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INTRODUCTION

1.1 Overview and background

  Since the metal-semiconductor field-effect transistor (MESFET) was first proposed by 

Mead in 1966 [1] there has been considerable interest in compound semiconductor devices 

because of their superior carrier transport properties in both low and high field regimes. For the 

last two decades, especially, crystal growth techniques for compound semiconductors such as 

molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) have 

rapidly progressed and have enabled us to utilize multi-layered heterostructures. The fact that 

heterojunctions between different materials with smooth heterointerfaces become available by 

using these techniques has greatly expanded a possibility of structural design. An idea of 

modulation doping was proposed by Dingle et al. [2] to separate conduction electrons and 

ionized donor impurities and achieve impurity-scattering-free electron transport. This new 

heterostructure has led to a novel high electron mobility transistors (HEMTs) [3],[4] in which 

two-dimensional electron gas (2DEG) formed at an heterointerface has extremely high mobility: 

Typical mobility as high as 106 cm2/Vsec has been achieved at low temperatures [5]. A variety 

of HEMT structures has been examined for further improvement in transport properties of 

2DEG: AlGaAs/InGaAs pseudomorphic HEMTs, double heterojunction HEMTs, and so on. 

Heterojunction bipolar transistors (HBTs) [6],[7] have been also proposed as a promising ultra-

high speed device. A wide gap AIGaAs layer introduced in an emitter region suppresses hole 

injection from the base region into the emitter, and thus the use of heavy doping is allowed in 

the base. This fact results in reductions in base resistance and emitter-base charging time leading 

to great improvement in the high-speed performance. Recent sophisticated HBTs with advanced 

collector structures (ballistic collection transistors: BCTs) have exhibited the cut-off frequency
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over 100 GHz [8] by inducing ballistic transport in the collector regime. Even more functional 

devices have emerged by using the state-of-art growth and fabrication technologies as shown 

later in this thesis. Some of these compound semiconductor devices have already come onto a 

stage of a practical use and substituted conventional silicon-based devices in some applicational 

areas. For example, the pseudomorphic A1GaAs/InGaAs HEMTs have already been used for 

ultra low-noise amplifiers operating at high frequencies above 1 GHz.

   The trend of the compound semiconductor devices towards progressibly more complex 

structures has increased a demand for numerical simulation technologies of carrier transport and 

device characteristics (see Fig. 1.1). A classical drift-diffusion (DD) model of carrier transport 

in semiconductor devices has been intensively studied since one-dimensional numerical 

simulation of silicon bipolar transistor in a self-consistent iterative scheme has been reported by 

Gummel et al. in 1964 [9]. 
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modelling.

Trend of compound semiconductor devices and related device

Even though recent ultra-small devices with sizes as small as 100 nm or less (see Chapters 3 -

5) often show characteristics in which ballistic or even quantum mechanical features of carrier
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transport play significant roles beyond the DD feature, the numerical simulation based on the 

DD modelling is still in practice the most powerful tool to design the FETs and Bipolar 

transistors which are currently being developed. For silicon devices the two-dimensional and 

even three-dimensional device simulation technologies based on the DD model have already 

been established as a powerful and practical CAD tool. The DD modelling of the heterojunction 

compound semiconductor devices, on the other hand, have been still under investigation since 

some additional modellings of phenomena characteristic to compound semiconductors are 

necessary to have reasonable quantitative agreements between simulated and experimental 

results. 

   One of these difficulties arises purely from the use of heterojunctions: the DD modelling 

should be modified to describe an inhomogeneous nature of the structures [10]-[12] and the 

resultant current really depends on the modeling of transport across the heterointerfaces. 

Another difficulty, this may be more serious and often cumbersome, is caused by carrier trap 

levels which are located deeply in the energy band-gap. The deep levels are characteristic to 

compound semiconductors which could be formed both in bulk materials and at interfaces 

(including surfaces). The most well-known deep level is an EL2 donor state inevitably formed 

in semi-insulating GaAs substrate manufactured by using the conventional liquid encapsulated 

Czochralski method. It has been found that the semi-insulating property of the substrate stems 

from the EL2-donors compensating carbon shallow acceptors. The compensation phenomenon 

leads to Fermi-level pinning at the EL2-donor energy which is near the middle of the band gap. 

