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Introduction

Let M be a compact Einstein Kahler manifold. Then the first Chern
class cγ{M) of M is positive, negative or zero. We can ask whether the converse
is true or not, that is, does a compact Kahler manifold M with the first Chern class
c1(M)>0 (resp. c1(M)<0, c^M^O) admit an Einstein Kahler metric? In the
case when c1(M)<0, T. Aubin [2] has proved that a compact Kahler manifold
M with fj(M)<0 admits a unique Einstein Kahkr metric. As is well-known, in
the case when cι(M)=Oy our question is yes if the Calabi conjecture is true.
The purpose of this note is to give some examples of a compact Kahler manifold
with c1(M)>0 which does not admit any Einstein Kahler metric. Let X be a
compact connected complex manifold. By a theorem of Bochner-Montogomery,
the group Aut(X) of all holomorphic transformations of X is a complex Lie
group and the map \ut(X)xX->X defined by (/, x)\->f(x) is holomorphic.
For a holomorphic vector bundle E over a compact complex manifold M let P(E)
denote the associated complex projective bundle. Let Auto(X) denote the
identity component of Aut(X). By a theorem of-Blanchard, we can define a
homomorphism Π: Auto(P(£"))-^Auto(M). In section 1 we shall show that the
Lie algebra of the KerΠ is isomorphic with the Lie algebra H°(M, Έnd(E))/C 1
where H\M, End (E)) denotes all holomorphic sections of the vector bundle
End(E) over M and 1 denotes the element of H°(M, End (2?)) defined by the
identity map of End(E)x(x^M). In section 2 we consider Kahler C-spaces with
the second Betti number ό 2= 1 as M. In this case we know that the group of
all holomorphic line bundles Hι(M, C*) over M is generated by a homogeneous
line bundle. From now on we shall exclusively consider holomorphic vector
bundles E generated by bolomorphic line bundles. Then the homomorphism
Π: Auto(P(2?))-->Auto(M) is surjective and we can determine the structure of the
Lie algebra of the KerΠ. In particular, we can compute the dimension of
Aut0(P(2?)) in these cases. In section 3 we shall compute the Chern class of
P(E). The result in section 2 has been obtained by Brieskorn [6], Rϋhrl [13]

1) The authors would like to express their thanks to the referee for his kind suggestion.
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for the case of the complex projective space Pι(C) of dimension 1 and by Ise [9]
for the case of the complex projective space Pn(C). The result in section 3 has
been obtained by Brieskorn [6] for the case of the complex projective space P !(C).
In section 4 we shall show that some of complex projective bundles over M are
examples of a compact Kahler manifold with cλ(M)>0 which does not admit any
Einstein Kahler metric. We remark that nothing is mentioned on Einstein
Kahler metric in [6] [9] [13].

1. The automorphism group of a complex projective bundle

Let M be a compact connected complex manifold and E a holomorphic
vector bundle over M. Let P(E) denote the complex projective bundle over M
induced by E. Since P(E) is a compact complex manifold, it is known that the
group Aut(P(E)) of all holomorphic automorphisms of P(E) is a complex Lie
group and the map Aut (P(E))xP(E)->P(E) defined by (/, x)*-*f(x) *S holomor-
phic. Let F(P(E)) denote the subgroup of all fiber preserving automorphisms of
P(E).

Proposition 1.1 (Blanchard [3]). Let Auto(P(E)) (resp. F0(P(E))) denote the
identity component of Aut(P(£)) (resp. F(P(E))). Then Auto(P(E))=Fo(P(E)).

Note that an element of F0(P(E)) is a fiber preserving automorphism in the
sense of Steenrod [14].

Let P(M G, π) denote a principal holomorphic fiber bundle over M with
the structure group G. Let F(P(M, G, π)) be the group of all fiber preserving
holomorphic automorphisms of the principal bundle P(M, G, π), that is, a
biholomorphic map / of P(M, G, π) is an element of F(P(M, G, π)) if and only
if f(χ g)=f(x) g f°Γ all x^M and

Theorem 1.2 (Morimoto [11]). The group F(P(M, G, π)) equipped with the

compact open topology can be given the structure of a complex Lie group which acts

holomorphίcally on P(M, G, π). Its Lie algebra is isomorphic to the Lie algebra of

all holomorphic vector fields X over P(M> G, π) for which R/X=X for every

g^Gy where R/ denotes the differential mapping induced by the action Rg of an

element g of G.

