear stress 

has virtually no effect on cell motility in these electric field experiments. Thus, it is 

unlikely that the directional migration of the Dictyostelium cells was mediated by 

field-induced changes in the medium. 
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The electrotactic response of Dictyostelium cells was dose-dependent for 

electric field strength. With increasing electric field strength, the migration of the cells 

towards the cathode became more obvious. I analyzed migration velocity, cell motility 

efficiency, directedness and asymmetric index to examine the effects of electric fields 

on cell motility. Directedness increased with increasing field strength (Fig. 3-4C). The 

threshold stimulation to induce biased movement was between 0.25 and 1 V/cm. 

Asymmetric index also showed that cells were biased from 0.5 V/cm (Fig. 3-4D). Both 

directedness and asymmetric index reached maximum at 7 V/cm and became constant 

for further increases in field strength up to 20 V/cm (data not shown). Cell motility 

efficiency also exhibited similar dose-dependency, indicating the efficiency or 

persistency of cell movements became higher with increasing electric field strength (Fig. 

3-4B). On the other hand, migration velocities were independent of electric field 

strength and had a range of about 13 ~ 16 μm/min (Fig. 3-4A). It should be noted that 

the migration velocity of the cells exposed to electric fields as low as 0.25 V/cm was ~ 

1.3 times faster than those without electric field, which represents the kinetic effects of 

the electric fields. Such effect has been reported in other cell types [48, 49], although 

the underlying mechanisms remain unknown. Thus, applying electric fields to cells 

causes migration velocity to accelerate, but not in a dose-dependent manner. Thus, 

electric fields affect the directionality but not the motility in a dose dependent manner. 
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3.1.4 Description of electrotactic movement by a phenomenological 

equation 
In general, motile cells move spontaneously in random directions even when 

extracellular directional cues are absent. The tactic response of cells is a process by 

which the random movement of cells is somehow biased along with extracellular 

directional cues, as shown in Dictyostelium cells (Fig. 3-1C). In the presence of an 

electric field, the movement is biased. To determine the relationship between electric 

field strength and electrotactic efficiency, the extent of the bias on cell movements 

induced by an electric field were quantified. Here we used mean displacement analysis 

(See “cell migration analysis” in chapter2). 

 

( ) bvttlbtX ==
τ                     (2.9) 

 

Equation (2.9) tells us that the mean displacement, X t( ) , linearly depends on 

time when the extent of the bias on cell migration is constant with time. X t( )  can be 

obtained experimentally by measuring the positional changes of the cells under an 

electric field. When X t( )  is plotted as a function of time, the slope, , reflects the 

extent of the bias. Because the velocity of cell migration was almost constant in the 

presence of an electric field (Fig. 3-4A), the migration velocity, , can be assumed to 

be constant. The same analysis can be applied to the cell’s migration along the y axis. 

Therefore, by analyzing the dependency of  on electric field strength, the extent of 

the bias on the directional migration induced by an electric field can be obtained. This 

analysis provides the input-output relationship to an electrotactic response. Here we 

refer to the slope  as mean cathodal displacement speed (MCS).  

bv

v

bv

bv

 Fig. 3-5A and B show the mean displacements of the cells along the x axis 

X t( )  and y axis Y t( ) , parallel and perpendicular to the electric fields, respectively. 

X t( )  increased almost linearly with time, indicating that the MCS is constant at a 

given electric field strength during the observation time. In other words, the cell 

movements were biased constantly towards the cathode. The MCS became larger with 
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increasing electric field strength, indicating the electrotactic migrations of Dictyostelium 

cells are biased in a dose-dependent manner. On the other hand, Y t( )  remained zero 

irrespective of electric field strength, indicating that the cell migrations were not biased 

toward the direction perpendicular to the electric field.  

 Fig. 3-5C shows the dependence of MCS on electric field strength. 

Interestingly, the dependence was not linear to field strength but rather sigmoidal. The 

relationship between field strength and MCS can be fitted to the following Hill like 

equation,  

nn
E

n

EK
EVMCS
+

= max                    (3.2) 

 

, where  is maximum MCS, Vmax E  is electric field strength,  is sigmoid number, 

and 

n

K E is the electric field strength where MCS reaches to half-maximum and hence 

represents the electric field sensitivity of the cells. The experimental data can be fitted 

well to equation (3.2) with , leading to KE = 2.6 V/cm and Vmax = 9.2 μm/min. 

Thus, the electrotaxis of the cells are affected by the square of the electric field strength.  

n = 2
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3.1.5 Effects of cAMP on electrotaxis 
Dictyostelium cells became chemotactic competent cells at the starved stage, where 

cells can sense the chemoattractant, cAMP by the specified receptor cAR1, which then 

activates the chemotactic signaling pathways [41,42]. Upstream components of these 

pathways such as cAR1 and hetero trimeric G proteins are not essential for exhibiting 

electrotaxis [20]. However, since both chemotaxis and electrotaxis induce directed cell 

migration, some synergetic effects of cAMP stimulation on electrotaxis were examined 

by adding 1μM cAMP in the electrotactic assay chamber uniformly. Similar to the no 

cAMP results, cell migration velocities were not dependent on the applied electric field 

strength (Fig.3-6A), while cell motility efficiency, directedness and asymmetric index 

increased with increasing field strength (Fig. 3-6 B-D). From 0.75 V/cm, directedness 

and asymmetric index were higher than that of no cAMP, indicating that cells can sense 

electric field gradients at a lower range (Fig. 3-6C and D). This enhanced sensitivity 

was confirmed by mean displacement analysis, where KE was 1.77 V/cm and 1.41 V/cm 

in the absence or presence of cAMP, respectively (Fig. 3-7A). This means the sensitivity 

for to electric signal increased about 1.3 times in the presence of cAMP. Thus, although 

the synergy between the two mechanisms is unknown, activating the chemotactic 

signaling pathway increases the sensitivity of the cells to the electric signal.  

When the direction of the electric field was reversed, the delay of the response 

was observed in both the absence and presence of cAMP. However, the delay time was 

longer in the presence of cAMP taking approximately 5 min longer to reach the same 

directedness (Fig. 3-7B). I should note that the addition of cAMP induces more clear 

polarized shapes than no cAMP (data not shown). Similar responses were reported by 

Swanson and Taylor (1982) where strong polarization induced by cAMP stimulation 

decreased the flexibility of cell migration reorientation [50]. 
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3.1.6 Defective electrotaxis 
Sprawled and round morphological cells were sometimes observed under 10V/cm dcEF 

(Fig. 3-8A). In these cells, it was difficult to distinguish the leading edge from the tail. 

These cells often changed their morphology dramatically and recovered their polarized 

shape within a few minutes (Fig. 3-8B). Although the number of these cells was quite 

low, they are worth noting since they could not show electrotaxis, as migration was 

independent of the direction of dcEF. (Fig. 3-8C). These cells migrated in one direction 

and showed relatively long and persistent migration. 
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3.1.7 Discussion 
In the present investigation, we report the input-output relationship for electrotaxis in 

Dictyostelium cells as described by equation (3.2) with n=2. Cell movement under 

electric fields was biased with the square of the electric field strength. I also found the 

cell migration kinetics were sensitive to electric fields as low as 0.25 V/cm. 