DX centres [13] in N-type AlGaAs layers grown by using MBE are also well-know deep levels 

which appear for mole fraction x more than about 0.25 [14] though their origin is still under a 

lively discussion. A common understanding of the DX centre is that a X-point induced defect 

state is somehow combined with donor levels and effectively gives rise to quite large x-

dependent ionization energy of the donors. Additionally much more uncertain deep levels are 

reported for surfaces and interfaces of the devices: Fermi-level pinning due to surface states is 

known as a common phenomenon for compound semiconductor devices, and a 

phenomelogically unified defect model has been proposed by Spicer et al. in 1979 [15]. There 

are so many other deep levels which have not yet been made clear so far. 

   The modified DD-modelling has been also under study include energy and momentum 

relaxation effects. A simple velocity-field dependence used in the DD-modelling is replaced by 

numerical solutions of momentum and energy transport equations which enable to reproduce
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locally ballistic (or hot electron) transport in devices. This is often called semiclassical 

modelling as it allows to simulate non-equilibrium aspects of electron transport in smaller 

devices in a deep submicron regime [16]-[18]. Data on energy and momentum relaxation times 

required for the semiclassical modelling are usually taken from one-dimensional Monte Carlo 

simulations and incorporated as a data base. At present the semiclassical modelling may be the 

most practical and efficient way of simulating deep submicron devices currently being 

developed. For more detailed study of non-equilibrium transport large-scale self-consistent 

ensemble Monte Carlo simulation technology [19]-[21] is becoming popular with a steady 

improvement in computer resources available though it is still a bit tough for practical use.

  Substantial improvement in MBE technique in 1980's has facilitated us to design 

exceedingly well-controlled multi-layered structures (superlattices) with an atomic-scale 

accuracy in layer thickness. It has definitely opened a door to a new research field of 

nanometer-scale semiconductor devices where the quantum mechanical wave-nature of electrons 

is expected to appear. Advances in the study of electron transport in this new regime are 

certainly going to make a novel trend for device development which is entirely different from 

the conventional trend based on a simple relation between device speed and dimension. Instead 

of conventional devices which utilize the drift-diffusion-type carrier transport, a variety of novel 

device concepts have been proposed based on the quantum-mechanical features of electrons 

such as tunnelling and interference. Resonant Tunnelling Diodes (RTDs) emerged as a 

pioneering device in this field in middle of 1970's which utilizes the electron-wave resonance in 

multi-barrier heterostructures. The idea of the resonant tunnelling in finite semiconductor 

superlattices was first proposed by Tsu and Esaki in 1973 [22] shortly after MBE technique 

appeared in the research field of compound semiconductor crystal growth. Experimental results 

[23] reported in those days showed only small shoulders in the current-voltage characteristics at 

low temperatures and were no more than to confirm a theoretical prediction on resonant 

tunnelling. This is because the MBE technique was still at an early stage and not good enough 

to grow the A1GaAs/GaAs double barrier structure in which tunnelling current through a 

resonant state dominates background current through crystal defects. A substantial development 

in the MBE technique, however, has made a remarkable improvement in negative differential 

conductance characteristics of the devices and has allowed us to utilize them to create a new
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functional device. An encouraging experimental result was reported in 1983 [24] about an 

observation of negative differential conductance at terahertz frequencies which has made this 

device really attractive from an application point of view. The large negative differential 

conductance obtained even at a room temperature directly leads to multi-stable device operation, 

and several new functional devices such as integrated RTDs [25], multiple-barrier RTDs [26]-

[28], and three-terminal resonant tunnelling transistors [29]-[31] have been successfully 

developed which could take the place of conventional devices by making a totally new trend 

curve for device miniaturisation. In terms of both high operating temperatures and voltages, the 

resonant tunnelling device has become one of the most promising quantum mechanical devices 

which have already come into the field of circuit research. 

