

Title	A splitting property of oriented homotopy equivalence for a hyperelementary group
Author(s)	Morimoto, Masaharu
Citation	Osaka Journal of Mathematics. 1982, 19(4), p. 745-761
Version Type	VoR
URL	https://doi.org/10.18910/4494
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Morimoto, M. Osaka J. Math. 19 (1982), 745-761

A SPLITTING PROPERTY OF ORIENTED HOMOTOPY EQUIVALENCE FOR A HYPERELEMENTARY GROUP

MASAHARU MORIMOTO

(Received December 5, 1980)

1. Introduction

Let G be a finite group. In this paper a G-space means a complex Grepresentation space of finite dimension. For a G-space V we denote by S(V)its unit sphere with respect to some G-invariant inner product. After tom Dieck [1] and [2] we call two G-spaces V and W oriented homotopy equivalent if there exists a G-map $f: S(V) \rightarrow S(W)$ such that for each subgroup H of G the induced map $f^H:S(V)^H \rightarrow S(W)^H$ on the H-fixed point sets has degree one with respect to the coherent orientations which are inherited from the complex structures on V^H and W^H . Let R(G) be the complex G-representation ring, $R_h(G)$ the additive subgroup of R(G) consisting of x=V-W such that V and W are oriented homotopy equivalent, and $R_0(G)$ the additive subgroup of R(G)consisting of x=V-W such that dim V^H =dim W^H for all the subgroups H of G. We denote by j(G) the quotient group $R_0(G)/R_h(G)$.

If G has a normal cyclic subgroup A and a Sylow p-subgroup H such that G is the semidirect product of H by A, we call G a hyperelementary group. Especially if G is the direct product of A and H, we call G an elementary group. tom Dieck showed that for an arbitrary finite group G the restriction homomorhpism from j(G) to the direct sum of j(K) is injective, where K runs over the hyperelementary subgroups of G ([1; Proposition 5.1]). Our purpose of this paper is to consider oriented homotopy equivalence for hyperelementary groups and to give a sufficient condition for a hyperelementary group to have a splitting property defined below.

Choose an integer *m* which is a multiple of the orders of the elements of *G*, and let Q(m) be the field obtained by adjoining the *m*-th roots of unity to *Q*, where *Q* is the field of rational numbers. The Galois group $\Gamma = \Gamma(m)$ of Q(m) over *Q* acts on R(G) via its action on character value. Actually Γ acts on the set Irr(G) of isomorphism classes of irreducible *G*-spaces. Let $Z[\Gamma]$ be the integral group ring of Γ , and $I(\Gamma)$ its augmentation ideal. Then we have $R_0(G) = I(\Gamma)R(G)$. We put $R_1(G) = I(\Gamma)R_0(G)$. According to [3] we have $R_1(G) \subset R_k(G)$. Let us say that *G* has *Property* 1 if $R_1(G)$ coincides with $R_k(G)$. For example the abelian groups and the p-groups have Property 1, and some hyperelementary groups do not have Property 1 (see [1] and [6]). In section 3 we obtain other groups which have Property 1.

For each orbit $C \in X(G) = Irr(G)/\Gamma$, we let F(C) be the free abelian group on elements of C. Then we have $R(G) = \bigoplus_{C \in X(G)} F(C)$. Let f_C be the canonical projection from R(G) to F(C). Let us say that G has Property 2 (we called this a splitting property) if for each element x of $R_k(G)$ and each element C of $X(G) f_C(x)$ belongs to $R_k(G)$. This property is of our interest. If G has Property 1, then G has Property 2; the converse is not true. It is remarkable that $R_k(G)$ is determined by oriented homotopy equivalence between the irreducible G-spaces if G has Property 2.

Our main results are Theorems 6.11 and 6.12, and the latter indicates the importance of Property 2. Additionally we give a counter example to [1; Proposition 5.2] in section 7.

The author wishes to express his hearty thanks to Professor M. Nakaoka and Professor K. Kawakubo for their kind advice.

2. Preparation

Let S(G) the set of normal subgroups of G. If a G-space V is given we write $V = \bigoplus_{H \in S(G)} V(H)$, where V(H) collects the faithful irreducible G/H-subspaces (see [2; p. 252]).

Lemma 2.1 ([2]). If $x=V-W \in R_h(G)$, then for all $H \in S(G)$ we have $x(H)=V(H)-W(H) \in R_h(G)$.

Let V and W be G-spaces. If f is an $N_G(H)$ -map from $S(V)^H$ to $S(W)^H$ and g is an element of G, then there uniquely exists an $N_G(gHg^{-1})$ -map h from $S(V)^{gHg^{-1}}$ to $S(W)^{gHg^{-1}}$ such that the following diagram is commutative:

$$\begin{array}{ccc} S(V)^{H} & \stackrel{f}{\longrightarrow} S(W)^{H} \\ & \downarrow^{g_{*}} & \downarrow^{g_{*}} \\ S(V)^{gHg^{-1}} & \stackrel{h}{\longrightarrow} S(W)^{gHg^{-1}} \end{array}$$

where g_* are the maps canonically given by the actions of g.

Proposition 2.2. Let V and W be G-spaces. We have $V^{H} - W^{H} \in R_{k}(N_{G}(H))$ if and only if we have $V^{gHg^{-1}} - W^{gHg^{-1}} \in R_{k}(N_{G}(gHg^{-1}))$.

Proof. This proposition follows from the fact that each g_* of the above diagram preserves the orientation of the sphere.

Let V and W be G-spaces such that dim $V^{H} = \dim W^{H}$ for all subgroups H of G (i.e. $V - W \in R_{0}(G)$). We put $n = \dim V(=\dim W)$. If g is an element of

G, g has n eigenvalues $a_1(g), \dots, a_n(g)$ (resp. $b_1(g), \dots, b_n(g)$) with respect to its action on V (resp. W). We reorder $(a_j(g))$ and $(b_j(g))$ as follows: there is an integer k such that for each j < k we have $a_j(g) = b_j(g) = 1$ and for each $j \ge k$ we have $a_j(g) \neq 1$ and $b_j(g) \neq 1$. We get an algebraic integer z(g) defined by

$$z(g) = \prod_{j=1}^{n} (1-b_j(g))/(1-a_j(g))$$
,

where we put $(1-b_j(g))/(1-a_j(g))=1$ for j < k. Summing up these algebraic integers z(g) over the elements g of G we have an integer P=P(G; W-V), that is,

$$P(G; W-V) = \sum_{g \in \mathcal{G}} z(g) \, .$$

Lemma 2.3 (due to T. Petrie). Let V and W be G-spaces as above. V and W are oriented homotopy equivalent if and only if the following two conditions (i) and (ii) are satisfied.

(i) For each non-trivial subgroups H of G (i.e. $H \neq \{1\}$), we have $V^{H} - W^{H} \in R_{h}(N_{G}(H))$.

