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Abstract
Under K.-T. Sturm’s formulation, we obtain a Gaussian upperbound for tail prob-

ability of mean value of independent, identically distributed random variables with
values inR-trees and Hadamard manifolds.

1. Introduction and statement of the main result

The aim of this paper is to study the weak Law of Large Numbers for CAT(0)-
space-valued stochastic processes (see Subsection 2.1 forthe definition of CAT(0)-
spaces).

Let N be a CAT(0)-space and (�,6, P ) a probability space. Given a random vari-
able W W �! N such that the push-forward measureW�P of P by W has the finite
moment of order 2, we define itsexpectationEP (W) by the barycenter of the meas-
ure W�P (the definition of the barycenter is in Subsection 2.1). In [8, Theorem 4.7],
K.-T. Sturm introduced a natural definition of mean value ofn-points y1, : : : , yn in N,
called inductive mean valueand denoted by (1=n)

P!
iD1,:::,n yi (see Definition 2.5 for

precise definition). For an independent, identically distributed N-valued random vari-
ables (Yi )1iD1 on the probability space�, he obtained the weak Law of Large Numbers
proving the following inequality

Z
� dN

 
1

n

!X
iD1,:::,n Yi (!), EP (Y1)

!2

dP (!) � 1

n

Z
� dN(Y1(!), EP (Y1))2 dP (!).(1.1)

He also proved the strong Law of Large Numbers ([8, Theorem 4.7, Proposition 6.6]).
Motivated by Sturm’s work, using the results of the theory of Lévy–Milman con-

centration of 1-Lipschitz maps obtained in [4, 5], we obtainthe following Gaussian
estimate.

Theorem 1.1. Let (Yi )1iD1 be a sequence of independent, identically distributed
random variables on a probability space(�, 6, P ) with values in anR-tree T . We
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assume that the support of the measure(Y1)�P has bounded diameter D. Then, for
any r > 0, we have

P
 (

! 2 � dT

 
1

n

!X
iD1,:::,n Yi (!), EP (Y1)

!
� r

)!
� 4e4=75e�nr2=150D2

.

See Subsection 2.1 for definition ofR-trees.
In the case whereN is an Hadamard manifold, we also obtain the following. For

any m 2 N, we put

Am WD e1=(2m)

�
1C p�e(mC1)=(4m�2)e�2

2

�

and

QAm WD e1=(4m)f1Cp�e(mC1)=(4m�2)g.
Note that bothAm and QAm are bounded from above by universal constantC > 0.

Theorem 1.2. Let (Yi )1iD1 be a sequence of independent, identically distributed
random variables on a probability space(�, 6, P ) with values in an m-dimensional
Hadamard manifold N. We assume that the support of the measure (Y1)�P has bounded
diameter D. Then, for any r > 0, we have

P
 (

! 2 � dN

 
1

n

!X
iD1,:::,n Yi (!), EP (Y1)

!
� r

)!

� minfAme�nr2=16D2m, QAme�nr2=32D2mg.
There are many other way to define a mean value of points in a CAT(0)-space (see

Remark 2.6). For example, in [2], A. Es-Sahib and H. Heinich introduced an another
notion of mean value and expectation. They obtained the strong Law of Large Numbers
under their definition. In this paper, we treat only Sturm’s formulation.

2. Preliminaries

2.1. Basics of CAT(0)-spaces. In this subsection we explain several terminolo-
gies in geometry of CAT(0)-spaces. We refer to [8] for the details of the results on
CAT(0)-spaces mentioned below.

Let (X, dX) be a metric space. A rectifiable curve
 W [0, 1]! X is called ageo-
desic if its arclength coincides with the distancedX(
 (0), 
 (1)) and it has a constant
speed, i.e., parameterized proportionally to the arclength. We say that a metric space is
a geodesic spaceif any two points are joined by a geodesic between them. If anytwo
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points are joined by a unique geodesic, then the space is saidto be uniquely geodesic.
A complete geodesic spaceX is called a CAT(0)-spaceif we have

dX

�
x, 
�1

2

��2 � 1

2
dX(x, y)2C 1

2
dX(x, z)2 � 1

4
dX(y, z)2

for any x, y, z2 X and any geodesic
 W [0, 1]! X from y to z. For example, Hadamard
manifolds, Hilbert spaces, andR-trees are all CAT(0)-spaces. AnR-tree is a complete
geodesic space such that the image of every simple path is theimage of a geodesic.

It follows from the next theorem that CAT(0)-spaces are uniquely geodesic.

Theorem 2.1 (cf. [8, Corollary 2.5]). Let N be aCAT(0)-space and
 , �W [0, 1]!
N be two geodesics. Then, for any t 2 [0, 1], we have

dN(
 (t), �(t)) � (1� t) dN(
 (0), �(0))C t dN(
 (1), �(1)).

