
Title Igusa local zeta functions and integration
formulas associated to equivariant maps

Author(s) Wakatsuki, Satoshi

Citation Osaka Journal of Mathematics. 2005, 42(2), p.
463-486

Version Type VoR

URL https://doi.org/10.18910/4504

rights

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



Wakatsuki, S.
Osaka J. Math.
42 (2005), 463–486

IGUSA LOCAL ZETA FUNCTIONS AND INTEGRATION
FORMULAS ASSOCIATED TO EQUIVARIANT MAPS

SATOSHI WAKATSUKI

(Received November 20, 2003)

Abstract
We give integration formulas in order to calculate Igusa local zeta functions of

prehomogeneous vector spaces. By the integration formula,we determine explicit
forms of Igusa local zeta functions of four prehomogeneous vector spaces.

1. Introduction

The purpose of this paper is to give integration formulas associated to equivari-
ant maps in order to calculate Igusa local zeta functions of prehomogeneous vector
spaces. Let be a connected linear algebraic group over a -adic field , 0 an
open compact subgroup of ( ), and , finite dimensional -vectorspaces. We
assume that acts on , rationally, and there exists a -equivariant polynomial
map : . For a point and aC-valued continuous integrable function

on the orbit ( ) ( ), we give an integration formula which expresses a -adic
integral of on the orbit ( ) by a sum of integrals of on orbits0
in terms of = 1 2 ( ). The aim of this integration formula is to reduce the
calculation of the integral of to those of . In particular, wegive an explicit
form of this integration formula for aSp( )-invariant map. This explicit form is ex-
pressed by Hall polynomials and partitions. By this integration formula, we determine
explicit forms of Igusa local zeta functions of four prehomogeneous vector spaces.

For the study of zeta functions of prehomogeneous vector spaces, we have to
give explicit forms of -adic local zeta functions (see, e.g.[2], [8], [22] and [28]).
Some -adic local orbital zeta functions of regular irreducible prehomogeneous vec-
tor spaces were given explicitly in [2], [8], [21] and [23]. If the domain of integra-
tion is the whole space over integer ring, the -adic local zeta function is called the
Igusa local zeta function. J. Igusa gave explicit forms of the Igusa local zeta functions
of twenty four types among twenty nine types of regular irreducible prehomogeneous
vector spaces (cf. [9]–[14]). However in the unknown cases of regular irreducible pre-
homogeneous vector spaces, by their established methods, it is difficult to calculate ex-
plicitly -adic local orbital zeta functions or Igusa local zeta functions. So we try to
simplify these calculations by using the integration formula associated to equivariant
maps. Actually, if a equivariant map is aSL( )-invariant map, then this formula is
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the same form as that of [11, Lemma 8]. J. Igusa applied the formula of [11, Lemma
8] to some complicated calculations of Igusa local zeta functions (cf. [11]–[14]). As a
first step, we treat the formula for aSp( )-invariant map, which is given explicitly in
Theorem 4.3. In [27], we used the formula of Theorem 4.3 to determine explicit forms
of Igusa local zeta functions of two regular 2-simple prehomogeneous vector spaces
(GL(1)4 Sp( ) SL(2 + 1) 1 1 + 1 1 + 1 ( 1 + 1)( )) which have univer-
sally transitive open orbits.

In order to give an explicit form of the integration formula for a map , we have
to calculate integrals on the fibers ( ( ) )1( 0 ) and the orbits 0 . In case
of the Sp( )-invariant map, we give explicit forms of these integralsby using some re-
sults of spherical functions of alternating forms of [5]. Asa byproduct of this calcu-
lation, we get explicit forms of local densities of alternating forms in a certain special
case (Proposition 4.4), because these integrals relate to local densities of alternating
forms.

By the integration formula associated to theSp( )-invariant map, we determine ex-
plicit forms of the Igusa local zeta functions of the following prehomogeneous vector
spaces:
(a) (GL(1) Sp( ) SO(3) 1 1) ( 2),
(b) (GL(1)3 Sp( ) 1 1 1) ( 2),
(c) (GL(1)4 Sp( ) SL(2 + 1) 1 1 + 1 ( 1 + 1 + 1)) ( ),
(d) (GL(1)2 Sp( ) SL(2) 1 (2 1) + 1 1) ( 2).
As for the Igusa local zeta function of the space (b), (c) and (d), these explicit forms
were unknown. For a -adic field , -forms of the space (a) were classified into
two cases in [20]. As for one case, the Igusa local zeta function was already calcu-
lated in [7]. In this paper, for these two cases, we calculateuniformly their Igusa lo-
cal zeta functions. Furthermore our calculation is easier than that of [7]. The space (a)
is a non-regular irreducible reduced prehomogeneous vector space (irreducible preho-
mogeneous vector spaces were classified in [25]), the space (b) is a non-regular sim-
ple prehomogeneous vector space (simple prehomogeneous vector spaces were classi-
fied in [15]), and the spaces (c), (d) are non-regular 2-simple prehomogeneous vec-
tor spaces of type I (2-simple prehomogeneous vector spacesof type I are classified
in [16]). By the formula, we reduce calculations of the Igusalocal zeta function of the
space (a) to that of the quotient space (GL(1) SO(3) 1 1), the space (b) to that
of the quotient space (GL(1)3 1 1 1), the space (c) to that of the quotient space
(GL(1)4 SL(2 +1) 2 1 1 1), and the space (d) to that of the quotient space
(GL(1)2 SL(2) (2 1) 1) respectively. The Igusa local zeta functions of the quotient
spaces (GL(1) SO(3) 1 1) and (GL(1)4 SL(2 + 1) 2 1 1 1) were
calculated explicitly in [14] and [26] respectively. We caneasily calculate the Igusa
local zeta functions of the quotient spaces (GL(1)3 1 1 1) and (GL(1)2

