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Abstract
In this note we shall give a description of tering of a quasi-toric manifolds
in terms of generators and relations. We apply our resulgetzribe theK-ring of
Bott-Samelson varieties.

1. Introduction

The notion of quasi-toric manifolds is due to M. Davis and Taukzkiewicz [9]
who called them ‘toric manifolds.” The quasi-toric maniselare a natural topological
generalization of the algebraic geometric notion of norgslar projective toric vari-
eties. However there are compact complex non-projectivesnagular toric varieties
which are quasi-toric manifolds. See [3]. Recently Civah ljés constructed an ex-
ample of a compact complex non-singular toric variety whglot a quasi-toric man-
ifold.

In [17], we obtained, among other things, a description ef Khring of projective
non-singular toric varieties in terms of generators andti@hs. (In fact our result is
applicable to slightly more general class of varieties.)e hurpose of this note is to
extend theK-theoretic results of [17] to the context of quasi-toric nfialds. As an
application we obtain a description of the K-ring of BottrSzlson varieties.

We remark that theK-ring of Bott towers, special cases of which are deformation
of Bott-Samelson varieties, have been obtained recentlwitems [20] and Civan and
Ray [7]. Willems [19] also has computed the torus-equivarig-ring of Bott towers.
A very general description of th&-ring for any finite CW complexX has been ob-
tained by Conner and Floyd [8]. It is shown in [8] thaf; (X) ®q; Z = K*(X) where
Q}(X) is the complex cobordism ring of. Here the ring of integers is being regarded
as aQ(;-module via the map that sends the clab4] e Q) of a weakly almost com-
plex manifoldM to (—1)"Td(M) whereT d(M) is the Todd genus oM. The complex
cobordism ring of a quasi-toric manifold has been computealiatly by Buchstaber
and Ray [5] asQ)(M) = Q[xg; F € F]/(I +J) where the generators of the ideal
I, J are exactly as in the description of the singular cohomolofy, given in [9].
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As for the KO-theory, Bahri and Bendersky [1] have shown that the Adanes-sp
tral sequence for the real connecti¥®-theory of any quasi-toric manfold collapses.
They also show that th&O-ring is completely determined by the mod 2 cohomology
of the quasi-toric manifold. Explicit description of tH€D-ring as has been obtained
by Civan and Ray for Bott towers which are ‘totally even’ oeriinally odd’ (see
86, [7]).

Let G = (SH" be ann-dimensionalcompacttorus and letP ¢ R" be a simple
convex polytope of dimension. That is, P is a convex polytope in which exactly
facets—codimension 1 faces &—meet at each vertex dP. A G-quasi-toric mani-
fold over P is a (smooth)G-manifold M where theG-action is locally standard with
projectionz: M — M/G = P. Here ‘local standardness’ means that every poiniof
has an equivariant neighbourhobidsuch that there exists an automorphignG — G,
an equivariant open subset’ ¢ C" where G action onC" is given by the standard
inclusion of G ¢ U(n), and a diffeomorphismf: U — U’ where f(t - x) = 6(t) f (x)
for all x € U, t € G. Any two points of 7 ~1(p) have the same isotropy group its
dimension being codimension of the face Bf which containsp in its relative inte-
rior. It is known thatM admits a CW-structure with only even dimensional cells. In
particular M is simply connected and hence orientable.

Let Fp (or simply F) denote the set of facets & and let|F| = d. For each
Fj € F, let Mj = =#~}(F;) and Gj be the (1-dimensional) isotropy subgroup at any
‘generic’ point of Mj. Then M; is orientable for eachj. The subgroupG; deter-
mines a primitive vector; in Z" = Hom@!, G) which is unique upto sign. The
sign is determined by choosing an omni-orientation Mn i.e. orientations onM as
well as one on eaciMj, 1 < j < d. Choosing such a; for 1 < j < d defines
the ‘characteristic mapix: F — Z" = Hom(S?, G) where Fj + vj. Suppose that
Fi,...,Fq are the facets oP, then writingv; = A(F;), the primitive vectorsuy, . . .,vq
are such that

if [ Fj, cP is of codimensiork then
(1.0 1<r<k

Vj,,...,Vj, extends to &-basis vj,,...,vj, w1, - ,wpk Of Z"

Fix an orientation forM. The omni-orientation orM determined by is obtained by
orienting M; so that the oriented normal bundle corresponds to the Ipmies sub-
group given byv;.

We shall call any map.: Fp — Z" that satisfies (1.1) a characteristic map.

Conversely, starting with a pailP(1) where P is any simple convex polytope and
a characteristic map.: 7 — Z" there exists a quasi-toric manifoll over P whose
characteristic map ia. The data P, A) determines thés-manifold M and an omni-
orientation on it. We refer the reader to [9] and [3] for baficts concerning quasi-
toric manifolds.
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Suppose thaP is a simple convex polytope of dimensionand thatF; — vj,
1< j <d is a characteristic map: F — Z". Assume that~; N ---NF, is a vertex
of P so thatuvs,. . .,v, is aZ-basis ofZ". Let S be any commutative ring with identity
and letrq,...,r, be invertible inS.

DEerINITION 1.1. Consider the idedal of the polynomial algebra§xy, . . ., Xq]
generated by the following two types of elements:

(1.2) Xjp oo X

wheneverF, N-..NFj =#, and the elements

1.3) Z, = 1_[ (1- Xj)U(Uj) s H (1-— Xj)_u(“i)

j,u(vj)>0 j.u(vj)<0

whereu € Hom(z", Z) = Hom(G, $*) andry := [T, r'™). We denote the quotient
X1, ...,%X4]/Z by R(S; A) or simply by R. Note thatR(S; A) depends not only on
A but also on the choice of the sequenge. .., r, of invertible elements ofS.

