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Introduction

Let M be a compact Einstein K#hler manifold. Then the first Chern
class ¢;(M) of M is positive, negative or zero. We can ask whether the converse
is true or not, that is, does a compact Kihler manifold M with the first Chern class
c(M)>0 (resp. ¢,(M)<0, ¢;(M)=0) admit an Einstein Kihler metric? In the
case when ¢ (M)<0, T. Aubin [2] has proved that a compact Kiahler manifold
M with ¢,(M)<0 admits a unique Einstein Kéhlcr metric.  As is well-known, in
the case when ¢,(M)=0, our question is yes if the Calabi conjecture is true.
The purpose of this note is to give some examples of a compact Kihler manifold
with ¢,(M)>0 which does not admit any Einstein K#hler metric. Let X be a
compact connected complex manifold. By a theorem of Bochner-Montogomery,
the group Aut(X) of all holomorphic transformations of X is a complex Lie
group and the map Aut(X)xXX-—X defined by (f, x)— f(x) is holomorphic.
For a holomorphic vector bundle E over a compact complex manifold M let P(E)
denote the associated complex projective bundle. Let Aut,(X) denote the
identity component of Aut(X). By a theorem of .Blanchard, we can define a
homomorphism IT: Auty(P(E))—Aut,(M). In scction 1 we shall show that the
Lie algebra of the KerII is isomorphic with the Lie algebra H°(M, End(E))/C-1
where H°(M, End(E)) denotes all holomorphic sections of the vector bundle
End(E) over M and 1 denotes the element of H°(M, End(E)) defined by the
identity map of End(E) (x< M). In section 2 we consider Kidhler C-spaces with
the second Betti number b,=1 as M. In this case we know that the group of
all holomorphic line bundles H (M, C*) over M is generated by a homogeneous
line bundle. From now on we shall exclusively consider holomorphic vector
bundles E generated by bolomorphic line bundles. Then the homomorphism
IT: Aut,(P(E))—>Auty(M) is surjective and we can determine the structure of the
Lie algebra of the KerIl. In particular, we can compute the dimension of
Auty(P(E)) in these cases. In section 3 we shall compute the Chern class of
P(E). The result in section 2 has been obtained by Brieskorn [6], Rohrl [13]

1) The authors would like to express their thanks to the referee for his kind suggestion.
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for the case of the complex projective space P'(C) of dimension 1 and by Ise [9]
for the case of the complex projective space P"(C). The result in section 3 has
been obtained by Brieskorn [6] for the case of the complex projective space P!(C).
In section 4 we shall show that some of complex projective bundles over M are
examples of a compact Kihler manifold with ¢,(44) >0 which does not admit any
Einstein Kiahler metric. We remark that nothing is mentioned on Einstein
Kihler metric in [6] [9] [13].

1. The automorphism group of a complex projective bundle

Let M be a compact connected complex manifold and £ a holomorphic
vector bundle over M. Let P(E) denote the complex projective bundle over M
induced by E. Since P(E) is a compact complex manifold, it is known that the
group Aut(P(E)) of all holomorphic automorphisms of P(E) is a complex Lie
group and the map Aut(P(E))x P(E)—P(E) defined by (f, x)— f(x) is holomor-
phic. Let F(P(E)) denote the subgroup of all fiber preserving automorphisms of
P(E).

Proposition 1.1 (Blanchard [3]). Let Aut,(P(E)) (resp. Fy(P(E))) denote the
identity component of Aut(P(E)) (resp. F(P(E))). Then Aut,(P(E))=F,(P(E)).

Note that an element of Fy(P(E)) is a fiber preserving automorphism in the
sense of Steenrod [14].

Let P(M G, =) denote a principal holomorphic fiber bundle over M with
the structure group G. Let F(P(M, G, n)) be the group of all fiber preserving
holomorphic automorphisms of the principal bundle P(M, G, ), that is, a
biholomorphic map f of P(M, G, ) is an element of F(P(M, G, x)) if and only
if f(x-g)=f(x)-g for all x& M and g=G.

