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1. Introduction

The purpose of this paper is to complete the results of §3 of [5]. Let S be
a sufficiently smooth compact hypersurface in R” and let Q be the interior or

exterior domain of S.
Consider a hyperbolic equation of second order

(1.1 Llu] = g;u—f—al(x, t: D)éa?u—{—az(x, t:Du=f

a(x, t: D) =3 2h (=, t)é@ +h(x, t)
= x;
oy B ) n K
az(x’ t: D) - inzi=lax,-<a”(x’ t)ax])+ 2/_:1 bi(x) t)axj+c(xr t)

where the coefficients belong to B(Qx (0, T))>. We assume that a,(x, ¢: D) is
an elliptic operator satisfying

(1.2) Dayx, EEZdRE (@>0)
a;;(x, t) = a;{x, t)
for all (x, t)eQx (0, T) and £=(&,, &,, -+, E,)ER”, and that h;(x, t) (j=1, 2,

-+, n) are real-valued. For this equation we consider the following boundary
condition

(1.3) Blu(x, )] = %u(x, 1) —a.(s, t)g—;t(x, 1)

t
+ou(s, hu(x, ) = 0 on S,

where

1) B(w), w being an open set, is the set of all C*-functions defined in @ such that their all
partial derivatives of any order are bounded.
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2 0
— ,.’]2'=laii(s, t)l’,‘a;j N

9
on,
v=(v,, vy, ***, v,) is the outer unit normal of S at s& S, o(s, t) (i=1, 2) are
smooth function defined on Sx[0, T'] and (s, #) is real-valued.
Our problem is to obtain u(x, t) satisfying

Llu(x, t)] = f(x, t) in Qx(0, T)
Blu(x, t)] =0 on SxJ[0, T]
u(x, 0) = uy(x)

ou
fg(x, 0) = u,(x)

for any given initial data {u,(x), #,(x)} and any second member f(x, t). Let us
denote this problem by P(L, B).

Since we like to treat this problem in L*-sense it is necessary to assume that
L and B satisfy the inequality

(1. 4) (s, )< D hy(s, v, on Sx[0, TP,

which is invariant with a change of variables.
This problem is a generalization of the problem considered in §3 of [5].
We state our theorem:

Theorem 1. For any initial data {u,(x), u,(x)}€H™ Q) x H**(Q) and
any second member f(x, t)c H™(QXx (0, T)), if they satisfy the compatibility
condition of order m®, there exists a solution u(x, t)ye EY(H™(Q))N EHH™(Q))N
< N EPHELYAQ))® of P(L, B) and it is unique in EYH*(Q)) N EX(H(Q)) N EHLHQ)).

The mixed problem for second order hyperbolic equations with the Neumann
type boundary condition is mainly studied under the assumption that the bounda-
ry condition does not depend on # (for example Ladyzenskaya [9], Ikawa [5]).
The case where the boundary condition varies with # is treated by the author in § 3
of [5]. But there we assumed that z(x, t) (j=1, 2, -+, n) are identically zero
and b;(x, t) (j=1, 2, -++, n) are real-valued on S [0, T'], moreover to show the
existence of the solution, the regularity of f(x, ¢) in H'(Q)’ is required and by

that method we could not extend these results to the case where X3 A,(s, f)v;
i=1

%0 on SX[0, T]. On the other hand in [6] such restrictions on L are not

2) See Remark of [17], and Theorem 1 of [7].

3) 'This definition will be given precisely in §3.

4)  u(x, t)EECHE) means that u(x, t) is k-times continuousely differentiable as E-valued
function.
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posed but the boundary condition treated there does not satisfy the condition
(1.4).

It seems to us that the difficulties of this problem due to the following two
facts:

(1) B[g—? (x, t)]:t:O on S in general since the boundary condition depends

on ¢, and the problem P(L, B) cannot be extend to non-homogeneous boundary
condition in the L?-sense under the condition (1.4)*. (ii) We do not know a
general theory of integration of an evolution equation

2 U = A0UO+F()
U(0) = U,

which is applicable to our problem where the definition domain of A(t) varies
with 2.