Let E — B be a principalG-bundle with base spacB a compact Hausdorff
space. Denote by (M) the associated-bundle with projection map: E xg M —
B. The choice of the basisy, ..., v, for Z" = Hom(*, G) yields a product decom-
position G =[], -, Gi = (SH)". Also one obtains principa$!-bundless, 1 <i <n,
over B associated to thé-th projectionG = (S})" — S. The projectionE — B is
then the projection of the bundig x - - - x &, over B. For anyG-equivariant vector
bundleV over M denote byV the bundle overE(M) with projection E(V) — E(M).
We shall often denote the complex line bundle associated poireipal S* bundle &
also by the same symbdl.

Suppose thav is the product bundleM x C,, whereC, is the 1-dimensional
G-representation given by the character G — S'. ThenV is isomorphic to the
pull-back of the bundlep*(E,), whereE, is obtained fromE — B by ‘extending’ the
structure group t&* via the charactey. Writing x =>",_;_,a o, wherep;: G — St
is thei-th projection, one ha¥ = p*(&* - - - &), where£? = (%)@ whena < 0.

Theorem 1.2. Let M be a quasi-toric manifold over a simple convex polytope
P c R" and characteristic map.: 7 — Z". Let E — B be a principal G= (S!)"
bundle over a compact Hausdorff spad#ith the above notationshere exist equivari-
ant line bundles . over M such thatsetting § = [§] € K(B), 1<i <n, one has an
isomorphism of KB)-algebrasy: R(K(B);1) — K(E(M)) defined by x+— (1—[Z;]).

The proof is given in§3. A technical result, namely Proposition 2.1, needed in
the proof is established if2.
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In §4 we apply our results to obtain explicit description Kfrings of connected
sum M #P¢. where M is a quasi-toric manifold of dimensionn2 and a few other
examples.

In §5 we obtain theK-ring of Bott-Samelson varieties. Indeed we consider the
more general class of spaces, namely, Bott towers. We applyn@in theorem to
obtain K -ring of Bott-Samelson varieties, although their des@iptas iterated 2-sphere
bundles allows one to use well-known facts (cf. PropositoB, §4) to obtained the
same result.

2. Generators of R

We keep the notations of the previous section. In this seatie give a convenient
generating set foiSmodule R(S; A) where S is any commutative ring with identity
andx: Fp — Z" a characteristic mapP C R" being a simple conver dimensional
polytope.

Let h: R" — R be a linear map which is injective when restricted to the Rget
of vertices of P. Thenh is a generic “height function” with respect to the polytope
P. That is, h is injective when restricted to any edge Bf The maph induces an
ordering on the seP, of vertices of P, wherew < w’" in Py if h(w) < h(w’). We call
h(w) the height of w. The ordering onPy induces an orientation on the edges of
P in the obvious fashion. SincP is simple, there are exactly edges which meet at
each vertex ofP. Given anyw € Py, denote byT,, the face ofP spanned by all those
edges incident atv which pointaway from w. Then the following property holds:

(2.1) if w € Py belongsto T,, then w<uw'.

This is a consequence of the assumption tRats simple and can be proved easily
using for example Lemma 3.6 of [21]. Property (2.1) is ‘du@al’property ) of §5.1,
[11]. Note that whenw € P is the lowest vertex (i.eh(w) is the least,) thel,, = P;
whenw is the highest vertexT,, is the vertexw.

It is shown in [9] thatM has a perfect cell decomposition with respect to which
the submanifoldsM,, := 7 ~(T,,) are closed cells. (Cf. [2], and [15].)

Any proper faceQ of P is the intersection of facets d® which containQ, the
number of distinct facets which contail@ being equal to the codimension € in P
as P is simple. For each vertew of P, denote byV, the collection of all facets of
P which containw and byU,, ¢ F the collection of facets which contairig,. When
T, = P, we convene that,, =#. Note thatU, C V,, = v’ € T,.

If I ¢ F is non-empty, we denote bly, the face ofP obtained as the intersection
of all facets inl. We shall writex(I) to denote the produdt[ ., xi. Note thatx(l) =
0inRif P =0 by (1.2). On the other hand, if is empty, we setP, = P and
x(I) = 1, the unit element ofS. We say thatl C F is facial if Fj = (g Fi is
non-empty. Note that is facial if and only ifx(1) # 0. Property (1.2) implies that if
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| is any facial subset ofF, then there exists a unique € Py such that
(2'2) Uw C | C Vw-

Indeed, the vertexw is just the least vertex irP,.
The main result of this section is

Proposition 2.1. With the above notationghe monomials §J,,), w € Py, form
a generating set for the S-modufe.

The proof will depend on the following lemma, which is tKetheoretic analogue
of the ‘moving lemma’ proved in the context cohomology of simgular toric varieties
in §5.2 [11]. The above proposition and the lemma were stateiananguage of fans
in Lemma 2.2, [17]. We include here the complete proof.

Lemma 2.2. We keep the above notations
(i) The set of monomial$x(l) | | C F facial}, spansR as an S-module More
precisely let J C | C L C F be facial subsetsSuppose that f< I, then

(2.3) X x(1) = (L=ru)x(1) + Y a; x(T)
T

for suitable elements @ Hom(Z", Z), a; i € S, where 1 varies over those facial sub-
sets of F not contained in L with|I| > [I], and such that Jc T. In particular
square-free monomials(k), | c F facial, span’R as an S-module

(i) Let IC I cLinF. Then

(2.4) x(1) = bx(3) + Y byx(T)

for suitable elements,lb; € S where the sum varies over the set of all facial subsets
| ¢ F which are not contained in L and { I.