   At the same time, RTDs have attracted people's interests purely from the viewpoint of 

electron transport physics. RTDs provide enormous amount of information about non-

equilibrium quantum transport despite the simple structure. The coherent electron-waves suffer 

from scattering processes which cause momentum and energy relaxations of electrons resulting 

in degradation of peak-to-valley current ratio of the device [32],[33]. Also many-body effects of 

electrons on transport such as self-consistent field due to electrons accumulated in a quantum 

well [34] or quantum correlations between electron-waves with different phases [35] have an 

influence on characteristics of the device. These complicated transport processes beyond the. 

simple coherent tunnelling picture are now being lively discussed, and detailed analyses are 

needed to make them clear. Measurement techniques for the resonant tunnelling under magnetic 

field [36] or hydrostatic pressure [37] have been introduced to investigate the dissipation 

process and intervalley scattering in the device. A time-resolved photoluminescence technique 

with a picosecond laser has been also adopted [38] on purpose to study the dynamical aspect of 

the resonant tunnelling. One of the recent success may be to have revealed that the device has an 

intrinsic bistability in the negative differential conductance region [39] which stems from 

dynamical redistribution of electrons in the quantum well. To make clear this both intensive 

numerical studies based on the transient quantum transport calculations [40][35] and 

magnetotransport studies of electron accumulation in the quantum well [36] have been required. 

RTDs are thought to be a good laboratory to investigate quantum transport in semiconductor 

microstructures and has already played an important role in disclosing physics of electron 

transport more than being just a negative conductance device. In addition, a new idea of
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transport measurement like resonant tunnelling spectroscopy has been proposed [41 ] by 

utilizing the resonant tunnelling structure as an energy filter for electron-waves.

  From theoretical standpoints the validity of the classical transport simulation technologies is 

obviously questionable in this regime and a new description of semiconductor transport is 

required based on quantum transport theory. It might be important to make clear that the term 

"quantum transport theory" here does not mean quantum mechanical corrections to the classical 

transport theory which have been repeatedly adopted to introduce the effects of multiple 

subbands of two-dimensional electron gas in HEMTs [42],[43]. The basis of quantum transport 

theory is addressed to completely different quantum statistical mechanics. There are basically 

two types of appropriate theories depending on how far the system is from equilibrium: Linear 

response theory and non-equilibrium quantum transport theory. Experimental results such as 

conductance fluctuations observed in quantum wires or conductance quantization in point 

contacts are phenomena in the linear response regime and can be well described by using the 

linear response theory (see Fig. 1.2). The linear response theory assumes that the change in the 

distribution function from the one in thermal equilibrium is very small and so only the spectrum 

function is required. This theory leads to Landauer-Biittiker formula of conducting current in 

which numerical calculations of scattering matrix (S-matrix) are required. The Landauer-

Buttiker formula may be applied to the system not only under an infinitesimal bias but under a 

finite bias if there is no dissipative events in the system: The transport is called global coherent 

transport as phase-coherence of electron waves is conserved throughout the system. In the case 

of RTDs the Landauer-Buttiker formula reduce to widely used Tsu-Esaki formula of resonant 

tunnelling current based on a one-dimensional transfer matrix. Quantum-mechanical modeling 

based on the Tsu-Eaki formula has been preferably used, because of its simplicity, to analyze 

not only RTDs [32],[33], but also quantum wires and the quantum modulated transistor. 