Cell migration was biased constantly with time in a given electric field (Fig. 

3-4B-D), which was obvious when the cells were exposed to relatively larger field 

strengths (> 2 V/cm). This suggests that some intracellular processes are generated in 

cells immediately after field application and maintained to modulate constant migration. 

If such modulation processes were generated gradually following field application, the 

extent of the bias would also increase gradually, leading to a non-linear relation with the 

mean displacement X t( ) . In fact, this did occur at field strengths near the threshold 

stimulation (0.5 ~ 2 V/cm). For example, at 0.75 and 2 V/cm, the slope of the mean 

displacement became steeper at 400 and 200 sec after field application, respectively, 

suggesting that some motility modulation may occur in this time window due to the 

continuous application of the electric field (Fig. 3-5A). Further investigations of 

temporal changes in X t( )  are required because n, which describes the electric field 

dependency value, may change with time. This is important when trying to understand 

the mechanisms modulating cell motility in response to electric stimulation. 

Additionally, it is important to investigate the fluctuation of the cell trajectory. In our 

experiments, trajectory paths of cell migration generally had fluctuations at all electric 

field strengths including 10 V/cm (Fig. 3-1D). Since input signals were almost constant 

in time, these fluctuations may reflect the stochastic properties of the intracellular 

signaling. However, even without temporal analysis, it is still obvious that the 

electrotactic efficiency has a non-linear dependency with the electric field strength. 

Such non-linearity can be expressed by the sigmoid number n. It would be interesting to 

see whether the input-output relationship similar to that reported here can be observed 

in other cell types.  

 What are the possible mechanisms described by the non-linear dependency of 

electrotaxis on the electric field? It has been demonstrated that electric field applications 

to living cells induce membrane potential changes [51-53]. In general, the membrane 
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potentials induced by external electric fields for a spherical shaped cell can be expressed 

by the following equation, 

 

                       θθ cos5.10 ⋅⋅+ΔΨ= ErV                     (3.3) 

where θ  is the angle with respect to electric fields (Fig. 3-9A), Vθ  is the membrane 

potential [mV] at θ , r is the cell radius (~5 μm for Dictyostelium cells), and E is the 

electric field strength [mV/μm]. The resting membrane potential, , of 

Dictyostelium cells is about -47 mV [54]. The potential changes in a cell are largest at 

both the anodal-facing side (

0ΔΨ

θ = 0o) and cathodal-facing side (θ =180o), while the 

potential changes at the site perpendicular to the electric field (θ = 90oor − 90o) are zero. 

The anodal-facing side is hyperpolarized while the cathodal-facing side is depolarized 

[51-53]. Thus, the potentials have a gradient along the membrane surface from the 

cathodal to anodal sides in a sinusoidal manner. These membrane potential changes 

have been thought to be important for inducing ion currents or gradients in cells via ion 

channels or ion pumps along the membranes. Voltage-sensitive enzymes may also be 

modulated by the electric field application [55,56]. However, such external electric 

field-induced membrane potential changes cannot explain the non-linear dependency of 

electrotaxis in Dictyostelium cells since the membrane potentials are linearly related to 

electric field strength as expressed in equation (3.3). The relationship between 

membrane potential changes and cell motility changes should have some non-linearity. 

One explanation is that some voltage-sensitive molecules that operate in a non-linear 

manner with membrane potential changes might be involved in electrotactic signaling to 

modulate cell motility.  
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According to equation (3.3), the voltage difference was estimated to be about 

8 mV between the cathodal- and anodal-facing sides in a 10 μm wide cell at a field 

strength of 2.6 V/cm, which is where the electrotactic efficiency reaches half-maximum. 

At the threshold stimulation, the voltage difference was between 1.1 and 3 mV. Also, 

kinetic effects of the electric field application on cell migration speed were caused by a 

field strength of 0.4 mV between both ends of the cells. Although these estimations 

have many uncertainties, it implies that the electric signal strengths required for cell 

motility modulation are comparable to the spontaneous fluctuations in membrane 

potentials that are derived from thermal fluctuations of ion channels or ion pumps found 

along the membranes [57-59]. Whatever mechanisms are responsible for detecting the 

electric field, cells can achieve electrotactic and electrokinetic signaling at the level of 

thermal and stochastic noise. It is plausible that the spontaneous generation of polarized 

morphology and responsiveness of Dictyostelium cells may also involve endogenous 

changes in the membrane potential [54]. 

 As an alternative mechanism, it has been proposed that electric field 

application produces an asymmetric distribution of receptors or ion channels by 

electrophoresis on the cell membrane surface [60-62]. Migration of Dictyostelium cells 

was biased within 30 seconds after the field application, which was obvious at larger 

field strength ranges. At high field strength ranges, the electrotactic response lag was 

minimal. Such fast responses to electric field applications in Dictyostelium cell are 

similar to that of metastatic cancer cells or Amoeba proteus [48,63]. The electrotactic 

responses of all three cell types were too fast for the redistribution of the membrane 

proteins to be involved in the initial phase [64,65]. On the other hand, as previously 

discussed by Korohoda (2000), polarized cells show polar distributions of negative 

charges along the membrane surfaces where the mobility of ions are much faster than 

that in bulk solution [66-68]. Consequently, an asymmetric distribution of ions on the 

cell membrane surface or some other small molecules may be involved in the initial 

phase of electrotaxis in Dictyostelium cells. 

It is thought that certain intracellular signaling molecules are involved in 

electrotactic signaling [69-71]. One of the mediators for electrotaxis is calcium and its 

related signaling molecules [72,73]. Adding the calcium chelator EGTA (1mM) to the 

extracellular medium of electrotaxis Dictyostelium cells led to no observable changes 
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suggesting no involvement of extracellular calcium (data not shown). Zhao et al (2002) 

reports that G protein-coupled receptor signaling responsible for chemotaxis is not 

essential for electrotaxis in Dictyostelium cells. cAMP stimulate chemotaxis in 

Dictyostelium cells is mediated by the G protein-coupled receptors cARs and the 

corresponding coupled hetero trimeric G protein composed of the Gα2 subunit and Gβγ 

complex. Knockout mutants of cARs and the Gα2 subunit exhibited similar electrotaxis 

as wild type cells while mutant cells lacking the Gβ subunit exhibit slightly suppressed 

electrotaxis (Zhao et al., 2002). Furthermore, neither the receptor nor any downstream 

signaling proteins such as CRAC, a PHCRAC-domain-containing protein, are localized at 

the leading edge of the pseudopods in response to electric stimulation. These results 

suggest that sensing and the signal transduction for electrotaxis are largely independent 

of G protein-coupled receptor signaling. In our experimental system, we used developed 

cells prepared from the aggregation stage of the Dictyostelium lifecycle. Because the 

cAMP receptor and G protein knockout has a defect in the developmental progression, 

the electrotactic efficiency of the knockout mutants cannot be compared with that of 

wild type cells in our system. Instead, we examined the effects of cAMP addition on 

electrotaxis specifically because it can activate the G protein-coupled receptor signaling 

system. I found that cells tend to show enhanced electrotaxis in the presence of cAMP 

