<table>
<thead>
<tr>
<th>Title</th>
<th>On complex projective bundles over a Kähler C-space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ishikawa, Kunio; Sakane, Yusuke</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 16(1) P.121–P.132</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1979</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/4522</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/4522</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
Introduction

Let \(M \) be a compact Einstein Kahler manifold. Then the first Chern class \(c_1(M) \) of \(M \) is positive, negative or zero. We can ask whether the converse is true or not, that is, does a compact Kahler manifold \(M \) with the first Chern class \(c_1(M) > 0 \) (resp. \(c_1(M) < 0 \), \(c_1(M) = 0 \)) admit an Einstein Kahler metric? In the case when \(c_1(M) < 0 \), T. Aubin [2] has proved that a compact Kahler manifold \(M \) with \(c_1(M) < 0 \) admits a unique Einstein Kahler metric. As is well-known, in the case when \(c_1(M) = 0 \), our question is yes if the Calabi conjecture is true. The purpose of this note is to give some examples of a compact Kahler manifold with \(c_1(M) > 0 \) which does not admit any Einstein Kahler metric. Let \(X \) be a compact connected complex manifold. By a theorem of Bochner-Montogomery, the group \(\text{Aut}(X) \) of all holomorphic transformations of \(X \) is a complex Lie group and the map \((f, x) \rightarrow f(x) \) is holomorphic. For a holomorphic vector bundle \(E \) over a compact complex manifold \(M \) let \(P(E) \) denote the associated complex projective bundle. Let \(\text{Aut}_o(X) \) denote the identity component of \(\text{Aut}(X) \). By a theorem of Blanchard, we can define a homomorphism \(\Pi: \text{Aut}_o(P(E)) \rightarrow \text{Aut}_o(M) \). In section 1 we shall show that the Lie algebra of the \(\text{Ker} \Pi \) is isomorphic with the Lie algebra \(H^0(M, \text{End}(E))/\mathbb{C} \cdot 1 \) where \(H^0(M, \text{End}(E)) \) denotes all holomorphic sections of the vector bundle \(\text{End}(E) \) over \(M \) and \(1 \) denotes the element of \(H^0(M, \text{End}(E)) \) defined by the identity map of \(\text{End}(E)_x (x \in M) \). In section 2 we consider Kahler C-spaces with the second Betti number \(b_2 = 1 \) as \(M \). In this case we know that the group of all holomorphic line bundles \(H^1(M, \mathbb{C}^*) \) over \(M \) is generated by a homogeneous line bundle. From now on we shall exclusively consider holomorphic vector bundles \(E \) generated by holomorphic line bundles. Then the homomorphism \(\Pi: \text{Aut}_o(P(E)) \rightarrow \text{Aut}_o(M) \) is surjective and we can determine the structure of the Lie algebra of the \(\text{Ker} \Pi \). In particular, we can compute the dimension of \(\text{Aut}_o(P(E)) \) in these cases. In section 3 we shall compute the Chern class of \(P(E) \). The result in section 2 has been obtained by Brieskorn [6], Röhrl [13]

1) The authors would like to express their thanks to the referee for his kind suggestion.
for the case of the complex projective space $\mathbb{P}^1(C)$ of dimension 1 and by Ise [9] for the case of the complex projective space $\mathbb{P}^n(C)$. The result in section 3 has been obtained by Brieskorn [6] for the case of the complex projective space $\mathbb{P}^1(C)$. In section 4 we shall show that some of complex projective bundles over M are examples of a compact Kähler manifold with $c_1(M) > 0$ which does not admit any Einstein Kähler metric. We remark that nothing is mentioned on Einstein Kähler metric in [6] [9] [13].

1. The automorphism group of a complex projective bundle

Let M be a compact connected complex manifold and E a holomorphic vector bundle over M. Let $P(E)$ denote the complex projective bundle over M induced by E. Since $P(E)$ is a compact complex manifold, it is known that the group $\text{Aut}(P(E))$ of all holomorphic automorphisms of $P(E)$ is a complex Lie group and the map $\text{Aut}(P(E)) \times P(E) \to P(E)$ defined by $(f, x) \mapsto f(x)$ is holomorphic. Let $F(P(E))$ denote the subgroup of all fiber preserving automorphisms of $P(E)$.

