

Title	On maximal submodules of a finite direct sum of hollow modules. IV
Author(s)	Harada, Manabu; Yukimoto, Yoshito
Citation	Osaka Journal of Mathematics. 1985, 22(2), p. 321-326
Version Type	VoR
URL	https://doi.org/10.18910/4498
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Harada, M. and Yukimoto, Y.
Osaka J. Math.
22 (1985), 321-326

ON MAXIMAL SUBMODULES OF A FINITE DIRECT SUM OF HOLLOW MODULES IV

To the memory of Professor Takehiko MIYATA

MANABU HARADA AND YOSHITO YUKIMOTO

(Received February 8, 1984)

In the previous papers [1] and [2], we have studied conditions under which every maximal submodule of a finite direct sum D of certain hollow modules over a right artinian ring with 1 contains a non-zero direct summand of D . The present objective is to generalize slightly Theorems 3 and 4 of [2] related to the property mentioned above.

Throughout this paper, R will represent a right artinian ring with identity, and every R -module will be assumed to be a unitary right R -module with finite composition length. We denote the Jacobson radical and the length of a composition series of an R -module M by $J(M)$ and $|M|$, respectively. Occasionally, we write $J=J(R)$. If M has a unique maximal submodule $J(M)$, M is called hollow (local). When this is the case, $M \approx eR/A$ for some primitive idempotent e and a right ideal A in eR .

Let $\{N_i\}_{i=1}^n$ be a family of hollow modules, and $D = \sum_{i=1}^n N_i$. We are interested in the following condition [1]:

(**) *Every maximal submodule of D contains a non-zero direct summand of D .*

As was claimed in [1], [2], whenever we study the condition (**), we may restrict ourselves to the case where R is basic and $N_i = eR/A_i$ for a fixed primitive idempotent e and a right ideal A_i in eR . Now, let $N = eR/A$ be a hollow module. Put $\Delta = eRe/eJe = \overline{eRe} = \text{End}_R(N/J(N)) = \text{End}_R(eR/eJ)$, and $\Delta(A) (= \Delta(N)) = \{x \mid x \in eRe \text{ and } xA \subset A\}$ (see [2]). We denote by $N^{(m)}$ the direct sum of m copies of N . Then $N^{(m+1)} = N \oplus N^{(m)}$. If M is a maximal submodule of $N^{(m)}$ then $N \oplus M$ is a maximal submodule of $N^{(m+1)}$. Thus we get a mapping $\theta(m)$ of the isomorphism classes of maximal submodules in $N^{(m)}$ into the isomorphism classes of maximal submodules in $N^{(m+1)}$.

Theorem 1 (cf. [3], Corollary 2 to Theorem 3). *Let $N = eR/A$ be a hollow module. Then the following conditions are equivalent:*

- 1) $[\Delta : \Delta(A)] = k$.
- 2) *If $m > k$, every maximal submodule M in $D = N^{(m)}$ contains a submodule*

isomprphic to $N^{(m-k)}$ but not to $N^{(m-k+1)}$. In this case, such a submodule of M is a direct summand of D .

3) $\theta(i)$ is not epic for every $i \leq k-1$, but $\theta(j)$ is epic for every $j \geq k$.

Proof (cf. [2], the proof of Theorem 3).

1) \rightarrow 2). Put $D = N^{(m)} = D(k) \oplus D'(n)$, where $m = k+n$, $D(k)$ is the direct sum of the first k copies of N and $D'(n)$ the direct sum of the last n copies of N . Let $\{\bar{1}, \bar{\delta}_2, \dots, \bar{\delta}_k\}$ be a set of linearly independent elements in Δ over $\Delta(A)$. Set $\beta_i = (\tilde{\delta}_i, \tilde{0}, \dots, \overset{i}{\tilde{e}}, \tilde{0}, \dots, \tilde{0})$ in $D(k)$, and $M = \sum_{i=2}^k \beta_i R + D'(n) + J(D)$ in D , where \tilde{x} means the residue class of x in eR/A . Then M is a maximal submodule of D . Suppose that $M \supset M_1 \oplus M_2 \oplus \dots \oplus M_q \oplus M^*$ and $M_i \approx N$ for all i . Then