(ii) It holds that $P(G; W-V) \equiv 0 \mod |G|$.

Provided (i), then (ii) is equivalent to the condition: $P(G; V-W) \equiv 0 \mod |G|$.

Let s be a positive integer, and V a G-space of dimension n. We are going to define an element Q(s; V) of R(G). Let $x(1), \dots, x(n)$ be indeterminates, and y(i) the elementary symmetric polynomial of degree *i* for each $1 \leq i \leq n$. We define a polynomial Q of $y(1), \dots, y(n)$ by

$$Q(y(1), \dots, y(i), \dots, y(n)) = \prod_{j=1}^{n} (1 + x(j) + \dots + x(j)^{s-1}).$$

We define Q(s; V) by

 $Q(s; V) = Q(V, \dots, \Lambda^{j}V, \dots, \Lambda^{n}V),$

where $\Lambda^{j}V$ is the *j*-fold exterior power of V. By the usual identification we let Q(s; V)(g) stands for trace (g; Q(s; V)). Then it holds that

(2.4)
$$Q(s; V)(g) = \prod_{j=1}^{n} (1 + a_j(g) + \dots + a_j(g)^{s-1}),$$

where $a_1(g), \dots, a_n(g)$ are all the eigenvalues of g on V. Since $Q(s; V) \in R(G)$, we have

(2.5)
$$\sum_{h\in\mathcal{H}} Q(s; V)(h) \equiv 0 \mod |H|$$

for each subgroup H of G.

3. A few remasks about Property 1

Let L be a finite abelian group. We denote the integral group ring of L by Z[L], the augmentation ideal of Z[L] by I(L), i.e.

$$I(L) = \{\sum_{x \in L} z(x)x: z(x) \in \mathbb{Z}, \text{ and } \sum_{x \in L} z(x) = 0\}$$
,

where Z is the ring of integers.

Proposition 3.1. We have the following.

- (i) For x, $x' \in L$, it holds that $xx' x \equiv x' 1 \mod I(L)^2$.
- (ii) For $x \in L$ and $z \in Z$, it holds that $zx-z1 \equiv x^{z}-1 \mod I(L)^{2}$.
- (iii) $I(L)/I(L)^2$ is isomorphic to L.

Since the proof is straightforward, we omit it.

Let G be a direct product $H \times K$ as finite group. We denote by ϕ the Euler function, that is, for a positive integer $n \phi(n)$ is the number of the units of $Z_n = Z/(n)$.

Proposition 3.2. Let V be an irreducible H-space, and W an irreducible K-space. Assume $(\phi(|H|), \dim W) = (\phi(|K|), \dim V) = 1$. Then for an element

 $x = \sum_{\gamma \in \Gamma} z(\gamma) \gamma(V \otimes W) \in R_0(G)$,

x belongs to $R_1(G)$ if and only if $\operatorname{Res}_{H}^G x \in R_1(H)$ and $\operatorname{Res}_{K}^G x \in R_1(K)$, where $z(\gamma)$ are integers.

Proof. The only if part is clear. We are going to prove the if part. Γ acts on the orbits $\Gamma(V \otimes W)$, ΓV and ΓW which are subsets of Irr(G), Irr(H) and Irr(K) respectively. Let $\Gamma_{V \otimes W}$, Γ_V and Γ_W be the isotropy subgroups of $V \otimes W$, V and W respectively. We have $\Gamma_{V \otimes W} = \Gamma_V \cap \Gamma_W$. Put $M = \Gamma/\Gamma_V$ and $N = \Gamma/\Gamma_W$. The order of M (resp. N) divides $\phi(|H|)$ (resp. $\phi(|K|)$). Since $x \in R_0(G)$, there exists $\mu \in \Gamma$ such that

$$x \equiv (\mu - 1)(V \otimes W) \mod R_1(G)$$
.

We put $y=(\mu-1)$ $(V \otimes W)$. $\operatorname{Res}_{H}^{G} x \in R_{1}(H)$ and $\operatorname{Res}_{K}^{G} x \in R_{1}(K)$ are equivalent to $\operatorname{Res}_{H}^{G} y \in R_{1}(H)$ and $\operatorname{Rcs}_{K}^{G} y \in R_{1}(K)$ respectively. We have $\operatorname{Res}_{H}^{G} y=(\dim W)$ $(\mu-1)V$. By Proposition 3.1 (ii) it holds that

$$\operatorname{Res}_{H}^{G} y \equiv (\mu^{\dim W} - 1) V \mod R_{1}(H) .$$

Res^G_H $y \in R_1(H)$ implies $\mu^{\dim W} \in \Gamma_V$. Since $(|M|, \dim W) = 1$, we have $\mu \in \Gamma_V$. In the same way we obtain $\mu \in \Gamma_W$. Therefore we have $\mu \in \Gamma_{V \otimes W}$; this means y=0 in R(G). Consequently x belongs to $R_1(G)$.

For a group G we denote by C(G) its center. Since the dimensions of the

irreducible G-spaces divide |G/C(G)|, we have the following proposition.

Proposition 3.3. If both H and K have Property 1 and if it holds that $(|H/C(H)|, \phi(|K|)) = (|K/C(K)|, \phi(|H|)) = 1$, then $G = H \times K$ has Property 1.

As the abelian groups and the p-groups have Property 1, we have the following.

Corollary 3.4. Let H be an abelian group, and K a p-group. Provided $(\phi(|H|), p)=1$, then $G=H \times K$ has Property 1.

Corollary 3.5. Let H be a p-group and K a q-group. Provided (p, q) = (p, q-1)=(q, p-1)=1, then $G=H \times K$ has Property 1.

4. The irreducible spaces of the hyperelementary group

Let G have a normal cyclic subgroup A and a Sylow p-subgroup H such that G is the semidirect product of H by A, that is, G is a hyperelementary group. The irreducible representations of G can be constructed by the method of little group of Wigner and Mackey (see [7; 8.2]).

Since A is cyclic, its irreducible representations form a group Y. The group G acts on Y by

$$(g\chi)(a) = \chi(g^{-1}ag)$$

for $g \in G$, $\chi \in Y$, $a \in A$. This action induces the action of G on the set Irr(A)of irreducible A-spaces. For $V \in Irr(A)$ and $g \in G$, we have an irreducible Aspace g_*V by this action. Let $\{V(i): i \in Y/H\}$ be a system of representatives for the orbits of H. For each $i \in Y/H$, let H(i) be the subgroup of H consisting of those elements h such that $h_*V(i)=V(i)$, and let G(i)=AH(i) be the corresponding subgroup of G. We can canonically extend V(i) to the G(i)space, that is, $h \in H(i)$ acts trivially on V(i). Let W be an irreducible H(i)-space; W can be extended to G(i)-space, too. By taking the tensor product of V(i)and W we obtain an irreducible G(i)-space $V(i) \otimes W$. Then $Ind_{G(i)}^{C}V(i) \otimes W$ is irreducible, moreover each irreducible G-space is obtained in this way ([7; Proposition 25]).