Proposition 1.1 (Blanchard [3]). Let $\text{Aut}_0(P(E))$ (resp. $F_0(P(E))$) denote the identity component of $\text{Aut}(P(E))$ (resp. $F(P(E))$). Then $\text{Aut}_0(P(E)) = F_0(P(E))$.

Note that an element of $F_0(P(E))$ is a fiber preserving automorphism in the sense of Steenrod [14].

Let $P(M, G, \pi)$ denote a principal holomorphic fiber bundle over M with the structure group G. Let $F(P(M, G, \pi))$ be the group of all fiber preserving holomorphic automorphisms of the principal bundle $P(M, G, \pi)$, that is, a biholomorphic map \tilde{f} of $P(M, G, \pi)$ is an element of $F(P(M, G, \pi))$ if and only if $\tilde{f}(x \cdot g) = \tilde{f}(x) \cdot g$ for all $x \in M$ and $g \in G$.

Theorem 1.2 (Morimoto [11]). The group $F(P(M, G, \pi))$ equipped with the compact open topology can be given the structure of a complex Lie group which acts holomorphically on $P(M, G, \pi)$. Its Lie algebra is isomorphic to the Lie algebra of all holomorphic vector fields X over $P(M, G, \pi)$ for which $R_g X = X$ for every $g \in G$, where $R_g \cdot$ denotes the differential mapping induced by the action R_g of an element g of G.

Let \bar{P} (resp. P) denote the principal bundle associated to a complex projective bundle $P(E)$ (resp. a holomorphic vector bundle E) over M. Then $F(P)$ and $F(P(E))$ are naturally isomorphic. In fact, $P(E)$ is the quotient of $\bar{P} \times P^n(C)$ by the equivalence relation $(y, \xi) \sim (ya, a^{-1} \xi)$ ($y \in P$, $\xi \in P^n(C)$, $a \in PGL(m + 1, C)$). Let ρ be the projection of $\bar{P} \times P^n(C)$ onto $P(E)$. For an element $f \in F(\bar{P})$, we can define a mapping $f' : P(E) \to P(E)$ by $f'(\rho(y, \xi)) = \rho(f(y), \xi)$ ($y \in \bar{P}, \xi \in P^n(C)$). Then $f' \in F(P(E))$ and f, f' induce the same automorphism \tilde{f} of M. Moreover the mapping $\theta : F(\bar{P}) \to F(P(E))$ defined by $\theta(f) = f'$ is an isomorphism of the
group $F(\hat{P})$ into the group $F(P(E))$. Conversely, let f' be an element of $F(P(E))$. For every element $y \in \hat{P}$, there is an element $w \in \hat{P}$ such that $f'(\rho(y, \xi)) = \rho(w, \xi)$ for all $\xi \in P_n(C)$. Put $f(y) = w$. Then $f \in F(\hat{P})$ and $\theta(f) = f'$.

Let $PGL(m+1, C)$ denote the projective transformation group corresponding to $GL(m+1, C)$. Then we have an exact sequence

\[0 \to \mathbb{C}^* \to GL(m+1, C) \to PGL(m+1, C) \to 0. \]

Since P (resp. \hat{P}) is the principal bundle associated to the vector bundle E (resp. $P(E)$), we have an exact sequence of complex Lie groups

\[0 \to \mathbb{C}^* \to F_0(P) \to F_0(\hat{P}). \]

Since each element $g \in F(P)$ induces an element g of $\text{Aut}(M)$, there is a canonical homomorphism $\Pi_P: F_0(P) \to \text{Aut}_0(M)$ for each principal fiber bundle P over M.

Proposition 1.3. If M is simply connected, we have an exact sequence

\[0 \to \mathbb{C}^* \to \text{Ker} \Pi_P \to \text{Ker} \Pi \to 0. \]