SL(2) (2 1) 1) by established methods. Therefore we achieve simplifications of
these calculations by our formula. Furthermore by our formula, we give an answer to
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Remark A of [7]: why the Igusa local zeta function of (GL(1) SO(3) 1 1) divide
that of the space (a).

The plan of this paper is as follows. In Section 2, we define Igusa local zeta
functions of prehomogeneous vector spaces, and review someknown properties of
Hall-Littlewood polynomials and Hall polynomials. In Section 3, we give an integra-
tion formula associated to equivariant maps. As an example,we give two explicit
forms of this formula for aSL( )-invariant map. In Section 4, we give our main re-
sult on an explicit form of the formula for aSp( )-invariant map. In Section 5 and 6,
we prove two lemmas for the proof of our main result. In Section 7, we determine
explicit forms of the Igusa local zeta functions of prehomogeneous vector spaces (a),
(b), (c) and (d) by using our main result.

NOTATION. Let be a -adic field i.e. a finite extension ofQ , andO the ring
of integers in . We fix a prime element inO , and then O is the ideal of
nonunits ofO . The cardinality of the residue fieldO O is denoted by . We
denote by the absolute value of normalized as =1. For a commuta-
tive ring , we denote by ( ; ) the totality of matrices over , andby
Alt( ; ) the totality of alternating matrices over ( Z 0). If = ,
we write ( ; ) instead of ( ; ). We denote by det( ) the determinant of

( ; ). For any ( ; ), is the transpose of . We denote by Pf( )
the Pfaffian of Alt(2 ; ). For any positive integer ,S is the symmetric group
in latters. The cardinality of a set is denoted by ( ).

2. Preliminaries

2.1. Igusa local zeta functions of prehomogeneous vector spaces. We shall
define Igusa local zeta functions of prehomogeneous vector spaces. For details, we re-
fer to [9] and [24].

We denote by the algebraic closure of a -adic field . Let be a con-
nected linear algebraic group defined over , a finite dimensional -vector space
with -structure, and : GL( ) a rational representation of on defined
over . Let the triple ( ) be a prehomogeneous vector space i.e.there exists
a proper algebraic subset of such that () ( ) is a single ( )-orbit. A
point is called a generic point. The set is called the singular set of
( ) and also defined over . For a -rational character of , a non-zero

-rational function on is called a relative invariant of ( ) corresponding
to if ( ( ) ) = ( ) ( ) for all and . Let 1 be the -
irreducible hypersurface contained in . Take a -irreducible polynomial function

[ ] defining for each = 1 . Then 1 are relative invariants
of ( ) and any relative invariant in ( ) can be written uniquelyas 1

1

with , 1 Z. These 1 are called the basic relative invariants
of ( ). Let be the Haar measure on ( ) normalized by(O ) = 1,
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and S( ( )) the Schwartz-Bruhat space of ( ). For the basic relativeinvariants

1 , and S( ( )), we put

( ; ) =
( ) =1

( ) ( ) ( = ( 1 ) C Re( ) 0)

It is known that this local zeta function ( ; ) is a rational function of 1

(see, e.g. [1], [3] and [14]). Let 0 be the characteristic function of (O ). We put
( ) = ( ; 0). This local zeta function ( ) is called the Igusa local zeta function

of ( ).

2.2. Hall-Littlewood polynomials and Hall polynomials. We shall review
some known properties of Hall-Littlewood polynomials and Hall polynomials. For de-
tails, we refer to [18]

For a positive integer , we put

+ = = ( 1 2 ) Z ; 1 2 0

=
=1

( ) =
=1

( 1)

For + , we write if for all 1. For a non-negative integer
and + , the number ( ) of ’s which are equal to is called the multiplicity
of in . For a non-negative integer , we put

( ) =
=1

(1 )

( 0( ) = 1). For + , we put

( )( ) =
+

=0

( )( )

The Hall-Littlewood polynomial ( ; ) is defined by

( ; ) = ( 1 2 ; )

=
(1 )

( )( )
1
(1) ( )

1

( ) ( )

( ) ( )

for each + . For + , ( ; ) is a polynomial in 1 and , and the
set ( ; ) ; + forms aZ[ ]-basis of the ringZ[ ][ 1 ]S of symmetric
polynomials in 1 with coefficients inZ[ ]. We denote by ( ) the structure
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constants of the ringZ[ ][ 1 ]S with respect to the basis ( ; ) ; + :

( ; ) ( ; ) = ( ) ( ; ) ( ( ) Z[ ])

Unless = + and , we have ( ) = 0. If we put

( ) = 2 ( ) 2 ( ) 2 ( ) ( 1) Z[ ]

then this polynomial ( ) is called the Hall polynomial corresponding to
(cf. [18, Chapter III, Section 3]). We use the following property.