We denote by $C_H(A)$ the centralizer of A in H, i.e.

$$C_H(A) = \{g \in H : g^{-1}ag = a \text{ for all } a \in A\}.$$

Proposition 4.1. If the kernel of $\operatorname{Ind}_{G(i)}^G V(i) \otimes W$ is $\{1\}$, then the kernel of the A-space V(i) is $\{1\}$, and $H(i) = C_H(A)$.

Proof. This comes from the fact that ker $V(i) \subset \ker \operatorname{Ind}_{G(i)}^{G} \{V(i) \otimes W\}$.

Since $C_H(A)$ is normal in H, H acts on $Irr(C_H(A))$ by

М. Могімото

$$(\chi_{g*W})(h) = \chi_W(g^{-1}hg),$$

where $g \in H$, $h \in H$, and χ_W is the corresponding character to $W \in Irr(C_H(A))$.

Proposition 4.2. Put $K=C_H(A)$, and let V be an irreducible A-space with the trivial kernel, W an irreducible K-space and h an element of H. Then we have

 $\operatorname{Ind}_{AK}^{G} V \otimes (h_*W) = \operatorname{Ind}_{AK}^{G} (h^{-1}_*V) \otimes W$

Proof. If we identify the representation spaces with the corresponding characters, by direct calculation we have

 $\{\operatorname{Ind}_{AK}^{G}V\otimes(h_{*}W)\}(g)=\operatorname{Ind}_{AK}^{G}\{(h^{-1}_{*}V)\otimes W\}(g) \quad \text{for each } g\in G.$

Proposition 4.3. We have the following.

- (i) $\gamma \operatorname{Ind}_{G(i)}^{G} V(i) \otimes W = \operatorname{Ind}_{G(i)}^{G} (\gamma V(i)) \otimes (\gamma W)$ for $\gamma \in \Gamma$.
- (ii) $\operatorname{Res}_{H}^{G}\operatorname{Ind}_{G(i)}^{G}V(i)\otimes W=\operatorname{Ind}_{H(i)}^{H}W.$
- (iii) Res^G_A Ind^G_{G(i)} $V(i) \otimes W = \dim W \bigoplus_{i=W/W(i)} h_*V(i)$
- (iv) If ker $\operatorname{Ind}_{G(i)}^{G} V(i) \otimes W = \ker \operatorname{Ind}_{G(j)}^{G} V(j) \otimes W'$, then we have H(i) = H(j).

Proof. (i): This holds clearly.

(ii): Since $H \setminus G/G(i)$ consists of the only one coset, (ii) follows from the Mackey decomposition.

(iii): Since $A \setminus G/G(i)$ can be identified with H/H(i), we have (iii) by the Mackey decomposition.

(iv): Put $U = \operatorname{Ind}_{G(i)}^{c} V(i) \otimes W$ and $U' = \operatorname{Ind}_{G(j)}^{c} V(j) \otimes W'$. From ker $U = \ker U'$ we have ker $\operatorname{Res}_{A}^{c} U = \ker \operatorname{Res}_{A}^{c} U'$. By (iii) we have ker $V(i) = \ker V(j)$. This implies H(i) = H(j).

Proposition 4.4. Put $K=C_H(A)$, and let V be an irreducible A-space with the trivial kernel, U and W irreducible K-spaces. Set $M=\operatorname{Ind}_{AK}^{G}V\otimes U$ and $N=\operatorname{Ind}_{AK}^{G}V\otimes W$. Provided $\Gamma M \neq \Gamma N$ as subset of Irr(G), then we have

$$\langle \Gamma \operatorname{Res}^{G}_{K} M, \Gamma \operatorname{Res}^{G}_{K} N \rangle_{K} = \{0\}$$
.

Proof. For $\gamma \in \Gamma$ we have

$$\gamma \operatorname{Res}^G_K M = \bigoplus_{[h] \in \pi/K} \gamma h_* U$$

by Proposition 4.3 (ii). Proposition 4.2 implies $\operatorname{Ind}_{AK}^{G} V \otimes (h_* U) \in \Gamma M$. Since $\Gamma M \neq \Gamma N$, we have

$$\langle \gamma h_* U, \gamma' h'_* W \rangle_{\kappa} = 0$$

for each $\gamma \in \Gamma$, $\gamma' \in \Gamma$, $[h] \in H/K$ and $[h'] \in H/K$. This relation yields the consequence of Propoitions 4.4.

Proposition 4.5. Let L be a subgroup of H, then we have $N_G(L) = C_A(L)N_H(L)$.

Proof. Let a and h are elements of A and H respectively. If $ah \in N_G(L)$, we have $(ah)^{-1}Lah = L$, consequently $a^{-1}La = hLh^{-1}$. For each $g \in L$, there exists $h' \in H$ such that $a^{-1}ga = h'$. Then we have $a^{-1}(gag^{-1}) = h'g^{-1} \in A \cap H$. This means that $a^{-1}gag^{-1} = 1$ and $h'g^{-1} = 1$. Therefore we have ga = ag, that is, we have $a \in C_A(L)$. This yields $L = hLh^{-1}$. We obtain $h \in N_H(L)$. The above argument shows $N_G(L) \subset C_A(L)N_H(L)$. On the other hand $N_G(L) \supset C_A(L)N_H(L)$ holds obviously. Hence we have $N_G(L) = C_A(L)N_H(L)$.

Let h be an element of H, then h acts on the generators a of A by

$$h \cdot a = hah^{-1}$$
.

Let L be the subset of H consisting of elements h such that

$$T(h) = \prod_{b \in \langle h \rangle^{a}} b$$

is not equal to the unit element 1 of G, where a is a fixed generator of A, and $\langle h \rangle \cdot a$ is the orbit of a with respect to the above action of the group $\langle h \rangle$ generated by h. L is defined independently of the choice of a.

Proposition 4.6. The above L is a subgroup of H.

Proof. If $h \in K = C_H(A)$, we have $\langle h \rangle \cdot a = \{a\}$. This implies $T(h) \neq 1$. We get $L \supset K$, moreover we see that L is the union of several cosets of H/K. We remark that H/K is a cyclic *p*-group. If we can show that $h \in L$ implies $h^m \in L$ for $1 \leq m \leq p$, we see that L is a subgroup of H.

Suppose $1 \le m < p$. Since $\langle h \rangle \cdot a = \langle h^m \rangle \cdot a$, $h \in L$ implies $h^m \in L$.

Let h be an element of H-K, then we have the disjoint sum such that

$$\langle h \rangle \cdot a = \prod_{j=0}^{p-1} h^j \langle h^p \rangle \cdot a$$
.