(iii) Suppose thafl —r;) is nilpotent forl <i < n. Then % € R is nilpotent for
l1<j=<d

Proof. (i) Without loss of generality, we may assume that | and that|L| =
n. Since P is simple, F is a vertex of P. We prove the statement by descending
induction on thell |.

Fix Fj € | and letu be the dual basis element @f' for the basis{A(F;) =: v; |
Fi € L} such that(u, v;) = & j. Multiplying the relationz, = 0 on both sides by(l),
we obtain

(2.5) (1) —xjx(1)) l_[(]_ _ Xp)(u,vp) =rux(1) l_[(l _ Xq)—(u,vq)
p q
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where the product is over thogg (resp.q) such that the facet&, ¢ L, (resp.Fq ¢
L), such that{u, v,) > 0 (resp.(u, vq) < 0.)

Note that whenl = L, xpx(l) = 0 for F, ¢ L. Therefore the above equation
reduces tox;x. = (1L —ry)x. in this case. Assume, by induction hypothesis, that any
monomial divisible byx(|~) with | C T can be expressed asSlinear combination of
(square-free) monomialx(j) where | C J with J c F facial as in (2.1). Expand-
ing each factor in (2.5) and multiplying out we obtain, usinguction hypothesis, the
equation

x(1) = x;x(1) + Z c;x(j’) = ru<x(l )+ Z dqu(jN)>
:j'/

3

where, in view of (1.1), only thosg(J’),x(J") with J’, 3" non-empty, facial and not
contained inL occur in the above equation. This proves (i).

(i) Again, without loss of generality, we assume that =n. Fixaj e |\ J,
and setl’ = 1 \ {j}. Recall thatx(1’)=1if I"=@. We chooseu € Hom({Z", Z) as in
the proof of (i) above and multiply both sides of the relatipn= 0 by x(1’). Observe
that x;x(1") = x(I) to obtain

x(1) = (@=ru)x(1)+ Y apx(1’)
[

for suitable elements;; where the sum is over nonempty facial sétssuch thatd C

I” ¢ 17 and 1" not contained inL. If I’ = J we are done. Otherwise] C I’. By
induction on|l \ J|, one can express(l’) in the form (2.4), which can be substituted
in the above expression fot(l).

(i) Observe that (- ab) =a(1l—b)+(1—a) is nilpotent if (1—a), (1— b) are
nilpotent. It follows from this observation and our hypattsethat (1—-ry) is nilpotent
for all u e Hom@", 7).

Fix j <d. Letp,...,p;: be the vertices off;. For 1<i <t, letl; C F
be the collection of all those facets which are incident at ¥ertexp;. Suppose that
F ¢ Li, 1<i <t, then we claim that the monomial x, - - - x,, = 0, or, equivalently,
that F; N R/, N---N F, =@. Since any non-empty face df; must contain a vertex
of Fj, in order to establish the claim it suffices to show tigtN - -- N F, does not
contain anyp;, 1 <i <t. SinceFy ¢ L;, it is clear thatp; ¢ F, 1 <i <t. Hence
noneof the verticesp; belong to theF, N---NF, and consequently; X, - - - Xx, = 0.

To complete the proof, we express in different ways using (2.4) each time tak-
ing thelL to bel;, 1<i <t. This leads to
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with I~|’ not contained inL; and bj € S nilpotent. On multiplying out, we see that
each term on the right hand side appears with coefficientoteiht or is divisible by

a monomialxy, - - - X, with xi, ¢ Lj. From what has been established above, it follows
that x}*l is nilpotent. Hencex; is also nilpotent. [

Proof of Proposition 2.1. In view of Lemma 2.2 (i), it suffices show thatx(I)
is in the S-span ofx(U,), w € Py, for any facial subset ¢ . Assume thatl c F
is a nonempty (facial) subset ¢f. By (2.2), there exists a unique € Py such that
Uy, C | C V.

The proof will be by downward induction on the height of If w is the highest
vertex, thenU,, = | =V, and hencex(l) = x(U,). LetU, C | c V, and assume that
for any |’ ¢ F facial with U, c |’ C V,y wherew’ > w, the monomialx(l’) is in
the Sspan ofx(U,), w” > w'.

We apply (2.4) withd :==U,, c | andL :=V,, Cc F. Applying (2.4), we see that
x(l) can be expressed as &linear combination ok(U,,) andx(l") with U,, Cc |" and
I” not contained inVv,,. We claim that ifU,, c |’ C Vs, thenw’ > w. Indeed, since
U(w) c I’, we haveU(w) c V(w’), which implies thatw’ € T,. In view of (2.1) we
conclude thatw’ > w. Sincel’ is not contained inv,,, we must havew’ > w. [l

REMARK 2.3. (i) Under the hypotheses of Lemma 2.2 (iii),<X;), 1 < d, are
invertible in R. Hence the relatiorz, = 0 in R can be rewritten as

Ly = 1_[ (1_ Xj)u(vj) =ry.

1=j=d

Furthermore, the relationg, = r, for u varying in someZ-basis of HomZ",Z), implies
that ¢, = ry for all u € Hom(Z", Z) since fau-br = ¢2/¢° andray by = r3/rd, for
a, b > 0 positive integers.

(i) In caser; =1 for alli < n, thenry, = 1 for all u and our proof actually shows
that x™* = 0.

3. Proof of Theorem 1.2

We keep the notations of previous sections. D©tbe the quasi-toric manifold
over a simple convex polytop® c R" with characteristic map.: 7 — Z". Let
|7l =d. As in the previous section we shall assume tht;_, Fi is a vertex of P
andG =[[;-, G = (SH" the corresponding product decomposition.