Proof. Take a simple open covering $\{U_\alpha\}_\alpha$ of M such that, for each α, $\pi^{-1}(U_\alpha) = U_\alpha \times GL(m+1, C)$ and $\pi^{-1}(\hat{P}) = U_\alpha \times PGL(m+1, C)$. Moreover let $(g_{\alpha\beta})$ be the system of transition functions of the principal bundle P associated to the open covering $\{U_\alpha\}_\alpha$. Then $(g_{\alpha\beta})$ induces the system of transition functions $(\tilde{g}_{\alpha\beta})$ of the principal bundle \hat{P}. Let $\tilde{\phi}$ be an element of $\text{Ker} \Pi_{\hat{P}}$. Then there is a system of functions $\{\phi_\alpha\}$ such that $\phi_\alpha: U_\alpha \to PGL(m+1, C)$ and $\tilde{g}_{\alpha\beta} \cdot \phi_\beta = \phi_\alpha \cdot \tilde{g}_{\alpha\beta}$ on $U_\alpha \cap U_\beta$. Since U_α is simply connected, there is a holomorphic map $\phi_\alpha: U_\alpha \to SL(m+1, C)$ such that $\phi_\alpha = \tilde{\phi} \cdot \phi_\alpha$ where $\tilde{\phi}: SL(m+1, C) \to PGL(m+1, C)$ is the canonical map. Then

\[\tilde{g}_{\alpha\beta} \cdot \phi_\alpha = c_{\alpha\beta} \phi_\alpha \cdot g_{\alpha\beta} \quad \text{on} \quad U_\alpha \cap U_\beta. \]

and $c_{\alpha\beta}: U_\alpha \cap U_\beta \to \mathbb{C}^*$ is holomorphic. By taking the determinant, we get $c_{\alpha\beta} = 1$ on $U_\alpha \cap U_\beta$. Since $U_\alpha \cap U_\beta$ is connected, $c_{\alpha\beta}$ is constant on $U_\alpha \cap U_\beta$ and $c_{\alpha\beta} \in \mathbb{Z}((m+1)\mathbb{Z})$. Moreover note that $c_{\alpha\beta} c_{\beta\gamma} c_{\gamma\alpha} = 1$ on $U_\alpha \cap U_\beta \cap U_\gamma$.

Lemma (Principle of monodromy). Let M be a simply connected manifold and $\mathcal{U} = \{U_\alpha\}$ be a simple open covering. Then $H^1(\mathcal{U}, \mathbb{Z}((m+1)\mathbb{Z})) = 0$.

Proof. See Weil [17].

Applying the lemma in our case, we get a system of constant functions $\{a_\alpha\}$ such that $c_{\alpha\beta} = a_\alpha \cdot a_{\beta}^{-1}$, $a_\alpha: U_\alpha \to \mathbb{Z}((m+1)\mathbb{Z})$. Hence, we have $g_{\alpha\beta} \delta_\beta \phi_\beta = a_\alpha \phi_\alpha g_{\alpha\beta}$ on $U_\alpha \cap U_\beta$ and we completes our proof.

Corollary. If M is simply connected and $\Pi_P: F_0(P) \to \text{Aut}_0(M)$ is onto, then the following sequences is exact.
(3) \[0 \to \mathbb{C}^* \to F_0(P) \to F_0(\tilde{P}) \to 0 \]

Proof. Obvious from the following diagram.

\[
\begin{array}{ccc}
0 & 0 & \\
\downarrow & \downarrow & \\
0 \to \mathbb{C}^* & \to \text{Ker } \Pi_P & \to \text{Ker } \Pi_{\tilde{P}} & \to 0 \quad \text{(exact)} \\
\downarrow & \downarrow & \downarrow & \\
0 \to \mathbb{C}^* & \to F_0(P) & \to F_0(\tilde{P}) & \\
\Pi_P & \subseteq & \subseteq & \Pi_{\tilde{P}}
\end{array}
\]

Now we recall the exact sequence of holomorphic vector bundle over \(M \) associated to the holomorphic principal fiber bundle \(P \) on \(M \) with the structure group \(G \), due to Atiyah [1]. Let \(T(P) \) be the holomorphic tangent bundle of \(P \). Since \(G \) operates on \(P \), it also operates on \(T(P) \). We put \(Q = T(P)/G \), so that a point of \(Q \) is a field of tangent vectors to \(P \), defined along one of its fibers, and invariant under \(G \). Then we can show that \(Q \) has a natural vector bundle structure over \(M \). Let \(L(P) \) denote the vector bundle associated to \(P \) by the adjoint representation of \(G \). Note that \(L(P) \) is a bundle of Lie algebra, each fiber \(L(P)_x = L(P)_x \) being a Lie algebra isomorphic with \(L(G) \). Under these notations, there exists an exact sequence of holomorphic vector bundles over \(M \):

\[(4) \quad 0 \rightarrow L(P) \rightarrow Q \rightarrow T(M) \rightarrow 0 \]

where \(T(M) \) is the holomorphic tangent bundle over \(M \).