Lemma 2.1 ([18, Chapter 3, Section 4, Example 1]).

+

( ) ( 1 2 ; ) =
=1

(1 ) 1

3. Integration formula

In this section, we give an integration formula associated to equivariant maps
(Proposition 3.1). As an example, we give two explicit formsof the formula for a
SL( )-invariant map.

Let be a connected linear algebraic groups defined over . Let ,be finite
dimensional vector spaces with -structure, : GL( ) a rational representation
of on defined over , and : GL( ) a rational representation of on

defined over . We assume that there exists a -equivariant -polynomial map
: such that

( ( ) ) = ( ) ( ) for all

We fix a point 0 ( ). Let be the fixer of 0 in ( ), and the fixer of
( 0) in ( ). We see that and , are closed subgroups of ( ).

Since ( ) is countable at , we have ( ( ))0 = ( ) , ( ( )) ( 0) =
( ) by a theorem of L.S. Pontrjagin. Let be a measure on ( ) satisfy-

ing ( ( ) ) = ( ) for every ( ), where is a element of Hom( ( )C ).
Let be a measure on ( ) satisfying ( ( ) ) = ( ) for every

( ), where is a element of Hom( ( )C ). We assume that = 0 and = 0.
Since and are locally constant homomorphisms, there existsa open compact sub-
group 0 of ( ) satisfying ( ) = ( ) = 1 for every 0. Furthermore
since ( ) is countable at , there exists a sequence =1 in ( ) such that

( ) = =1 0 . Hence we can take a subsequence =1 ( =1) such that

( ( )) ( 0) =
=1

( 0 ) ( 0) (disjoint union)



468 S. WAKATSUKI

The set ( 0 ) ( 0) is open compact in ( ( )) (0) for every = 1 2 . If
we put = ( 0) 1( ( 0 ) ( 0)) for 0 = ( ( )) 0 and every , then we have

( ( )) 0 =
=1

(disjoint union)

Proposition 3.1. Let be anyC-valued continuous function on ( ( )) ( 0),
and a C-valued function on ( ( )) 0 satisfying ( ( ) ) = ( ) for every

0, ( ). We assume that ( ( )) ( ) and ( ) are integrable on ( ( )) 0

for . Then we have

( ( )) 0

( ( )) ( ) =
=1

( )

( 0 ) ( 0) ( 0 ) ( 0)
( )

Proof. Let be the Haar measure on ( ) normalized by
0

= 1. Then we
have

( ( )) ( ) =
0

( ( ( ) )) ( ( ) )

= ( )
0

( ( ) ( ))

= ( )
0

( ( ) ( 0))

We get the following equation similarly.

( 0 ) ( 0)
( ) =

( 0 ) ( 0) 0

( ( ) ( 0))

By [9, Lemma 1], we have ( 0 ) ( 0) = 0. Hence we get the above formula from

( ( )) 0

( ( )) ( ) =
=1

( ( )) ( )

As an example, we shall give two explicit forms of the above integration formula
for a SL( )-invariant map. We take positive integers such that . The group

= GL( ) SL( ) acts on = ( ) by ( ) = for ( ) and .
We denote by the set of all = (1 ) Z where 1 1 ,
and by ( ) the the determinant of the submatrix of obtained by cross-
ing out its -th rows for = 1 . Put = ( ( ) 1). We define theSL( )-
invariant polynomial map : as ( ) = ( ( )) . Put0 = (1 0) and

0 = GL( ; O ) SL( ; O ). Let be the Haar measure on ( ) normalized by



IGUSA LOCAL ZETA FUNCTIONS 469

(O ) = 1. By [11] or [14], we see that there exist a measure on ( ( )0)
such that ( ) = det( ) for every GL( ). We have

( ( ) 0) ( ; O ) =
+

0 ( 0 ) (disjoint union)

where = diag( 1 ) GL( ; ) for + , and

( ( ) 0) ( ; O ) =
N

( 0 0) (disjoint union)

If we put = ( (O )) 1 ( 0 0) , then we have

=
=

0 ( 0 )

By [14], we have

=
( 1)

( 1)
1+ + = =1

( +1)

where ( 1 ) N . We normalize the measure by

( 0 0)
=

( 1)

( 1)

Then we have

( 0 0)
=

( 1)

( 1)

(cf. [14, p.192]). Therefore by Proposition 3.1 we have the following formula.

Proposition 3.2 (J. Igusa). Let denote anyC-valued continuous function on
( ( ; O )). Then we have

( ;O )
( ( )) =

1 =0 =1

( +1)

( 0 0)
( )

where = 1 + + .

We shall remark on the measure . Put = ;12 ( ) = 0 , = ( ),
and write every as

=
1

= det( )
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In [11, Lemma 8], the measure was expressed by

=
(1 1)

( 1)
1

since and form coordinates on . In [14, Proposition 10.6.1],the measure
was expressed by the image measure = (0 0) on ( 0 0).