If $T(h^p) = 1$, we have

$$T(h) = \prod_{j=0}^{p-1} h^j T(h^p) h^{-j} = 1$$
.

Therefore $h^{p} \notin L$ implies $h \notin L$; this means that $h \in L$ implies $h^{p} \in L$. This completes the proof of Proposition 4.6.

Proposition 4.7. Put $K=C_H(A)$, and let V be an irreducible A space with the trivial kernel, W a K-space, a generator of A and h an element of H. We have the following.

(i) Provided $h \in H-L$, the all eigenvalues of ah on $\operatorname{Ind}_{AK}^{G}V \otimes W$ are determined independently of the choice of the generator a of A.

(ii) Provided $h \in L$, ah does not have 1 as its eigenvalue on $\operatorname{Ind}_{AK}^G V \otimes W$. Here L is the group defined above.

As we can prove this by direct calculation, we omit the proof.

5. On the case: G is generated by two elements

In this section G=AH will be a hyperelementary group such that H is cyclic.

REMARK 5.1. Let K be a subgroup of H, then K is normal in H. If W is a K-space, then for any $h \in H$ we have $h_*W = W$.

Proposition 5.2. We have the following.

(i) Let $U = \text{Ind}_{G(i)}^{c} V(i) \otimes W$ be an irreducible G-space. Then ker U = (ker V(i))(ker W) holds, where ker $V(i) \subset A$ and ker $W \subset H(i)$.

(ii) If irreducible G-spaces U and U' have the same kernel, $\Gamma U = \Gamma U'$ holds.

(iii) G has Property 2.

Proof. (i): By the definition of the induced representation and Remark 5.1 we obtain ker $U=(\ker V(i))(\ker W)$.

(ii): Suppose $U = \operatorname{Ind}_{G(i)}^{G} V(i) \otimes W$ and $U' = \operatorname{Ind}_{G(j)}^{G} V(j) \otimes W'$, then by (i) we have ker $V(i) = \ker V(j)$ and ker $W = \ker W'$ (see Proposition 4.3 (iv)). Since both A and H(i) = H(j) are cyclic, we have $\Gamma V(i) = \Gamma V(j)$ and $\Gamma W = \Gamma W'$. From Proposition 4.3 (i) we obtain $\Gamma U = \Gamma U'$.

(iii): Lemma 2.1 and above (ii) imply (iii).

Proposition 5.3. Let V(i) be an irreducible A-space as before, W an H(i)-space and γ an element of Γ . Put $x = \operatorname{Ind}_{G(i)}^{C} \{(\gamma V(i)) \otimes W - V(i) \otimes W\}$. Then x belongs to $R_{h}(G)$ if and only if $\operatorname{Res}_{G(i)}^{C} x$ belongs to $R_{h}(G(i))$.

Proof. The only if part is clear. We will prove the if part by induction on |G|. If |A|=1 or |H|=1 then Proposition 5.3 is trivial. Make the inductive hypothesis: for each hyperelementary group of the same type as G has and of smaller order than |G| Proposition 5.3 is valid.

We assume that $\operatorname{Res}_{G(i)}^{G} x$ belongs to $R_{h}(G(i))$. By Lemma 2.1 and the inductive hypothesis it is sufficient to prove the proposition in the case: $V(i)(\{1\}) = V(i)$ and $W(\{1\}) = W$. In this case we have $x^{L} = 0$ in $R(N_{G}(L))$ for each non-trivial subgroup L of G. By Lemma 2.3 we complete the proof if we show $P = P(G; x) \equiv 0 \mod |G|$. Choose a positive integer s such that

 $\gamma(\exp(2\pi\sqrt{-1}/|A|)) = \exp(2\pi s\sqrt{-1}/|A|) \text{ and } s \equiv 1 \mod |H|.$

By (2.4) and (2.5) we have

$$P \equiv \sum_{s \in G} \{ z(g) - Q(s; \operatorname{Ind}_{G(i)}^{G} V(i) \otimes W)(g) \} \mod |G|$$

= 1-sⁿ,

where $n = \dim \operatorname{Ind}_{G(i)}^{C} V(i) \otimes W$. Since $s \equiv 1 \mod |H|$, we have $P \equiv 0 \mod |H|$. On the other hand $\operatorname{Res}_{G(i)}^{C} x \in R_{k}(G(i))$ implies $\operatorname{Res}_{A}^{C} x \in R_{k}(A)$; we have $P(A; \operatorname{Res}_{A}^{C} x) \equiv 0 \mod |A|$. From (2.5) we obtain

$$\sum_{s \in \mathcal{A}} \{ z(g) - Q(s; \operatorname{Ind}_{G(i)}^{\mathcal{G}} V(i) \otimes W)(g) \} \equiv 0 \mod |\mathcal{A}|.$$

The left hand side of the above relation is equal to $1-s^n$. This means that $P \equiv 0 \mod |A|$. Consequently we have $P \equiv 0 \mod |G|$. This completes the proof.

Proposition 5.4. Let V(i) be an irreducible A-space as before, and U and W H(i)-spaces. Put $x = \text{Ind}_{G(i)}^{c}(V(i) \otimes U - V(i) \otimes W)$. Then x belongs to $R_{h}(G)$ if and only if Res_{H}^{c} x belongs to $R_{h}(H)$.

Proof. The only if part is clear. We will prove the if part by induction on |G|. If |A|=1 or |H|=1 then Proposition 5.4 is trivial. Make the inductive hypothesis: for each hyperelementary group of the same type as G and of smaller order than |G| Proposition 5.4 is valid.

We assume that $\operatorname{Res}_{H}^{G} x$ belongs to $R_{h}(H)$. By Lemma 2.1 and the inductive hypothesis it is sufficient to prove the proposition in the case: V(i) ({1})=V(i), $U(\{1\})=U$ and $W(\{1\})=W$. Since $K=C_{H}(A)$ is cyclic, those conditions imply

$$U-W\equiv\gamma W_0-W_0 \mod R_1(K)$$
,

where W_0 is some irreducible K-space with the trivial kernel and γ is some element of Γ . Without loss of generality we may assume that $W=W_0$ and $U=\gamma W_0$. By this assumption we have $x^L=0$ for each non-trivial subgroup L of G. If we show that $P=P(G; x)\equiv 0 \mod |G|$, by Lemma 2.4 we obtain Proposition 5.4. Choose a positive integer s such that

$$\gamma(\exp(2\pi\sqrt{-1}/|H|)) = \exp(2\pi s\sqrt{-1}/|H|) \text{ and } s \equiv 1 \mod |A|.$$

By (2.4) and (2.5) we have

$$P \equiv \sum_{s \in \mathcal{G}} \{ z(g) - Q(s; \operatorname{Ind}_{G(i)}^G V(i) \otimes W)(g) \} \mod |G|$$
$$= 1 - s^n,$$

where $n = \dim \operatorname{Ind}_{G(i)}^{G} V(i) \otimes W$. Since $s \equiv 1 \mod |A|$, we have $P \equiv 0 \mod |A|$. On the other hand, $\operatorname{Res}_{H}^{G} x \in R_{h}(H)$ implies $P(H; \operatorname{Res}_{H}^{G} x) \equiv 0 \mod |H|$. From (2.5) we obtain

$$\sum_{z \in \mathcal{G}} \{ z(g) - Q(s; \operatorname{Ind}_{\mathcal{G}(i)}^{\mathcal{G}} V(i) \otimes W)(g) \} \equiv 0 \mod |H|.$$

The left hand side of the above relation is equal to $1-s^n$. This means that $P \equiv 0 \mod |H|$. Consequently we have $P \equiv 0 \mod |G|$.