(Fig. 3-6 and 3-7). The activation of chemotactic signaling pathways may have some 

synergetic effects on the directional movements of cells under an electric field. One 

possible explanation of the cAMP effect is a change in membrane potential through the 

activity of ion channels or morphological change. It has reported that the addition of 

cAMP induces hyperpolarization of membrane potential [54], which in turn potentially 

affects electrotactic efficiency. Alternatively, cAMP affects cell morphology. I noted 

that the addition of cAMP induced strong cell polarization, influencing cell shape. The 

effects of an external dcEF on the membrane potential of spheroidal cells are different 

from that of spherical cells [74] (Fig. 3-9B) as both the cathode and anode membrane 

potential changes are larger according to equation (3.4). These differences in membrane 

potential may potentially enhance the electrotactic efficiency. 
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The defective electrotactic cells may be explained by the differentiation progress of 

Dictyostelium cells. Migration and morphological characteristics of these abnormal cells 

resemble those of prestalk cells (called, T1 cells) [29]. Since sensitivity to cAMP by 

these cells was quite low at the initial developmental stage, these cells started to 

aggregate later. At the end of the starved stage, these cells become stalk cells. These 

cells also exhibited defects in their electrotactic response (Fig. 3-8C). In a dcEF, these 

cells migrated randomly suggesting that there is a relationship between differentiation 

and electrotactic response if these cells are a prestalk cells. It is important to investigate 

the correlation between differentiation and electrotaxis to fully comprehend the 

meaning of electrotactic responses in Dictyostelium cells. Technical developments to 

combine between electric field application and single molecule imaging techniques are 

underway. 
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Fig.3-1 Electrotaxis of Dictyostelium cells. 
(A) Typical cell shape of Dictyostelium cell under an electric field (10 V/cm). Scale bar, 10 µm. 
(B) Differential interference contrast image of the cells in the chamber in a 10 V/cm electric field. 
Red lines represent tracking of the cells. Scale bar, 100 µm. (C) Tracks of cells with no electric field
showing random migration in all directions. (D) Tracks of cells in a 10 V/cm electric field, showed
directional movements toward the cathode (left side). Both for (C) and (D), observation time was 30 min. 
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Fig.3-2 Effects of reversing the electric field direction on cell migration. 
(A) Cell tracks before and after reversal of the electric field. Typical 10 cell tracks are presented. 
Each cell index is placed near the start position of the respective cell tracks. Arrowheads represent 
the position where the direction of the electric field was reversed. (B) Temporal changes of average 
directedness upon the reversal. 15 cells was analyzed. After reversing the electric field, cells turn 
their direction of locomotion within a few minutes. 



Fig.3-3 Measurement of electric osmotic flow (EOF)
To measure the EOF flow rate, micro beads (φ=0.9 µm) were used (A). Near the glass surface, EOF flowed
into the cathodal side, while it flowed into anodal side in the upper area (B). (C) EOF flow rate depended on 
electric field strength. At 10 V/cm, flow rates for cathodal and anodal side was about 5 µm/sec and 
8 µm/sec, respectively. Data represent mean±S.E.(n=20-30).
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Fig. 3-4 Dependence of cellular motile properties on electric field strength. 
Migration velocity (A), Cell motility efficiency (B), Directedness (C) and Asymmetric index (D) were 
analyzed to elucidate the effects of electric fields on cellular motile activities. See "cell migration analysis" 
in chapter 2 for the calculation details. Migration velocities were almost same at different field strengths, 
while directedness, asymmetric index and cell motility efficiency increased in a dose dependent manner. 
Data represent mean±s.e.m. Data were obtained from at least three independent experiments.
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Fig.3-5 Input-output relationship to an electrotactic response of Dictyostelium cells. 
(A) Temporal changes of mean cathodal displacements. (B) Temporal changes of mean displacements 
in the direction perpendicular to the electric field. (C) Dependence of mean cathodal displacement speed 
(MCS) on electric field strength. Solid line represents the fitting curve that was obtained by Equation (3.2)
with sigmoidal number n = 2. MCS reaches half-maximum at 2.6 V/cm, which represents cell sensitivity to 
the electric field. 



Fig.3-6 Effects of cAMP on electrotactic response
Migration velocity (A), Cell motility efficiency (B), Directedness (C) and Asymmetric index (D) were analyzed 
to elucidate the effects of electric fields on cellular motile activities. See Chapter 2 in "cell migration analysis"
for calculations. Migration velocities were similar at different field strengths, while directedness, 
asymmetric index and cell motility efficiency increased in a dose dependent manner. In the presence of cAMP,
cells could sense the direction of the electric field at field strengths lower than that of absence of cAMP.
Data represents mean±s.e.m. Data was obtained from at least three independent experiments.
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Fig.3-7 Effects of cAMP on electrotactic response.
(A) Dependence of mean cathodal displacement speed (MCS) on electric field strength in the absence or
presence of cAMP. Solid line represents the fitting curve that was obtained by equation (3.2) with sigmoidal 
number n = 2. Sensitivity parameter of the cells for electric signal, KE, is 1.77 in the absence of cAMP and 
1.41 in the presence of cAMP, indicating that the sensitivity was enhanced by cAMP stimulation. 
(B) Reversing the direction of the electric field. The field was reversed after 15 min of electric field application 
as the point marked by the arrow. Cell migration reversal in the presence of cAMP towards the new cathode 
side occured more slower than that of no cAMP. 
* In (A), the values of no cAMP is different from that presented in Fig.3-5C. This is because of the addition of the data.
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Fig.3-8 Defective electrotaxis.
(A) Sprawl-shaped cell was sometimes observed at developmental state.(B) Sprawl-shaped cell showed
transition between sprawled and polarized shape. Such transition was obsercved within a few minutes. 
Inlet figures represent the higher magnification images of sprawled and polarized shape.
(C) Almost cells migrated towards cathode (left) in dcEF (10 V/cm), however sprawl-shaped cell was 
indicated by arrow migrated in random direction. Ih this case, this cells migrated towards anode.
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Fig.3-9 Membrane potential distribution.
When external electric fields are applied to cells, membrane potential changes of the area facing the electrode 
is largest, while membrane potentilal is not change in the area with rectangular to the electric field. 
Membrane potential depolized at the cathodal side and hyperplarized at the anodal side. Resting membrane 
potentila of Dictyostleium cells is about 47 mV [54]. (A) In the spherical cells, potential difference between the 
cathode and anode is 14.5 mV at 10 V/cm. (B) In polarized cells, potential difference is 22.3 mV at 10 V/cm. 
The membrane potential distribution was calculated by (3.4). R1=5 µm, R2=2.5 µm, R3=10 µm. 
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3.2 Electrotactic signaling pathway in Dictyostelium cells 

 

Abstract 

Switching direction of cell movement in response to extracellular guidance cues has 

been found in various cell types and is an important cellular function for translocation 

during cellular and developmental processes. Here I show that the preferential direction 

of migration during electrotaxis in Dictyostelium cells can be reversed through the 

genetic modulation of both guanylyl cyclases (GCases) and the cGMP-binding protein 

GbpC, in combination with inhibition of phosphatidylinositol-3-OH kinases (PI3K). 