We shall give another form of this formula. By the method of Section 5, we have

0 ( 0 )
=

( 1) ( 1)

( 1) ( )( 1)
( +1) 2 ( )

Therefore we have the following formula.

Proposition 3.3. Let denote anyC-valued continuous function on( ( ;
O )). Then we have

( ;O )
( ( )) =

+

( 1)
( )( 1)

( +1) 2 ( )

( 0 0)
( )

4. Main result

In this section, we give an explicit form of the formula of Proposition 3.1 for a
Sp( )-invariant map. In Section 7, we apply this formula to calculations of some Igusa
local zeta functions. We also remark local densities of alternating forms.

We take positive integers such that 2 , and a positive integersuch that
= 2 or 2 + 1. Put

=
0 1
1 0

0 1
1 0

Alt(2 )

and define

Sp( ) = GL(2 ) ; =

The groupSp( ) GL( ) acts on (2 ) by ( ) = for ( ) Sp( ) GL( )
and (2 ). The groupGL( ) act on Alt( ) by = for GL( ) and

Alt( ). We define theSp( )-invariant map : (2 ) Alt( ) as ( ) =
for (2 ). The map satisfies (( ) ) = ( ) for ( ) Sp( ) GL( )
and (2 ). It is well-known that an algebra homomorphism :C[Alt( )]
C[ (2 )]Sp( ; C) is surjective (see, e.g. [4, Theorem 4.2.2]). ThisSp( )-invariant map

defines Alt( ) as theGL( )-equivariant quotient of (2 ) bySp( ). Hence we see
that the prehomogeneous vector space (GL( ) 2 Alt( )) is the quotient of the preho-
mogeneous vector space (Sp( ) GL( ) 1 1 (2 1)) (cf. [19]).
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Put

2 = Alt(2 ; O ) ; Pf( ) = 0

2 +1 = Alt(2 + 1; O ) ; rank( ) = 2

For + , we put

( )2 =
0 1

1 0
0

0 2

( )2 +1 =
( )2 0

0 0 2 +1

Then the set is expressed by the intersection of Alt( ;O ) and theGL( ; )-orbit
of the point ( (0)) . By the theory of elementary divisors, theGL( ; O )-orbit decom-
positions of are given by

=
+

GL( ; O ) ( ) (disjoint union)

Let be the Haar measure on (2 ; ) normalized by(2 ;O ) = 1, and
the Haar measure on Alt( ; ) normalized byAlt( ; O ) = 1. Put

= (2 ; O ) ; ( ) GL( ; O ) ( )

We prove the following in Section 5 and 6.

Lemma 4.1. For + , we have

GL(2 ;O ) ( )2

= 4 ( )
2 ( 1) ( ( )( 2)) 1

GL(2 +1;O ) ( )2 +1

= 4 ( ) 3 (1 1) 1
2 +1( 1) ( ( )( 2)) 1

Lemma 4.2. For + , we have

2

= 2 ( 1) ( 2)( ( 2)) 1

+

4 ( ) (2 2 +1) ( ( 2)) 1 ( 2)

2 +1

= 2 +1( 1) ( 2)((1 1) ( 2)) 1

+

4 ( ) (2 2 +1) 2 ( ( 2)) 1 ( 2)
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If we put 0 = Sp( ; O ) GL( ; O ), then we have the following formula by Propo-
sition 3.1 and the above lemmas.

Theorem 4.3. For any C-valued continuous function onAlt( ; O ), we have

(2 ;O )
( ( )) =

+ GL( ;O ) ( )
( )

where

=
( 2)

( 2) +

( 2)
(2 2 +1) ( = 2 )
(2 2 1) ( = 2 + 1)

We shall remark on local densities of alternating forms. For 2 and
, we denote by ( ) the number of solutions in (2 ;O O ) of the

congruence mod . Then the density ( ) of integral representation of
by are defined by

( ) = lim 2 1 (4 +1) ( )

Since ( ) depend only on theGL(2 ; O )-orbit containing and theGL( ; O )-
orbit containing , we may consider only (( ) ( )2 ) for + and +. In
case of = 2 , the local density (( )2 ( )2 ) was given explicitly in [5] and [6].
Here we treat local densities (( ) ). From [5, Lemma 3.2] we have

2

= 4 ( )
2 ( 1) ( ( )( 2)) 1 (( )2 )

By an argument similar to the proof of [5, Lemma 3.2], we have

2 +1

= 4 ( ) 3 (1 1) 1
2 +1( 1) ( ( )( 2)) 1 (( )2 +1 )

Hence by Lemma 4.2 we observe that (( ) ) is equal to the coefficient
of GL( ;O ) ( ) ( ) in the formula of Theorem 4.3.

Proposition 4.4. For + , we have

(( ) ) =

5. Proof of Lemma 4.1

In this section, we shall prove Lemma 4.1. We can prove Lemma 4.1 by [5,
Corollary of Lemma 2.7], but we give an alternative proof of Lemma 4.1 by using
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only GL( ; F )-orbits on Alt( ; F ) over a finite fieldF . We also applied this method
to the case of Proposition 3.3.