Theorem 1.2 (Morimoto [11]). The group F(P(M, G, r)) equipped with the
compact open topology can be given the structure of a complex Lie group which acts
holomorphically on P(M, G, =). Its Lie algebra is isomorphic to the Lie algebra of
all holomorphic vector fields X over P(M, G, =) for which R,/ X=X for every
2= G, where R, denotes the differential mapping induced by the action R, of an
element g of G.

Let P (resp. P) denote the principal bundle associated to a complex projec-
tive bundle P(E) (resp. a holomorphic vector bundle E) over M. Then F(P)
and F(P(E)) are naturally isomorphic. In fact, P(E) is the quotient of Px P"(C)
by the equivalence relation (y, £)~(ya, a *£) (ye P, £ P"(C), ac PGL(m-+1, C)).
Let p be the projection of Px P"(C) onto P(E). For an element f& F(P), we
can define a mapping f*: P(E)—P(E) by f/(p(y, £))=p(f(3), £) (vE P, E€ P*(C)).
Then f’e F(P(E)) and f, f’ induce the same automorphism f of M. Moreover
the mapping 0: F(P)—~F(P(E)) defined by (f)=f’ is an isomorphism of the
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group F(P) into the group F(P(E)). Conversely, let f/ be an element of F(P(E)).
For every element y& P, there is an element we P such that f/(p(y, £))=p(w, E)
for all €€ P,(C). Put f(y)=w. Then feF(P)and 0(f)=f".

Let PGL(m+1, C) denote the projective transformation group correspond-
ing to GL(m+-1, C). Then we have an exact sequence

(1) 0—C*—GL(m+1, C)—PGL(m+1, C)—0.

Since P (resp. P) is the principal bundle associated to the vector bundle
E(resp. P(E)), we have an exact sequence of complex Lie groups

(2) 0—>C*—>F(P)—FyP).

Since each element g& F(P) induces an element g of Aut (M), there is a canonical
homomorphism IT,: Fo(P)—>Aut,(M) for each principal fiber bundle P over M.

Proposition 1.3. If M is simply connected, we have an exact sequence
0—=C*—>KerIl,—KerIIz—0.

Proof. Take a simple open covering {U,}, of M such that, for each
a, "' p(U,)=U, x GL(m~+1, C)and »~'3(U,)=U, X PGL(m-+1, C). Moreover
let (g,5) be the system of transition functions of the principal bundle P associat-
ed to the open covering {U,},. Then (g,s) induces the system of transition
functions (g,s) of the principal bundle P. Let @ be an element of KerIIs.
Then there is a system of functions {®,} such that ¢,: U,—~PGL(m+1, C) and
Gup Pp=P,Zus0on U,NUs. Since U, is simply connected, there is a holomor-
phic map ¢,: U,—~SL(m-+1, C) such that $,=p-P, where p: SL(m-+1, C)—
PGL(m-1, C) is the canonical map. Then

8aB* Po = CafPa*8ap ON Umﬂ Uﬁ .

and ¢,p: U, N Ug—C* is holomorphic. By taking the determinant, we get c33'=1
on U,NUs. Since U,N Up is connected, c,g is constant on U, N Uy and cpE
Z|(m+1)Z. Moreover note that ¢,scpycy,=1 on U, N UgN U,.

Lemma (Principle of monodromy). Let M be a simply connected manifold
and U= {U,} be a simple open covering. Then H'(W, Z|(m--1)Z)=(0).

Proof. See Weil [17].

Applying the lemma in our case, we get a system of constant functions {a,}
such that ¢,g=a,-a3", a,: U,~>Z|(m+1)Z. Hence, we have g,pas0s=a,9,8up
on U, N Ug and we completes our proof. q.e.d.

Corollary. If M is simply connected and I1p: Fy(P)—Auty (M) is onto, then
the following sequences is exact.
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(3) 0—C*—>F(P)—Fy(P)—0.

Proof. Obvious from the following diagram.