The essential part of this paper is to derive the energy inequality of any
order. The necessity of the energy inequalities of any order is caused by
the fact that we cannot use, in this case, the method in the proofs of the regularity
of the solution of [5] and [6] and still more we have to use the two energy in-
equalities to show the existence of the solution, for example when m=0. To
prove the existence of the solution we make an approximation by the solutions
satisfying the boundary condition

9 9
1.5 B,=2 —(6,—8° 4+0,. &>0
(1.5) om, (o )6t +o

whose existence is already shown in [6].

2. Energy inequalities
In this section we show the following

Theorem 2. Let m be non-negative integer. There exists a constant C,,
and for all u(x, ) H™**(Qx (0, T)) the solution of P(L, B) the energy inequality

2.1) e,

ou 2
1
%, 1

m+1, LAQ

+“6t"‘+2 * 1)

<Co{ I, O)2rs e

LA

0)°

m+1, LA

5) See the appendix of [6].
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HiIf O)II,,. LZ(Q)—I_Haf(x’ 0) m-— 1L2(Q)+ +”g't”"{( ’ LA
S( mLz(Q>+m+'a:':Z( > 9) 2(9)) }

holds for all t=[0, T1.

Notations and preliminary lemmas

First of all let us remark that it suffices to show (2.1) under the assumption
a(s, £)=0. Take a(x, t) a sufficiently smooth function defined on QX [0, T']
with the following properties

(1) a(s,t)=1 on Sx[0, T]
Gi) 2>|a(x, t)|>.; for all (x, ) X [0, T]

(i) a%a(x, t)—oys,t)  on SX[0, T],

t
and put u(x, t)=a(x, t) v(x, t) then v(x, t) satisfies

L[v]+-a(x, t)7'[L, a(x, t)]Jo = a(x, £)"'f in QX][0, T]
0 0v
S_n,v o-lat 0 on SxJ[0,T].

There are no difficulties to derive the estimate of u(x, #) from that of o(x, t).
Therefore in this section we assume that o (s, #)=0.

Let = be Q or Ri={(x', x,); x,>0}. Any u(x, t)eH?"(=x(0, T))
(»>0 integer) belongs to CY(H*(Z))NEHH? ()N --- NEXLAZ)) by changing
its values on a set measure zero of XX (0, T') if necessary. Let us denote
the space EL(H?(Z))N EHH?(Z) N - NEALYZ)) by E(p, =), and for
u(x, tyeE(p, Z)define |[|u(x, t)|[[5,5 by

2.2) N, 22 = 35 (2 Yt )|

»— jL(Z)

and for u(x, t)e (1, =), ||u(x, t)|'5t(t) by

2 : ou,  Gu -
G, DIF gy = 31, Sza,. 55 ) (0 D) (3 1) dv

ou 2
it )t
at(x )

L%

+llu(x, )12

Then from the condition (1.2) there exists a constant //>0 such that
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1
Mlllu(x, DI = <Ilu(x, )% e <Mlllulx, Iz

for all te[0, T'] and u(x, t)e&(1, 2).
Lemma 2.1. Let u(x, f) HY(S x (0, T)) satisfies Liul=f in =x (0, T) we

have the estimate
2.3) 2 yy < s Oy e e, )1y
+g:|| fx, 9)|[?ds -2 ReS:dsS (Bu )(x, §)dS
holds for all t< [0, T, where c is a constant determined by L.
Proof. By the integration by parts
Stdsg (gtﬁm 4+ L[u] g%‘) (x, 5)dx
a2 S B
Ll G 22‘ L
S

-} tdsS (a quadratic form of u, au’ Ou >dx .
ot 0x;

>dS

Therefore
(e, t)“‘zg[(t)—””(x’ 0)”,25((0)

ou Gu)éﬂ s

t ou — t
:SodsLZRe Egfa'x—l-jod.s*s 2Re(an Zhjvjﬁ ot
—I—Stds S <a quadratic form of u, Ou 6—u>dx
0 ot’ 8 4
By taking account of the condition (1.4)

¢ ou Ou\ou
2ReSO gn(an —Shw;f)ar dS

<2Re das| Bu %us
0 9
then we have (2.3). Q.E.D.