The PI3K-dependent pathway is involved in cathode-directed migration under direct 

current electric fields (dcEF). Both the catalytic domain of soluble GCase (sGC) and 

GbpC also mediate the cathode-directed signaling, while the N-terminal domain of sGC 

mediates the anode-directed signaling. These observations provide the first 

identification of the genes required for directional switching in electrotaxis, and suggest 

parallel processing of electric signals in which multiple signaling pathways act to bias 

cell movement towards the anode or cathode, determining the direction of migration. 
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3.2.1 Introduction 

Directional cell migration of eukaryotic cells in response to external guidance cues 

plays crucial roles in many physiological phenomena such as embryogenesis, 

neurogenesis, immune response, wound healing and regeneration of multicellular 

organisms, as well as in tactic response of unicellular organisms [1]. Clarifying the 

molecular basis of determining migration direction has been one of important topics in 

cell and developmental biology. Cells can exhibit not only attractive but also repulsive 

migrations in response to external signal. For example, in chemotactic response of 

neuronal cells, the growth cones exhibit repulsive response for a chemorepellant, while 

under the presence of membrane-permeable analog of cyclic nucleotides they show 

attractive turning in response to the same chemoattractant [2]. Further investigations of 

the mechanism underlying reversal in migration direction have revealed that the ratio 

between intracellular cyclic AMP (cAMP) and cyclic GMP (cGMP) regulates Ca2+ 

channels responsible for directional selection of migration [3]. In the case of chemotaxis 

in Dictyostelium discoideum, the cells exhibit attraction towards the source of 

extracellular chemoattractant cAMP, while they exhibit repulsion away from the source 
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of chemorepellent cAMP analog [4]. Chemoattractants induces the activation of 

phosphoinositide-3-kinase (PI3K) and phospholipase C (PLC) at the cell surface facing 

to the higher concentrations, leading to the localized accumulation and depletion of 

phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 4,5-

biphosphate (PtdIns[4,5]P2), respectively, which induces pseudopod formation 

directionally toward the chemoattractant source. On the other hand, chemorepellent 

gradients induce the localized inhibition of PLC, leading to the localized accumulation 

of PtdIns[4,5]P2. This chemorepellent-elicited reaction is opposite to the 

chemoattractant-elicited one, which causes the reversal in the polarized localization of 

the PtdIns lipids, inducing repulsive migration away from the chemorepellent. The 

proper localization of the PtdIns lipids on membrane is responsible for directional 

selection of chemotactic migration. Thus, investigations of directional switching in 

response to external signals have been a quite useful to clarify the molecular 

mechanisms underlying determination of the migration direction.  

In electrotaxis, cells move with a directional preference towards the cathode or anode 

under direct current electric fields (dcEFs). There is a growing body of evidence that 

electrotaxis plays important roles in many physiological phenomena [5-9]. Similar to 

chemotactic responses, preferential direction of migration during electrotaxis varies 

among cell types and under different experimental condition (See Table 1). Different 

types of cells show different migration direction. For example, corneal rat epithelial 

cells, human keratinocytes, osteoblasts, rat prostate cancer cells, lymphocyte and 

Xenopus neurons migrate towards cathode, while corneal stromal fibroblasts, 

osteoclasts, human granulocyte and macrophage migrate towards anode [5-9]. Even in 

the same cell type, cells derived from different species exhibit opposite migration 
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direction in dcEFs; bovine vascular endothelial cells migrated towards cathode, while 

human vascular endothelial cells migrated towards anode [10, 11]. Furthermore, lens 

epithelial cells change its migration direction depend on applied electric field strength 

[12]. However, in spite of the mechanistic importance regarding the coupling between 

gradient sensing and directional cell migration, the molecules responsible for selecting 

the migration direction in electrotaxis have not been identified.  

To investigate molecular mechanisms underlying determination of the migration 

direction in electrotaxis, here I used cellular slime mold Dictyostelium discoideum. The 

Dictyostelium cells are well-established model organism for elucidating molecular 

mechanisms of amoeboid movements and its regulations [13-16]. The chemotactic 

responses have been extensively studied at the molecular and cellular levels, which 

identify multiple and parallel chemotactic signalling pathways [17-20]. Since 

Dictyostelium cells exhibited strong electrotaxis, they would be useful for studying the 

mechanism of electrotaxis [21, 22]. Previous reports revealed that upstream components 

of chemotactic signaling pathways such as cAMP receptor 1 and its coupled 

heterotrimeric G proteins are not essential for electrotaxis in contrast with chemotaxis 

[21], although whether downstream components are involved in electrotaxis or not has 

not been examined. Here, I found that chemotaxis-deficient mutant cells which have 

defect in guanylyl cyclase (GCase)-dependent signaling pathway exhibited reversal 

migration in electrotaxis. I further confirm that simultaneous suppression of GCases and 

PI3K activities caused switching preferential direction of migration from cathode to 

anode in response to the same electric signals. These observations provide the first 

identification of the genes required for directional switching in electrotaxis. 
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3.2.2 Guanylyl cyclase dependent signaling pathway 

Defects of KI mutant cells in electrotaxis 

First, I examined the effects of electrical signals on a series of mutant cells called KI 

mutants, originally isolated as chemotaxis-deficient mutants by means of chemical 

mutagenesis [23]. I used three types of mutants, KI-5, KI-8 and KI-10, for electrotactic 

assays. Biochemical characterization of these KI mutants during chemotactic responses 

has revealed that KI-8 cells have virtually no GCase activity while KI-10 and KI-5 cells 

do have GCases activity but are defective in their chemoattractant-mediated activation 

of GCase and downstream cGMP-dependent signaling events, respectively [24,25]. 

With no electric field, wild type and these KI mutant cells moved randomly in all 

directions with a migration velocity between 6 ~ 26 μm/min (Table 4). Upon electrical 

stimulation, wild type cells moved toward the cathode, which gradually became obvious 

with increasing electric field strength. The electrotactic efficiency of the cells reached a 

maximum at 10 V/cm (Fig. 3-10A, B and I). KI-5 cells moved efficiently toward the 

cathode at 10 V/cm, showing no defects in electrotaxis (Fig. 3-10C and D). Impaired 

responses to electrical stimulation were observed clearly in the other KI mutant cells. 