SetG := (S!)? and letd: F — Z9 be defined byF; — e, the standard basis
vector, for eachj <d. For any faceF = F;, n-.-NF, setGg denote the subgroup
((tr,....t) € G|t =1,i # ju....,jx). One has aG-manifold Zp := G x P/~
where ¢,p) ~ (g,p’) if and only if p=p’ andg™'g € Ge wherep is in the relative
interior of the faceF c P. The action ofG on Zp is given byg.[d, p] = [9d, p] for
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ge G and [0',p] € Zp. One has the projection magp: Zp — P. However Zp is
not a quasi-toric manifold oveP sinced > n. When P is clear from the context we
shall denoteZp simply by Z.

Let 2: Z% — Z" be defined a®j — vj ;= A(Fj), 1 < j <d. This corresponds to
a surjective homomorphism of groups G — G with kernelH c G for the subgroup
corresponding to kéit). One has a splitting.® = ker(X) ®Z" induced by the injection
Z" — 79 defined asv — &, 1 <i < n. This injection corresponds to an imbedding
I': G — G. Identifying Z% with Hom(S%, G), the splitting yields an identification
G GxH, §=ghwhereg=T0A(g) € Gandh = g~'g. The groupH is
the subgroup ofG with ker(x) = Hom@!, H) ¢ Hom(S!, G). We let groupH act
on theright of Z wherex.h=h"x ¢ Zforx e Z, he H C G. In view of our
hypothesis (1.1), we note that the intersectiontbfwith Ge is trivial for any proper
face F of P. Hence the action oH on Z is free. The quotient ofZ by H is the
quasi-toric manifoldM. (cf. §4, [9].)

Let x: H — S! be the restriction tdH of any charactefy: G — S!. One obtains
a G-equivariant complex line bundley over M with projectionZ xy C, — M where
C, denotes the 1-dimensional complex representation spacesponding toy. Here
the Borel constructiorZ xy C, is obtained by the identification

(3.1 xh,2)~(x,x(h)2), heH, xeZ, zeC.

Equivalently Z xy C,, is the quotient of the diagonal action By on the left on
Z x C,. The equivalence class ok,(z) is denoted by X, z]. The G-action onLy is
given by g.[X, z] :=[gX, X(9)Z] for x € Z, ze C,.

When ¥ = 7; is the j-th projectionG = (S1)? — S!, the correspondings-line
bundle onM will be denotedL ;. Denote byrj: L; — M the projection of the bun-
dle Lj.

Henceforth we shall identify the character groupéﬁwith Hom(z9,7Z) etc. Ifli e
Hom(z¢4, Z) vanishes on kefﬁ), then the line bundld.y is isomorphic to the product
bundle. However thés action on it is given by the charactéifG.

Given u € Hom(Z", Z) = Hom(G, S), composing with surjectiorﬁ — G, we
obtain a character o6 which is trivial on H. As an element of Hond®, Z), this is
just the compositioril := uo x. Let €, ...,€; be the dual of the standard basis for
74, Note that the characte® — St corresponding te] is just the j-th projectionp;.
Clearly,

U=uok= Y u(Me))e = > u(e.
1<j=d 1<j=d
Hence we obtain the following isomorphism Gf-bundles:

(3.2) Lo= [] Lj™.

1=j=d
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Note that sincel|H is trivial, Z xy Cy = M x C and solLg is isomorphic to the
product bundle.

Let 1 < j < d. Choose an affine map;: R" — R such thath; vanishes on
F; andhj(p) > 0 for p € P\ Fj. SinceGg, := G; acts freely onZ — p~I(F;),
one has a well-defined trivializatios; : nj‘l(M - Mj) = (M = Mj) x Cj given by
oj([x, 2]) = ([x], j(§71)2) wherex = [§,p] € Z, z€ C;.

Usingoj andh; one obtains a well-defined sectisp M — L; by settings; ([X]) =
[x, hj(p)P;(T)] wherex =[G, p] € Z. Note that the sectios; vanishes precisely on
M;. It is straightforward to verify thag; is G equivariant.

Now let 1< jy,..., jx < d be such thatFj, N---NFj, =@. ThusM;,; N---N
M;, = #. Consider the sectios: M — V defined ass(m) = (sj,(m),...,sj(m))
where V is (the total space of) the vector bundlg, & --- @ L. The sections is
nowhere vanishing: indees(m) = 0 <= s; (M) =0Vr <= me M, Vr. Since
Ni<r<k Mj, = @, we see thas is nowhere vanishing. Applying thgk-operation to
[V] -k we obtainy ¥ (V] — k) = ¥ (D1~ «([L ] = 1) = [Tazy k(L] = 1). SinceV
has geometric dimension at mdst 1,

(3.3) []T@a-ILDp=0

1<r=<k

whenever(),_, . Fj, = 9.

REMARK 3.1. Lett,— denote the pull-back ok ; by the quotient mapZ — M.
Since H acts freely onZz, Ej is isomorphic to the product bundle. This is the same
asdual of the bundlefj considered irg6.1 of [9]. A description of the stable tangent
bundle of M was obtained in Theorem 6.6 of [9]. It follows from their pfodat
the Lj|M; is isomorphic to the normal bundle to the imbeddikly C M. Therefore
we haveci(Lj) = e(Lj) = £[M;] € H*(M; Z) wheree(L;) denotes the Euler class
of L; (see [16].) The omni-orientation corresponding Xois so chosen as to have
cu(Lj) = +[M].