When =R’ we denote its point by x=(x’, x,) where ' R""*, x,>0, and
omit the notation R% in (2.2).
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Lemma 2.2. Let p(x’, t) be a real valued function in B(R**x (0, T)). For
any u(x, tye H*(R%; X (0, T)) we have the estimates

(2. 4) 2ReS S L s)a (', 0, s)ax (', 0, s)dx’
S C{E|llu(x, 2)l| 3+ C(Eu(x, t)I1F11]a(x, O)]12
o+l sz ds}

for te[0, T] and j=1, 2, --+ , n—1, and

2. 5) 2ReS S b, s)atz (', 0, s)at(x 0, s)dx’

<Cfelllu(x, BIE+CEluta, DI
s )+ N, )12 s}

where C is a constant determined by p(x', t), € is an arbitrary positive number and
C(€) depends only on &.

Proof. At first remark that for any v(x)e H'(R%)
@6 | e, 0)%x <const.llo()If sxcer,
2.7) [ oo, 0w <ello@)Iz rcmyt CENOE) Brcary -
By the integration by parts

¢ ’ 62“ ’ au ’ ’
2ReSoa’sSRn_lp(x Vg (€ 0, g (', 0, 5)d

= ZRCSR"_I[pg? aa;:] dx’' Sdsgax (p(x s)

ot (x 0, s)‘ )dx

+S:dss »- l(gf(x 5) 7(x 0, s) -—ZReap(x s)g:lg;l)dx
since Sg?c]< ai‘(z)dxr:()
< lPloS ,,,l( ai‘(x’, 0, t)\2+‘gﬁ(x,, 0, t)\z
~(x 00)\ ’ (x 00)*

+2lp,l$odsSR"_l< ot

: )dx’
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by using (2.6) and (2.7)
<ot 2] o 2 )
-I—const ” (x, (x, )}

)

>ds ®

Thus (2.4) is proved. (2.5) is seen by the same manner. Q.E.D.

—I—]pllg const. (” (%, 8)

Lemma 2.3. For any u(x, ) H(R" X (0, T)), v(x, )y H¥(R" x((0, T))

t 2 -
(2. 8) 2Regods$m_l%f(x,’ 0, 5) o', 0, s)dx’

S C{Elllu(, 13+ CE)ulx, HIE+lo(x, I
+ (e, O)I13+Illo(x, O3

+{ s 13+l )15

holds, where C does not depend on u and v.

Proof.

2ReS:ds$ T 1,0, 5) o', 0, s)dx’

.
- 2ReSRn_l[£(x’, 0, ) m]:dx'
-—S:dsg g—;‘(x 0, s)g—;}(x’,—ﬂ,s)dx'
<fa ¢
S P (3

by using (2.6) and (2.7)

Ou 1 g, t)‘ o, 0, 8)]

( X, 0, 0)r+ lo(x’, 0, 0)|2>dx

)dx

(&', 0, s)r—|— ’%’(x', 0, 5)

6) For p(x)€B*(w) | pls denotes its norm, namely

(6x » (x)\

Iple= 2

su
o<k ’E"’
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2

<€

+c)| %y

ou
puthid ,t
ot &1

+ const. (Hv(x, £)/12+llo(x, 0)|12 +

= 0l)

j)a’s .

Thus we get (2.8). Q.E.D.

Lemma 2.4. Let p be any integer>1. There exists a constant M , such that
for any solution u(x, t)yeE(p+1, Q) of P(L, B) the estimate

2.9) e, 2)I1151,0 <M(Il1u(, DI, o+, DIl
I, 1B, o)

-+ const. S:( :—f—

2(s, )

29 (x, 9)

holds for all t<[0, T).