Then we have the exact sequence of cohomology

\[(5) \quad 0 \rightarrow H^0(M, L(P)) \rightarrow H^0(M, Q) \rightarrow H^0(M, T(M)) \rightarrow H^1(M, L(P)) \rightarrow \cdots \]

Now we can identify the Lie algebra of \(F_0(P) \) (resp. \(\text{Ker } \Pi_P, \text{Aut}_0(M) \)) with \(H^0(M, Q) \) (resp. \(H^0(M, L(P)), H^0(M, T(M)) \)) (cf. Morimoto [11]). Note that the structure of the Lie algebra \(H^0(M, L(P)) \) is given by the following way. For \(X, Y \in H^0(M, L(P)), X_x, Y_x \in L(P)_x \ (x \in M) \). Since \(L(P)_x \) has the Lie algebra structure, we have \([X_x, Y_x] \in L(P)_x \). On the other hand, \([X, Y] \in H^0(M, L(P)) \) as holomorphic vector fields. Then it is easy to see that \([X, Y]_x = [X_x, Y_x] \) for every \(x \in M \). That is, the Lie algebra structure of \(H^0(M, L(P)) \) as the subalgebra of \(H^0(M, Q) \) coincides with the one induced by the Lie algebra \(L(G) \) of \(G \).

In the case of vector bundles, we have the following proposition due to Atiyah.

Proposition 1.4. Let \(E \) be a holomorphic vector bundle over \(M \) and \(P \) the
associated principal bundle. Then \(L(P) \cong \text{End}(E) \).

Note that \(H^0(M, \text{End}(E)) \) contains \(\mathbb{C} \) in the center and the Lie algebra of \(\text{Ker} \Pi(\Pi: F_0(P(E)) \to \text{Aut}_0(M)) \) is isomorphic with \(H^0(M, \text{End}(E))/\mathbb{C} \). We now summarize our result as follows:

Theorem 1.5. Let \(M \) be a simply connected compact complex manifold, \(E \) a holomorphic vector bundle over \(M \) and \(P(E) \) the projective bundle induced by \(E \). If \(\Pi: \text{Aut}_0(P(E)) \to \text{Aut}_0(M) \) is surjective,

\[
\dim_{\mathbb{C}} \text{Aut}_0(P(E)) = \dim_{\mathbb{C}} \text{Aut}_0(M) + \dim_{\mathbb{C}} H^0(M, \text{End}(E)) - 1.
\]

Moreover the Lie algebra of \(\text{Ker} \Pi \) is isomorphic with \(H^0(M, \text{End}(E))/\mathbb{C} \).

Remark 1. Let \(f, g \) be elements of \(H^0(M, \text{End}(E)) \). Then the Lie algebra structure of \(H^0(M, \text{End}(E)) \) is given by

\[
[f, g](x) = [f(x), g(x)] = f(x) \ast g(x) - g(x) \ast f(x)
\]

\((f(x), g(x) \in \text{End}(E_x)) \) for every \(x \in M \).

2. Complex projective bundles over a Kähler C-space

We shall recall the following facts on Kähler C-spaces and holomorphic line bundles over these manifolds. A simply connected compact Kähler homogeneous manifold is called a Kähler C-space. Kähler C-spaces have been classified by H. C. Wang [16]. From now on we assume that the second Betti number \(b_2(M) \) of a Kähler C-space \(M \) is 1. Note that such a class contains the class of irreducible hermitian symmetric spaces. We shall use the following known results on holomorphic line bundles over Kähler C-spaces with \(b_2 = 1 \) (cf. [4] [8]).

2.1. The group of all holomorphic line bundles \(H^1(M, \mathbb{C}^*) \) over a Kähler C-space \(M \) is isomorphic to \(\mathbb{Z} \).

2.2. There is a homogeneous holomorphic line bundle \(L \) over \(M \) such that \(L \) is very ample. Moreover \(L \) is a generator of \(H^1(M, \mathbb{C}^*) \). In particular, every holomorphic line bundle is homogeneous.