Proposition 5.5. Let V(i) be an irreducible A-space as before, W an irreducible H(i)-space, and γ and γ' elements of Γ . Put $x = \text{Ind}_{G(i)}^{C} \{\gamma(V) \otimes (\gamma'W) - V \otimes W\}$. Then x belongs to $R_h(G)$ if and only if $\text{Res}_{G(i)}^{C} x \in R_h(G(i))$ and $\text{Res}_{H}^{G} x \in R_h(H)$.

Proof. The only if part is clear. We prove the if part. Put

$$y = \operatorname{Ind}_{\mathcal{G}(i)}^{\mathcal{G}} \{ (\gamma V(i)) \otimes (\gamma' W) - (\gamma V(i)) \otimes W \} \text{ and} \\ z = \operatorname{Ind}_{\mathcal{G}(i)}^{\mathcal{G}} \{ (\gamma V(i)) \otimes W - V(i) \otimes W \} .$$

We have x=y+z; we have $\operatorname{Res}_{H}^{G} x = \operatorname{Res}_{H}^{G} y$. $\operatorname{Res}_{H}^{G} x \in R_{h}(H)$ means that $\operatorname{Res}_{H}^{G} y \in R_{h}(H)$. By Proposition 5.4 we have $y \in R_{h}(G)$. This and $\operatorname{Res}_{G(i)}^{G} x \in R_{h}(G(i))$ imply $\operatorname{Res}_{G(i)}^{G} z \in R_{h}(G(i))$. By Proposition 5.3 we have $z \in R_{h}(G)$. Consequently we have $x=y+z \in R_{h}(G)$.

6. Hyperelementary groups and Property 2

In this section G = AH will be a hyperelementary group such that all the elementary subgroups of the quotient groups of the subgroups of G have Property 2.

REMARK. If an elementary group $K = A \times H$ satisfies one of the conditions: (i) $(\phi(|A|), p) = 1$, (ii) $|H| \le p^4$ and (iii) H is metacyclic, then K has Property 2.

Let R(G, f) be the subgroup of R(G) built from the irreducible G-spaces which yield faithful A-spaces when they are restricted to A. Put $R_{k}(G, f) = R(G, f) \cap R_{k}(G)$, and $R_{0}(G, f) = R(G, f) \cap R_{0}(G)$.

Proposition 6.1. Let x be an element of $R_h(G, f)$, B a subgroup of A and K a subgroup of $C_H(B)$. Then for each $C \in X(G) = Irr(G)/\Gamma$ we have $\operatorname{Res}_{BK}^G f_C(x) \in R_h(BK)$.

Proof. It is sufficient to prove the proposition in the case that $K=C_H(B)$. In this case we have $K \subset C_H(A)$. Put $L=C_H(A)$. Let V be an irreducible A-space with the trivial kernel, and U and W irreducible L-spaces. If $\Gamma \operatorname{Ind}_{AL}^G V \otimes U \neq \Gamma \operatorname{Ind}_{AL}^G V \otimes W$, we have

 $\langle \Gamma \operatorname{Res}_{BK}^{G} \operatorname{Ind}_{AL}^{G} V \otimes U, \Gamma \operatorname{Res}_{BK}^{G} \operatorname{Ind}_{AL}^{G} V \otimes W \rangle_{BK} = \{0\}$

by Proposition 4.4. Since BK has Property 2 by the assumption, we have $\operatorname{Res}_{BK}^{G} f_{C}(x) \in R_{h}(BK)$ for each $C \in X(G)$.

Proposition 6.2. Put $K = C_H(A)$, and let V be an irreducible A-space with

the trivial kernel, $W \ a \ K$ -space and γ an element of Γ . Put $x = \operatorname{Ind}_{AK}^G \{(\gamma V) \otimes W - V \otimes W\}$. Then x belongs to $R_h(G)$ if and only if for each subgroup B of A and $L = C_H(B)$ we have $\operatorname{Res}_{BL}^G x \in R_h(BL)$.

Proof. The only if part is clear. We will prove the if part by induction on |G|. If |A|=1 or |H|=1, then Proposition 6.2 is trivial. Make the inductive hypothesis: for each hyperelementary group which satisfies the same condition as G satisfies and whose order is smaller than |G| Proposition 6.2 is valid.

Assume that for each $B \subset A$ and $L = C_H(B)$ we have $\operatorname{Res}_{BL}^G x \in R_h(BL)$. Firstly we get $x \in R_0(G)$. By Propositions 3.1, 4.3, 4.4 and 6.1 it is sufficient to prove the proposition in the case that there exist a positive integer r, an irreducible K-space U and elements h(m) of H, $1 \leq m \leq r$, such that

$$W = \bigoplus_{m=1}^{r} h(m)_* U.$$

By Propositions 3.1 and 4.2 we have

$$\operatorname{Ind}_{AK}^{G} \{ (\gamma V) \otimes h(m)_{*} U - V \otimes h(m)_{*} U \} \equiv \operatorname{Ind}_{AK}^{G} \{ (\gamma V) \otimes U - V \otimes U \} \mod R_{I}(G).$$

This enables us to assume that W itself is irreducible.

Assertion 6.3. Let $M \neq \{1\}$ be a subgroup of G We have $x^M \in R_h(N_G(M))$.

Proof. If $A \cap M \neq \{1\}$, then we have $x^M = 0$ in $R(N_G(M))$. We assume $A \cap M = \{1\}$. In this case M is conjugate to a subgroup of H. By Proposition 2.2 we may assume $M \subset H$. By Proposition 4.5 we have $N_G(M) = C_A(M)N_H(M)$. The proof is divided into the following three cases.