Proof. Let us remark that the well known a priori estimate concerning an
elliptic operator a,(x, t: D)

2

[ <K1(||a2wl|§,chg) +<£; w>
t

holds for all we H***(Q).
The differentiation of (1.1) and (1.3) with respect to ¢ of k-times gives

L[u(k)]+ 12; < f )L(f) [u(k‘j)] — f(k)

+nwnz)

I+1/2,L%s)

k
Buw)+33( 7 )B@ k] =0,
=1\J
Therefore we have for k=0, 1,2, ..- , p—1

k. /R
aU® = —qukD _ykrD_ SN ( i ) L[k P f®

=

__a_u(k) = —o,uktO— é ( k )B(j)[u(k"j)]

on, =\ g

J
and by applying the above apriori estimate by taking I=p—1—Fk we get

(2. 10) ||u(k)“§+1—k< Kp—l—k{

2
»

— QU — kD é ( k ) LP[uk 7]
J

j=1

+f(k)

j=1

<= 3B VB DLtz
-k ]

7) wkX(x, t) denotes the k-times derivative with respect to ¢ of a function w(x, t), L(k and
B(E are differential operators obtained by differentiating the corresponding coefficients of L and
B k-times in ¢.
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S PR (17 [ - | S | HIPIRS S

+ Il DIEA1Lf (6, D)IIE-.) 5

where K} depends on L, o, and k. First take k=p—1 and it follows

(2.11) lle®™|[3<const. (|[[u®|[|% o+ Ilu(x, DIIEHIFI15-,) -

Next take k=p—2, then

|[u®~?||3< const. (|[u®™ |3+ [1u®|13+lu(x, OIE+IFIIZ-)

substituting (2.11)

lw®=[13 <const. (|[|u®||3+llu(x, )13+ f1l15-1) -
Step by step we get for all k=0, 1, ---, p—1
[[e®] (71 _s <comst. (J[[u®[[[1+]llu(x, OllE+HIF G-,
from which (2.9) follows immediately. Q.E.D.

We state a simple lemma without proof.

Lemma 2.5. Let () and p(t) be two positive functions defined on [0, a]
(a>0). Suppose that y(t) is summable on (0, a) and that p(t) is non-decreasing.
Then the inequality

y(t)gcg'y(s)dwr p() forall &[0, a]
implies
y(®)<ep(2) for all =[O0, 4] .

Proof of Theorem 2

Proposition 2.6. Let k be a non-negative integer and ¢(x) be a real-valued
function in C5(R") with a support contained in an open set V. Let u(x, t)e H***
(R% X (0, T)) satisfy (1.1) in VN R} and (1.3) in VAR Then

(2.12) () (x, )%
<Ck{5|||u(x, Oll[f1,5+ @, I+, )13 27

£ O+ |2

2

ds

2
k-1,V

s

&, L%
t
+ e, 12 7ds)

holds for all te [0, T], where C, depends on L, B, @ and k and V=V N R%.
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Proof. Put v(x, t)=ep(x)u(x, ), then

(2.13) Llv(x, t)] = —([L, plu) (%, )+ p(x)f(x, t)
. 14) Blo(x, 1)] = — g;(f—)u(x’, 0, 1).

The differentiation of these two equations k-times with respect to ¢ gives

Li®(s, 1] = — 33( ¥ )Lop*1—(IL, ol ® (s 1
+p(x)f (s, 1

Blo®(x, )] = —k(2) ok (x, £)+ko fo® (s, 1)
( 9

on,
— é ( k )B(l) [.v(k—l)]
= \ [/
Ly _ s ( R0\ -0
P (=, 0, %) E( )( >u .

: =1\ [ /\on,

Then by applying Lemma 2.1 for v‘¥(x, t) we have

t
(215) 1o, D)l <I®(, 0)li5qy+el 1100 oli%ds

+S:||— g ( I; >L(1)[,v(k‘l)]_([L’ Plu)® -+ fP||2ds

+2Rest5(—k(i>,i)("‘l)—|— kojve — g?i e
0 0 P)

n; n;

—3y( i )Bfso]— 31 ( ; )(g—;”)u)%dx a-

1=2
Evidently we have

[lo®(z, 0)|Ifq{(0)<const. (llu®(x, O)13 L2+ Hu® D (x, 0)]|Z25)
k
[B> ( ’; )L”’[v‘k‘“]—([L, Plu)®(x, )| <const. [|[u(x, )||Z1.5 -

1=

Since

(B o1 B e w Yo

<const. [[[u(x, )IIF-14i,7>

by applying Lemma 2.3 we have
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(- 5§t 1= ()0
<Celllo(x, DI+CEN* (% DIIE+l*(x, O
e, 117+ lfuGe, O)I1E 5
+{ 1026, e+, 9115 7))
<Cellute, DllEr.5-+CENllutx, DI o-+llu(w, Ol Erep