2.3. Let \(f: M \to P^N(\mathbb{C}) \) be the associated imbedding for \(L \) and \(H \) the holomorphic line bundle over \(P^N(\mathbb{C}) \) corresponding to a hyperplane of \(P^N(\mathbb{C}) \). Then \(L \) is the induced bundle \(f^*H \) over \(M \) and the homomorphism

\[
\gamma_k: H^0(P^N(\mathbb{C}), H^k) \to H^0(M, L^k) \quad (k \geq 0)
\]

induced by the imbedding \(f: M \to P^N(\mathbb{C}) \) is surjective.
We shall consider a holomorphic vector bundle $E = L^b_0 \oplus \cdots \oplus L^b_m$ over a Kähler C-space M. We consider the structure of the automorphism group $\text{Aut}_0(P(E))$ of the projective bundle $P(E)$ over M. Note that, for a holomorphic line bundle F and a holomorphic vector bundle E, the projective bundles $P(E)$ and $P(F \otimes E)$ are isomorphic. Thus we may assume that

$$E = 1 \oplus L^a_1 \oplus \cdots \oplus L^a_m$$

where $a_k (k=0, 1, \cdots, m)$ are integers such that $0 = a_0 \leq a_1 \leq \cdots \leq a_m$.

Lemma 2.1. Let $E = 1 \oplus L^a_1 \oplus \cdots \oplus L^a_m$ be a holomorphic vector bundle over $M = G/U$ and $P(E)$ the associated projective bundle. Then $\Pi: \text{Aut}_0(P(E)) \to \text{Aut}_0(M)$ is surjective.

Proof. Let \mathcal{G} denote $\text{Aut}_0(M)$. Then we can write M as a homogeneous manifold G/U for some closed connected complex Lie subgroup U of G. Since the holomorphic line bundle L over M can be written as a homogeneous line bundle $G \times_{\rho} C$ over G/U, where $\rho: U \to C^*$ is a holomorphic representation, and $E = 1 \oplus L^a_1 \oplus \cdots \oplus L^a_m$, it is easy to see that $\Pi: \text{Aut}_0(P(E)) \to \text{Aut}_0(M)$ is surjective.

q.e.d.

Note that $H^0(P^N(C), H^k)$ can be identified with the vector space S_k of all homogeneous polynomials of degree k on C^{N+1}. We shall identify M with the image of f in $P^N(C)$. Let S be the vector space of all polynomials on C^{N+1}, let $I(M)$ denote the ideal $\{p \in S | p|_M = 0\}$ and put $I_k = I(M) \cap S_k$. By 2.3, we see S_k/I_k is isomorphic with $H^0(M, L^k)$. Note that, if $k=0$, $H^0(P^N(C), H^k) \cong C$.

Theorem 2.2. Let $E = L^a_0 \oplus L^a_1 \oplus \cdots \oplus L^a_m$ be a holomorphic vector bundle over M where $0 = a_0 \leq a_1 \leq \cdots \leq a_m$ and $P(E)$ the projective bundle over M associated to the vector bundle E. We shall choose the integers q_1, \cdots, q_s with $q_1 + \cdots + q_s = m$ in such a way that $a_0 = \cdots = a_{q_1}$ and $a_{q_1} + \cdots + a_{q_{\sigma-1}+1} = \cdots = a_{q_1} + \cdots + a_{q_{\sigma-1}}$ $(\sigma = 2, \cdots, s)$. Let $M(q_i, q_j)$ be the set of $q_i \times q_j$ matrices given by

$$\{B | B = (b_{ki}), b_{ki} \in S a_{\epsilon_1 + \cdots + \epsilon_j} - a_{\epsilon_1 + \cdots + \epsilon_j} | I a_{\epsilon_1 + \cdots + \epsilon_j} - a_{\epsilon_1 + \cdots + \epsilon_j}\}$$