Case 1.
$$C_A(M) \neq A$$

Put $B = C_A(M)$, $L = C_H(B)$ and $y = \operatorname{Res}_{BH}^G x$. We have
 $y = \operatorname{Ind}_{BK}^{BH} \{ (\gamma \operatorname{Res}_B^A V) \otimes W - (\operatorname{Res}_B^A V) \otimes W \}$

By Proposition 25 of [7; 8.2] we have y in another form as follows:

 $y = \operatorname{Ind}_{BL}^{BH} \{ (\gamma \operatorname{Res}_{B}^{A} V) \otimes U - (\operatorname{Res}_{B}^{A} V) \otimes U \},\$

where U is an L-space. For a subgroup C of B, we put $N=C_H(C)$; we have $\operatorname{Res}_{CN}^{BH} y=\operatorname{Res}_{CN}^{G} x\in R_h(CN)$ by the assumption. By the inductive hypothesis y belongs to $R_h(BH)$. This implies $x^M=y^M\in R_h(N_G(M))$.

Case 2.
$$C_A(M) = A$$
 and $N_H(M) \neq H$
Put $N = N_G(M)$, $D = H \cap N$, $E = K \cap N$ and $y = \operatorname{Res}_N^G x$, then we have
 $y = \sum_{\{k\} \in H/DK} \operatorname{Ind}_{AE}^N \{(\gamma h_* V) \otimes (\operatorname{Res}_E^K h_* W) - (h_* V) \otimes (\operatorname{Res}_E^K h_* W)\}$.

By Proposition 3.1 we have

M. Morimoto

$$y \equiv \sum_{Ih \in \mathcal{A}/DK} \operatorname{Ind}_{AE}^{N} \{(\gamma V) \otimes (\operatorname{Res}_{E}^{K} h_{*}W) - V \otimes (\operatorname{Res}_{E}^{K} h_{*}W) \mod R_{1}(N)$$
$$= \operatorname{Ind}_{AE}^{N} \{(\gamma V) \otimes U - V \otimes U\},$$

where

$$U = \bigoplus_{[h] \in \mathcal{H} / \mathcal{D} \mathcal{K}} \operatorname{Res}_{E}^{K} h_{*} W$$

For a subgroup B of A and $L=C_D(B)$ we have $\operatorname{Res}_{BL}^N y=\operatorname{Res}_{BL}^G x \in R_h(BL)$. We have $y \in R_h(N_G(M))$ by the inductive hypothesis. This implies $x^M = y^M \in R_h(N_G(M))$.

Case 3. $N_G(M) = G$

We have reduced the problem to the case that W is irreducible. In this case $\operatorname{Ind}_{AX}^{G}(\gamma V) \otimes W$ and $\operatorname{Ind}_{AK}^{G} V \otimes W$ are irreducible. If $(\operatorname{Ind}_{AK}^{G} V \otimes W)^{M} \neq \{0\}$, then we have $(\operatorname{Ind}_{AK}^{G} V \otimes W)^{M} = \operatorname{Ind}_{AK}^{G} V \otimes W$. We get ker $\operatorname{Ind}_{AX}^{G} V \otimes W$ $\supset M$. By the inductive hypothesis we have $x \in R_{h}(G)$. This completes the proof of Assertion 6.3.

If we show $P=P(G; x)\equiv 0 \mod |G|$, we complete the proof of Proposition 6.2. Choose a positive integer s such that

$$\gamma(\exp(2\pi\sqrt{-1}/|A|)) = \exp(2\pi s\sqrt{-1}/|A|)$$
 and $s \equiv 1 \mod |H|$.

By (2.4) and (2.5) we have

$$P \equiv \sum_{s \in G} \{z(g) - Q(s; \operatorname{Ind}_{AK}^G V \otimes W)(g)\} \mod |G|.$$

Since $s \equiv 1 \mod |H|$, we have $F \equiv 0 \mod |H|$. On the other hand there exist integers n_c for the cyclic subgroups C of H such that

$$P = \sum_{\mathcal{C} < \mathcal{H} : \text{cyclic}} n_{\mathcal{C}} P(G; \operatorname{Res}_{AC}^{G} x)$$

If we can show $P(G; \operatorname{Res}_{AC}^{G} x) \equiv 0 \mod |A|$, we see that $P \equiv 0 \mod |A|$; consequently we obtain $P \equiv 0 \mod |G|$. $P(G; \operatorname{Res}_{AC}^{G} x) \equiv 0 \mod |A|$, follows from the following assertion.

Assertion 6.4. For each cyclic subgroup C of H, we have $\operatorname{Res}_{AC}^{G} x \in R_{h}(AC)$.

Proof. Put
$$y = \operatorname{Res}_{AC}^{C} x$$
 and $M = C \cap K$. We have

$$y = \sum_{\{k\} \in \mathcal{A}/\mathcal{OK}} \operatorname{Ind}_{AM}^{AC} \{ (\gamma h_* V) \otimes (\operatorname{Res}_{M}^{K} h_* W) - (h_* V) \otimes (\operatorname{Res}_{M}^{K} h_* W) \}$$

$$\equiv \sum_{\{k\} \in \mathcal{A}/\mathcal{OK}} \operatorname{Ind}_{AM}^{AC} \{ (\gamma V) \otimes (\operatorname{Res}_{M}^{K} h_* W) - V \otimes (\operatorname{Res}_{M}^{K} h_* W) \} \mod R_1(AC)$$

$$= \operatorname{Ind}_{AM}^{AC} \{ (\gamma V) \otimes U - V \otimes U \},$$

where

$$U = \bigoplus_{[h] \in \mathcal{H}/\mathcal{CK}} \operatorname{Res}_{M}^{K} h_{*} W.$$

Since we have $\operatorname{Res}_{AM}^{AC} y = \operatorname{Res}_{AM}^{G} x \in R_k(AM)$ by the assumption, we have $\operatorname{Res}_{AC}^{G} x = y \in R_k(AC)$ by Proposition 5.3. This completes the proof of Assertion 6.4.

Proposition 6.5. Put $K=C_H(A)$, and let V be an irreducible A-space with the trivial kernel, W a K-space and γ an element of Γ . Put $x=\operatorname{Ind}_{Ax}^G \{V \otimes (\gamma W) - V \otimes W\}$. Then x belongs to $R_h(G)$ if and only if $\operatorname{Res}_H^G x$ belongs to $R_h(H)$.

Proof. The only if part is clear. We will prove the if part by induction on |G|. If |A|=1 or |H|=1, then the proposition is trivial. Make the inductive hypothesis: for each hyperelementary group which satisfies the condition stated at the beginning of this section and whose order is smaller than |G| Proposition 6.5 is valid.

We assume $\operatorname{Res}_{H}^{G} x \in R_{h}(H)$ and $|A| \neq 1$. Firstly we have $x \in R_{0}(G)$. By Propositions 3.1, 4.3, 4.4 and 6.1 it is sufficient to prove the proposition in the case that there exist a positive integer r, an irreducible K-space U and elements h(m) of H, $1 \leq m \leq r$, such that

$$W = \bigoplus_{m=1}^r h(m)_* U.$$

By Propositions 3.1 and 4.2 we have

 $\operatorname{Ind}_{AK}^{G} \{ V \otimes (\gamma h(m)_{*}U) - V \otimes (h(m)_{*}U) \} \equiv \operatorname{Ind}_{AK}^{G} \{ V \otimes (\gamma U) - V \otimes U \} \mod R_{1}(G).$

This enables us to assume that W itself is irreducible.