For + , we express the partition as pairs of the sets 1 and 1

by

= ( 1 3

2

2 2

1

1 1)

where 1 + + = and 0 1 for some . We put

( )2 =

1
1

2
2

2 (O )

( )2 +1 =
( )2

0 2 +1(O )

Then we identify ( ) as ( ) . For 2 , we put

=
0

Alt( ; )

We see the following lemma easily.

Lemma 5.1. The GL( ; F )-orbit decompositions ofAlt( ; F ) are given by

Alt( ; F ) =
0 2

GL( ; F ) (disjoint union)

and we have

(GL(2 ; F ) 2 ) = 4 2 2 2 ( 1)

( 2) 2 2 ( 1)

(GL(2 + 1; F ) 2 +1 ) = 4 2 2+ 2 +1( 1)

( 2) 2 2 +1( 1)

For convenience, we put

( ) = (GL( ; F ) )

By this lemma we have

GL( ;O ) ( + Alt( ; O ))
= ( )

+ Alt( ; O )
= ( 1) 2 ( )
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where is the Haar measure on Alt( ; ) normalized byAlt( ; O ) = 1. This
calculation is same as in the proof of Igusa’s key lemma (cf. [14, Theorem 10.3.1]).
Hence we see

GL( ;O ) ( )
= ( ( 1) 2) 1

GL( ;O ) ( 1 )

= ( ( 1) 2)( 1+1) ( 1)

GL( 2 1 ;O ) ( 2 1 1 2) 2 1

2 1

Therefore we have

GL( ;O ) ( )
= ( ( 1) 2)( 1+1) ( 1)

(( 2 1 1)( 2 1) 2)( 2 1) ( 2 1 2)
(( 2 1 2 2 1)( 2 1 2 2) 2)( 3 2) ( 2 1 2 2 3)

1 2 1
=1 2 1

=1 2 ( 1)
( 1 1 )

Hence we have

GL(2 ;O ) ( )2

2 = 2 ( )
2 ( 1)

=1

( ( 2)) 1

GL(2 +1;O ) ( )2 +1

2 +1 = 2 +1( ) 2 +1( 1)

1 1
=1

( ( 2)) 1

where we put

2 ( ) = 2
=1

2 4 +
=1

2 +1( ) = 2
=1

2 4
=1

By 2 ( ) + = =1
2 + 2 , we have

GL(2 ;O ) ( )2

= 4 ( )
2 ( 1) ( ( )( 2)) 1

GL(2 +1;O ) ( )2 +1

= 4 ( ) 3 (1 1) 1
2 +1( 1) ( ( )( 2)) 1

Hence we obtain Lemma 4.1.
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6. Proof of Lemma 4.2

6.1. Somep-adic integrals. In this subsection, we review some results of [5]
to prove Lemma 4.2.

For an Alt( ; ), we denote by Pf ( ) (1 2 ) the Pfaffian of the upper
left 2 by 2 block of . For = and = 2 , Pf ( ) is the Pfaffian of . We choose
the sign of the Pfaffian so that Pf( ) = 1. For , we put

= GL( ; O ) ; Pf ( ) = 0 (1 2 )

For = 2 or = 2 + 1, C , we put

( ; ) = ( ; 1 ) =
=1

Pf ( )

where is the Haar measure onGL( ; ) normalized by GL( ;O ) = 1. When
Re( 1) Re( 1) 0, the integrals ( ; ) is absolutely convergent and has an
analytic continuation to a rational function in 1 by the theory of complex
powers of polynomial functions. Set

( ) = 2 ( ; )

2 ( ; )
( 2 )

where is a variables inC which is related with the variable by

= +1 2 (1 1)
= ( + 1) 2

The function ( ) is called the spherical function on2 (cf. [5, Section 2]).

Lemma 6.1 ([5, Theorem 3]). For any + , we have

(( )2 ) = 2 ( ) ( 1)
( )( 2)

( 2)
( 1 ; 2)

Lemma 6.2 ([5, Theorem 6]).

2 ( ; 1 ) =
1

=1

1 1

1 2 1
1

1 1

1 +1

By Lemma 6.2, we have the following lemma.
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Lemma 6.3. For , we have

2 ( ; 1 0 0) =
( 2) 2 2 ( 1) 2 ( 1)

( 2) ( 2) 2 ( 1)

2 ( ; )
=1

1 ( + + +2 2 +1)

1 ( + + +2 2 +1)

We denote by 0 the subset of (2 ;O ) consisting of the elements which
can be extended to a unimodular matrix by complementing 2 column vectors. Put

= (2 ; O ) ; Pf ( ( )) = 0 (1 2 )

and 0 = 0. Then for = 2 or = 2 + 1 we set

( ) = ( 1 ) =
=1

Pf ( ( ))

0( ) = 0( 1 ) =
0

=1

Pf ( ( ))

These ( ) and 0( ) are absolutely convergent for Re(1) Re( 1) 0, and
have analytic continuation to rational functions in 1 . We can easily see
that 2 ( ) = 2 +1( ). We have the following properties of 2 ( ) and 0

2 ( ).

Lemma 6.4 ([5, Proof of Theorem 5]).

2 ( ; 1 0 0) = 2 2 ( 1)

2 ( 1)
0
2 ( 1 )

Lemma 6.5 ([5, Lemma 3.1 (i)]).