Proposition 3.2. With notations as aboydet R = R(Z; 1) where f =1 Vi <n.
One has a well-defined homomorphisim R — K(M) of rings which is in fact an
isomorphism Explicitly, K(M) = Z[X4, .. ., Xq]/~ where the generating relations are
() xj,---Xj =0whenever EN---NF, =¢, x"=0for1<i <d,

(i) [Tizjea(l—xj)"®) =1 for any ue Hom(z", Z).
Indeed it suffices to let u vary over a basiskdm(Z", Z).

Proof. Relations (3.3) and (3.3) above clearly imply tljais a well-defined al-
gebra homomorphism.

From Theorem 4.14 [9], the integral cohomology Mif is generated by degree 2
elements. Indeed these can be taken to be dual cohomologgesl§/;], 1 < j <d,
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where Mj = 7 Y(Fj), F; being the facets oP. As noted in Remark 3.1¢;(L;) =
[Mj], 1<j=d

Now Lemma 4.1, [17], implies thaK (M) is generated by the line elements;],
1 < j <d. This shows thaty is surjective. To show that it is injective, we observe
that sinceM is a CW complex with cells only in even dimensiontis(M) is a free
abelian group of rank (M) the Euler characteristic df1. But x(M) = m, the number
of vertices of P. (In fact aZ-basis for the integral cohomology ®f is the set of dual
cohomology classesM, ], w € Py.) Since by Prop. 2.1 the rank &, as an abelian
group, isat most m it follows that v is in fact an isomorphism of rings.

The remaining parts of the proposition follow from Lemma @i and Remark 2.3.

]

REMARK 3.3. Sincel; restricted toM — M;j is trivial, it follows that L;|M; is
trivial if MjNM; =#. On the other hand, iM; "M; # @, thenL;|M; can be described
as follows: choose a vertex iffj notin F and letu € Hom(Z",Z) be such that
u(r(F;)) =1 andu(F) = 0 for any otherF that containsv. ThenL;|M; =], Lﬁk|Mi
wherea, = —(u,A(F)) and the product is over all those facéig 7 F; which meetF.

We shall now prove the main theorem.

Proof of Theorem 1.2. Note that the complex line bundlgsare G-equivariant.
Denote byL; the bundleE(L;) := E x¢ L over E(M) = E xg M. Since the sections
s; are equivariant, so is the sectiee (Sj,,...,sj) of V=L, & ---®Lj. Hence
we obtain a sectiorE(s): E(M) — E(V). If (), Fj. =9, thens and henceE(s)
is nowhere vanishing. Again by applying th&-operation to E(V)] — k € K(E(M)),
we conclude that

(3.4) []aci1-1=0

1<r<k

whenever(),_, _ Fj, = 0.

Since the isomorphism in equation (3.2) G-equivariant, one obtains an iso-
morphism Ly = Hlijsd ﬁ}’("j). Since Ly is the product bundleM x Cy — M, the
bundle Ly = p*(& - - - &) wherea = u(v;). (See§l.) It follows that, in theK(B)-
algebraK (E(M)) one has

(3.5) [T L2190 =[] - - - [&a] ™

1<j=d

Settingr; = [§] for 1 < i < n, in view of (3.4) and (3.5) we see that there is
a well-defined homomorphism df (B)-algebrasy : R(K(B); ) — K(E(M)) which
mapsx; to (1—[£;]) for 1 < j <d.
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It follows from Prop. 3.2 that, the monomials in the generateK(M). Hence
the fibre-inclusionM — E(M) is totally non-cohomologous to zero iK-theory as
the bundlesZ; restrict toLj. As B is compact Hausdorff an& (M) is free Abelian,
we observe that the hypotheses of Theorem 1.3, Ch. IV, [I4]satisfied. It follows
that K(E(M)) = K(B)® K(M) as aK(B)-module. In particular, we conclude thétis
surjective. To see thaf is a monomorphism, note th&t(E(M)) is a free module over
K(B) of ranky (M) = m, the number of vertices i?. Since, by Prop. 2.1R(K(B), )
is generated byn elements, it follows thaty is an isomorphism. Ul

4. Examples

In this section we illustrate our results. Our first exam@eaiwell-known result
concerning theK ring of a bundle where the fibre is thredimensional complex pro-
jective spaceP"; see Theorem 2.16, Ch. VI of [14]. We include the proof hernetle
sake of completeness. Our next example is that of a ‘quasi-tmindle’ which par-
allels the notion of toric bundle in toric geometry [11]. Wadethis section with the
example ofK-ring of a connected surM #P{. where M is any quasi-toric manifold
of dimension 2.

ExXAMPLE 4.1 (Projective space bundle). The complex projectivepaceP" is
a quasi-toric manifold over the standandsimplex A" = {x = Y, ;_ X € R" |
X <1,0<x <1 Vi=> 1}. The characteristic map sends thd-th facet—the
face opposite the vertegz—to the standard basis element:=¢ € Z" for i > 1 and
sends the 0-th facet which is opposite the vertex @¢go= —(e; +---+e,) € Z". The
spaceE(P") is just the projective space bundl @ & & -- - @ &,) over B. Herel
denotes the trivial complex line bund® x Cey — B over B. Indeed the map which
sends ¢ x] = [(w1,...,wn), [Xo, ..., X]] to the complex line spanned by the vector
Xo€ *+ Xqwy + - - - + Xqwy in the fibre P(Cey + Cwy + - - - + Cwy,) over w(e) € B, where
e=(wy,...,wn), is a well defined bundle isomorphism.

Proposition 4.2 (cf. Theorem 2.16, Chapter 1V, [14]).

K(E(®") = K(B)[y] / < []v- [si])>

0<i<n

where&p := 1 and vy is the class of the canonical bundle oveiP’E which restricts to
the tautological bundle on each fibre of(E') — B.