Let P (resp. P) denote the principal bundle associated to a complex projec-
tive bundle P(E) (resp. a holomorphic vector bundle E) over M. Then F(P)
and F(P(E)) are naturally isomorphic. In fact, P(E) is the quotient of Px Pm(C)
by the equivalence relation (y, ξ)~(ya, a~ιξ) (yeP, ξ<=ΞPm(C), a^PGL(m+ίf C)).
Let p be the projection of PχPm(C) onto P(E). For an element / G F ( P ) , we
can define a mapping/': P(E)^P(E) by f'(p(y, ξ))=P(f(y), ξ) (yeP, ξ^Pm(C)).
Then ff^F(P(E)) and/,/' induce the same automorphism/ of M. Moreover
the mapping θ: F(P)-*F(P(E)) defined by θ(f)=f is an isomorphism of the
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group F(P) into the group F(P(E)). Conversely, let / ' be an element of F(P(E)).

For every element y^P, there is an element w^P such that f\p{y, ?))=p(^, ξ)

for all ξ£ΞPm(C). Put f(y)=w. Then/eF(P) and θ(f)=f.

Let PGZ,(τw+l, C) denote the projective transformation group correspond-

ing to GL(m-\-\, C). Then we have an exact sequence

(1) O-*C*->GL(m+l,C)-*PGL(iff+l, C)-»0.

Since P (resp. P) is the principal bundle associated to the vector bundle

J?(resp. P(E)), we have an exact sequence of complex Lie groups

(2) 0^C*^F0(P)-*F0(P).

Since each element g^F(P) induces an element £ of Aut(M), there is a canonical

homomorphism Ϊ1P: F0(P)->Aut0(M) for each principal fiber bundle P over M.

Proposition 1.3. // M is simply connected, we have an exact sequence

0->C*->Ker ΠP->Ker Π?->0 .

Proof. Take a simple open covering {t/J α of M such that, for each

a,π~\{Ua)^UaxGL{m+\,C)2inάπ-ιp{Ua)^UΛxPGL(m-\-\,C). Moreover

let (^β) be the system of transition functions of the principal bundle P associat-

ed to the open covering {U^}a. Then (gaβ) induces the system of transition

functions (J^β) of the principal bundle P. Let φ be an element of KerΠ?.

Then there is a system of functions {φa} such that φa\ Ua-*PGL(m-\-l, C) and

gaβ-φβ^Φa gaβ on Ua (Ί Uβ. Since UΛ is simply connected, there is a holomor-

phic map φΛ\ Ua->SL{nι+\, C) such that <pa=p-<pa where p: SL(m+l, C)-+

PGL(m+l, C) is the canonical map. Then

g»β * Ψ« = c«β<P« S*β o n Uaf)Uβ

and caβ: Ua ΓΊ Uβ-*C* is holomorphic. By taking the determinant, we get cn

a%
ι=l

on UΛC\Uβ. Since UΛ Π Uβ is connected, ^ β is constant on Ua ΓΊ C/β and ί ^ E

Zl(m+l)Z. Moreover note that cΛβCβΊcΊcΰ^lonί/^nt/βίl C/7.

Lemma (Principle of monodromy). Let M be a simply connected manifold

and U— {UJ be a simple open covering. Then H\Vi, Zfcm+ 1)Z)=(O).

Proof. See Weil [17].

Applying the lemma in our case, we get a system of constant functions {aΛ}

such that cΛβ=aΛ aβ\ aa: UΛ-*ZI(m+l)Z. Hence, we have g»βaβφβ=aΛφΛgΛβ

on Ua ΓΊ Uβ and we completes our proof. q.e.d.

Corollary. If M is simply connected and Π P : JF0(P)->Aut0(M) is onto, then

the following sequences is exact.
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(3) O - C * - P o ( P ) - P o ( P ) - > ϋ .

Proof. Obvious from the following diagram.