0 0
y l
0—C* - KerIl, - KerIIz; - 0 (exact)
N 4+ N
0 — C* — Fy(P)— F(P)
I, \\ M / 113
Aut, (M)
!
0

Now we recall the exact sequence of holomorphic vector bundle over M
associated to the holomorphic principal fiber bundle P on M with the structure
group G, due to Atiyah [1]. Let T(P) be the holomorphic tangent bundle of P.
Since G operates on P, it also operates on T(P). We put Q=T(P)/G, so that
a point of @ 1s a field of tangent vectors to P, defined along one of its fibers, and
invariant under G. Then we can show that @ has a natural vector bundle
structure over M. Let L(P) denote the vecter bundle associated to P by the
adjoint representation of G. Note that L(P) is a bundle of Lie algebra, each
fiber L(P),=L(P), being a Lie algebra isomorphic with L(G). Under these
notations, there exists an exact sequence of holomorphic vector bundles over M:

4 0—->L(P)»Q—>T(M)—0

where T(M) is the holomorphic tangent bundle over M.
Then we have the exact sequence of cohomology

(5) 0—HM, L(P))—H"M, Q)— H M, T(M))—>H(M, L(P))~> -

Now we can identify the Lie algebra of Fy(P) (resp. KerII,, Aut,(M)) with
H(M, Q) (resp. H'(M, L(P)), H(M, T(M))) (cf. Morimoto [11]). Note that
the structute of the Lie algebra H(M, L(P)) is given by the following way. For
X, YeH M, L(P)), X,, Y,eL(P),(x&M). Since L(P), has the Lie algebra
structure, we have [X,, Y, ] L(P),. On the other hand, [X, Y]e H(M, L(P))
as holomorphic vector, fields. Then it is easy to see that [X, Y],=[X,, Y,] for
every x=M. That is, the Lie algebra structure of H°(M, L(P)) as the sub-
algebra of H(M, Q) coincides with the one induced by the Lie algebra L(G) of
G.

In the case of vector bundles, we have the following proposition due to
Atiyah.

Proposition 1.4. Let E be a holomorphic vector bundle over M and P the
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associated principal bundle. Then L(P)=End(FE).
Proof. Sce Atiyah [1] Proposition 9.

Note that H(M, End(E)) contains C in the center and the Lie algebra of
KerII(I1: Fy(P(E))—Aut, (M)) is isomorphic with H(M, End(E))/C. We now

summarize our result as follows:

Theorem 1.5. Let M be a simply connected compact complex manifold, E a
holomorphic vector bundle over M and P(E) the projective bundle induced by E. If
IT: Auty(P(E))—>Auty (M) s surjective,

dim¢ Aut, (P(E)) = dim¢ Aut, (M)+dim¢e H(M, End (E))—1.
Moreover the Lie algebra of KerIl is isomor phic with H(M, End(E))/C.

ReMARK 1. Let f, g be elements of H%(M, End(E)). Then the Lie algebra
structure of H°(M, End (E)) is given by

[/ 81(x) = [f(%), g(x)] = [ (x)og(x)—g(x) o f(x)
(f(x), g(x)eEnd(E,)) for every x& M.

2. Complex projective bundles over a Kihler C-space

We shall recall the following facts on Kihler C-spaces and holomorphic
line bundles over these manifolds. A simply connected compact Kihler homo-
geneous manifold is called a Kihler C-space. Kihler C-spaces have been
classified by H. C. Wang [16]. From now on we assume that the second Betti
number b,(M) of a Kahler C-space M is 1. Note that such a class contains the
class of irreducible hermitian symmetric spaces. We shall use the following
known results on holomorphic line bundles over Kihler C-spaces with b,=1 (cf.

[4] [8])-
2.1.  The group of all holomorphic line bundles H'(M, C*) over a Kdhler C-

space M is isomorphic to Z.

2.2.  There is a homogeneous holomorphic line bundle L over M such that L is
very ample. Moreover L is a generator of H'(M, C*). In particular, every
holomorphic line bundle is homogeneous.