KI-8 cells moved toward the anode, opposite of wild type cells, at the same dcEF 

strength (Fig. 3-10E and F). KI-10 cells moved in a random direction (Fig. 3-10G and 

H). To examine the effects of electric signal on cell motility, we quantitatively analysed 

motile properties as summarized in Table 4. The dependence of directedness on the 

dcEF strength for these mutant and wild type cells is shown in Fig. 3-10I, where 

positive and negative values of the directedness indicate movements towards the 

cathode and anode, respectively. The preferential direction of migration depended on 

the mutant types but not on the dcEF strength. Reversal of the preferential direction 
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relative to the wild type was constantly observed in KI-8 at a range between 1 and 10 

V/cm. In addition, detailed migration analysis of KI mutant cells was done by mean 

cathodal displacement speed (MCS) analysis. It was found that the sensitivity for the 

electric signal by KI-8 cells was similar to that of wild type cells (KE= 1.60 V/cm in KI-

8, KE= 1.77 V/cm in wild type) and KI-10 cells were also biased slightly towards 

cathode, but only at field strength >5 V/cm (Fig. 3-11). Thus, severe defects in the 

migration direction during electrotaxis were observed in KI-8 and KI-10, but not in KI-

5, indicating that the molecular mechanisms for electrotaxis are shared in part with 

those of chemotaxis. Mutant type-specific directionality in KI mutants during 

electrotaxis suggests that GCase activity is involved in determining preferential 

direction. I should note that the responsible mutation(s) in KI mutants has not been 

identified genetically [23]. 

 

Involvement of the guanylyl cyclase dependent pathway in electrotaxis 

To test directly whether the GCase-dependent signaling pathway is involved in the 

electrotaxis of Dictyostelium cells, I next examined the effects of genetic disruption of 

GCases and cGMP-binding proteins on electrotactic response. In Dictyostelium cells, 

two types of GCases, guanylyl cyclase A (GCA) and soluble guanylyl cyclase (sGC), 

have been identified as responsible for all cGMP production in the cells [26]. cGMP-

binding protein C (GbpC) is a major binding target for intracellular cGMP and transmits 

cGMP signals, which is responsible for regulation of myosin filament formation at the 

side and tail end of Dictyostelium cells [27, 28]. Thus, the GCase and cGMP-binding 

protein are the upstream and downstream molecules of cGMP, respectively. Upon 

electrical stimulation (10 Vּcm-1), both the gca-/sgc- and gbpC- cells exhibited an 
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To confirm the involvements of cGMP production in cathode-directed migration, I 

prepared the gca-/sgc- cells expressing with either the N-terminal domain or the 

catalytic domain of sGC because sGC has the two domains responsible for chemotactic 

signalling (Fig. 2C) [17, 29]. Upon a dcEF (10 Vּcm-1), the gca-/sgc- cells expressing 

the catalytic domain of sGC (gc null/sGCΔN) exhibited cathode-directed electrotaxis 

with an efficiency similar to that of wild type cells, indicating full recovering of 

cathode-directed electrotaxis only by the catalytic domain of sGC (Fig. 3-12C). On the 

other hand, the gca-/sgc- cells expressing the N-terminal domain of sGC (gc 

null/sGCΔCat) exhibited no recovering of efficient electrotaxis but rather defects in the 

cathode-directed electrotaxis (Fig. 3-12C and E). Consistent with this observation, 

gbpA-/gbpB- cells, which lack the degradation activities of intracellular cGMP, 

exhibited stronger electrotaxis towards the cathode than that of wild type cells (Fig. 3-

12C and F) [27, 28]. Thus, the GCase-dependent cGMP signalling mediates the 

cathode-directed electrotaxis. However, in contrast to KI-8 cells, the gca-/sgc-, gbpC- 

and gc null/sGCΔCat cells were still able to move toward the cathode, showing no 

reversal of preferential direction. Therefore, the GCase-dependent pathway is not solely 

responsible for cathode-directed electrotaxis, suggesting GCase-independent pathways 

are additionally involved in the cathode-directed electrotaxis. 

 

3.2.3 Switching direction by simultaneous inhibition of cGMP and PI3K-mediated 

signaling pathways 
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Phosphatidylinositol-3-OH kinase (PI3K) is one candidate for the GCase-independent 

signaling pathway, because its involvements in electrotaxis have been revealed in other 

cell types [9, 11, 30]. In Dictyostelium cells, PI3K is highly localized at the leading 

edge of moving cells where PI3K catalyses the production of PtdIns(3,4,5)P3 on the 

membrane, a key molecule in regulating the localized activation of actin polymerization 

via interaction with PH-domain-containing proteins such as Akt/PKB [18-20]. To test 

the possible involvement of PI3K in preferential direction during electrotaxis, I 

examined the effects of a PI3K inhibitor, LY294002, on the electrotaxis of wild type, 

gca-/sgc-, gbpC-, gc null/sGCΔN and gc null/sGCΔCat cells. In wild type cells, 

treatment with 60μM LY294002 strongly inhibited the velocity of cell migration in 

medium (see Table 4). To restore the basal speed of cell movement in the presence of 

LY294002, I added 1μM cAMP to the medium [31, 32]. In wild type cells, treatment 

with 60μM LY294002 strongly attenuated the cathode-directed electrotaxis, but the 

ability to move towards the cathode was maintained (Fig. 3-12A, B and C). When gca-

/sgc- cells were treated with 60μM LY294002, the direction of electrotaxis reversed 

towards the anode (Fig. 3-12A, B and D). Similar results were found for gbpC- and gc 

null/sGCΔCat cells (Fig. 3-12A, B, D and E, Movie S3 and S4). In particular, the N-

terminal domain of GCase enhanced the anode-directed electrotaxis (Fig. 3-13F; gc 

null/sGCΔCat). While gca-/sgc- and gbpC- cells did transiently only for about 10 min 

after dcEF application, the gc null/sGCΔCat cells exhibited continuously electrotaxis 

toward the anode, which is similar to phenotype of KI-8 (Fig. 3-13G). In contrast to 

gca-/sgc-, gbpC- and gc null/sGCΔCat cells, the gc null/sGCΔN cells that express the 

catalytic domain of sGC exhibited migration in random directions, suggesting a balance 

between cGMP-dependent cathode-directed electrotaxis and that anode-directed 
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electrotaxis (Fig. 3-32H, Table 3). These results reveal that simultaneous inhibition of 

GCase and PI3K activity is required to reverse migration direction. In addition, GCase 

has dual functions in electrotaxis. That is, the N-terminal and the catalytic domains of 

GCase are involved in biasing cell migrations under electric fields toward the anode and 

cathode, respectively. 

 

3.2.4 Dynamics of electrotactic signaling components during electrotaxis 

I next examined the intracellular dynamics of both sGC and GbpC distribution in 

migrating Dictyostelium cells under a dcEF (10 Vּcm-1) using green fluorescent protein 

(sGC-GFP and GbpC-GFP, respectively). Both proteins were localized at the leading 

edge of cells migrating towards the cathode (Fig. 3-14A and B). For the PI3K-

dependent signaling pathway, I observed PI3K and PtdIns(3,4,5)P3 by fusing PI3K2 

and the PH domain of Akt/PKB to GFP (PI3K2-GFP and PHAkt/PKB-GFP, respectively). 