Proof. By choosingu € Hom(Z", Z) to be the dual basis elemest, i > 1, rela-
tion (1.3) gives Li] = [&1[Lo] in R(K(B); 1) since&y = 1. It can be seen easily that
other choices ofu in relation (1.3) do not lead to any new relation. Substitytfor
[Zi] in relation (1.2), we obtaiﬂOSJSH(l—[Lo][si]) = 0. Settingy = [£o]~* we obtain
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[1(I&]1 — y) = 0. By Theorem 1.2 it follows thaK (E(P")) = K(B)[yl/([T([&] — V).
Sincey = [Lg], the proof is completed by observing thaj restricts to theautological
bundle on the fibre®". ]

ExAamPLE 4.3 (Quasi-toric bundles). LeM and X be a quasi-toric manifolds
over P and Q with characteristic maps: Fp — Z", u: Fq — ZX. Lety: Fp — ZK.
To this data, we associate a quasi-toric manifbidover P := P x Q which is a quasi-
toric bundle overM with fibre X as follows. Note thatF := Fp ={P} x FqUFp x
{Q}. Define’ : F — ZK™" = 7" x Z¥ as follows:

MP x F)=(0,u(F")) for F e Fo
MF x Q)= (A(F), y(F)) for F e Fp.

Denote byGp, GQ the tori which act oM and X respectlvely and seb = Gp x Ggq.
The notatlonst,GQ and G will have similar meaning. LeE = Z5 = G x P/~ The
prOJectlonGp xGQ xPxQ — GpxP and the |nclu5|orGQx Q< Gp xGQx PxQ
induce a projection mafj: Z — Zp and an inclusion map: Zq <> Z. The mapy
is equivariant with respect to thép action and the map is equivariant with respect
to the (NBQ. These maps pass to the quotient to yield well-defined mapé — M
andn : M — M. In fact, it is not difficult to show that) is the projection of the
X-bundle associated to th@q-bundle&; & - - - ® & whereg =L ®- - ® L3 where
Y(F) =21 ap&, 1< <d.

The following proposition, which generalizes Prop. 4.2,ais immediate conse-
quence of Theorem 1.2.

Proposition 4.4. With the above notatiomsi((ﬂ) is isomorphic toR(K(M); u)
with r; = [§], 1 <] <k

ExampLE 4.5 (Connected sum witl#). Let M be a G-quasi-toric manifold
over P c R". Consider theG = (S')"-fixed point [1,v] € M corresponding to a
vertexv € P. Let A: F — Z" be the characteristic map &f. Without loss of gener-
ality we may (and do) assume thatF) =€, 1 <i <n, whereF, 1 <i <n, are the

facets which meet at. Consider theG action onP{. given byti.[zo:z1:- - :2Z] =
[zo:zz -tz : -+ 2z], 1 <i < n, fort in thei-th factor of G. The
G-neighbourhood{[1 : z; : --- : z,] | zz € C} is equivariantly diffeomorphic to a

G neighbourhood of [lIy] € M and hence one has the equivariant connected sum
M =M # PR which is a quasi-toric manifold over the polytope the coneécsum
P=P#A" (See 1.11, [9].) The polytop® is isomorphic to that obtained fror®
by removing P N V. whereV. is the open half space containing the vertexiefined
by a hyperplaneV in R" sufficiently close tov andv ¢ V. In particular,f—i =Fp
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_~

P P

consists of those facets & which do not meet/, the facetsl?i =FKNV., 1<i<n,
and one extra facefro:=PNV. HereV. =R"— V..
The characteristic map: 7 — Z" is defined as

A(F) if F=Fis a facet ofP,
__ le=xMF) if F=F,1<i<n,
(4.1) AMF) =
(Z a) it F=Fo.
1<i<n

SetGp = §' x G = (S)*, and letH c Go be the subgroup of5, generated by
HcGc G and{(zo,zl,...,zd)eéo |zj=2,1<j<nz=1j>n}]. One
has M = Z/H where Z = Zp = Go x P/~ The mapqo: P— P of polytopes which
coIIapsesFo tov ylelds a natural surjecuorZ — Z defined as 4,9, p] — [9, 90(P)]
which intertwines theGo action onZ and G action onZ. This induces an equivariant
collapsing mapyq: M — M which mapsM — M diffeomorphically ontoM — {[1, v]}
and mapsMo onto [1v]. Here Mo = #-%(Fo). The induced mag*: K(M) — K (M)
allows us to viewK(M) as aK(M)-algebra. Note that equation (4.1) together with
Proposition 3.2 gives explicit description of the ring stuwre of K(M).

Proposition 4.6. K(M) = K(M)[x0]/J where the ideal J is generated by the
elements

[T @=x)x+x) %X, r>n,

1<j=n

where ¥ =1—[L;]e K(M), 1<j <d.

Proof. Denote byl;, 0 <i < d, the line bundlesZ x5 C,, — M wherepi ¢ is
the restriction toH of the i-th projection p; o: Go — St The Lj, 1<j <d, are the
line bundles oveM likewise associated to thg-th projectionp;: G > st

It is easily seen thag*(L;) isomorphic to the line bundle associateddp: H—
St for j > n and soqg*(Lj) = Ej for j > n. However, for 1< j <n, g*(L;) is
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isomorphic to the line bundle associated to the charggter pj — pg and sog*(Lj) =
L; ® L. Indeed it is straightforward to verify thatZfg, B], w] ~ [[g, Go(P)], zow] is
a well-defined mapZ x C,; = Z xn C,, which is a ‘bundle map’ that covers the
q: M — M. Hence by Lemma 3.1 [16] it follows that*(L;) = L; ® L.