0 0

1 1
0 -> C* -> Ker Π P -> Ker Π? -» 0 (exact)

ii n i α i
0 _ c* -> F0(P) • F0(P)

uP\ n / π?
Auto(M)

o
Now we recall the exact sequence of holomorphic vector bundle over M

associated to the holomorphic principal fiber bundle P on M with the structure

group G, due to Atiyah [1]. Let T(P) be the holomorphic tangent bundle of P.

Since G operates on P, it also operates on T(P). We put Q=T(P)/Gy so that

a point of Q is a field of tangent vectors to P, defined along one of its fibers, and

invariant under G. Then we can show that Q has a natural vector bundle

structure over M. Let L(P) denote the vector bundle associated to P by the

adjoint representation of G. Note that L(P) is a bundle of Lie algebra, each

fiber L(P)X=L(P)X being a Lie algebra isomorphic with L(G). Under these

notations, there exists an exact sequence of holomorphic vector bundles over M:

(4) 0 - L ( P ) ^ Q ^ Γ ( M ) - 0

where T(M) is the holomorphic tangent bundle over M.

Then we have the exact sequence of cohomology

(5) 0 -> H\My L{P)) -> H\M, Q) -> H°(M, T(M)) — H\My L(P)) -> .

Now we can identify the Lie algebra of F0(P) (resp. KerΠF, Auto(M)) with

H\My Q) (resp. H\M, L(P)), H\M, T(M))) (cf. Morimoto [11]). Note that

the structure of the Lie algebra H°(Δ4, L(P)) is given by the following way. For

X, Yc=H°(M, L(P)), Xx) YX(ΞL(P)X(X(=ΞM). Since L{P)X has the Lie algebra

structure, we have [Xχy YX]€ΞL(P)X. On the other hand, [X, Y]ΪΞH0(M, L(P))

as holomorphic vector fields. Then it is easy to see that [Xy Y]X=[XX, Yx] for

every x^M. That is, the Lie algebra structure of H°(My L(P)) as the sub-

algebra of H°(M, Q) coincides with the one induced by the Lie algebra L(G) of

G.

In the case of vector bundles, we have the following proposition due to

Atiyah.

Proposition 1.4. Let E be a holomorphic vector bundle over M and P the
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associated principal bundle. Then L(P)e^ End (E).

Proof. See Atiyah [1] Proposition 9.

Note that H°(M, End (E)) contains C in the center and the Lie algebra of

KerΠ(Π: F0(P(E))-+ Aυt0 (M)) is isomorphic with H°(M, End(E))/C. We now

summarize our result as follows:

Theorem 1.5. Let M be a simply connected compact complex manifold, E a

holomorphic vector bundle over M and P(E) the projective bundle induced by E. If

Π: Auto(P(£'))->Auto(M) is surjective,

dimc Aut0 (P(E)) = dimc Aut0 (M)+dim c H\M, End (£))-1 .

Moreover the Lie algebra of KerΠ is isomoiphic with HQ(M, End {E))jC.

REMARK 1. Let/, g be elements of H°(M, End(E)). Then the Lie algebra

structure of H°(M, End (E)) is given by

U,g]{χ) = U(*),g(χ)] =f(*)°g(*)-g{*)°Λχ)

(f(x), g(x)<=Έnd(Ex)) for every x^M.

2. Complex projective bundles over a Kahler C-space

We shall recall the following facts on KahJer C-spaces and holomorphic

line bundles over these manifolds. A simply connected compact Kahler homo-

geneous manifold is called a Kahler C-space. Kahler C-spaces have been

classified by H. C. Wang [16]. From now on we assume that the second Betti

number b2(M) of a Kahler C-space M is 1. Note that such a class contains the

class of irreducible hermitian symmetric spaces. We shall use the following

known results on holomorphic line bundles over Kahler C-spaces with b?= 1 (cf.

[4] [8])

2.1. The group of all holomorphic line bundles Hι(M, C*) over a Kcthler C-

space M is isomorphic to Z.

2.2. There is a homogeneous holomorphic line bundle L over M such that L is

very ample. Moreover L is a generator of H1(M> C*). In particular, every

holomorphic line bundle is homogeneous.