0
2 ( ) =

=1

(1 ( + + +2 2 +1))(1 ( + + +2 2 +2)) 2 ( )

By Lemma 6.3, 6.4 and 6.5, we have the following lemma.

Lemma 6.6.

2 ( 1 ) =
=1

(1 2 +1)(1 2 +2 2 ) 2 ( ; 1 )

=1

(1 ( + + +2 2 +1)) 1(1 ( + + +2 2 +2)) 1
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6.2. Proof of Lemma 4.2. In this subsection, we prove Lemma 4.2 by using
some results of [5]. First we give an explicit form of the integral

2
.

Proposition 6.7. For + , we have

2

= 2 ( 1) ( 2)( ( 2)) 1

+

2 ( ) 2 ( ) 2 ( ) (2 2 +1) ( ( 2)) 1 ( 2)

Proof. We shall prove this proposition by imitating the proof of [5, Theorem 8].
By Lemma 2.1 and Lemma 6.6, we have

2 ( ) = 2 ( ; ) 2 ( 1) ( 2) ( 2) ( 2)
1

+

2 ( ) 2 ( ) (2 +1) ( 2) ( 1 ; 2)

By Lemma 6.1, we have

2 ( ) =
GL(2 ;O ) 2 =1

Pf ( ( ))

=
2

2 ( ( ) ; )

=
+ 2

2 (( )2 ; )

= 2 ( ; )
+ 2

2 ( ) ( 1)
( )( 2)

( 2)
( 1 ; 2)

Therefore we obtain the formula for
2

by comparing the terms involving

( 1 ; 2).

Next we give an explicit form of the integral
2 +1

. In order to calculate the

integral
2 +1

, we need the following lemma.

Lemma 6.8. For + , we have

2 +1(( )2 +1; ) =
1 1

1 2 1
=1

1 ( + + +2 2 +3)

1 ( + + +2 2 +1) 2 (( )2 ; )
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Proof. For = 2 or = 2 + 1, + , we put

= ( ; O ) GL( ; ) ; Pf ( ( ) ) = 0 (1 2 )
0 = GL( ; O ) ; Pf ( ( ) ) = 0 (1 2 )

Let be the Haar measure on (2 +1; ) normalized by(2 +1;O ) = 1, and
the Haar measure on (2 ; ) normalized by(2 ;O ) = 1. By [5, Proof

of Lemma 3.1], we decompose as follows:

=
1

0

1

. . .

0

(disjoint union)

Here 1 run through all negative integers and (1 ) is taken from
a complete system of representatives ofO O . Hence we have

2 +1 =1

Pf ( ( )2 +1 ) =
0

2 +1 =1

Pf ( ( )2 +1 )

+

1 2 +1=1

(2 +1)( 1+ + 2 +1)

=1

( 1+ + 2 ) 2 +1
=1 ( 1)

=
0

2 +1 =1

Pf ( ( )2 +1 )

(1 1) 1

=1

1 ( + + +2 2 +3) 1 1 ( + + +2 2 +2) 1

By an argument similar to the above calculation, we have

2 =1

Pf ( ( )2 )

=
0

2 =1

Pf ( ( )2 )

=1

1 ( + + +2 2 +1) 1 1 ( + + +2 2 +2) 1

We see

2 +1 =1

Pf ( ( )2 +1 ) =
2 =1

Pf ( ( )2 )
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Therefore we have

2 +1( ; ) = ( 2 +1(
1)) 1

0
2 +1 =1

Pf ( ( )2 +1 )

=
1 1

2 +1( 1)
=1

1 ( + + +2 2 +3) 1 ( + + +2 2 +2)

2 +1 =1

Pf ( ( )2 +1 )

=
1 1

2 +1( 1)
=1

1 ( + + +2 2 +3) 1 ( + + +2 2 +2)

2 =1

Pf ( ( )2 )

=
1 1

1 2 1
=1

1 ( + + +2 2 +3)

1 ( + + +2 2 +1) 2 (( )2 ; )

Hence we obtain the formula for2 +1( ; ) and 2 ( ; ).

Proposition 6.9. For + , we have

2 +1

= 2 +1( 1) ( 2)((1 1) ( 2)) 1

+

2 ( ) 2 ( ) 2 ( ) (2 2 +1) 2 ( ( 2)) 1 ( 2)

Proof. We shall prove this formula by Lemma 6.8 and an argument similar to
the proof of Proposition 6.7. By Lemma 6.8, we have

2 +1( ) =
GL(2 +1;O ) 2 +1 =1

Pf ( ( ))

=
2 +1

2 +1( ( ) ; )

=
+ 2 +1

2 +1(( )2 +1; )

=
1 1

1 2 1
=1

1 ( + + +2 2 +3)

1 ( + + +2 2 +1) 2 ( ; )

+ 2 +1

2 ( ) ( 1)
( )( 2)

( 2)
( 1 ; 2)
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By the proof of Proposition 6.7 and 2 +1( ) = 2 ( ), we have

=1

1 ( + + +2 2 +3)

1 ( + + +2 2 +1)

1

2 +1( )

= 2 ( ; ) 2 ( 1) ( 2)( ( 2) ( 2)) 1

+

2 ( ) 2 ( ) (2 +1) ( +2) ( 2) ( 1 ; 2)

Therefore we obtain the formula for
2 +1

by comparing the terms involving

( 1 ; 2).