Let N be a CAT(0)-space. We denote byP2(N) the set of all Borel probability
measure� on N having the finite moment of order 2, i.e.,Z

N
dN(x, y)2 d�(y) < C1

for some (hence all)x 2 N. A point x0 2 N is called thebarycenterof a measure� 2 P2(N) if x0 is the unique minimizing point of the function

N 3 x 7! Z
N

dN(x, y)2 d�(y) 2 R.

We denote the pointx0 by b(�). It is well-known that every� 2 P2(N) has the bary-
center ([8, Proposition 4.3]).

A simple variational argument implies the following lemma.

Lemma 2.2 (cf. [8, Proposition 5.4]). Let H be a Hilbert space. Then, for each� 2 P2(H ), we have

b(�) D Z
H

y d�(y).

Let (�,6, P ) be a probability space andN a CAT(0)-space. For anN-valued ran-
dom variableW W �! N satisfying W�P 2 P2(N), we define itsexpectationEP ( f ) 2
N by the pointb(W�P ). By Lemma 2.2, in the case whereN is a Hilbert space, this
definition coincides with the classical one:

EP (W) D Z� W(!) dP (!).

The proof of the next lemma is easy, so we omit it.
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Lemma 2.3. Let N be aCAT(0)-space and� 2 P2(N). Then, we have

dN(b(�), Supp�) � diam(Supp�).

Theorem 2.4 (Variance inequality, cf. [8, Proposition 4.4]).Let N be aCAT(0)-
space and� 2 P2(N). Then, for any z2 N, we haveZ

N
fdN(z, x)2 � dN(b(�), x)2g d�(x) � dN(z, b(�))2.

We now explain the inductive mean value introduced by Sturm in [8, Definition 4.6].

DEFINITION 2.5 (Inductive mean value). Given a sequence (yi )NiD1 of points in a
uniquely geodesic spaceX, we define a new sequence of pointssn 2 X, n 2 N, by
induction as follows. We defines1 WD y1 andsn WD 
 (1=n), where
 W [0, 1]! X is the
geodesic connecting two pointssn�1 and yn. We denote the pointsn by (1=n)

P!
iD1,:::,n yi

and call it theinductive mean valueof the pointsy1, : : : , yn.

REMARK 2.6. (1) If the spaceX is a non-linear metric space, then the point
(1=n)

P!
iD1,:::,n yi strongly depends on permutations ofyi as we see the following ex-

ample. Fori D 1, 2, 3, letTi WD f(i , r ) j r 2 [0,C1)g be a copy of [0,C1) equipped
with the usual Euclidean distance function. Thetripod T is the metric space obtained
by gluing together all these spacesTi , i D 1, 2, 3, at their origins with the intrinsic
distance function. Lety1 WD (1, 1), y2 WD (2, 1), andy3 WD (3, 1). Then, the inductive
mean value of ordery1, y2, y3 is the point (3, 1=3), whereas the one of ordery1, y3, y2

is the point (2, 1=3).
(2) There are many other way to define a mean value of pointsy1, : : : , yn in a CAT(0)-
space (see [8, Remark 6.4]). For example, define a mean value as the barycenter of
these points. Observe that this definition does not depend onorder of the points (and
so it is different from inductive mean value in general).

2.2. Invariants of mm-spaces and measures.In this subsection we define sev-
eral invariants of mm-spaces and measures, which are neededfor the proof of the main
theorems.

An mm-space XD (X, dX, �X) is a complete separable metric space (X, dX) with
a Borel probability measure�X. Let Y be a complete metric space and� a finite Borel
measure onY having separable support with the total measurem. For any� > 0, we
define thepartial diameterdiam(�, m� �) of � as the infimum of the diameter ofY0,
whereY0 runs over all Borel subsets ofY such that�(Y0) � m� �. Let X be an mm-
space withmX WD �X(X) and Y a complete metric space. For any� > 0, we define
the observable diameterof X by

ObsDiamY(XI ��) WD supfdiam(f�(�X), mX � �) j f W X ! Y is a 1-Lipschitz mapg.
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The idea of the observable diameter comes from the quantum and statistical mechan-
ics, i.e., we think of�X as a state on a configuration spaceX, and f is interpreted
as an observable, i.e., an observation device giving us the visual (tomographic) image
f�(�X) on Y.

Let X be an mm-space. Given any two positive numbers�1 and �2, we define
the separation distanceSep(XI �1, �2) D Sep(�XI �1, �2) of X as the supremum of the
numberdX(A1, A2), where A1 and A2 are Borel subsets ofX such that�X(A1) � �1

and�X(A2) � �2, and we put

dX(A1, A2) WD inffdX(x1, x2) j x1 2 A1, x2 2 A2g.
The next two lemmas are easy to prove.