$$(\alpha) \quad M_i \not\subseteq J(D).$$

Actually, if not, $N \approx M_i \subset J(D) = DJ$, which is impossible. Since $M_i \approx eR/A$, $M_i = \rho R$ and $r_R(\rho) = \{r \in eR \mid \rho r = 0\} = A$. Now let $\rho = \sum \beta_i y_i + y + j$, where $y_i \in eRe$, $y \in D'(n)$ and $j \in J(D)$. Then $\rho = (\sum_{i \geq 2} \tilde{\delta}_i y_i, \tilde{y}_2, \dots, \tilde{y}_k, \tilde{0}, \dots, \tilde{0}) + (\tilde{0}, \tilde{0}, \dots, \tilde{z}_{k+1}, \dots, \tilde{z}_{k+n}) + (\tilde{j}_1, \tilde{j}_2, \dots, \tilde{j}_{k+n})$, where $z_i \in eRe$ and $j_i \in eJ$. By the structure of D and $r_R(\rho) = A$, $(y_i + j_i)A \subset A$, and $(\sum \tilde{\delta}_i y_i + j_i)A \subset A$. Noting that $eA = A$, we see that $\tilde{y}_i \in \Delta(A)$ for $2 \leq i \leq k$, and $\sum_{i \geq 2} \tilde{\delta}_i \tilde{y}_i \in \Delta(A)$. Therefore, $\tilde{y}_i = 0$ for $2 \leq i \leq k$, since $\{\bar{1}, \bar{\delta}_2, \dots, \bar{\delta}_k\}$ is linearly independent. Hence

$$(\beta) \quad \pi(M_i) \subset J(D(k)),$$

where $\pi: D = D(k) \oplus D'(n) \rightarrow D(k)$ is the projection. Let p_s be the projection on the s -th component of $D = N^{(k+n)}$. Since $M_1 \not\subseteq J(D)$ and $\pi(M_1) \subset J(D(k))$, $p_j|_{M_1}$ is an epimorphism for some $j > k$, say $j = k+1$, and hence an isomorphism for $M_1 \approx N$. Therefore

$$(\gamma) \quad D = D(k) \oplus M_1 \oplus D'(n-1),$$

where $D'(n) = N \oplus D'(n-1)$. Now assume that $D = D(k) \oplus M_1 \oplus M_2 \oplus \dots \oplus M_s \oplus D'(n-s)$. Let $\pi_{D'(n-s)}$ be the projection of D onto $D'(n-s)$ in the above decomposition. Suppose $\pi_{D'(n-s)}(M_{s+1}) \subset J(D'(n-s))$. Then $\pi_{D(k) \oplus D'(n-s)}(M_{s+1}) \subset J(D)$ by (β). On the other hand, $0 = M_{s+1} \cap (M_1 \oplus M_2 \oplus \dots \oplus M_s) = \ker(\pi_{D(k) \oplus D'(n-s)}|_{M_{s+1}})$, so M_{s+1} is monomorphic to a submodule in $J(D)$, which is impossible. Hence $\pi_{D'(n-s)}(M_{s+1}) \not\subseteq J(D'(n-s))$, and so $D = D(k) \oplus M_1 \oplus M_2 \oplus \dots \oplus M_{s+1} \oplus D'(n-s-1)$ by the above argument. Accordingly, $q \leq n$, and hence M does not contain a submodule of D isomorphic to $N^{(n+1)}$. Let M' be an arbitrary maximal submodule of D . Then, by induction on m and [2], Theorem 2, $M' = N'^{(m-k)} \oplus M^*$, where $N' \approx N$.

2) \rightarrow 1). Take $m = k+1$. By (α) and the argument employed in proving (γ), we see that D contains a direct summand which is isomorphic to N . Hence

$[\Delta: \Delta(A)] = k$ by [2], Theorem 2.

1) \leftrightarrow 3). In case $\theta(t)$ is epic, every maximal submodule M of $N^{(t+1)}$ contains a direct summand M_1 which is isomorphic to N . Then, by 2), M_1 is also a direct summand of $N^{(t+1)}$. Hence $\theta(t)$ is epic if and only if $N^{(t+1)}$ satisfies (**), and the equivalence of 1) and 3) is clear by [2], Theorem 3 (see Remark below).