Assertion 6.6. Let L be a non-trivial subgroup of G. We have $x^{L} \in R_{k}(N_{G}(L))$.

Proof. Since A acts freely on $\operatorname{Ind}_{AK}^{G} V \otimes \gamma W$ and on $\operatorname{Ind}_{AK}^{G} V \otimes W$ except the origins, it is sufficient to prove the assertion in the case that $L \cap A = \{1\}$. In this case L is conjugate to a subgroup of H. By Proposition 2.2 we may assume $L \subset H$. Then we have $N_G(L) = C_A(L)N_H(L)$ by Proposition 4.5. We divide the proof into the following three cases.

Case 1. $C_A(L) \neq A$ We put $B = C_A(L)$ and $y = \operatorname{Res}_{BH}^G x$. We have

 $y = \operatorname{Ind}_{BK}^{BH} \{ (\operatorname{Res}_{B}^{A} V) \otimes (\gamma W) - (\operatorname{Res}_{B}^{A} V) \otimes W \} .$

Put $M = C_H(B)$, then we have

$$y = \operatorname{Ind}_{BM}^{BH} \{ (\operatorname{Res}_{B}^{A} V) \otimes (\gamma \operatorname{Ind}_{K}^{M} W) - (\operatorname{Res}_{B}^{A} V) \otimes (\operatorname{Ind}_{K}^{M} W) \}$$

On the other hand we have $\operatorname{Res}_{B}^{BH} y = \operatorname{Res}_{H}^{G} x \in R_{k}(H)$. By the inductive hypothesis we have $y \in R_{k}(BH)$. This implies $x^{L} = y^{L} \in R_{k}(N_{G}(L))$.

Case 2. $C_A(L) = A$ and $N_H(L) \neq H$

Put $M=N_H(L)$, $N=N_G(L)$, $D=K\cap M$ and $y=\operatorname{Res}_N^G x$. We have N=AM and

$$y = \sum_{[h] \in \mathcal{H}/KM} \operatorname{Ind}_{AD}^{N} \{(h_{*}V) \otimes (\gamma \operatorname{Res}_{D}^{K} h_{*}W) - (h_{*}V) \otimes (\operatorname{Res}_{D}^{K} h_{*}W)\}$$

$$\equiv \sum_{[h] \in \mathcal{H}/KM} \operatorname{Ind}_{AD}^{N} \{V \otimes (\gamma \operatorname{Res}_{D}^{K} h_{*}W) - V \otimes (\operatorname{Res}_{D}^{K} h_{*}W)\} \mod R_{1}(N)$$

$$= \operatorname{Ind}_{AD}^{N} \{V \otimes (\gamma U) - V \otimes U\},$$

where

$$U = \bigoplus_{[h] \in \mathcal{H}/\mathcal{K}, \mathbf{M}} \operatorname{Res}_{D}^{\mathcal{K}} h_{*} W.$$

Since we have $\operatorname{Res}_{M}^{N} y = \operatorname{Res}_{M}^{C} x \in R_{k}(M)$, by the inductive hypothesis we get $y \in R_{k}(N)$. This implies $x^{L} = y^{L} \in R_{k}(N_{G}(L))$.

Case 3. $N_G(L) = G$

When W is irreducible, $\operatorname{Ind}_{AK}^{G} V \otimes W$ and $\operatorname{Ind}_{AR}^{G} V \otimes \gamma W$ are irreducible. This implies that $x^{L} = x$ or 0 in R(G). If $x^{L} = 0$, Assertion 6.6 is clearly valid. If $x^{L} = x$, then L is included in the kernel of x. By the inductive hypothesis we obtain $x \in R_{k}(G)$. This completes the proof of Assertion 6.6.

If we show $P=P(G; x)\equiv 0 \mod |G|$, we complete the Proof of Proposition 6.5. As usual choose a positive integer s such that

$$\gamma(\exp(2\pi\sqrt{-1}/|H|)) = \exp(2\pi s\sqrt{-1}/|H|) \text{ and } s \equiv 1 \mod |A|.$$

By (2.5) we have

$$P \equiv \sum_{s \in G} \{ z(g) - Q(s; \operatorname{Ind}_{AK}^G V \otimes W)(g) \} \mod |G|.$$

By the inductive hypothesis, for each proper subgroup B of A we have $\operatorname{Res}_{BH}^{C} x \in R_{h}(BH)$. This implies $P(BH; \operatorname{Res}_{BH}^{C} x) \equiv 0 \mod |BH|$. Therefore we have

$$P \equiv \sum_{ah \in AH: \langle a \rangle = A} \{ z(ah) - Q(s; \operatorname{Ind}_{AK}^{G} V \otimes W)(ah) \} \mod |H|.$$

By Propositions 4.6 and 4.7 we have

$$P \equiv \sum_{\substack{a \in \mathcal{A} : \langle a \rangle = \mathcal{A} \\ h \in \mathcal{H} - L}} \{z(ah) - Q(s; \operatorname{Ind}_{\mathcal{A}K}^{G} V \otimes W)(ah)\} \mod |H|$$
$$\equiv \phi(|\mathcal{A}|) \sum_{h \in \mathcal{H} - L} \{z(h) - Q(s; \operatorname{Ind}_{\mathcal{A}K}^{G} V \otimes W)(h)\} \mod |H|,$$

where L is the group given in Proposition 4.6, ϕ is the Euler function. Res^C_L $x \in R_k(L)$ and (2.5) imply

$$\sum_{h\in L} \{z(h) - Q(s; \operatorname{Ind}_{AK}^G V \otimes W)(h)\} \equiv 0 \mod |L|.$$

Since $\phi(|A|)$ is a multiple of |H|/K| and |L| a multiple of |K|, we have

$$P \equiv \phi(|A|) \sum_{h \in \mathcal{H}} \{z(h) - Q(s; \operatorname{Ind}_{AK}^{G} V \otimes W)(h)\} \mod |H|.$$

From $\operatorname{Res}_{H}^{G} x \in R_{h}(H)$, we have $P \equiv 0 \mod |H|$. On the other hand for the cyclic subgroups C of H there exist integers n_{C} such that

$$P = \sum_{C < H : \text{ cyclic}} n_C \sum_{g \in AO} z(g) .$$

We obtain $P \equiv 0 \mod |A|$ from the following assertion; consequently we get $P \equiv 0 \mod |G|$.

Assertion 6.7. For each cyclic subgroup C of H, we have $\operatorname{Res}_{Ac}^{G} x \in R_{h}(AC)$.