In particular, $M(q_i, q_j)$ is the set of $q_i \times q_j$ matrices whose components are complex numbers. Then the Lie algebra of the kernel of $\Pi: \text{Aut}_0(P(E)) \to \text{Aut}_0(M)$ is given by

$$\left[\begin{array}{c}
A_{11} & \cdots & A_{1s} \\
\vdots & \ddots & \vdots \\
0 & \cdots & A_{ss}
\end{array}\right]$$

where 1 denotes the $(m+1) \times (m+1)$-identity matrix.
Proof. By Theorem 1.5, the Lie algebra of the kernel of \(\Pi: \text{Aut}_0(P(E)) \to \text{Aut}_0(M) \) is isomorphic to \(H^0(M, \text{End}(E))/\mathbb{C} \cdot 1 \). Let \(\{g_{ab}\} \) be a system of transition functions of holomorphic line bundle \(L \) on \(M \). Then

\[
\{h_{ab}\} \quad h_{ab} = \begin{pmatrix} 1 & 0 \\ g_{ab} & 0 \\ \vdots & \vdots \\ 0 & g_{ab} \end{pmatrix}
\]

is a system of transition functions of the holomorphic vector bundle \(E = 1 \oplus L^1 \oplus \cdots \oplus L^s \). Now \(f = \{f_{kl}^a\} \in H^0(M, \text{End}(E)) \) if and only if \((f_{kl}^a) \cdot h_{ab} = h_{ab} \cdot (f_{kl}^a)\). Thus we get \(f_{kl}^a = g_{ab}^{-1} g_{kl}^b f_{kl}^a \) for \(k, l = 1, \ldots, m+1 \) and hence \(f_{kl} = \{f_{kl}^a\}_a \) is an element of \(H^0(M, L^{i-a}) \). Conversely if \(f_{kl} \) is an element of \(H^0(M, L^{i-a}) \) for \(k, l = 1, \ldots, m+1 \), \(f = \{f_{kl}^a\} \) is an element of \(H^0(M, \text{End}(E)) \).

Since \(H^0(M, L^s) \) is isomorphic with \(S_{s,1} \), \(H^0(M, \text{End}(E)) \) is isomorphic with \(S_{s,1} \), \(\forall a^i \) as vector spaces. Now, by the Remark 1 in section 1, we see that the isomorphism above is a Lie algebra isomorphism.

Corollary 2.3. Let \(E \) be as in Theorem 2.2. Then

\[
\dim \text{C} \text{Aut}_0(P(E)) = \dim \text{C} \text{Aut}_0(M) - 1 + \sum_{a^{i-a^j}} \dim H^0(M, L^{i-a^j})
\]

Proof. By Theorem 1.5 and Lemma 2.1,

\[
\dim \text{C} \text{Aut}_0(P(E)) = \dim \text{C} \text{Aut}_0(M) - 1 + \dim \text{C} H^0(M, \text{End}(E)).
\]

Now \(\dim \text{C} H^0(M, \text{End}(E)) = \sum_{a^{i-a^j}} \dim \text{C} H^0(M, L^{i-a^j}) \) by Theorem 2.2.

Remark 2. It is known that \(\dim H^0(M, L^{i-a^j}) \) can be computed by the dimension formula of Weyl. (cf. [5])

Remark 3. In the case when \(M \) is a complex projective space \(P^1(\mathbb{C}) \) of dimension 1, Theorem 2.2 and Corollary 2.3 are known (See [13] §2 and [6] §1).

Corollary 2.4. Let \(E \) be as in Theorem 2.2. If \(0 = a_0 < a_1 < \cdots < a_m \), then the Lie algebra of the kernel \(\Pi: \text{Aut}_0(P(E)) \to \text{Aut}_0(M) \) is solvable, but is not abelian.

Proof. In this case the Lie algebra of the kernel \(\Pi \) is given by
3. Chern classes of certain complex projective bundles

Let π denote the canonical projection $C^{n+1} - (0)$ onto the complex projective space $P^n(C)$. The triple $(C^{n+1} - (0), \pi, P^s(C))$ is a principal C^*-bundle over $P^n(C)$. Let ξ be the standard line bundle over $P^n(C)$ associated to the above principal bundle. Note that the dual line bundle ξ^* is the holomorphic line bundle H corresponding to a hyperplane of $P^n(C)$. For an m-tuple $a=(a_1, \cdots, a_m)$ of non-negative integers, we denote by H_a the holomorphic vector bundle $1 \oplus \xi^* \oplus \cdots \oplus \xi^* \oplus \Pi P^n(C)$. Let $P(\xi^*)$ denote the associated complex projective bundle over $P^n(C)$.