+Illu(x, OIIE 5+ lu(x, 0)II1F v+s [loe(e, $)l1[341,5 ds} -

To estimate the remained terms remark that from (2.14)

oo 1 (n—l 0v 0v 0@ >
ov _ __ Ay — 14, A %)
ox, Ayn 12;": ]6xf+ 7 ot om,
then
-1 n-1 D
v (2 a,, 87)(” ,,,_|_o-1‘z)(k)~8—<pu(k—l))+Bk—1u s
8x,. ann =1 ant

where B,_, is a boundary operator of the order <k—1. Then

t ot oY .\,
ZRCSOdng"ﬂ%('k’(_(a_m) A )>dx

¢ (0U® g A \0vE
=2ReS dss (—Z(am—l— Gnn, ) ox, )dx

j=1 Aun

—[—2Reg dsS6 u* Op(x)By,_yu dx’

by applying Lemma 2.2 and 2.3

<Clelllos > (w, DIl -+ CEM*(x, DI +elllutx, D5
+CENu, DI 7-+luGx, Oy
s, O 5+ [ Ui, MIE 7+ e, )11, 7))

<C(&lliu, il 7+ CE)llutx DIIEy
i, Ol [ N, )11 9s)

And by applying Lemma 2.3 we have
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2ReS'dsS§”_("_)alﬁdx'
o J- 0t
<C(&llug, I, 7+CE)lug, DI+ llu(x, Ol 7

+ s iz 5 ds)

2Re$ta’ssM @—)u“’dx’
0 ot \Om,

= [laf(p69- 3200 Jurroua
from Lemma 2.3
<C(Elllute, DI, 7+ CEaw, DI+l O)l2 7
+{ s, 115 ds)
Therefore inserting these estimates into (2.15), we get for some C’
[0, t)||§¢(,)<c'{8||lu(x, ONI124. 5+ CE) Nl O)I1Z54lulx, OIZ. .5

+ (it )11 s+ 111w, )1 ds)

from this inequality (2.12) follows by using only
‘ 2

lla, O, p<const. (|, )it ot 22w, 0,

+11Lf, O)I1E-1,7)

which is derived from Lu=f, and

[ i 5 ds <const. (11, O+ |2, 9 as)

Q.E.D.

Now we prove Theorem 2. Let {p,(x)}]-, be a partition of unity in a
neighborhood of S, namely @ ;(x) C5(R") such that

i pixy =1 in a neighborhood of S.

Assume that the support of @, is contained in a sufficiently small neighbor-
hood U, of some s ;& S and there exists a smooth transformation W ;=(¢;,(x), ++- ,
¢ a(x)) from U; onto V'; in R” such that
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v(U,NQ)=V;NRY}
v(U;,NS)=V,;NR"!
Ws;)=0.
For the function w@(x) defined in a domain containing some U;NQ we

denote by ,(y) the function defined in V;N R} by @;(y)=d ;(¥ j(x))=w(x).
Then

(2. 16) Lla y 0 =7/»1 in (V,ARYX(, T)
(2.17) B;[#;(y, )] =0 in (V;nR*")x[0, T],
where

0 _aga By o
L —atz'i‘zzl(ghl ax )(J’, )ay ot

d 0 j; O ju t _82
- i:gl(ﬁ.qzl @ea 6xp 8xq >(y’ )ayxayk

+(first order)

o 0 Phin o, .0
- :—21 (p.qz=1 Gra 8x 690 ) y Gl(y ’ t)g .