2.3. Let f: M-+PN(C) be the associated imbedding for L and H the holomor-

phic line bundle over PN(C) corresponding to a hyperplane of PN(C). Then L is the

induced bundle J *H over M and the homomorphism

7k : H°(PN(C), Hk)-+H°(M, Lk)

induced by the imbedding f: M-+PN(C) is surjective.



126 K. ISHIKAWA AND Y. SAKANE

We shall consider a holomorphic vector bundle E=Lbo(B- ®Lbm (bQ^~ ύ bm)
over a Kahler C-space M. We consider the structure of the automorphism
group Auto(P(E)) of the projective bundle P(E) over M. Note that, for a
holomorphic line bundle F and a holomorphic vector bundle E, the projective
bundles P(E) and P(F®E) are isomorpbic. Thus we may assume that

E= l © L β i θ θ 2 > where

ak (k—0, 1, •••, m) are integers such that O=ao^a1^--^am.

Lemma 2.1. Let Z?=l^ZΛφ φZΛ« be a holomorphic vector bundle over
M^GjU and P(E) the associated projective bundle. Then Π: Auto(P(£'))->
Auto(M) is surjective.

Proof. Let G denote Auto(M). Then we can write M as a homogeneous
manifold GjU for some closed connected complex Lie subgroup U of G. Since
the holomorphic line bundle L over M can be written as a homogeneous line
bundle GxpC over G/U, where p: U-*C* is a holomorphic representation, and
£ = 1 0 Z Λ © e Z > , it is easy to see that Π: Auto(P(£))->Auto(M) is surjective.

q.e.d.

Note that H°(PN(C), Hk) can be identified with the vector space Sk of all
homogeneous polynomials of degree k on CN+1. We shall identify M with the
image of/ in PN(C). Let S be the vector space of all polynomials on CN+1, let
I(M) denote the ideal {p<=S\plM=0} and put Ik=I(M)ΠSk. By 2.3, we see
Sk/Ik is isomorphic with H°(M, Lk). Note that, if k=0, H°(PN(C), Hk)^C.

Theorem 2.2. Let E=Lao@Laiφ- ®Lam be a holomorphic vector bundle
over M where Q^a^a^ -"^amand P{E) the projective bundle over M associated
to the vector bundle E. We shall choose the integers qu --'yqs with qγ-\ \-qs=m
in such a way that ao= -=aqi and aqi+...+qσ_i+1

M(qiy q}) be the set of qi X q. matrices given by

\B\B = (bkl),

= =aq
(σ=2, •••, s). Let

In particular, M(qty qt) is the set of qtXqt matrices whose components are complex

numbers. Then the Lie algebra of the kernel of Π: Auto(P(£ l))-^Auto(M) is given

by

Ah<=M{q,, q,)
FC l

where 1 denotes the (m+l)x(m+\)-identity matrix.



COMPLEX PROJECTIVE BUNDLES 127

Proof. By Theorem 1.5, the Lie algebra of the kernel of Π: Auto(jP(£"))->
Auto(M) is isomorphic to H°(M, End (Z?))/CM. Let {gaβ\ be a system of transi-
tion functions of holomorphic line bundle L on M. Then

is a system of transition functions of the holomorphic vector bundle E—
l θ L Ί φ . ΘL *. Now/= {{ft,)}a^H\M, Enά{E)) if and only if (/ί,) Aβ p=
A-p•(/!/). Thus we get ftι=g$'>-'*)fh for A, / = 1, - , « + l and hence
fki={fki}a is an element of H°(M, Lai~"ή. Conversely if fk, is an element of
H\M, L"rak) fork,l=l,-,m+l,f= {(ft,)} is an element of H\M, End(£)).
Since H°(M, L") is isomorphic with Skjlh, H\M, End (E)) is isomorphic with

as vector spaces. Now, by the Remark 1 in section 1, we see that the isomor-
phism above is a Lie algebra isomorphism. q e d.

Corollary 2.3. Let E be as in Theorem 2.2. Then

ά\mc Aut0 (P(E)) = dimc Aut0 ( M ) - l + Σ dim H\M, Lak~ai)

q.e.d.