Now we shall recall that $P(\xi^*)$ can be imbedded in $P^n(C) \times P^{(n+1)m}(C)$ in a natural way (cf. [6] [8]). Let $y=(y_0, \cdots, y_n)$ be the homogeneous coordinates of $P^n(C)$ and $x=(x_0, \cdots, x_m, \cdots) (0 \leq i \leq n; 1 \leq k \leq m)$ the homogeneous coordinates of $P^{(n+1)m}(C)$. We define a projective algebraic manifold Σ_a by

$$
\Sigma_a = \left\{ (\pi(y), \pi(x)) \in P^n(C) \times P^{(n+1)m}(C) \mid y^*_k x_i = y^*_i x_{jk} \right\}.
$$

Let $\bar{\pi}: \Sigma_a \to P^n(C)$ be the projection defined by $\bar{\pi}(\pi(y), \pi(x)) = \pi(y)$. Then we can see that the complex projective bundle $(\Sigma_a, \bar{\pi}, P^n(C))$ is equivalent to $(P(\xi^*), \pi, P^n(C))$ (cf. Ise [8] p. 511). We shall identify $P(\xi^*)$ with Σ_a. Thus we get an imbedding $j: P(\xi^*) \to P^n(C) \times P^{(n+1)m}(C)$.

Now let M be a Kahler C-space with the second Betti number $b_2(M)=1$ and let $f: M \to P^n(C)$ be the imbedding as in 2.3. For an m-tuple $a=(a_1, \cdots, a_m)$ of non-negative integers, let L^a denote the holomorphic vector bundle $1 \oplus L^{-a_1} \oplus \cdots \oplus L^{-a_m}$ over M. Since the holomorphic line bundle L^{-1} over M is the induced bundle $f^*\xi$ of the standard line bundle ξ over $P^n(C)$, we see that $L^{-a} = f^*\xi^a$ and $P(L^{-a})$ is the induced bundle $f^*P(\xi^a)$ of $P(\xi^*)$ by the imbedding $f: M \to P^n(C)$. Thus we have an imbedding $f: P(L^{-a}) \to f(\xi^*)$ such that the diagram is commutative:

$$
\begin{array}{ccc}
P(L^{-a}) & \xrightarrow{f} & P(\xi^*) \\
\downarrow \pi & \cap & \downarrow \pi \\
M & \xrightarrow{f} & P^n(C)
\end{array}
$$

Now we have an imbedding of $P(L^{-a})$ into $P^n(C) \times P^{(n+1)m}(C)$ such that the diagram is commutative.
Let ξ be a holomorphic vector bundle with the fiber \mathbb{C}^{*+1} over M, $P(\xi)$ the complex projective bundle over M associated to ξ and $\pi: P(\xi) \to M$ the bundle projection. Then in a natural way $\pi^*\xi$ has a holomorphic line bundle η as sub-bundle such that η induces the standard line bundle over each fiber $P^n(\mathbb{C})$ of M. Let T_f denote the bundle along the fibers $P^n(\mathbb{C})$ of $P(\xi)$.

Now we have the following Lemma.

Lemma 3.1. Let $T(M)$ (resp. $T(P(\xi))$) denote the holomorphic tangent bundle over M (resp. $P(\xi)$). Then the following sequences are exact.

$$0 \to T_f \to T(P(\xi)) \to \pi^* T(M) \to 0$$

Let $g \in H^2(P^{N+1}M(\mathbb{C}), \mathbb{Z})$ (resp. $h \in H^2(P^{N}(\mathbb{C}), \mathbb{Z})$) denote the Chern class $c(H_2)$ (resp. $c(H_1)$) of the holomorphic line bundle H_2 (resp. H_1) corresponding to a hyperplane of $P^{N+1}M(\mathbb{C})$ (resp. $P^{N}(\mathbb{C})$). We put $\xi = \pi^*(1 \times g)$ and $\nu = (\delta f)^*(1 \times 1)$. Then $H^2(P(L^{-a}), \mathbb{Z}) \cong \mathbb{Z}\xi + \mathbb{Z}\nu$.

Corollary 3.2. Let $c(M)$ denote the total Chern class of M. Then the total Chern class of $P(L^{-a})$ is given by

$$c(P(L^{-a})) = \pi^*c(M) \prod_{i=0}^n (1 + \xi - a_i \nu)$$

where $a_0 = 0$.

Proof. Let $1 \boxtimes H_2$ denote the holomorphic line bundle over $P^{N}(\mathbb{C}) \times P^{(N+1)^*}M(\mathbb{C})$ defined by the line bundle H_2 over $P^{(N+1)}(\mathbb{C})$. Then $\eta = (\delta f)^*(1 \boxtimes H_2)$.