Proof. Put
$$y = \operatorname{Res}_{AC}^{G} x$$
 and $D = C \cap K$, then we have

$$y = \sum_{\substack{\{h\} \in \mathcal{U}/\mathcal{O}\mathcal{K} \\ h \in \mathcal{U}/\mathcal{O}\mathcal{K}}} \operatorname{Ind}_{AD}^{AC} \{(h_*V) \otimes (\gamma \operatorname{Res}_D^{\mathcal{K}} h_*W) - (h_*V) \otimes (\operatorname{Res}_D^{\mathcal{K}} h_*W) \}$$

$$\equiv \sum_{\substack{\{h\} \in \mathcal{U}/\mathcal{O}\mathcal{K} \\ h \in \mathcal{U}/\mathcal{O}\mathcal{K}}} \operatorname{Ind}_{AD}^{AC} \{V \otimes (\gamma \operatorname{Res}_D^{\mathcal{K}} h_*W) - V \otimes (\operatorname{Res}_D^{\mathcal{K}} h_*W) \} \mod R_1(AC)$$

$$= \operatorname{Ind}_{AD}^{AC} (V \otimes \gamma U - V \otimes U),$$

where

$$U = \bigoplus_{[h] \in H/CK} \operatorname{Res}_{D}^{K} h_{*}W.$$

Moreover we have $\operatorname{Res}_{C}^{AC} y = \operatorname{Res}_{C}^{G} x \in R_{k}(C)$. By Proposition 5.4 we have $y \in R_{k}(AC)$. This completes the proof of Assertion 6.9 consequently completes the proof of Proposition 6.5.

Proposition 6.10. Put $K=C_H(A)$, and let V be an irreducible A-space with the trivial kernel, W a K-space and γ an element of Γ . Put $x=\operatorname{Ind}_{AK}^G \{\gamma(V \otimes W) - V \otimes W\}$. Then x belongs to $R_h(G)$ if and only if for each subgroup B of A and $L=C_H(B)$ we have $\operatorname{Res}_{BL}^G x \in R_h(BL)$.

Proof. The only if part is clear. We prove the if part. Put $y = \text{Ind}_{AK}^{G} \{\gamma(V \otimes W) - (\gamma V) \otimes W\}$ and $z = \text{Ind}_{AK}^{G} \{(\gamma V) \otimes W - V \otimes W\}$, then we have x = y + z. Since $\text{Res}_{H}^{G} z = 0$, we have $\text{Res}_{H}^{G} y \in R_{h}(H)$ by the assumption. From Proposition 6.5 we obtain $y \in R_{h}(G)$. This yields that

$$\operatorname{Res}_{BL}^{G} z = \operatorname{Res}_{BL}^{G} x - \operatorname{Res}_{BL}^{G} y \in R_{h}(BL).$$

Proposition 6.2 implies $z \in R_h(G)$. Hence we conclude that $x \in R_h(G)$.

Theorem 6.11. Let G be a hyperelementary group such that all the elementary subgroups of the quotient groups of the subgroups of G have Property 2. Then G has Property 2. Proof. We prove it by induction on |G|. If |A|=1 or $|H| \leq p$, we are aware that G has Property 2. Make the inductive hypothesis: each hyperelementary group which satisfies the same condition as G satisfies and whose order is smaller than |G| has Property 2.

Let x be an elemant of $R_k(G)$. By Lemma 2.1 and the inductive hypothesis we may assume $x(\{1\})=x$. This implies $x \in R_k(G, f)$. Put $K=C_H(A)$. For a fixed element C of X(G), there exist $\gamma \in \Gamma$, an irreducible A-space V and an irreducible K-space W such that

$$f_{\mathcal{C}}(x) \equiv \operatorname{Ind}_{AK}^{\mathcal{G}} \{ \gamma(V \otimes W) - V \otimes W \} \mod R_{1}(G) .$$

By Propositions 6.1 and 6.10 we get $f_c(x) \in R_k(G)$.

For a subgroup B of A, we get an elementary subgroup $BC_H(B)$ of G. Varying B, we obtain several elementary groups. Let E(G) be the set of all those elementary groups. Lemma 2.1 and Propositions 6.1 and 6.10 yield the following theorem.

Theorem 6.12. In the same situation as in Theorem 6.11

Res:
$$R_0(G, f)/R_k(G, f) \rightarrow \bigoplus_{K \in \mathcal{H}(G)} j(K)$$

is injective. Therefore we obtain a naturally defined injection

$$j(G) \to \bigoplus_{B} \bigoplus_{K \in \mathcal{B}(\mathcal{G}/B)} j(K)$$

where B runs over the subgroups of A.

7. A closing example

Let A (resp. H) be the cyclic group of order 7 (resp. 5) which consists of the 7-th (resp. 5-th) roots of unity, and G the direct product of A and H. For each integer i (resp. j) with $0 \le i \le 6$ (resp. $0 \le j \le 4$) define the A-(resp. H-) representation v_i (resp. w_j) by

$$v_i(z) = z^i \text{ for } z \in A$$

(resp. $w_j(z) = z^j \text{ for } z \in H$).

We denote by V_i (resp. W_j) the corresponding representation space to v_i (resp. w_j). Define an element x of R(G) by

$$x = V_2 \otimes W_1 + V_2 \otimes W_0 + V_2 \otimes W_0 - V_1 \otimes W_1 - V_1 \otimes W_0 - V_1 \otimes W_0.$$

Then we have $x \in R_0(G) \cap R(G, f)$; moreover we have $\operatorname{Res}_A^G x \in R_k(A)$ and $\operatorname{Res}_H^G x \in R_k(H)$. The x does not, however, belong to $R_k(G)$. This is a counter example to [1; Proposition 5.2].

References

- [1] T. tom Dieck: Homotopy-equivalent group representations, J. Reine Angew. Math. 298 (1978), 182-195.
- [2] T. tom Dieck: Transformation groups and representation theory, Lecture notes in mathematics 766, Springer, Berlin-Heidelberg New-York, 1979.
- [3] T. tom Dieck and T. Petrie: Geometric modules over the Burnside ring, Invent. Math. 47 (1978), 273-287,
- [4] S. Kakutani: On the groups $J_{Z_{m,q}}(*)$, Osaka J. Math. 17 (1980), 512-534.
- [5] K. Kawakubo: Equivariant homotopy equivalence of group representations, J. Math. Soc. Japan 32 (1980), 105–118.
- [6] M. Morimoto: On the groups $J_G(*)$ for G=SL(2, p), Osaka J. Math. 19 (1982), 57-78.
- [7] J.-P. Serre: Linear representations of finite groups, Graduate texts in mathematics, Springer, Berlin-Heidelberg-New York, 1977.

Department of Mathematics Osaka University Toyonaka, Osaka 560, Japan