   One major problem of the global coherent transport modelling is the fact that we have to 

assume the statistical distribution of carriers in advance. Systems are usually treated as perfect 

conductors with no dissipation process, so that this model can be applied only to completely 

ballistic systems. If the system is dissipative and far from equilibrium, i.e. the applied bias V is 

larger than EF/q (see Fig. 1.2), a proper description of transport is then given in terms of a non-

equilibrium Green's function [44] or alternatively a statistical density matrix [45]. In these 

descriptions the simultaneous specification of both position and momentum of electrons is
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prohibited according to Heisenberg's uncertainty principle in contrast with the classical 

distribution function expressed in the (r,p) phase space. Nevertheless it is sometimes useful to 

introduce a corresponding quantum distribution function, Wigner distribution function [53], 

which is defined as a Wigner-Weyl transform of the statistical density matrix. These non-

equilibrium transport theories have not been widely used for device modelling because of the 

difficulty in implementation.
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Figure 1.2 Classification of several quantum mechanical devices based on 
operating voltages and temperatures.

   Among these descriptions non-equilibrium Green's function approach reported by 

Kadanoff, Baym [46], and Keldysh [47] may be the most fundamental ground for quantum 

transport simulation. The Kadanoff-Baym-Keldysh approach adopts four kinds of Green's 

function: Retarded, advanced, and two correlation functions which depend on both double 

times, t and t', and double positions, r and P'. Starting with basic Dyson's equations for these
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four Green's functions they have successfully derived both transport and spectrum equations. 

These formula basically include all the necessary quantum mechanical processes due to many-

body effects and non-local events and may eventually be basis of quantum device simulation. At 

the present stage, however, the KBK-formula are too much too far from a practical use as the 

non-equilibrium Green's functions have four variables, t, t', x, x', even four one-dimensional 

systems and numerical solutions for the transport and spectrum equations are hardly obtainable 

by using the present computer systems. Though some attempts have been very recently reported 

to solve these equations for a uniform one-dimensional system [48] or to simplify them to 

tractable forms to treat more complex systems [49]-[51 ], this approach requires more 

investigations for its practical use. 

   A bit more tractable description of quantum transport is given by using the density matrix 

or Wigner function. The density matrix is a double-space-single-time function which is obtained 

from the non-equilibrium Green's function by assuming translational invariance in time. The 

time evolution of the density matrix is then determined by the Liouville-von Neumann equation 

[52] [53] which is basically an equation of motion of the density matrix with additional terms 

which represent collisional processes. Very recently, both the density matrix [35] and Wigner 

function [54],[40],[55] have been solved numerically to analyze electron transport in RTDs. 

The one-dimensional Liouville-von Neumann equation has been solved in the finite-difference 

scheme, and some calculated results have been reported on the steady-state I-V characteristics 

and transient behaviour of RTDs. Although some major problems such as boundary conditions 

and correct initial conditions for the density matrix and Wigner function are still under 

discussion, the successful application of these approaches to electron devices is certainly a 

significant advance in quantum device simulation technology.

   Since later in 1980's the research on nanometer-scale semiconductor devices has proceeded 

to a new stage in parallel with a progress of lateral fabrication technology. Recent sophisticated 

manometer fabrication technologies such as electron beam (EB) lithography or focused ion 

beam (FIB) implantation have made it possible to confine electrons laterally in a small area with 

sizes below 100 nm. These nanometer-scale semiconductor structures are often called 

mesoscopic systems. Mesoscopic structures are basically classified into two groups depending 

on degrees of freedom of electrons in the system: One-dimensional (1 D) and zero-dimensional
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(OD) structures. The iD-system is a structure in which electrons are laterally confined in one 

direction and thus still move freely in another lateral direction: Quantum wires, electron 

waveguides, and quantum point contacts are typical examples. One the other hand, if electrons 

are laterally confined in both dimensions electrons lose degree of freedoms completely, and thus 

the structures are called OD-systems. When the confinement is complete in all dimensions a OD-

structure is not a conductive system but an isolated one. This is also called a quantum dot and 

the three-dimensional confinement effects on its optical properties have been studied. On the 

other hand, when a OD-structure is weakly connected to reservoirs, it is virtually isolated but 

still conductive . It might be more appropriate to term this sort of system as a quasi-OD-

structure, but following a common way, it is simply called a OD-structure in the following 

chapters. Resonant tunnelling devices have also come into this regime and then called OD-RTDs 