From (2.16) and (2.17), Proposition 2.6 shows

I )53, t>||3{(t)<0,-m(|m,-(y, O)l& .27,

o ool e, ik,
+C )l (3, t)|nm+l,a,.+gonm,~(y, a5t
) t afj 2
70, Ol 4| 57 00 9], @)
therefore we have
(2 18) |I|¢i(x)u(m+l)(x’ t)”'iﬂgcim<”u(x’ 0)”3-+2,L2(Q)
2
+ 20" el Ol

+CEllu(, Dlllasr,a+ILf (5, 0)lll3,
(1% 9| dst e, )12 005)

And
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N
219) 0= X, U 0 < el Ol o

2

—|-U%‘(x, 0) +ll A, 0)lllm. 0

+]]

m+1,L%Q)

s+, NI 0 )

2
m

of s
5{(’”» )

Since it holds for some constant ¢,
N
™ (2, )11 2 < ,2;‘{ Il J(x)u™>(x, t)ll13 .0
N
+I(1— ?_.:1?’ H®)2u O} o el (=, 2)l|ixw

by summing up (2.18) and (2.19) and by applying Lemma 2.4 we get for some
constant C'/,

“lu(xs t)l”rzn+2,0

<Ciellut, I3 0t CElu, Olli3 . .a

2
+llu(x, )72, 20+ Il g%t(x, 0)

m+1, LA

2
ds
m,Q

L Ol o+ [0

+{ G, )12 acds)

Fix € such that C,&<1. Then we have for some constant C//

s )10 <CH (N1, )l 2

2

26, 0 UL Ol ot [ 9| _as

m+1, LA

+{ e, 91210 5)

here we used

s D% 0 comst. (11w, O)lf 0+ [ i, ) n0ds)

From this (2.1) follows by applying Lemma 2.5 by taking
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v(#) = [llu(x, t)ll|7 120
p(t) = Cr(llu(x, O)||2+s, L2+ Hg—?(x, 0)

2

m+1, LA
76 Ol ot (| 0] as).

Q.E.D.

3. Existence and regularity of the solution (Proof of Theorem 1)

At first we explain the compatibility condition of general order. Let m be
an integer>0 and {uy(x), u,(x)}€H"*Q)xH”"(Q) and f(x, t)e&(m, Q)
6 m m+2—
6—{(30, t)e H™(Q X (0, T)). Define u,(x)e H™** Q) (p=2, 3, ---, m+1) suc-

cessively by the formula

S(p—2
3.1)  u,(x)=— kEo(Pk ){aé”’(x, 0: Dyu,_4_,+as"(x, 0: Dyu,_j_.}
+f@2(x, 0) .
DeFINITION 3.1.  Given data u,(x), u,(x), f(x, t) such that u,(x)e H"”"*(Q),
u,(x)s H”*(Q), f(, t), g—{(x, e H™(Qx (0, T)) are said to satisfy the com-
patibility condition of order 7 when

S’:} (z )((-6—)(k)up‘-k_(o-l)(k)ul,—k«}-l + (0-2)(k)up—k> —0

=0 on,

holds on S for p=0,1, «--, m.

DerintTION 3.2. S™(L, B) is a space of all data ®=(u,, u,, f) satisfying
the compatibility condition of order m equipped with the following norm

chlvzn,o = ||uo] |735+2,L2(Q)+ [|2,] l12n+1,1,2(n)

117, Ol o+ [ 2 9

5 ds .

2
m,Q
Remark. S™(L, B) is a Hilbert space and S™*(L, B)c S™(L, B).

Lemma 3.1. Any element of S™(L, B) can be approximated by smooth
elements of S™(L, B).

Proof. Let ®=(u,, u,, f)eS™(L, B). Take sequences of sufficiently
smooth functions v;,,& H™*(Q), v;,€ H™*(Q), g,€ H™(Q X (0, T)) such that
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Vjo —> Uy in H™™Q)
v U in H™"(Q)
g—f in E&m Q)
og, 9f

2t 5 in H™Qx(0,T)).
Define v, for p=2, 3, ---, m+1 by (3. 1) from v,, v;, and g, and set

V(8) = :EO ( ]i )((6%)(")@#_,?_ (0)%j1 g1+ (o z)(")”ﬂ—k> .

Then v,,(s) (=0, 1, 2, ---, m) are sufficiently smooth function defined on S.

Since v;,—>u, in H”**"#(Q)) and ® S™(L, B) we have

(3.2) yu(s)—=>0 in H™~(S),

Let Q be the interior domain of S and consider the following boundary
value problem of a system of elliptic operators

(), = g, H4(0)
(P 9 \® B
(3.3) ”E" < k ><<8—”t> Dot (0'1)(k)wp—k+1+0”2(k)wp_k>
— rp(s)eHmH/z—p(S)
(p=0,1,2, .-, m).