2.3. Let f: M—P¥(C) be the associated imbedding for L and H the holomor-
phic line bundle over PY(C) corresponding to a hyperplane of PX(C). Then L is the
induced bundle t*H over M and the homomorphism

v, : H(PY(C), H)—H (M, L*)  (k=0)

induced by the imbedding f: M —P"(C) s surjective.
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We shall consider a holomorphic vector bundle E=L%@+--PL" (b= -+ =b,)
over a Kahler C-space M. We consider the structure of the automorphism
group Auty(P(E)) of the projective bundle P(E) over M. Note that, for a
holomorphic line bundle F and a holomorphic vector bundle E, the projective
bundles P(E) and P(F QE) are isomorpbic. Thus we may assume that

E=1pL“B---PL* where
a, (k=0, 1, :--, m) are integers such that 0=a,<a,<--<a,,.

Lemma 2.1. Let E=1PLP--- DL be a holomorphic vector bundle over
M=G|U and P(E) the associated projective bundle. Then I1: Aut,(P(E))—
Aut (M) is surjective.

Proof. Let G denote Auty(M). Then we can write M as a homogencous
manifold G/U for some closed connected complex Lie subgroup U of G. Since
the holomorphic line bundle L. over M can be written as a homogeneous line
bundle G'x 7 € over G/U, where p: U—C* is a holomorphic representation, and
E=1PL"“D---PL, it is easy to see that IT: Aut,(P(E))—Aut,(M) is surjective.

q.e.d.

Note that H(PY(C), H*) can be identified with the vector space S, of all
homogeneous polynomials of degree k on C*'. We shall identify M with the
image of f in PY(C). Let S be the vector space of all polynomials on C¥*1, let
I(M) denote the ideal {p=S|p =0} and put [,=I(M)NS,. By 2.3, we see
Sy/I, is isomorphic with H(M, L¥). Note that, if k=0, H'(P¥(C), H*)=C.

Theorem 2.2. Let E=LPL DB+ DBL™ be a holomorphic vector bundle
over M where 0=a,<a,< ---=<a,and P(E) the projective bundle over M associated
to the vector bundle E. We shall choose the integers q,, -+, q, with ¢+ +q,=m
in such a way that ay=---=a, and @, ...¢u_ 1="""=0 . 14, (0=2,,5). Let
M(qg;, q,) be the set of q;x q; matrices given by

Lo L gy IR 1 .
{ kl)s Ykl Aqy+.tq, A+ q/ agy+...+9,—Ag +-~-+a}

In particular, M(q,, q,) is the set of q,xq, matrices whose components are complex
numbers.  Then the Lie algebra of the kernel of T1: Aut,(P(E))—Auty,(M) s given
by

All ......... Als\ AnEM(QI_"l? QI—I_l))
. AleM(Q1+1’ q;') ]
0 : 4;,eM(q,, q,)
4 | 25i< j<s /C'1

where 1 denotes the (m—1) X (m+1)-identity matrix.
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Proof. By Theorem 1.5, the Lie algebra of the kernel of IT: Aut,(P(£))—
Aut, (M) is isomorphic to H(M, End(E))/C-1. Let {g,¢} be a system of transi-
tion functions of holomorphic line bundle L on M. Then

1

o 0
{hmﬂ} hap == gaﬂ..
0 .

a
8ab

is a system of transition functions of the holomorphic vector bundle E=
IPLYp--PL™. Now f={(fi)},=H(M, End(E)) if and only if (f#;)+hap=
hag+(ff1). Thus we get fi =ga5"t""Pf%, for k, I=1, .-, m+1 and hence
fu=1{ft1}s is an element of H(M, L*~“%). Conversely if f,, is an element of
H(M, L*~%) for k, I=1, -+, m+1, f={(f%/)} is an element of H(M, End(E)).
Since H%(M, L*) is isomorphic with S,/I,, H'(M, End (E)) is isomorphic with

( All ......... Als AIIEM(q1+17 q1+1) )
] . AleM(q1+1» q]‘) 3
( 0 ‘., AszM(QH 91)

A’ | 2<gigj<s

as vector spaces. Now, by the Remark 1 in section 1, we see that the isomor-
phism above is a Lie algebra isomorphism. qed.