[56] [57] because electrons are laterally confined as well as vertically. The OD-RTD is an ideal 

system to investigate electron-wave transport properties through three-dimensionally quantized 

energy levels. By designing structural parameters such as barrier thickness, well width, and a 

size of lateral confinement, it is possible to realize a "quantum box" in which number of 

electrons is nearly quantized. Therefore the OD-RTD recently attracts a great interest in regards 

to single charge assisted transport [58], so called Coulomb blockade. Also fine structure 

attributable to a single ionized impurity in a dot has been recently reported in this system. The 

OD-RTDs now facilitate us to observe directly phenomena originated from a few-body problem 

which is one of the most cumbersome parts of quantum mechanical statistics. 

   Theoretical study of these transport phenomena has just begun, and only preliminary 

results have been reported. Ideally speaking the theoretical framework required to simulate the 

quantum transport in OD-structures is the same as those explained above. However three-

dimensional quantization and interactions among electrons at the quantized states make 

numerical simulations exceedingly difficult because of enormous amount of computational time 

and memory required as well as mathematical complexity. Very recently a fully three-

dimensional numerical simulation of global coherent tunnelling has been reported for the OD-

RTDs based on 3D-S-matrix theory [59]. The simulated results have revealed that the quantum 

transport in the OD-RTDs is a mixture of lateral mode conserving and non-conserving resonant 

tunnelling processes resulting in complicated fine structure in the I-V characteristics. Because 

number of electrons localized in a quantum dot can be less than ten, electron interactions and 

correlations are extremely interesting as well as dissipation processes in a dot. Quantum
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transport simulation of the OD-systems beyond the coherent transport picture will be definitely 

important for thorough investigations of these phenomena.

   The purpose of this work is to study electron transport in nanometer-scale compound 

semiconductor devices by using several new numerical modellings. The work presented in this 

thesis has been done at the Central Research Laboratory, Hitachi, Ltd. (HCRL), from 1985 to 

1989, at Hitachi Cambridge Laboratory, Hitachi Europe Ltd., from 1989 to 1991, and again at 

HCRL after then. Though the whole work is presented by highlighting mainly numerical 

simulations a lot of relevant experimental results are also included which have been obtained in 

collaboration with Dr Masao Yamane* and Dr Tomonori Tanoue of Central Research 

Laboratory (*present address: Semiconductor Design & Development Centre), Hitachi, Ltd., 

and Dr Chris Goodings, Microelectronics Research Centre, Cavendish Laboratory, University 

of Cambridge. The present work is aimed not to cover the whole framework of proper transport 

theory but to investigate several interesting transport properties of nanometer-scale devices by 

using practical numerical modellings. The following chapters are organized in the manner that 

physics of transport is centred, and thus are not suited to have a general guide of transport 

theory. 

   In this first chapter a brief review of theoretical works on electron transport in compound 

semiconductor devices has been presented with a historical background of device 

miniaturization. The materials contained in the following chapters of this thesis progress from 

Chapter 2 on the drift-diffusion modelling of heterojunction devices in a submicron regime 

through Chapters 3 and 4 on coherent and dissipative quantum transport in multi-layered 

resonant tunnelling structures, concluding with Chapter 5 which deals with very recent quantum 

transport through OD-nanostructures. 

   Chapter 2 deals with the classical drift-diffusion modelling of deep submicron 

heterojunction devices currently being developed. A conventional DD-modelling for 

homogeneous systems is extended by taking account of heterojunctions and deep trap levels 

characteristic to compound semiconductors. Carrier capture-emission processes via the deep 

trap levels are focused, and the Fermi-level pinning effects of DX centres and surface states in 

AlGaAs/GaAs HEMTs are analyzed as well as surface carrier recombination effects on the 

characteristics of AIGaAs/GaAs HBTs.
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  The following three chapters are dedicated to the study of quantum mechanical features of 

electron transport in semiconductor structures with sizes under 100 nm. Several theoretical 

studies are presented as well as experimental results on quantum transport in nanometer-scale 

heterostructures. Although these works are mainly on resonant tunnelling (RT) through finite 

superlattice structures, it should be first mentioned that the theoretical works described here are 

not really specific for RTDs but in general applicable to other quantum devices. The study of the 

quantum transport is divided into three parts. 