It can be easily seen that for sufficiently large A>0 (3.3) has a unique
solution in w,& H™**"#(Q) and the estimate

(3.4) Syl e, <K 33 (gl By <Dk )

holds®.
Let w,, be the solution of (3.3) for ¢,=0, 7,=v,,(s). Then from (3.4)

1;0 |[wij12n+2—p<K( §<'Yjp>fn+1/z-p) —-0.
Now we take {uo, u;,, f;} as

Ujo = Vjo—Wjo

Uy =9;—Wj;

m =2/1-2
fi=8— E {ij— kgo ( k )(a(Zk)ij—k—2+a(1h)wjl—k—l)}

t?

(—2)"

8) The problem (3.3) satisfies the coerciveness condition by taking s;=i—m, ¢ j=m+2-— 7
7p=1—m+h, of Agmon-Douglis-Nirenberg (Comm. Pure and Appl. Math., XVII, 35-92).
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Then u;, (p=2, ---, m+1) constructed from @ ;= (o, u;, f;) are v;,—w;,,
therefore smooth data ®; are in S™(L, B) and evidently

I@j_le’Q - 0

when j—oo.

When Q is the exterior domain of S, the existence of an approximating
sequence is deduced to a case with a compact domain by introducing a sphere
S, containing S®. Q.E.D.

Let B, be the boundary operator defined by

0

%)
3.5 B,=2 _(0—62 10,
(3.5) om, (o )8t+<7

where € is any positive constant.

Lemma 3.2. For any element ®=(u,, u,, f)=S™(L, B) there exists a
sequence D ,=(u, u;,, f ;)€S™L, B,;) (=1, 2, -++) such that |®;—®}],, o—0.

Proof. u, (p=2, 3, -+, m+1) is derived from @ by (3.1).
2 0 \®@ 1 \@® X
vip(s) = k2=0 {(Fnt) Upre— (‘71 - 7) up—k+1+o-é )ul,_k}

= %ui,ﬂ(s)e H™He5(S) |

Q be the interior domain of .S and w;, be the solution of (3.3) for ¢,=0, 7,(s)
=1, then we have

g llw; 1312 —>0  (whenj— co).

Take u;o, u;,, f; as

ujo = uo_w]’o

U; = U—w

J J1

m t1—2
1=

o= et SOt W Wt

then &;=(u,,, u;,, f;)€S™L, By;) and |®;—®],, o—0 when j—oo.
Q.E.D.

Lemma 3.3. S™*'(L, B) is dense in S™(L, B).

9) See the proof of Proposition 4.1 of [6].
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Proof. From Lemma 3.1 for any ®< S™(L, B) there exists a smooth data
®,=S5™(L, B) which tends to ®. We can define #,,,,, by the formula (3.1)
by taking p=m-+2 for ®;. Since for a smooth function v(s) defined on S
there exists a sequence of v,(x)= H*(Q)N D;2(Q) such that

é%ovk(x) = 7(s) on S
IAIRPEES 1 ’
' k

we take w;(x)e H(Q)N Di2(Q) as ]Iw,-(x)l[l,l_2<m<% and

2 = E ) e

on, p=0 on
@) Pty
then put
®; = (0, u;—w;, f;)

when m=0, and

~ tm—'l

@;= (”io’ ”jufj—mwj)
when m>1. Then & ;€8™(L, B) and converges to ® in S™(L, B) when
J increases infinitely. Q.E.D.