PI3K2 and PtdIns(3,4,5)P3 also localized in a polarized manner at the leading edge of 

the pseudopod of cells migrating toward the cathode (Fig. 3-14C and D). These 

distributions of signaling molecules responsible for electrotaxis resemble those 

observed in chemotactic cells under cAMP gradients [18-20, 29, 33]. When cells were 

treated with LatrunculinA (5μM), which is a F-actin-depolymerizing reagent, the 

distinctive localization of these signaling molecules was lost, becoming random with 

respect to the direction of electric fields (Fig. 3-14E-H). These observations indicate 

that these signaling molecules from the GCase- and PI3K-dependent pathways are 

polarized through actin-dependent localization, and suggest that both pathways are 

involved in enhancing electrotactic efficiency by localizing in pseudopods directed 

toward the cathode. The presence of sGC, GbpC, PI3K and PIP3 in the pseudopod could 
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3.2.5 Discussion 

The results I report here provide the first identification of genes required for selection of 

migration direction in electrotaxis and show that the GCases- and PI3K-dependent 

signalling pathways work in parallel to bias cell movements toward the cathode. 

Simultaneous inhibition of both pathways induced switching direction of cell migration 

toward the anode. Similarity and differences in the molecular mechanisms between 

electrotaxis and chemotaxis are discussed below.  

Previous reports have revealed that chemotaxis in Dictyostelium cells is mediated by 

PI3K, PLA2 and GCase dependent signaling pathway [17-20, 34, 35]. Simultaneous 

inhibition of these pathways abolishes chemotactic movements completely, while 

functional signalling in either one of these multiple pathways can restore chemotaxis at 

least in part, suggesting that these pathways work independently [17]. Similar to 

chemotaxis, multiple signaling pathways work in parallel for electrotaxis to reorient 

cells directionally towards the cathode or anode (Table 3). Both the GCase- and PI3K-

dependent signaling pathways are involved in cathode-directed electrotaxis. Molecular 

components of the GCase- and PI3K-dependent signaling pathways localized at the 

leading edge of migrating cells under dcEF in an actin-dependent manner (Fig. 3-14A-

D). Similar results have been observed in chemotactic cells under the chemoattractant 

gradients, in which a distinctive localization of the signalling components at the leading 

edge has been implicated to enhance chemotactic efficiency  [19, 29]. These results 

suggest functional sharing of intracellular signaling components for directional cell 
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migration between chemotaxis and electrotaxis. However, there are some differences 

between electrotaxis and chemotaxis. First, the localized accumulation of 

PtdIns(3,4,5)P3 on membrane facing to the chemoattractant source with actin-

independent manner is one of key signaling events in chemotaxis [33], while no 

localization of PtdIns(3,4,5)P3 was observed in cells under dcEF when actin 

cytoskeleton was inhibited (Fig. 3-14E-H). This indicates that PI3K-dependent 

signaling pathway mediates electrotactic signals in an actin-dependent manner. Because 

PI3K activity is regulated by a feedback mechanism through a Ras/PI3K/F-actin circuit 

[32], electric signals may affects on some components of this feedback circuit. Second, 

sGC is involved in both chemotaxis and electrotaxis, but in a different way. The GC 

null cells expressing N-terminal domain of sGC (gc null/sGCΔCat) can restore 

chemotaxis, while the cells expressing catalytic active domain of sGC (gc null/sGCΔN) 

is not sufficient for chemotaxis [17]. In contrast to chemotaxis, gc null/sGCΔCat cells 

cannot restore electrotaxis toward the cathode, while catalytic active gc null/sGCΔN 

cells can restore perfectly cathode-directed electrotaxis (Fig. 3-13A). The gc 

null/sGCΔCat cells was rather inhibited to move toward the cathode. Furthermore, with 

simultaneous inhibition of PI3K, gc null/sGCΔCat cells moved efficiently toward the 

anode. These results indicate that the N-terminal domain and catalytic domain of sGC 

are involved in anode- and cathode-directed signaling in electrotaxis, respectively. The 

two domains of sGC with opposite function may be integrated through intramoleculer 

interactions for directional migration in electrotaxis. Additionally, electrotactic cells 

sometimes changed their behaviours by application time of electric fields. Wild type 

and gc null/sGCΔCat cells exhibited electrotaxis continuously towards the cathode and 

anode, respectively, while gca-/sgc- and gbpC- cells gradually became random with time 
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after electric field application (Fig. 3-13G). Such stimulation time-dependent 

directionality is not obvious in chemotaxis. Although its precise mechanism remains 

unknown, electrophoresis of membrane protein may be involved in electrotaxis because 

it requires relative longer field application (at least 5 min longer) [36, 37].  

In chemotactic response of growth cones of Xenopus spinal neurons, intracellular Ca2+ 

pattern, which are generated by cyclic nucleotide-activated L-type Ca2+ channel, 

determines whether they exhibit attraction or repulsion to the same external stimulations 

[3]. In the gradient of netrin-1, the activation of cAMP-dependent signaling pathway 

induces Ca2+ entry resulting attraction, while inhibition of this pathway suppress Ca2+ 

entry resulting repulsion. Thus, intracellular cyclic nucleotides function as key signaling 

molecules through Ca2+ regulation for directional preference. Because the involvement 

of Ca2+ ion in electrotaxis has been demonstrated in many cell types [5-8], I examined 

the effects of extracellular Ca2+ ion on electrotaxis of Dictyostelium cells. First, I used 

GdCl3 (50-100μM) known as a general Ca2+ channel inhibitor for electrotactic assay. 

However, addition of GdCl3 suppressed cell motile activity as previously reported [38]. 

Instead of inhibitor, cells were inhibited for Ca2+ entry from medium by using Ca2+ 

chelator EGTA (5mM). Under this condition, no obvious changes in electrotaxis both of 

wild type cells toward the cathode and of knockout cells (gc null/sGCΔCat) toward the 

anode, suggesting no involvement of extracellular Ca2+ ion in Dictyostelium electrotaxis 

(Fig. 3-15A and B). It would be worth exploring the involvement of other chemotactic 

signals such as Ras, TORC2, PLCγ and PLA2 in directional control during electrotaxis 

[18-20]. These studies would further contribute to the understanding of molecular 

mechanisms involved in the coupling between gradient sensing and directional cell 

migration. 
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Table 3 Tug of War like model of electrotaxis in Dictyostelium cells 

Determining the migration direction of electrotaxis in the presence of a PI3K activity 

Cell type Wild type gca-/sgc- gc null/sGCΔN gc null/sGCΔCat 

Migration 

direction Cathode Cathode Cathode Cathode 

Related 

signaling  

pathwa

ys 

 

 

Determining the migration direction of electrotaxis in the absence of a PI3K activity 

Cell type Wild type gca-/sgc- gc null/sGCΔN gc null/sGCΔCat 

Migration 

direction Cathode Anode Random Anode 

Related 

signaling 

pathways 
 

*1) X indicates unidentified signaling pathway for anode-directed migration. 

*2) Lengths of arrow suggest the relative strength of biased force. 