Proof. By Theorem 1.5 and Lemma 2.1,
dimc Aut0 {P{E)) = dimc Aut0 (M) - 1 + dimc H\M, End (£)). Now
ά\mcH\M, End(£))= Σ dimc//°(M, L^"β/) by Theorem 2.2.

a a

REMARK 2. It is known that dim/i/0(M, Lak~aι) can be computed by the
dimension formula of Weyl. (cf. [5])

REMARK 3. In the case when M is a complex projective space Pι{C) of
dimension 1, Theorem 2.2 and Corollary 2.3 are known (See [13] §2 and [6] §1).
In the case when M is a complex projective space Pn(C), Auto(P(E)) has been
studied by Ise [9].

Corollary 2.4. Let E be as in Theorem 2.2. If O=ao<a1<-- <am, then
the Lie algebra of the kernel Π: Auto(P(£f))->Auto (M) is solvable, but is not
abelian.

Proof. In this case the Lie algebra of the kernel Π is given by



128 K. ISIΠKΛWΛ ΛND Y. SΛKΛNE

"00 uOm

V 0 'b,,J

Now it is easy to see our claim. q.e.d.

AM.

3. Chern classes of certain complex projective bundles

Let π denote the canonical projection Cw + 1—(0) onto the complex projective

space Pn(C). The triple (CM+1 — (0), TΓ, Pn{C)) is a principal C*-bundle over

Pn(C). Let f be the standard line bundle over Pn(C) associated to the above

principal bundle. Note that the dual line bundle ζ* is the holomorphic line

bundle H corresponding to a hyperplane of Pn{C). For an w-tuple a=

(aly

 mm ,am) of non-negative integers a.(j=l, « ,m) such that a ^ t̂f,,,, we

denote by ζa the holomorphic vector bundle l tPΓ 1 ^• •" T ζ"m over Pn(C). Let

P(fΛ) denote the associated complex projective bundle over P"(C).

Now ΛVC shall recall that P(ζa) can be imbedded in Pn(C)xPin 1)>>1(C) in a

natural way (cf. [6] [8]). Let y=(y0J *",yn) be the homogeneous coordinates of

Pn(C) and x=(χ0Qy •••, # ί Λ, •••) (O^i^n; l^k^m) the homogeneous coordinates

of P{n+ι)m(C). We define a projective algebraic manifold Σ f l by

Let TΓ: ΣΛ->P"(C) be the projection defined by τt(π(y), π(x))=π(y). Then we

can see that the complex projective bundle (Σ f l, TΓ, Pn(C)) is equivalent to (P(?β),

7τ, PM(C)) (cf. Ise [8] p. 511). We shall identify P{ζa) with Σ β . Thus we get

an imbedding;: P(ζa)~>Pn(C)xP{n+1)m(C).

Now let M be a Kahler C-space with the second Betti number b2(M)=l

and let/: M—>PN(C) be the imbedding as in 2.3. For an w-tuple α—(a l t ~- >am)

of non-negative integers a} (j=l, •••, w) such that Λ ^ ^ ^ , let L~β denote

the holomorphic λ^ector bundle l φ L ~ f l i φ φL~ C w over M. Since the holomor-

phic line bundle L" 1 over M -is the induced bundle /*f of the standard line

bundle ? over P ^ C ) , we see that L~a=f*ζa and P(Zr f l) is the induced bundle

/*P(f f l) of P(ζa) by the imbedding / : M->PN(C). Thus we have an imbedding

/ : P(L~σ)->P(ζa) such that the diagram is commutative:

P{L'a) - i

I-? I-
M - — - > P W ( C ) .

Now we have an imbedding of P(L" ' ) into P w ( C ) x P(W+1>"'(C) such that the

diagram is commutative:
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i P{ζa) -̂ ->

n
)

Let £ be a holomorphic vector bundle with the fiber Cn+1 over M, P(ζ) the
complex projective bundle over M associated to ξ and π: P(ξ)-*M the bundle
projection. Then in a natural way π*ξ has a holomorphic line bundle η as sub-
bundle such that η induces the standard line bundle over each fiber Pm(C) of M.
Let Tf denote the bundle along the fibers Pm{C) of P(ξ).

Now we have the following Lemma.