In Theorem 1, we have studied a direct sum of isomorphic copies of a fixed hollow module. Next, let $N_1 = eR/A_1$ and $N_2 = eR/A_2$. If there exists an epimorphism φ of N_1 to N_2 then we write $N_1 > N_2$. Since φ is given by the left-sided multiplication of a unit element x in eRe , we have $xA_1 \subset A_2$, and furthermore $N_1 \approx eR/xA_1$. Hence, when we study the direct sum $N_1 \oplus N_2$ with $N_1 > N_2$, we may assume that $A_1 \subset A_2$.

Theorem 2. *Let $\{N_i = eR/A_i\}_{i=1}^n$ be a family of hollow modules ($n \geq 2$). Assume that $|A_1| \geq |A_2| \geq \cdots \geq |A_n|$. Then $D = \sum_{i=1}^n N_i$ satisfies (**) if and only if, for any sequence $\{\bar{\delta}_2, \dots, \bar{\delta}_n\}$ of $n-1$ elements in Δ , there exist an integer t ($2 \leq t \leq n$) and $\bar{y}_i \in \Delta(A_t, A_i)$ ($2 \leq i \leq t-1$) such that*

$$(\#) \quad \sum_{i=2}^{t-1} \bar{\delta}_i \bar{y}_i + \bar{\delta}_t \in \Delta(A_t, A_1),$$

where $\Delta(A_t, A_i) = \{x \mid x \in eRe \text{ and } xA_t \subset A_i\}$.

Proof. We may assume that R is basic. Take the maximal submodule M in D generated by $\beta_i = (\tilde{\delta}_i, \tilde{0}, \dots, \tilde{e}, \tilde{0}, \dots, \tilde{0})$ ($i = 2, 3, \dots, n$). Then M contains a direct summand M_1 of D , i.e., $D = M_1 \oplus D_1$ and $M_1 \approx N_p$ for some p ; M_1 is generated by $\alpha = \sum_{i \geq 2} \beta_i y_i + j$, where $y_i \in eRe$ ($y_i \notin eJe$ for some q) and $j \in J(D)$. Now, $\alpha = (\sum_{i \geq 2} \tilde{\delta}_i y_i + \tilde{j}_1, \tilde{y}_2 + \tilde{j}_2, \dots, \tilde{y}_n + \tilde{j}_n)$. Assume that $\tilde{y}_n = \tilde{y}_{n-1} = \cdots = \tilde{y}_{t+1} = 0$ and $\tilde{y}_t \neq 0$. Let π_t be the projection of $D = \sum \oplus N_i$ onto N_t . Then $\pi_t|_{M_1}$ is an epimorphism, so $M_1 > N_t$. On the other hand, let π be the projection of $D = M_1 \oplus D_1$ onto M_1 . We shall show that $\pi_t|_{M_1}$ is an isomorphism. Suppose, to the contrary, that $|M_1| > |N_t|$. Then, since $|N_k| \leq |N_t|$, $\pi(N_k) \subset J(M_1)$ for $k \leq t$, and $\alpha = \pi(\alpha) = \pi(\sum_{i \geq 2} \tilde{\delta}_i y_i + \tilde{j}_1, \tilde{0}, \dots, \tilde{0}) + \pi(\tilde{0}, \tilde{y}_2 + \tilde{j}_2, \tilde{0}, \dots, \tilde{0}) + \cdots + \pi(\tilde{0}, \dots, \tilde{y}_t + \tilde{j}_t, \tilde{0}, \dots, \tilde{0}) + \pi(\tilde{0}, \dots, \tilde{y}_{t+1} + \tilde{j}_{t+1}, \tilde{0}, \dots, \tilde{0}) + \cdots + \pi(\tilde{0}, \dots, \tilde{y}_n + \tilde{j}_n) \in J(M_1) \subset J(D)$, which is a contradiction. Hence $M_1 \approx N_t$. Now, let $\varphi: eR \rightarrow M_1$ be a homomorphism given by setting $\varphi(er) = aer$. Then, since $y'_t(\ker \varphi) \subset A_t$ and $|M_1| = |N_t|$, we have $\ker \varphi = y'^{-1}_t A_t$, where $y'_t = y_t + j_t e$. Hence $(\sum_{i=2}^t \delta_i y_i + j_1 e) \cdot y'^{-1}_t A_t \subset A_1$ and $(y_i + j_i e) y'^{-1}_t A_t \subset A_i$ ($2 \leq i \leq t-1$). Conversely, assume the above property. Let M be a maximal submodule of D , and put $\bar{D} = D/J(D) \supset \bar{M} = M/J(D)$. If \bar{M} contains some $\overline{eR/A_i}$, then $M \supset eR/A_i$. Hence we may