By Proposition 6.7 and 6.9, we obtain Lemma 4.2.

7. Application to Igusa local zeta function

In this section, we shall give explicit forms of the Igusa local zeta functions of
prehomogeneous vector spaces (a), (b), (c) and (d) by using the formula ( = 2 + 1)
of Theorem 4.3.

7.1. (GL(1) Sp(n) SO(3) Λ1 Λ1). The group =GL(1) Sp( ) SO(3)
acts on = (2 3) by for and ( ) . We define the
map : Alt(3) (3 1) as = ( )1 3 ( 23 13 12), where = .
We see that ( ) = det( ) 1 ( ) for all GL(3), Alt(3). Hence we identify
Alt(3) as (3 1). Let be theSp( )-invariant map (2 3) Alt(3) defined by

( ) = for (2 3). In [20], -forms of this space were classified into two
cases. For one case, the basic relative invariant is given by( ( )) where ( ) = 2

12+
2
13+ 2

23 (cf. [25]), and this Igusa local zeta function was calculated in [7]. For another
case, the basic relative invariant is given by ( ( )) where ( ) =2

12 + 13 23. We
shall treat uniformly these two cases. Let be a quadratic form in O [ 12 13 23].
By the following lemma, we reduce the calculation of the Igusa local zeta function of

( ( )) to that of .

Lemma 7.1.

( ) =
(2 3;O )

( ( )) =
1 2

1 2 2
(3 1;O )

( )

Proof. By Theorem 4.3 we have

( ) = (1 2 )
+

1 1=1

(2 3) 1

GL(3;O ) ( 1+ 1 )3

( )
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= (1 2 )
+

1 1=1

(2 3) 1 ( 2 3) 1

GL(3;O ) ( 1 )3

( )

=
1 2

1 2 2
(3 1;O )

( )

because

1
1 1

=
1 ( 1 = 1 + 1)
0 (otherwise)

Hence we have this lemma.

We put ( ) = ( ) mod , = F3 = mod , and ( ) = ( + ) ( )

( ). Let be the set of all in satisfying ( ) = 0 for every . If
1
(0) = 0, then ( ) is called reduced on (cf. [14, Chapter 9]).

Lemma 7.2 ([14, Corollary 10.2.1]). If ( ) is reduced on , then the Igusa lo-
cal zeta function of ( ) is given by

(3 1;O )
( ) =

(1 1)(1 3 )

(1 1 )(1 3 2 )

Hence we obtain ( ) by Lemma 7.1 and 7.2.

Proposition 7.3. Let be a quadratic form inO [ 12 13 23]. We assume that
( ) is reduced inF3. Then the Igusa local zeta function of( ( )) is given by

( ) =
(1 1)(1 3 )(1 2 )

(1 1 )(1 3 2 )(1 2 )

By this proposition, we get the Igusa local zeta function of (GL(1) Sp( )
SO(3) 1 1).

7.2. (GL(1)3 Sp(n) Λ1 Λ1 Λ1). The group =GL(1)3 Sp( ) acts on =
(2 3) by ( 1 2 3) for = ( 1 2 3) and ( ) .

Let be theSp( )-invariant map (2 3) Alt(3) defined by ( ) = for
(2 3). This space has three basic relative invariants1( ( )), 2( ( )), 3( ( )) for

1( ) = 12, 2( ) = 13, 3( ) = 23, = ( ) = ( ) Alt(3) and (cf. [15]).
These 1( ), 2( ), 3( ) are the basic relative invariants of (GL(1)3 1 1 1).
By an argument similar to the proof of Lemma 7.1, we have the following lemma.
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Lemma 7.4.

( ) =
(2 3;O )

3

=1

( ( )) =
1 2

1 2 1 2 3 (3 1;O )

3

=1

( )

By this lemma, we get an explicit form of ( ).

Proposition 7.5. The Igusa local zeta function of(GL(1)3 Sp( ) 1 1 1)
is given by

( ) =
3

=1

1 1

1 1

1 2

1 2 1 2 3

7.3. (GL(1)4 Sp(n) SL(2m + 1) Λ1 Λ1 + 1 (Λ1 + Λ1 + Λ1)). The group
= GL(1)4 Sp( ) SL(2 +1) acts on = (2 2 +1) (2 +1 1) (2 +1 1)
(2 + 1 1) by ( 1 2 3) ( 1 2 3) for ( 1 2 3) and

( ) . Let be theSp( )-invariant map (2 2 + 1) Alt(2 + 1)
defined by ( ) = for (2 2 + 1). This space has four basic relative
invariants ( ( ) ) for ( ) = Pf( ( )) ( = 1 2 3 4), = (1 2 3), =
( ) = ( ) Alt(2 + 1), where we put

( ) =
0

( = 1 2 3) 4( ) =

1 2 3

1 0 0 0

2 0 0 0

3 0 0 0

(cf. [17]). These 1( ) 4( ) are the basic relative invariants of (GL(1)4

SL(2 + 1) 2 1 1 1) (cf. [15]). Let be the Haar measure on (2 +
1 3; ) normalized by (2 +1 3;O ) = 1. By Theorem 4.3, we have the following
lemma.