It follows thatq*: K(M) — K (M) is given by the map

1-%)1(1-%), 1
It is clear thatK(M) is generated as an algebra owgi(K(M)) by the element
Xo. The relation]];_;_, Xj = 0 can be rewritten a§[;_;_,(Xo(1 — g*(x;)) +aq*(xj)) =
0. Also, sinceF, N Fo = ¥ for r > n, we haveq*(zr).io = X Xp = 0. Thusqg*
extends to &K (M)-algebra map;: K(M)[xo]/J — K (M) which mapsxo to Xo. It is
straightforward to verify that one has a well-defined ringrioonorphismy.: K(M) —
K(M)[x0]/J where

(1 — xo) if k=0
w@—%) =13 (1—x) if n<k<d
(L—x)(1—x) if 1<k<n.

This is evidently the inverse af, completing the proof. ]

5. Bott-Samelson varieties

In this section we illustrate our theorem in the case of Baitnelson manifolds
which were first constructed in [4] to study cohomology of getized flag varieties.
M. Demazure and D. Hansen used it to obtain desingulariztidrSchubert varieties
in generalized flag varieties. M. Grossberg and Y. Karshor ¢bastructed Bott tow-
ers, which are iterated fibre bundles with fibre at each stag'agtjP’(lc. They also
showed that Bott-Samelson variety can be deformed to a taiiety. The ‘special
fibre,” of this deformation is a Bott tower. The underlyingfeientiable structure is
preserved under the deformation. It follows that Bott-Slane varieties have the struc-
ture of a quasi-toric manifold with quotient polytope beitige n-dimensional cubd"
wheren is the complex dimension of the Bott-Samelson variety. Thiasi-toric struc-
ture has been explicitly worked out by Grossberg-Karshdz] @nd by M. Willems
[19]. In this section we describe th€-ring of the Bott towers in terms of generators
and relations using our main theorem. Using their strucasran iterated 2-sphere bun-
dle, one could alternatively use Theorem 2.16, Ch. IV, [Bipbtain the same result.
(Indeed this was our originial approach [18].)

We shall recall briefly the construction and the quasi-tstiticture of Bott towers.

Let C = (c,j) denote am-by-n unipotent upper triangular matrix with integer en-
tries. The matrixC determines a Bott towel (C) of (real) dimension 2. Using the
notation of§3, it turns out thatZ = (S})?" x 1"/~ is the spaceS®)" c C?".
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The quasi-toric manifoldV(C) is the quotient of $°)" by the action ofH = (S)"
on the right of Z where
Ciyj

wJ y oo ,Zn,tiiqvnwn)

(Zo, wi, .o Zoywn) G = (Ze, we, oo 2L w2t
for t; in the i-th factor of H. The action ofG = (S})2" on (the left of) Z is such that
the firstn factors act on the-coordinates and the last on the w-coordinates. Thus
HcG= (SYH?" is identified as the subgroup G generated by the 1-parameter sub-
groups corresponding to the vectats.= g +e-.+n+2i<jSn Ci i€+ € 73 = Hom(Sl,(~3).
Note that the elements,, ..., e, €1, ... &, forms aZ-basis forZ?". Let G C G be
the group generated by the 1-parameter subgreyps .,e,. ThenGNH = {1} and
so we may identifyG with the quotienté/H via the projectionA : G — (NS/H.

The groupG acts onM(C) with quotientM /G = |". The projectiont: M(C) —
I" is the map f1, w1, . - ., Zn, wn] = (z1l,. .., |zn]). Denote byF?, F! the facet ofl"

with i-th coordinate 0, 1 respectively. One has the includidnc M(C) is given by
(z1,.- . z0) > [z, w1, .. ., Zo, wp] Wherew; == /1 —-2%, z €], 1<i <n.

Lemma 5.1. With the above notations () is a quasi-toric manifold over N
where the characteristic map is given by

MFY) =10 =g,
51 _ ——
) D=1t — Y ot
i<j<n
for 1 <i <n wherev! := —e,.

Proof. First we show that the isotropy group for t@eaction on M(C) at any
interior point of ¢ is the (image of the) 1-parameter subgraifpe Z" = Hom@?, G)
for 1 <i <n,e=0,1 Indeed sedf € F° to be such that all its coordinates are
1/v/2 exceptz; = ¢, wi =1—¢, for 1 <i <n, e =0,1. Itis readily seen that the
isotropy ata? is the 1-parameter subgrog=: v%, 1 <i <n.

The isotropy at ai1 is the image under the projectiom : G —> G of the
stabilizer—call itS—of p~Y(al) c Z. Letx: Z*" — Z" be the map induced by be-
tween the 1-parameter subgroups&and G. Then ke(i) is the group of 1-parameter
subgroups ofH = ker(A) and hence is generated Hg + & + Y- G j€sn |
1<ic< n}. Note thatS contains the 1-parameter subgroep, since w;-coordinate
of any point of p~*(a}) is zero. Evidentlyg., ¢ ker(x). By dimension consider-
ations, the isotropy subgroup aff € M(C) equalsthe 1-parameter subgroug :=
AMewn) € Z", 1 < i < n. Sincek(g + &+ Y-, Cii€+n) = 0, it follows that
vl = =8 = Y i< GiM€4n) = —8 — X, G jv}. This establishes (5.1).
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To complete the proof thal(C) is a quasi-toric manifold we need to verify that
condition (1.1) is satisfied. Let = (e1,--- ,€n) € 1", ¢ € {0, 1}, be any vertex of
I". We need to show that the spt” | 1 <i < n} is a basis forZ". It can be seen
from (5.1) that the matrix relating this set and the standaadisey,...,e, is lower
triangular withi-th diagonal entry beingt1, completing the proof. ]