 

Table 4 Cell migration properties in a dcEF (1/2) 

Cell type 

EF 

stimulation 

(10 V/cm) 

PI3K 

inhibitor (60 

μM 

LY294002) 

cAMP 

(1 μM) 

Number of 

cells 

analyzed 

Directedness

Migration 

velocity 

(μm/min) 

Cell motility 

efficiency 

Asymmetric 

index (cathode : 

anode) 

Wild type - - - 157 
0.01±0.06 

(random) 
11.8±0.4 0.4±0.02 0.49 : 0.51 

Wild type + - - 119 
0.88±0.02 

(cathode) 
14.5±0.4 0.61±0.01 0.98 : 0.02 

 59



 

Wild type + - + 43 
0.95±0.01 

(cathode) 
16.5±0.6 0.64±0.02 1 : 0 

Wild type - + - 137 
0.05±0.06 

(random) 
2.8±0.2 0.14±0.01 0.5 : 0.5 

Wild type - + + 119 
0.06±0.07 

(random) 
7.8±0.2 0.39±0.02 0.49 : 0.51 

Wild type + + - 148 
0.53±0.05 

(cathode) 
4.6±0.2 0.26±0.02 0.8 : 0.2 

Wild type + + + 99 
0.36±0.06 

(cathode) 
14±0.4 0.54±0.02 0.75 : 0.25 

gbpA-/gbpB- + - - 110 
0.9±0.02 

(cathode) 
13.7±0.3 0.67±0.01 0.99 : 0.01 

KI-5 - - - 107 
0.11±0.07 

(random) 
22±0.4 0.39±0.02 0.59 : 0.41 

KI-5 + - - 103 
0.84±0.03 

(cathode) 
25±0.5 0.64±0.01 0.96 : 0.04 

KI-8 - - - 132 
-0.06±0.06 

(random) 
5.9±0.2 0.38±0.02 0.47 : 0.53 

KI-8 + - - 142 
-0.62±0.04 

(anode) 
8.4±0.3 0.5±0.02 0.13 : 0.87 

KI-10 - - - 125 
-0.04±0.06 

(random) 
25.8±0.3 0.5±0.02 0.49 : 0.51 

KI-10 + - - 116 
0.04±0.07 

(random) 
26.4±0.6 0.47±0.02 0.53 : 0.47 

gca-/sgc- + - - 111 
0.63±0.05 

(cathode) 
14.1±0.4 0.45±0.02 0.89 : 0.11 

gca-/sgc- + + - 100 
0.39±0.06 

(cathode) 
8.1±0.3 0.41±0.01 0.78 : 0.22 

gca-/sgc- + + + 138 
-0.17±0.06 

(anode) 
8.4±0.2 0.42±0.01 0.39 : 0.61 

gc null/sGCΔN + - - 133 
0.83±0.03 

(cathode) 
9.4±0.4 0.6±0.01 0.95 : 0.05 

gc null/sGCΔN + + + 114 
0.01±0.06 

(random) 
7.0±0.3 0.53±0.02 0.53 : 0.47 

gc null/sGCΔCat - + - - 105 
0.32±0.07 

(cathode) 
12.5±0.4 0.5±0.02 0.69 : 0.31 
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Table 4 Cell migration properties in a dcEF (2/2) 

Cell type 

EF 

stimulation 

(10 V/cm) 

PI3K 

inhibitor (60 

μM 

LY294002) 

cAMP 

(1 μM) 

Number of 

cells 

analyzed 

Directedness

Migration 

velocity 

(μm/min) 

Cell motility 

efficiency 

Asymmetric 

index (cathode : 

anode) 

gc null/sGCΔCat + + + 113 
-0.67±0.04 

(Anode) 
10.6±0.2 0.73±0.01 0.09 : 0.91 

gbpC- + - - 139 
0.61±0.04 

(cathode) 
13.3±0.2 0.47±0.02 0.87 : 0.13 

gbpC- + + + 190 
-0.36±0.05 

(anode) 
7.8±0.1 0.39±0.01 0.28 : 0.72 

gbpC-/gbpD- + - - 123 
0.77±0.03 

(cathode) 
9.9±0.4 0.62±0.02 0.94 : 0.06 

gbpC-/gbpD- + + + 190 
-0.21±0.05 

(anode) 
9.9±0.2 0.65±0.01 0.36 : 0.64 

Data are presented as mean±s.e.m. Definition of each parameter is given in chapter 2. 

Data for each cell type was collected from 6 to 11 independent experiments. 
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Fig.3-10 Reversal of directional preference during electrotaxis in KI-8 mutant cells. 
Migration of wild type cells (A, B), mutants KI-5 (C, D), KI-8 (E, F) and KI-10 (G, H) under a dcEF (10 V/cm). 
Wild type and KI-5 mutant migrated towards the cathode under dcEF, while KI-8 mutant moved towards the 
anode. KI-10 mutant migrated in random directions. Blue lines and red arrows represent the cell trajectory and 
its direction of migration, respectively. Scale bar, 100 µm. (B, D, F, H) Cell trajectories in dcEF (10 V/cm). 
The start points of cell migration were accumulated at the origin. (I), Dependence of directedness on the 
dcEF strength: wild type (black closed square), KI-8 (open circle), KI-10 (open triangle). Although migration 
velocity was specific for cell type, it had minimal dependence on electric field strength (J). Data (mean±s.e.m.)
for each cell type were quantified from 7-9 independent experiments.
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pathway in Dictyostleium cells (C). Cell motile properties in dcEF. 
Directedness (D) and Migration velocity (H). In all cases, cells were biased 
towards cathode. Data (mean±s.e.m.) for each cell type were quantified 
from 7-9 independent experiments.
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Fig.3-13 Switching direction in electric signal-induced cell migration by cGMP and 
phosphatidylinositol signaling. Cell motility analysis: directedness (A) and asymmetric index (B). 
Cell trajectories of wild type (C), gca-/sgc- (D), gbpC- (E), gc null/sGC∆Cat (F) and gc null/sGC∆N (H) cells 
in the presence of 60µM LY294002, a PI3K inhibitor and 1µM cAMP, under a dcEF (10 V/cm). 
When the activity of cGMP and PI3K dependent pathways was suppressed simultaneously, migration direction 
was reversed (D, E, F). (G) Time course of directedness in dcEF (10 V/cm). Directedness of cells with respect 
to the electric field was obtained in 1 min intervals. Reversal of preferential direction was observed in gca-/sgc-, 
gbpC- and gc null/sGCΔCat cells in dcEF. Data (mean±s.e.m.) for each cell type were quantified from 8-11 
independent experiments. 



Fig.3-14 Intracellular localization of signaling molecules responsible for electrotaxis 
under dcEF. Confocal images of cells expressing sGC-GFP (A), GbpC-GFP (B), PI3K2-GFP (C) and 
PHAkt/PKB-GFP (D) under dcEF (10 V/cm). White arrow indicates the direction of migration. These signaling 
molecules were polarized in cells migrating toward the cathode under dcEF, while such an asymmetric 
distribution was not observed in Latrunculin A (5 µM) treated cells (E to H). Right panels correspond to the 
signaling molecules presented in left panels. Scale bar, 5 µm. 
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Fig.3-15 Influx of external Ca2+ is not necessary for electrotaxis in Dictyostelium cells. 
Cell trajectories of cathode directed-migration of wild type cells in the presence of 5mM EGTA (A) and 
anode directed-migration of gc null/sGC∆Cat cells treated with 60µM LY294002 in cobination with 1µM cAMP 
in the presence of 5mM EGTA (B). In both cases, caffeine was not applied. Althogh motile activity was
decerased in both cases, migration direction was not affected by the absence of external Ca2+.
Data (mean±s.e.m.) for each cell type were quantified from 3-9 independent experiments. 
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4 Future direction and outlook 
 

4.1 Effects of oscillating EF on cell migration 
To investigate the mechanism of the intracellular signaling network, it is important to 

reveal the relationship between signal inputs and outputs quantitatively under different 

conditions: the absence of a signal input, presence of a stable signal input and 

oscillating signal input (Fig. 1-1). This thesis describes the results from the first two 

categories. In direct current electric fields (dcEFs), Dictyostelium cells exhibit 

electrotactic migration toward the cathode. Input-output relationship of electrotaxis in 

Dictyostelium cells can be described by a simple phenomenological equation (chapter 

3.1). I found that the electric signal is transmitted into the motile apparatus through both 

phosphatidylinositol-3-OH kinase (PI3K) and guanylyl cyclase (GCase) dependent 

signaling pathways (chapter 3.2). 