Lemma 3.1. Let T(M) (resp. T(P(ξ))) denote the holomorphic tangent
bitfidle over M {resp. P(ξ)). Then the following sequences are exact.

2) 0->i7-»τr*f

Proof. See [7] §13 (cf. [6] §2).

Let g^H2(P^N+1^(C)y Z) (resp. h£ΞH2(PN(C), Z)) denote the Chern class
c(H2) (resp. c^H^) of the holomorphic line bundle H2(resρ. H^ corresponding
to a hyperplane of p("+i)»(C) (resp. PN(C)). We put £ = (j°f)*(lxg) and
v=(jof)*(hxl). Then H2(P(L~a),

Corollary 3.2. Lei c(M) ώ/zo^ the total Chern class of M. Then the total
Chern class of P(L~a) is given by

= π*c(M) Π
ί 0

where ao—Q.

Proof. Let 1 [X] H2 denote the holomorphic line bundle over PN(C) X
«(C) defined by the line bundle//"2 over P^+1>(C). Then ̂ =(io/)*(l[X]i/2*).

Thus c(ί7)=-f. Since L-ι=f*{H?)> c(π*L-λ)=-v. Applying Lemma 3.1 for
ξ~L~a> we see that the total Chern class of Tf is given by

c(Tf) = c(η-ι®π*L~a) = ft c(v-ι®π*L-i) = ΐϊ (1+6-ap)
ι = 0 i = 0

and hence the total Chern class of P(ξ) is given by

c{P{ξ))^π*c{M)X\{\\e<ι,v).

q.e.d.
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Since H2(M> Z) is generated by the first Chern class cι(L)y we can write

Cl(M)=k(M)Cι(L).

Corollary 3.3. The first Chern class c^L'")) of P(L~") is given by

It is known that the integer k(M) is positive (cf. [4]). In the case of com-

pact irreducible hermitian symmetric spaces, the integer k(M) is given as

follows:

I k(U(m+n)IU(m)x U(n))=m+n

II k(SO(2n)IU(n))=2n-2

III k(Sp(ή)IU(n))=n+l

IV k(SO(n+2)ISO(2)χSO(ή))=n (n>2)

V

VI

4. A compact Kahler manifold which does not admit any Einstein

Kahler metric

In this section we shall give example of a compact Kahler manifold with

the positive first Chern class which does not admit any Einstein Kahler metric.

Theorem 4.1. Let P(L~a) denote a complex projective bundle over M defined
m

in section 3. Then the first Chern class cλ(M) is positive if k(M)— ̂ at>0. But
i = l

the compact Kahler manifold P(L~a) does not admit any Einstein Kahler metric if

0 < α 1 < - < ^ .

Proof. By Corollary 3.3, the first Chern class c1(P(L~tt)) is given by

-") = (k(M)- Σ ai)p+(m+ί)€ .
1

Note that if a, fteZare positive the element av + b£<=H2(P(L~a), Z) is projec-

tively induced (cf. [15] §2). Thus ^(P(L"fl)) is positive if k(M)- f]at>0.

Now we have a following Theorem due to Matsushima on a compact Einstein
Kahler manifold.

Theorem (Matsushima [10]). Let X be a compact Einstein Kahler mani-
fold with nonzero Rίcci tensor. Then the Lie algebra t{X) of Killing vector fields

on X is a real form of the Lie algebra a(X) cf holomorphic vector fields on X} that

is,
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Note that the Lie algebra t(X) is compact and hence t(X) is reductive. By

Corollary 2.4, the holomorphic vector fields a(P(L~a)) has a solvable ideal which

is not abelian if 0<aλ< ••• <am. In particular, the Lie algebra (P(L~a)) is not

reductive. Hence P(L~~a) does not admit any Einstein Kahler metric. q.e.d.
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Added in proof.

After finishing this work, the authors learned that S. T. Yau proved that
the complex projective bundle P(l®f) over a complex projective space P^C) of
dimension 1 admits a Kahler metric with positive Ricci curvature but does not
admit a Kahler metric with constant scalar curvature in his paper "On the cur-
vature of compact Hermitian manifolds" Invent, math. 25 (1974), 213-239.