Lemma 7.6.

( ) =
(2 2 +1;O ) (2 +1 3;O )

4

=1

( ( ) )

= 2 ( 2)

2 2 ( 2) +

( 2) (2 2 1)

GL(2 +1;O ) ( ) (2 +1 3;O )

4

=1

( )

From [26, Section 3], we have the following lemma.
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Lemma 7.7.

GL(2 +1;O ) ( )2 +1 (2 +1 3;O )

4

=1

( )

=
4

=1

1 1

1 1

1 2

1 4 2

1 1 2 3 3

1 1 2 3 4 3
2 +1( 1)

(1 1) ( 2)

2 ( ) ( 1 2 3 3 1 2 3 4 5 1 2 3 4 2 1 ; 2)

Therefore we have the following result by Lemma 2.1, 7.6 and 7.7.

Proposition 7.8. The Igusa local zeta function of(GL(1)4 Sp( ) SL(2 +
1) 1 1 + 1 ( 1 + 1 + 1)) is given by

( ) =
4

=1

1 1

1 1

1 2 +2 2

1 2 +2 2 1 2 3

1 2

1 2 4

=1

1 2 1

1 2 1 1 2 3 4

1

=1

1 2 +2 2

1 2 +2 2 1 2 3 4

7.4. (GL(1)2 Sp(n) SL(2) Λ1 (2Λ1) + 1 Λ1). The group =GL(1)2

Sp( ) SL(2) acts on = (2 3) (2 1) by ( ) ( (2 )( ) ) for
( ) and ( ) , where

(2 1)( ) =

2 2 2

+
2 2 2

for = GL(2)

For a commutative ring , we denote by Sym(2; ) the totality of 22 symmetric
matrices over . We define the map : Sym(2) (3 1) as = ( )1 2

( 11 12 22), where 12 = 21. We see that ( ) = (21)( ) ( ) for all
GL(2), Sym(2). Hence we identify Sym(2) as Alt(3) by the maps and . Let

be the Sp( )-invariant map (2 3) Alt(3) defined by ( ) = for
(2 3). This space has two basic relative invariants1( ( )), 2( ( ) ) for 1( ) =

det( ), 2( ) = , = ( ) Sym(2), = (1 2) (2 1) (cf. [17]). These

1( ) and 2( ) are the basic relative invariants of (GL(1)2 SL(2) (2 1) 1).
Let be the Haar measure on (2 1; ) normalized by(2 1;O ) = 1. By an
argument similar to the proof of Lemma 7.1, we have the following lemma.
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Lemma 7.9.

( ) =
(2 3;O ) (2 1;O )

1( ( )) 1
2( ( ) ) 2

=
1 2

1 2 2 1 2 Sym(2;O ) (2 1;O )
1( ) 1

2( ) 2

We shall prove the following lemma.

Lemma 7.10.

Sym(2;O ) (2 1;O )
1( ) 1

2( ) 2

=
(1 1)2(1 2)(1 3 1 2 2)

(1 1 1)(1 1 2)(1 2 2 2)(1 3 2 1 2 2)

Proof. We decompose (2 1;O ) as

(2 1; O ) =
+

=0

GL(2; O )
0

(disjoint union)

Then by imitating [14, Section 10.1] we have

Sym(2;O ) (2 1;O )
1( ) 1

2( ) 2

=
+

=0 Sym(2;O ) GL(2;O ) ( 0)
1( ) 1

2( ) 2

= (1 2)
+

=0

2 2 2

Sym(2;O )
1( ) 1

2( (1 0)) 2

=
1 2

1 2 2 2 Sym(2;O )
11 22

2
12

1
22

2

If we split the domainO of 22 into the union ofO O and O , then we
have

Sym(2;O )
11 22

2
12

1
22

2

=
(1 1)2

1 1 1
+ 1 2

Sym(2;O )
11 22

2
12

1
22

2

By repeating this process, we have

Sym(2;O )
11 22

2
12

1
22

2
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=
(1 1)2

1 1 2
+ 1 1

Sym(2;O )
11 22

2
12

1
22

2

and

Sym(2;O )
11 22

2
12

1
22

2

=
(1 1)2

1 1 1
+ 1 2

Sym(2;O )
11 22

2
12

1
22

2

If we put together the above results, then we get this lemma.

Therefore by Lemma 7.9 and 7.10, we have the following result.

Proposition 7.11. The Igusa local zeta function of(GL(1)2 Sp( ) SL(2) 1

(2 1) + 1 1) is given by

( ) =
(1 1)2(1 2)(1 3 1 2 2)(1 2 )

(1 1 1)(1 1 2)(1 2 2 2)(1 3 2 1 2 2)(1 2 2 1 2)
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[1] S. Böcherer and F. Sato:Rationality of certain formal power series related to localdensities,
Comment. Math. Univ. St. Paul.36 (1987), 53–86.

[2] B. Datskovsky and D.J. Wright:The adelic zeta function associated to the space of binary
cubic formsII: Local theory, J. Reine Angew. Math.367 (1986), 27–75.
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