Corollary 2.3. Let E be as in Theorem 2.2. Then
dim¢ Aut, (P(E)) = dim¢ Aut, (M)—14 >3 dim HY(M, L°*)

=

Proof. By Theorem 1.5 and Lemma 2.1,
dim¢ Aut, (P(E)) = dim¢ Aut, (M) — 1+ dim¢ HY(M, End (E)). Now
dim¢ H(M, End(E))= > dimcH%M, L+ *) by Theorem 2.2. q.e.d.
2z

RemaRk 2. It is known that dim H%M, L %) can be computed by the
dimension formula of Weyl. (cf. [5])

REMARK 3. In the case when M is a complex projective space P'(C) of
dimension 1, Theorem 2.2 and Corollary 2.3 are known (See [13] §2 and [6] §1).
In the case when M is a complex projective space P"(C), Aut,(P(E)) has been

studied by Ise [9].

Corollary 2.4. Let E be as in Theorem 2.2. If 0=a,<a,<---<a,, then
the Lie algebra of the kermel T11: Auty(P(E))—Aut,(M) is solvable, but is not
abelian.

Proof. In this case the Lie algebra of the kernel IT is given by
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( bOO:“b_Om
1( 0's )

\ mm

b,‘,‘EC (i:O, ey m) }
bijESaj~¢z,'/1(tj~a,' C 1

Now it is easy to see our claim. q.c.d.

3. Chern classes of certain complex projective bundles

Let 7 denote the canonical projection C**!—(0) onto the complex projective
space P*(C). The triple (C"*'—(0), =, P*(C)) is a principal C*-bundle over
P"(C). Let ¢ be the standard line bundle over P*(C) associated to the above
principal bundle. Note that the dual line bundle {* is the holomorphic line
bundle H corresponding to a hyperplane of P*(C). For an m-tuple a=
(@, -+, a,) of non-negative integers a; (j=1, ---, m) such that ,<---=a,, we
denote by ¢* the holomorphic vector bundle 14°¢%<--- -+ ¢ over P(C). Let
P(£*) denote the associated complex projective bundle over P'(C).

Now we shall recall that P(*) can be imbedded in P*(C)xP® P*(C) in a
natural way (cf. [6] [8]). Let y=(»,, **+, y,) be the homogeneous coordinates of
P*(C) and x=(xy9, ***, %4, ***) (0=i=<m; 1<k=m) the homogeneous coordinates
of P*Um(C).  We define a projective algebraic manifold =, by

" n m yakx! = y:”x
= {0 sererommmme i 200 )

Let #: %,—P"(C) be the projection defined by #(n(y), =(x))==(y). Then we
can see that the complex projective bundle (2,, #, P*(C)) is equivalent to (P({*),
=, P(C)) (cf. Ise [8] p. 511). We shall identify P({“) with =,. Thus we get
an imbedding j: P({%)—P"(C)x P*"(C).

Now let M be a Kahler C-space with the second Betti number b,(M)=1
and let f: M—P%(C) be the imbedding as in 2.3. For an m-tuple a=(ay, -, a,,)
of non-negative integers a; (j=1, -+, m) such that a,<--=a,, let L= denote
the holomorphic vector bundle 1 L~“1F--+PL™» over M. Since the holomor-
phic line bundle L™ over M .s the induced bundle f*¢ of the standard line
bundle ¢ over P¥(C), we see that L™*=f*{* and P(L™“) is the induced bundle
f*P(§°) of P(¢°) by the imbedding f: M—P¥(C). Thus we have an imbedding
f+ P(L™%)—P(£") such that the diagram is commutative:

P(L™) 2 P(E°)
[0 |
M —f——> PN(C).
Now we have an imbedding of P(L™) into P¥(C)x P™*Y"(C) such that the
diagram is commutative:
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P L Py Lo Pe) (e

szm ln’ l(;v 11’1
M -1 pyE)—> P¥(C).

Let & be a holomorphic vector bundle with the fiber C**! over M, P(£) the
complex projective bundle over M associated to & and =: P(§)—M the bundle
projection. Then in a natural way z*& has a holomorphic line bundle 7 as sub-
bundle such that 7 induces the standard line bundle over each fiber P"(C) of M.
Let T, denote the bundle along the fibers P"(C) of P(£).

Now we have the following Lemma.

Lemma 3.1. Let T(M) (resp. T(P(E))) denote the holomorphic tangent
bundle over M (resp. P(E)). Then the following sequences are exact.