Denote byL;, 1 <i < 2n, the canonical bundles of the quasi-toric maniféidC).
Recall thatl; is associated td-th projectionG = (S1)?" — S

Lemma 5.2. For any 1 <i <n, one has the bundle isomorphism

(5.2) Lim =L J] L

1<j<i

Proof. Letug,...,u, denote the basis of Hoi(, Z) = Honl(G,Sl) dual to the
basisA(F!), 1 <i < n. Fix ani. Setu = u;, and letli = uo » € Hom(Z*", Z) =
Hom((NB,Sl). From (3.2), one has the bundle isomorphism

-~ u@?) u@h
Ly = ]‘[ L ]‘[ Ljun -
1<j=n 1<j=n
Note thatu(vjl) = & ,; by the very definition ofu and that, in view of (5.1), we have
u(v?) = u(e)) = u(—vf = 2= k<n Cjkvi) Which equals—1 if i = j and equals—c;;
when j < i. On the other hand.g is isomorphic to the trivial line bundle sind@
(viewed as a character) is trivial od. Therefore the above isomorphism yields

T¥ Ll P ] LT

1<j<i
from which the lemma follows. O

Theorem 5.3. We keep the above notationset C be any n« n unipotent upper
triangular matrix overZ. The map y+— [Li], 1 <i < n, defines an isomorphism of
rings Z[y;t,. .., y&t] /3 to K(M(C)) where J is the ideal generated by the elements

—C1j —Ci_1,i

O = D% — Yoy, ™ -y M), 1<i <n, where y = 1.

Proof. SinceF’N F! =@ we obtain from equation (3.3) that,L(fn] — 1)([Li] —
1) =0, 1<i < n. Substituting forL;+, from the isomorphism of Lemma 5.2, leads to

O =Dy -y 5"y, ™) =0

wherey; = [Li] € K(M(C)). In the case of th@-cubel", all relations of the form (1.2)
are consequences #i° N F! =@, 1 <i < n. Also all relations of the form (1.3)
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are consequences of (5.2) above. In view of the fact that thsses of line bun-
dles are invertible elements of th€-ring, it follows from Prop. 3.2 thak(M(C)) =

Z[yih .. yE] ). O

Let G be a complex semisimple linear algebraic groBpa Borel subgroup. Fix
an algebraic maximal torusT = (C*)', | being the rank ofG, contained inB and
let ®*, A denote the corresponding system of positive roots and simgts respec-
tively. Denote byW the Weyl group ofG with respect toT and S C W the set of
simple reflectionss,,« € A. For y € A, denote byP, O B the minimal parabolic
subgroup corresponding tp so thatP,/B = IP’}C. Let ay,...,an be any sequence
of simple roots. Consider the Bott-Samelson varibty= P,, xg - -- xg Py, xg {pt.}.
Explicitly M is the quotient ofP = P,, x --- x P,, by the action ofB" given by
(P1,- -, Pn).b = (piby, by by, . . ., bR pnby) for (py,...,pn) € P, (by,...,by) € B
Whenw = s, ---S, € W is a reduced expression fas, one has a surjective bira-
tional morphismM — X(w) which maps ps,..., pn] to the cosetp; - - - p,.B in the
Schubert varietyX(w) C G/B. In this case M is the Bott-Samelson-Demazure-Hansen
[4], [10], [13] desingularization of the Schubert varietgsaciated to the reduced ex-
pressionw =§,, - - - S,,. The Bott tower, which arises as the special fibre of a certain
deformation of the complex structure ®f, is associated to the unipotent upper tri-
angular matrix ¢;) wherecij = (e, ), i < j. The polytope which arises as the
quotient of the Bott tower by tha-dimensional ¢ompac} torus action is then-cube
I". See [12] or [19] for details. Feeding this data into Theof®®, we obtain an ex-
plicit description of theK-ring of a Bott-Samelson variety which is diffeomorphic to
the Bott tower. Alternatively one could use Propsition 4rzl anduction to obtain the
same result.

The Bott-Samelson varietyl has an algebraic cell decomposition, i.e., a CW struc-
ture where the open cells are affine spaces containgd.inThe closed cells of real
codimension 2 are the divisotd; of M, defined as the image d{p1,..., pn) € P |
p; = 1} under the canonical mafp — M. These submanifolds correspond to the
facetsF) C Fin.

Note that the integral cohomology ring ™ is generated by the dual cohomology
classes Mj] € H3(M;Z), 1< j <n.

Lemma 4.2 of [17] implies that the forgetful mag(M) — K(M) is an iso-
morphism of rings wheréC(M) is the GrothendieckC-ring of M. The following the-
orem is established using Theorem 5.3.

Theorem 5.4. Let M be the(generalizedl Bott-Samelson variety ;Pxg - - - xg
Ps, xB {pt}). Letg; = (ai,ajv), 1 <i < j < n. The Grothendieck ringC(M)
of algebraic vector bundles on M is isomorphic By, - - -, yt]/((vi — D(yi —

yoyl_cl*' --~yi_fl’1*'); 1<i =< n) where y := 1. The class yis represented by the
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algebraic line bundleO(—M;) for 1 < i < n. The forgetful ring homomorphism
K(M) — K(M) is an isomorphism

REMARK 5.5. One has a well-defined involutiop +— yfl =: w;j of the alge-
bra K(M(C)). Indeed multiplying the two factors in generating redati(y; — 1)(yi —

yr Uy M) =0byy tandy tyt - -yt = 0 we get the same relation with the
yj's replaced byy;* = wj: that is, (i — 1)(wi —w; ™ ---w; ) = 0. Consequently,

one could lety; to be the class o®©(M;) in the above theorem.
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