Let ®=S™*(L, B) and take ® ;= S”"(L, B,/;) such that ®; converges to
®. For each @, there exists a unique solution u,(x, t)e&(m+3, Q) of
P(L, B,;;). Therefore from Theorem 2 we have

”lui(x’ t)”l'rzn+2,0 <Cm<”uj0| |12n+2,L2(Q)+Huj1”12n+1,L2(Q)

2

ds)
m,Q
where C,, does not depend on j,'* which shows {u,(x, )} ,_, .. is a bounded set
in H™*(Qx (0, T)), therefore weakly compact. Thus for some subsequence
{u; (%, t)}p=1,2,,.. converges weakly to some u(x, tye H™?*(Qx (0, T)). It
is easy to see that u(x, #) is the solution of P(L, B) for the data ®. Indeed
evidently u(x, #) satisfies L[u]=f, on the other hand

I G Ol ot § 2 s

10) When L and m are fixed, C,, depends on t% . Therefore C does not depend

0t | m+1

on j.
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1 Ou;
Bluy (] = — - 5 & 1)

holds and the left-hand side converges to B[u(x, t)] weakly and the right-hand
side tends to zero therefore B[u]=0. Similarily u(x, 0)=u,, %(x, 0) = u,(x)
is assured. Then we get

Proposition 3.4. For any ®<= S™*'(L, B) there exists a solution of P(L, B)
in H™**(Q x (0, T)).

With the aid of these facts we get immediately Theorem 1. Let &<
S™(L, B), since Lemma 3.2 shows S™**(L, B) is also dense in S™(L, B) there
exists a sequence of @ ;& S™*L, B) converging to ®. Proposition 3.4 assures
that the existence of the solution u;(x, t)e H”**(QXx (0, T)) of P(L, B) for
@;, then u(x, t)eE(m+2, Q).

By applying Theorem 2 for u,—u;
ggg] Il (0, 8)—wp(, t)l”72u+2,Q<le¢j_(pk|3n,Q .

t

This shows the convergence of u; in &(m+-2, Q). Denote its limit by u(x, ¢),
then the passage to the limit of

Llu;]=f;
Blu;]=0

u;(%, 0) = u o)

0 .
2 (% 0) = u;,(x)

when j—oo shows that u(x, t)e&(m-+2, Q) is the required solution. And we
also see the energy inequality

(3.5) [le(x, )l |lms200 < Cm(”“ol 2,2 2| [7rs, 2200
I Ol o+ |2, )

follows from the passage to the limit of the estimates
s )11 2.0< Co it B, 5+ 001 230
2
a’s> .
m,Q

Uniquencess of the solution is derived from the facts that for any solution
u(x, )e£(2, Q) of P(L, B) the energy inequality

175 01 ot {15225
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t
N, D11 el 220+ o+ 15, 2o )
holds, which follows from Lemma 2.1 and Lemma 2.5.

REMARK 3.5. If we combine Theorem 1 and 2 the following holds: For any
solution u(x, t) of P(L, B) in E(m+2, Q), if g—tf(x, HeH™Q x (0, T)), the

energy inequality

(3.6)  lllu(, t)lll3:.0<Cp (Ilu(x 0)112+2. 20> - “_(x,

m+1,L2(Q)

ds)
holds.

Proof. Since <I>=<u(x, 0), g;-‘(x, 0), f(x, t))eS"’(L, B), from Theorem 1

we have a solution @(x, t)e&(m-+2, Q) of P(L, B) for @ and for #(x, t) the

energy inequality (3.6) holds. On the other hand, from the uniqueness of

the solution, #(x, t) is nothing but wu(x, £). Thus (3.6) holds" for u(x, f).
Q.E.D.

+1£ G 00+ |2 9

ReMARK 3.6. Our problem P(L, B) has a finite velocity. Let A,(x, ¢: &),
A%, ¢: £) be the roots of the characteristic equation of L

x2+22h (%, D)E A — ; a; (%, EE, =0
for (x, t)eQ x [0, T]and £ R". Denote

(3' 7) 7\’max = SuP |7\‘j(x) L E)I
1El=1,7=1,2
*,HEQ X [0,T]

and A(%,, t,)={(*, t); |x—x,| < Npax (£,—1)}, then we have the following:

Let u(x, t) be C*-function defined in A(x,, t,)N(Q X [0, T]) satisfying
L{u]=0 in A(x,, t,)N(QX (0, T)) and Blu]=0 in A(x,, t,)N(S X[0, T]). If
u,(x), u,(x) are zero in A(x,, t,) N {Q, t=0}, u(x, t) is identically zero in A(x,, t,)
NQx(0, T)). Since the proof is essentially same as that of [16], we omit it.'

OsakA UNIVERSITY

11) See §5 of [16].
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