1) 0->T,—T(PE)—>r*T(M)—0
2) 0—»n—>r*—->2QT,—0

Proof. See [7] §13 (cf. [6] §2).

Let g H(PW+in(C), Z) (resp. he H¥(P¥(C), Z)) denote the Chern class
o(H,) (resp. ¢,(H,)) of the holomorphic line bundle H,(resp. H,) corresponding
to a hyperplane of PM+Um(C) (resp. P¥(C)). We put &= (jof)*(1xg) and
v=(jofy*(hx1). Then HYP(L™%), Z)==Z&+ Zv.

Corollary 3.2. Let ¢(M) denote the total Chern class of M. Then the total
Chern class of P(L™°) is given by

o(P(L™)) = z*c(M) ﬁo (14+-E—aw)

where a;=0.

Proof. Let 1X]H, denote the holomorphic line bundle over P¥(C)x
P+Dm(CY defined by the line bundle H, over PY+D(C). Then n=(jof )*(1XHF).
Thus ¢(7)=—¢&. Since L '=f*(H{), ¢(z*L™*)=—v. Applying Lemma 3.1 for
§=L"“, we see that the total Chern class of T'; is given by

o(Ty) = c(n'Q@n*L™%) = I:]o (T @a*L ) = 1;[0 (14+&—aw)

and hence the total Chern class of P(£) is given by

q.e.d.
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Since H¥M, Z) is generated by the first Chern class ¢,(L), we can writc
c(M)=k(M)c,(L).

Corollary 3.3. The first Chern class c¢,(P(L™)) of P(L™°%) is given by

o(P(L™) = {(H(M)— X a}v+(m+1)e.

It is known that the integer k(M) is positive (cf. [4]). In the case of com-
pact irreducible hermitian symmetric spaces, the integer k(M) is given as
follows:

I A(U(m-+n)]Um)x Un))=m-+n
I k(SO(2n)|Un))=2n—2

I k(Sp(n)/Un))=n-+1

IV k(SO(n+2)/SO(2)x SO(m))=n (n>2)
V  R(E/Spin (10)x T")=12

VI k(E,/E;x T")=18.

4. A compact Kihler manifold which does not admit any Einstein
Kihler metric

In this section we shall give example of a compact Kahler manifold with
the positive first Chern class which does not admit any Einstein Kihler metric.

Theorem 4.1. Let P(L™°) denote a complex projective bundle over M defined
in section 3. Then the first Chern class c,(M) is positive if k(M)— Em a,>0. But

the compact Kdhler manifold P(L~") does not admit any Einstein Kdhler metric if
0<a, <+ <a,,.

Proof. By Corollary 3.3, the first Chern class ¢,(P(L™")) is given by
G(P(L™) = (R(M)— 2w+ (m+1)e.

Note that if a, b= Z are positive the clement av+bf= H¥P(L™"), Z) is projec-
tively induced (cf. [15] §2). Thus ¢,(P(L™%)) is positive if k(M)— f] a,>0.

Now we have a following Theorem due to Matsushima on a compact Einstein
Kahler manifold.

Theorem (Matsushima [10]). Let X be a compact Einstein Kdhler mani-
fold with nonzero Ricci tensor. Then the Lie algebra ¥(X) of Killing vector fields
on X is a real form of the Lie algebra a(X) of holomorphic vector fields on X, that
is,
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a(X) = H(X)+v—-1§X).
Note that the Lie algebra £(X) is compact and hence ¥(X) is reductive. By

Corollary 2.4, the holomorphic vector ficlds a(P(L~)) has a solvable ideal which
is not abelian if 0<a,<-:+<a,. In particular, the Lie algebra (P(L%)) is not
reductive. Hence P(L™“) does not admit any Einstein Kahler metric. q.e.d.
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Added in proof.

After finishing this work, the authors learned that S. T. Yau proved that
the complex projective bundle P(12¢) over a complex projective space P!(C) of
dimension 1 admits a Kahler metric with positive Ricci curvature but does not
admit a Kahler metric with constant scalar curvature in his paper “On the cur-
vature of compact Hermitian manifolds” Invent. math. 25 (1974), 213-239.