assume that $\bar{M} = \sum \beta_i R$, where $\beta_i = (\tilde{\delta}_i, \tilde{0}, \dots, \tilde{\check{\delta}}, \tilde{0}, \dots, \tilde{0}) \in M$. By assumption, there exists $\{y_i\}_{i=2}^{t-1}$ such that $\sum_{i=2}^{t-1} \delta_i y_i + \delta_t \in \Delta(A_t, A_1)$ and $\bar{y}_i \in \Delta(A_t, A_i)$ ($i \geq 2$). We define a homomorphism $\theta: N_t \rightarrow \sum_{j=i}^{t-1} \bigoplus N_j$ by setting $\theta(x) = ((\sum_{i=2}^{t-1} \tilde{\delta}_i y_i + \tilde{\delta}_t + j)x, \bar{y}_2 x, \dots, \bar{y}_{t-1} x)$, where $j \in eJe$ and $(\sum \delta_i y_i + \delta_t + j) A_t \subset A_1$. Then $\sum_{i=1}^t \bigoplus N_i = \sum_{i=1}^{t-1} \bigoplus N_i \oplus N_t(\theta)$ and $N_t(\theta) = (\theta + 1_{N_t}) N_t = (\theta + 1_{N_t}) \tilde{e} R = (\sum \beta_i y_i + \tilde{j} e) R \subset M$.

REMARK. If we put all $A_i = A$ in Theorem 2, then we obtain [2], Theorem 2. Next, in [2], Theorem 3, we can take a set of linearly independent elements $\{\tilde{\delta}_{i_1}, \dots, \tilde{\delta}_{i_{n_i}}\}$ in Δ over $\Delta(N_i)$. Apply Theorem 2 for the set $\{\tilde{\delta}_{i_j}\}_{j=1}^t$. Then we obtain [2], Theorem 3, because $\Delta(N_i, N_j) \neq 0$ implies $N_i \approx N_j$.

The next is a dual to [3], Corollary to Theorem 4.

Corollary 1. *Let N_1 and N_2 be hollow modules. Assume that $[\Delta: \Delta(N_2)] = k < \infty$. Then $N_1 \oplus N_2^{(k)}$ satisfies (**) if and only if $N_1 > N_2$ or $N_1 < N_2$.*

Proof. Apply Theorem 2 to a basis $\{\bar{e}, \bar{\delta}_2, \dots, \bar{\delta}_k\}$ of Δ over $\Delta(N_2)$.

For two hollow modules N_1 and N_2 , we put $N_1 \sim N_2$ when $N_1 > N_2$ or $N_1 < N_2$. Given a family $\{eR/A_i\}_{i=1}^n$ of hollow modules, we set

$$D = \sum_{i=1}^n \bigoplus eR/A_i = \sum_{j=1}^{n_1} \bigoplus eR/A_{1j} \oplus \sum_{j=2}^{n_2} \bigoplus eR/A_{2j} \oplus \dots \oplus \sum_{j=1}^{n_m} \bigoplus eR/A_{mj},$$

where $(eR/A_{ik} \sim eR/A_{ij}$ for some k and j , and) $eR/A_{ik} \not\sim eR/A_{i'j}$ for all k and j provided $i \neq i'$.