Lemma 2.7 (cf. [6, Section 312.30]). Let X and Y be two mm-spaces and fW X !
Y be an�-Lipschitz map such that f�(�X) D �Y. Then, for any�1, �2 > 0, we have

Sep(YI �1, �2) � � Sep(XI �1, �2).

Lemma 2.8. Given two positive numbers�1 and �2 such that�1 � 1=2 and �2 >
1=2, we have

Sep(�I �1, �2) D 0.

Lemma 2.9 (cf. [6, Section 312.33]). Let X be an mm-space. Then, for any�, � 0 > 0 with � > � 0, we have

ObsDiamR(XI �� 0) � Sep(XI �, �).

See also [5, Lemma 2.5] for the proof of the above lemma.
Let N be a CAT(0)-space and� 2 P2(N). Given any� > 0, we define thecentral

radius CRad(�, 1��) as the infimum of� > 0 such that�(BN(b(�), �)) � 1��. Let X
be an mm-space andN a CAT(0)-space such thatf�(�X) 2 P2(N) for any 1-Lipschitz
map f W X ! N. For any� > 0, we define

ObsCRadN(XI ��) WD supfCRad(f�(�X), 1� �) j f W X ! N is a 1-Lipschitz mapg,
and call it theobservable central radiusof X.

From the definition, we immediately obtain the following lemma.

Lemma 2.10 (cf. [6, Section 312.31]). For any � > 0, we have

ObsDiamR(XI ��) � 2 ObsCRadR(XI ��).



916 K. FUNANO

Observable diameters, separation distances, observable central radii are introduced
by Gromov in [6, Chapter 312] to capture the theory of the Lévy–Milman concentration
of 1-Lipschitz maps visually.

Given an mm-spaceX, we define the concentration function�X W (0,C1)! R of
X as the supremum of�X(X n ACr ), where A runs over all Borel subsets ofX such
that �X(A) � 1=2 and ACr is an openr -neighborhood ofA. Concentration functions
were introduced by D. Amir and V. Milman in [1].

3. Proof of the main theorem

Lemma 3.1. Let N be aCAT(0)-space. Then, for any n2 N, the map

sn W N
n 3 (x1, x2, : : : , xn) 7! 1

n

!X
iD1,:::,n xi 2 N

is (1=n)-Lipschitz with respect to the l1-distance function on the product space N
n.

Proof. Assuming that the mapsn�1 is 1=(n�1)-Lipschitz, by Theorem 2.1, we have

dN(sn((xi )
n
iD1), sn((yi )

n
iD1))

� �1� 1

n

�
dN(sn�1((xi )

n�1
iD1), sn�1((yi )

n�1
iD1))C 1

n
dN(xn, yn)

� �1� 1

n

�
1

n� 1

n�1X
iD1

dN(xi , yi )C 1

n
dN(xn, yn)

D 1

n

nX
iD1

dN(xi , yi ).

This completes the proof.

To prove Theorem 1.1, we need the following two theorems.

Theorem 3.2 (cf. [3, Lemma 5.5]). Let � be a Borel probability measure on anR-tree such that� 2 P2(T). Then, there exists a1-Lipschitz function'� W T ! R
such that

CRad(�, 1� �) � CRad(('�)�(�), 1� �)C Sep

��I 1

3
,
�
2

�

C Sep

�
('�)�(�)I 1

3
,
�
2

�C Sep(('�)�(�)I 1� �, 1� �)

for any � > 0.
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Theorem 3.3 (cf. [7, Corollary 1.17]). Let XD X1
� � �
 Xn be a product mm-
space of mm-spaces Xi with finite diameter Di , i D 1,: : : , n, equipped with the product
probability measure�X WD �X1
� � �
�Xn and the l1-distance function dl 1 WDPn

iD1dXi .
Then, for any 1-Lipschitz function fW X ! R and any r> 0, we have

�X(fx 2 X j j f (x) � E�X ( f )j � r g) � 2e�r 2=2D2
,(3.1)

where D2 WDPn
iD1 D2

i . Moreover, we have

�X(r ) � e�r 2=8D2
.(3.2)

Proof of Theorem 1.1. Letsn W T
n ! T be a map which sends every point in
T
n to its inductive mean value. Putting� WD (Y1)�P , we first prove the following.

Claim 3.4. We have

�
n(fx 2 T
n j dT (sn(x), E�
n (sn)) � r g) � 4e�nr2=75D2
.