I have already begun to examine the third group by observing the effects of 

oscillating EF on cell migration (Fig. 4-1 and 4-2). In the absence of an EF, migration 

velocity was about 11.8 μm/min, as shown in Fig. 3-4A. When oscillating electric 

signals, alternative current electric fields (acEFs) were applied to the cells, migration 

velocity increased and reached maximum (17.1 μm/min) at around 5 kHz, but began to 

decrease at over 7 kHz acEF. Moreover, when a dcEF (average field strength; 2 V/cm) 

was oscillated (±1 V/cm, 100 Hz), a cell population with faster velocity (about 1.4 

times) appeared (Fig. 4-2C). While migration velocity increased, directedness was 

relatively unchanged. As a result, the arrival efficiency, which was calculated by 

multiply directedness and migration velocity, in dcEF+acEF was higher than that of the 

dcEF alone due to its higher migration velocity (Fig. 4-2D). Since it has been reported 

that migration velocity is controlled by the intracellular proton concentration regulated 

by Na/H exchangers in Dictyostelium cells [1], it would be worth examining whether 

the activity of Na/H exchanger is affected or not by application of acEFs [2]. A 

theoretical model has proposed that electro-chemical coupling generated by acEFs 

accelerates ion pump activity [3]. However, acEFs affect on living cells are quite 

different form that of dcEF [4,5] and are therefore worthy of both theoretical and 

experimental investigations. 
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4.2 Model of cell migration 
Even in the absence of external directional cue such as electric field, cells migrate in a 

random direction spontaneously (Fig. 3-1C). When electric signal is presented, such 

spontaneous cell movement is biased towards particular direction (Fig. 3-1D). Here, I 

have tried to construct the model, which describes these spontaneous and tactic 

movement of Dictyostelium cells with a collective view. First, I succeeded in applying a 

generalized Langevin model to the experimental data of cell migration in the absence of 

directional cue (Fig. 4-3A). Then, I have tried to construct further developed model, 

which describe the electrotactic movement by introducing the bias term to a generalized 

Langevin equation of spontaneous movement (Fig. 4-3B). These generalized Langevin 

equations composed of decay, memory, noise and bias terms. Since what kinds of 

cellular mechanism are corresponded to these terms is remain unknown, to identify 

these molecular basis is needed. 

 

4.3 Voltage sensitive protein 

Another attractive approach to investigate the intracellular signaling pathway by 

electrical stimulation is utilizating voltage sensitive proteins. It has been gradually 

realized that many proteins have voltage sensitivity. For example, novel adenylyl 

cyclases found in Paramecium and Tetrahymena are ion channel/enzyme fusion 

proteins [6]. Also, muscarinic receptors (m2R and m1R), which are part of the 

G-proteins coupled receptor (GPCR) family, show voltage sensitivity itself even without 

the voltage sensor domain (VSD). It has been reported that the binding of a ligand to the 

receptor is correlated with the membrane potential change [7].  

A major breakthrough in this field is the discovery of voltage sensitive 

phosphatase (VSP) (Fig. 4-4A). VSP is found in the Ascidian Ciona intestinalis by 

genome searching [8]. This protein consists of a canonical transmembrane VSD and a 

cytoplasmic domain of phosphoinositide phosphatase, which is homologous to the 

phosphatase and tensin homologues deleted on chromosome 10 (PTEN). When the 

membrane potential depolarizes, VSP is activated and then produces PIP2, which is 

derived from the hydrolysis of PIP3 [9]. These findings suggest that membrane potential 

change directly couples with biochemical signaling pathways and that bioelectricity 
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influences physiological function in more diverse ways than previously thought. VSP 

potentially allows us to experimentally control the intracellular signaling pathways 

activated by electrical stimulation to achieve results at speeds and specificity, which to 

date are unachievable. I have already prepared the VSP expressing Dictyostelium cells 

to try to manipulate phosphatidylinositol signaling pathway by electric signal (Fig. 

4-4B) 
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Fig.4-1 Cell motile properties under alternative current electric fields. 
Migration velocity (A) and Directedness (B) were analyzed to elucidate the effects of alternative current 
electric fields (acEFs) on cell motile activities. Directedness was almost constant at different frequencies 
indicating that input signal was symmetrical. On the other hand, migration velocities were depend on frequency. 
It reached maximum at around 5 kHz and decreased at more high frequency region. (C) Such increasing of 
migration velocity also showed slight dependency in applied field strength. 
Data was obtained from at 5 independent experiments. Data represents mean±s.e.m.
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Fig.4-2 Effects of oscillating EF on electrotaxis.
Cell trajectory in dcEF (2 V/cm) (A) and dcEF with oscillation (±1 V/cm. 100Hz) (B). Cell population 
with high migration velocity (average 19.8±0.4 µm/min) appeared under dcEF with oscillation (C). 
Arraival efficiency was calculated by multiplying directedness and migrtion velocity.
Arrival efficiency in the presence of oscillation was about two times higher than that of absence of one 
indicating that cells could arrive at certain point more efficiently (D).
*P < 0.01, unpaired Student's t-test.
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Fig.4-3 Model of spontaneous and tactic cell migration.
Spontaneous (A) and electrotactic (B) cell migraion models based on a generalized Langevin equation.
These models composed of decay, memory, noise and bias term. Here, white gaussian noise is used as 
a noise term. Simulation of these models produce cell migraiton trajectory and its migration properties
such as distribuation of migration velocity and angular are agree with that off experimental data.
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Fig.4-4 Voltage sensitive phosphatase. (A) Voltage sensitive phosphatase (VSP) is constructed of three 
regions, voltage sensitive domain (VSD), phosphatase domain and those linker. VSD and phosphatase domains 
are resemble for voltage dependent ion channel and phosphatase and tensin homologue deleted on chromosome 
10, respectively. When membrane potential depolarize, VSP is activated and dephosphorylates PIP3. 
Unlike PTEN, VSP dephosphorylates from PIP3 to PIP. (B) The Dictyostelium cells lacking PTEN (pten-) were 
transfected with VSP gene. Fluorescence imaging showed that VSP-Halo tag protein expressed in Dictyostelium 
cells was distributed in membrane uniformly. Scale bar, 5 µm.
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