Corollary 2. *Let D be as above. Then D satisfies (**) if and only if so does some $\sum_j \bigoplus eR/A_{ij}$.*

Proof. If some $D_i = \sum_{j=1}^{n_i} \bigoplus eR/A_{ij}$ satisfies (**), then so does D by [2], Lemma 1. Next, we shall show that D does not satisfy (**) if none of D_i does. We may assume that $|A_{i1}| \geq |A_{i2}| \geq \dots \geq |A_{in_i}|$. Then there exists $\{\tilde{\delta}_{i_2}, \tilde{\delta}_{i_3}, \dots, \tilde{\delta}_{i_{n_i}}\} \subset \Delta$ for which $(\#)$ never holds if $n_i \geq 2$. If D satisfies (**) then there exist B_t and $\bar{y}_h \in \Delta(B_t, B_1)$ such that

$$(\delta) \quad \sum_{h=2}^{t-1} \bar{\varepsilon}_h \bar{y}_h + \bar{\varepsilon}_t \in \Delta(B_t, B_1),$$

where B_p is equal to some A_{ij} , $|B_p| \geq |B_{p+1}|$ for all p , ε_p is equal to some δ_{ij} , and $\delta_{i1} = e$ for all i . First, assume that $B_t = A_{ik}$ and $B_1 = A_{i1}$. Since $\Delta(A_{ij}, A_{i'j'}) = 0$ for $i \neq i'$, (δ) becomes

$$\delta_{i_2} \bar{y}_{i_2} + \dots + \delta_{i_{k-1}} \bar{y}_{i_{k-1}} + \delta_{ik} \in \Delta(A_{ik}, A_{i1})$$

and $\bar{y}_{i_p} \in \Delta(A_{ik}, A_{ip})$, which is a contradiction. Next, assume that $B_t = A_{ik}$ and $B_1 = A_{i'1}$ for $i \neq i'$. Then (δ) becomes

$$\bar{e}\bar{y}_{i_1} + \bar{\delta}_{i_2}\bar{y}_{i_2} + \cdots + \bar{\delta}_{i_{k-1}}\bar{y}_{i_{k-1}} + \bar{\delta}_{i_k} = 0$$

and $\bar{y}_{i_p} \in \Delta(A_{i_k}, A_{i_p})$. But, $\bar{e}\bar{y}_{i_1}$ being in $\Delta(A_{i_p}, A_{i_1})$, we have a contradiction. Therefore D does not satisfy (**).

Corollary 3. *Let $\{N_i = eR/A_i\}_{i=1}^{m+1}$ be a family of hollow modules ($m \geq 1$). Assume that $[\Delta : \Delta(A_i)] = n$ for all i and $A_i \supset A_j$ for $i < j$. If $n \leq 3$ then $\sum_{i=1}^{n+1} \oplus N_i$ satisfies (**).*

Proof. If $n=1$, this is clear by [2], Theorem 1. Assume $n=2$. If $\Delta(A_3, A_1) \supseteq \Delta(A_3)$ then $(\#)$ holds trivially. So, we assume that $\Delta(A_3, A_1) = \Delta(A_3)$. Since $\Delta(A_3) = \Delta(A_3, A_1) \supset \Delta(A_2, A_1) \supset \Delta(A_2)$, we get $\Delta(A_3) = \Delta(A_2) = \Delta(A_2, A_1)$. In view of $[\Delta : \Delta(A_3)] = 2$, for any $\bar{\delta}_2, \bar{\delta}_3 \in \Delta$ we can find $\bar{z}_2, \bar{z}_3 \in \Delta(A_3)$ such that $\bar{\delta}_2\bar{z}_2 + \bar{\delta}_3\bar{z}_3 \in \Delta(A_3) = \Delta(A_3, A_1)$ and $\{\bar{z}_2, \bar{z}_3\} \neq 0$. This shows that $\{\bar{z}_2, \bar{z}_3\}$ satisfies $(\#)$. Finally, assume that $n=3$. Let $\bar{\delta}_2, \bar{\delta}_3$ and $\bar{\delta}_4$ be elements in Δ . First assume that $\Delta(A_3) \supsetneq \Delta(A_3, A_1)$. Then $[\Delta/\Delta(A_3, A_1) : \Delta(A_3)] \leq 1$. If $\bar{\delta}_3$ is in $\Delta(A_3, A_1)$ then $(\#)$ holds trivially. So, assume that $\bar{\delta}_3 \notin \Delta(A_3, A_1)$. Then there exist $\bar{y}_3, \bar{y}_4 \in \Delta(A_3)$ such that $\bar{\delta}_3\bar{y}_3 + \bar{\delta}_4\bar{y}_4 \in \Delta(A_3, A_1)$ and $\{\bar{y}_3, \bar{y}_4\} \neq 0$. Since $\bar{y}_4 \neq 0$ by $\bar{\delta}_3 \notin \Delta(A_3, A_1)$, $\bar{\delta}_3\bar{y}_3\bar{y}_4^{-1} + \bar{\delta}_4 \in \Delta(A_3, A_1) \subset \Delta(A_4, A_1)$, and $\bar{y}_3\bar{y}_4^{-1} \in \Delta(A_3) \subset \Delta(A_4, A_3)$. Hence $(\#)$ holds. Next, assume that $\Delta(A_3) = \Delta(A_3, A_1)$. Then $\Delta(A_3) = \Delta(A_2, A_1) = \Delta(A_2)$, as in the case $n=2$. There exist $\bar{y}_2, \bar{y}_3, \bar{y}_4 \in \Delta(A_3)$ such that $\bar{\delta}_2\bar{y}_2 + \bar{\delta}_3\bar{y}_3 + \bar{\delta}_4\bar{y}_4 \in \Delta(A_3) \subset \Delta(A_3, A_1) \subset \Delta(A_4, A_1)$ and $\{\bar{y}_i\} \neq 0$. Now, by making use of a similar argument as above, we can easily see that $\{\bar{y}_i\}$ satisfies $(\#)$.