Proof. Since the metric space (T , ndT ) is an R-tree, by virtue of Theorem 3.2,
there exists a 1-Lipschitz function'n W (T , ndT )! R such that

n CRad((sn)�(�
n), 1� �)

� CRad(('n Æ sn)�(�
n), 1� �)C n Sep

�
(sn)�(�
n)I 1

3
,
�
2

�

C Sep

�
('n Æ sn)�(�
n)I 1

3
,
�
2

�C Sep(('n Æ sn)�(�
n)I 1� �, 1� �)

for any � > 0. By Lemma 3.1, the function'n Æ sn W (T
n, dl 1) ! R is 1-Lipschitz.
Combining Lemma 2.7 with Lemmas 2.8, 2.9, and 2.10, for any�, � 0 > 0 such that� 0 < � < 1=2, we hence have

n CRad((sn)�(�
n), 1� �)

� CRad(('n Æ sn)�(�
n), 1� �)C n Sep

�
(sn)�(�
n)I 1

3
,
�
2

�

C Sep

�
('n Æ sn)�(�
n)I 1

3
,
�
2

�

� ObsCRadR((T
n, dl 1, �
n)I ��)C 2 Sep

��
nI �
2

,
�
2

�
� ObsCRadR((T
n, dl 1, �
n)I ��)

C 2 ObsDiamR
�

(T
n, dl 1, �
n)I �� 0
2

�

� 5 ObsCRadR
�

(T
n, dl 1, �
n)I �� 0
2

�
.
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According to the inequality (3.1), we thus get

n CRad((sn)�(�
n), 1� �) � 5D

r
2n log

4� 0 .
Letting � 0 ! � yields that

CRad((sn)�(�
n), 1� �) � 5D

r
2

n
log

4�(3.3)

for any � 2 (0, 1=2). Given� � 1=2, taking an arbitrary� 0 2 (0, 1=2), we also estimate

CRad((sn)�(�
n), 1� �) � CRad((sn)�(�
n), 1� � 0)
� 5D

r
2

n
log

4� 0
D 5D

p
log(4=� 0)p
log(4=�)

r
2

n
log

4�
� 5D

p
log(4=� 0)p

log 4

r
2

n
log

4� .

Letting � 0 ! 1=2, we hence get

CRad((sn)�(�
n), 1� �) � 5D

r
3

n
log

4� .(3.4)

The above two inequalities (3.3) and (3.4) imply the claim.

Put an WD dT (E�
n (sn), b(�)). By Sturm’s inequality (1.1), we haveZ
T
n

dT (sn(x), b(�))2 d�
n(x) � 1

n

Z
T

dT (x, b(�))2 d�(x).

Lemma 2.3 together with Theorem 2.4 thus implies that

a2
n �

Z
T
n

dT (sn(x), b(�))2d�
n(x) � 1

n

Z
T

dT (x, b(�))2d�(x) � 4D2

n
.

For any r > an, by using Claim 3.4, we therefore obtain

P
 (

! 2 � dT

 
1

n

!X
iD1,:::,n Yi (!), EP (Y1)

!
� r

)!

D �
n(fx 2 T
n j dT (sn(x), b(�)) � r g)
� �
n(fx 2 T
n j dT (sn(x), E�
n(sn)) � r � ang)
� 4e�n(r�an)2=75D2

� 4ena2
n=75D2

e�nr2=150D2

� 4e4=75e�nr2=150D2
.
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If r � an, then we have

P
 (
! 2 � dT

 
1

n

!X
iD1,:::,n Yi (!), EP (Y1)

!
� r

)!

� ena2
n=150D2

e�na2
n=150D2 < e2=75e�nr2=150D2 < 4e4=75e�nr2=150D2

.

Combining these two inequalities completes the proof of thetheorem.

Theorem 1.2 follows from the same proof of Theorem 1.1 together with the in-
equality (3.2) and the following theorem. We shall consideran mm-space satisfying

�X(r ) � CXe�cXr 2
(3.5)

for some positive constantscX, CX > 0 and anyr > 0. For such an mm-spaceX and
m 2 N, we put

Am,X WD 1C p�e(mC1)=(4m�2)

2
maxfe(�CX )2=2, 2CXe(�CX)2g

and

QAm,X WD 1Cp�CXe(mC1)=(4m�2).

Theorem 3.5 (cf. [4, Theorem 1.1]). Let an mm-space X satisfies(3.5), N be an
m-dimensional Hadamard manifold, and f W X ! N a 1-Lipschitz map. Then, for any
r > 0, we have

�X(fx 2 X j dN( f (x), E�X ( f )) � r g) � minfAm,Xe�(cX=(8m))r 2
, QAm,Xe�(cX=(16m))r 2g.
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