Thus $c(\eta) = -\xi$. Since $L^{-a} = f^*(H_2)$, $c(\pi^*L^{-a}) = -\nu$. Applying Lemma 3.1 for $\xi = L^{-a}$, we see that the total Chern class of T_f is given by

$$c(T_f) = c(\eta^{-1} \boxtimes \pi^*L^{-a}) = \prod_{i=0}^n c(\eta^{-1} \boxtimes \pi^*L^{-a}) = \prod_{i=0}^n (1 + \xi - a_i \nu)$$

and hence the total Chern class of $P(\xi)$ is given by

$$c(P(\xi)) = \pi^*c(M) \prod_{i=0}^n (1 + \xi - a_i \nu)$$

q.e.d.
Since $H^2(M, \mathbb{Z})$ is generated by the first Chern class $c_1(L)$, we can write $c_1(M) = k(M)c_1(L)$.

Corollary 3.3. The first Chern class $c_1(P(L^{-a}))$ of $P(L^{-a})$ is given by

$$c_1(P(L^{-a})) = \{k(M) - \sum_{i=1}^n a_i\} \nu + (m+1)\xi.$$

It is known that the integer $k(M)$ is positive (cf. [4]). In the case of compact irreducible hermitian symmetric spaces, the integer $k(M)$ is given as follows:

I $k(U(m+n)/U(m) \times U(n)) = m+n$

II $k(SO(2n)/U(n)) = 2n-2$

III $k(Sp(n)/U(n)) = n+1$

IV $k(SO(n+2)/SO(2) \times SO(n)) = n$ (n > 2)

V $k(E_6/Spin(10) \times T') = 12$

VI $k(E_7/E_6 \times T') = 18$.

4. A compact Kähler manifold which does not admit any Einstein Kähler metric

In this section we shall give example of a compact Kähler manifold which does not admit any Einstein Kähler metric.

Theorem 4.1. Let $P(L^{-a})$ denote a complex projective bundle over M defined in section 3. Then the first Chern class $c_1(M)$ is positive if $k(M) - \sum_{i=1}^n a_i > 0$. But the compact Kähler manifold $P(L^{-a})$ does not admit any Einstein Kähler metric if $0 < a_1 < \cdots < a_n$.

Proof. By Corollary 3.3, the first Chern class $c_1(P(L^{-a}))$ is given by

$$c_1(P(L^{-a})) = (k(M) - \sum_{i=1}^n a_i) \nu + (m+1)\xi.$$

Note that if $a, b \in \mathbb{Z}$ are positive the element $av + b\xi \in H^2(P(L^{-a}), \mathbb{Z})$ is projectively induced (cf. [15] §2). Thus $c_1(P(L^{-a}))$ is positive if $k(M) - \sum_{i=1}^n a_i > 0$.

Now we have a following Theorem due to Matsushima on a compact Einstein Kähler manifold.

Theorem (Matsushima [10]). Let X be a compact Einstein Kähler manifold with nonzero Ricci tensor. Then the Lie algebra $\mathfrak{k}(X)$ of Killing vector fields on X is a real form of the Lie algebra $\mathfrak{a}(X)$ of holomorphic vector fields on X, that is,
\[\alpha(X) = \mathfrak{f}(X) + \sqrt{-1} \mathfrak{f}(X). \]

Note that the Lie algebra \(\mathfrak{f}(X) \) is compact and hence \(\mathfrak{f}(X) \) is reductive. By Corollary 2.4, the holomorphic vector fields \(\alpha(P(L^{-a})) \) has a solvable ideal which is not abelian if \(0 < a_1 < \cdots < a_m \). In particular, the Lie algebra \((P(L^{-a})) \) is not reductive. Hence \(P(L^{-a}) \) does not admit any Einstein Kähler metric. q.e.d.

Fujitsu
Osaka University

References

Added in proof.

After finishing this work, the authors learned that S. T. Yau proved that
the complex projective bundle $P(1 \oplus \xi)$ over a complex projective space $P^1(C)$ of
dimension 1 admits a Kähler metric with positive Ricci curvature but does not
admit a Kähler metric with constant scalar curvature in his paper "On the cur-