By making use of the above argument and Corollary 1, we can prove the following corollary.

Corollary 4. *Let $\{N_i = eR/A_i\}_{i=1}^{n+1}$ be a family of hollow modules. Assume that $\Delta(A_i) = \Delta(A_1)$ for all i and $[\Delta : \Delta(A_1)] = n$. Then all the direct sums $\sum_{i=1}^{n+1} \oplus T_i$ with T_i isomorphic to some one in $\{N_i\}$ satisfy $(**)$ if and only if $\{N_i\}$ is linearly ordered with respect to $<$.*

EXAMPLE. Let k be a field and x an indeterminate. Let $L = k(x)$, and $K = k(x^5)$. Consider the ring

$$R = \begin{pmatrix} L & L \\ 0 & K \end{pmatrix}.$$

Put $A_{4-i} = (0, K + Kx + \cdots + Kx^i) \subset e_{11}R$ ($0 \leq i \leq 3$), and $N_i = e_{11}R/A_i$. Then $A_1 \supset A_2 \supset A_3 \supset A_4$ and $\Delta(A_i) = K$. We can show directly the following facts: Both $N_1 \oplus N_3 \oplus N_4$ and $N_1 \oplus N_2 \oplus N_4$ satisfy $(**)$. But, no direct sum $N_i \oplus N_j$ ($i \neq j$) satisfies $(**)$ and neither $N_1 \oplus N_2 \oplus N_3$ nor $N_2 \oplus N_3 \oplus N_4$ does. (Note that

$\Delta(A_4, A_1) = K + Kx + Kx^2 + Kx^3$ and $\Delta(A_3, A_1) = \Delta(A_4, A_2) = K + Kx + Kx^2$.
 $N_1 \oplus N_2 \oplus N_3 \oplus N_4$ satisfies (**), but neither $N_i^{(4)}$ nor $N_i^{(5)}$ does. If $m \geq 6$ then $\sum_{i=1}^m N'_i$ with N'_i isomorphic to some one in $\{N_i\}$ satisfies (**). If we replace $K = k(x^5)$ by $k(x^7)$, none of $N'_1 \oplus N'_2 \oplus N'_3$ satisfies (**).

References

- [1] M. Harada: *On maximal submodules of a finite direct sum of hollow modules I*, Osaka J. Math. **21** (1984), 649–670.
- [2] ———: *On maximal submodules of a finite direct sum of hollow modules II*, Osaka J. Math. **21** (1984), 671–677.
- [3] ———: *Simple submodules in a finite direct sum of uniform modules*, Methods in Ring Theory, ed. by F. van Oystaeyen, NATO ASI ser. C 129 (1984), 145–159.

Department of Mathematics
 Osaka City University
 Sumiyoshi-ku, Osaka 558
 Japan