   Chapter 3 is intended to describe a coherent aspect of quantum transport of electrons in 

multi-layered nanostructures. Tsu-Esaki formula with the transfer matrix calculations are 

adopted to simulate an energy dependence of the transmission coefficients through the double 

barrier resonant tunnelling structures. The global coherent tunnelling model introduced here 

gives us an intuitive and clear picture of what is going on in the resonant tunnelling structures. 

The theory is then improved by taking account of Hartree's self-consistent field [34] to simulate 

the potential distribution not only inside the resonant tunnelling structures but also in the emitter 

and collector accurately. By using the present modelling multiple-well resonant tunnelling 

diodes are numerically studied, and possibility of their applications to multiple-valued logic is 

discussed by comparing the calculated results with experimental data. Finally in this chapter a 

problem of collisional broadening [32] [33] related to P/V current ratios is raised and discussed 

by using a phenomelogical broadening model. 

   Chapter 4 investigates dissipative quantum transport in RTDs beyond the global coherent 

tunnelling model in Chapter 3. Non-equilibrium electron distribution and dynamical processes 

are theoretically studied by using the statistical density matrix [52] and the Wigner distribution 

function [53]. Time-dependent one-dimensional Liouville-von Neumann transport equation is 

numerically solved which is a quantum kinetic equation for the density matrix to analyze 

dissipative transport in double barrier RTDs. Femtosecond electron dynamics and quantum 

correlations in RTDs are discussed in regard to P/V ratio degradation due to dissipation process. 

Dynamical space-charge build-up is then demonstrated in the quantum well resulting in the 

intrinsic current bistability in the negative differential conductance regime of RTDs. Further 

investigations of the space-charge build up is experimentally done by using a magneto-transport 

measurement technique.



                                                   12 

   In chapter 5 quantum transport through three-dimensionally confined OD-RTDs is studied 

theoretically and experimentally. Global coherent tunnelling calculations based on 3D-S-matrix 

theory are conducted to make clear the role of lateral mode non-conserving processes due to 

non-uniform confinement potential [59]. A new three-terminal OD-resonant tunnelling device 

structure is then proposed to achieve quasi-uniform and controllable lateral confinement using 

focused ion beam implantation technique. Three-dimensional confinement effects on the I-V 

characteristics are studied by using both the 3D-S-matrix simulation and the experimental results 

obtained from fabricated gated OD-RTDs. A new interesting transport phenomenon related to 

single electron tunnelling through a single ionized impurity state in a quantum dot is finally 

discussed.

Finally Chapter 6 is intended as a brief summary of the the whole chapters.
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cBkipuln 2

CLASSICAL HYDRODYNAMIC ELECTRON TRANSPORT 

   IN SUBMICRON HETEROJUNCTION DEVICES

  This first chapter is intended to provide the study of drift-diffusion (DD) classical transport 

in heterojunction devices in a deep submicrometer regime focusing on the effects of the deep 

levels on device characteristics which are characteristic to compound semiconductors. In Sec. 

2.1 the modified drift-diffusion modelling is briefly described for heterojunction structures, and 

then the Shockley-Reed-Hall (SRH) statistics is introduced to model carrier emission-

absorption processes due to the deep levels placed in energy gaps. Three types of deep levels 

are taken into account for the modelling by using multiple discrete deep donor and acceptor 

states: EL2-donor levels in semi-insulating substrates [1], DX-centres in N-A1GaAs layers 

grown by using MBE, and surface states which are less understood experimentally. The simple 

Spicer's two state model [2] is adopted to describe the surface levels though alternative 

advanced models have been also reported. Two-dimensional numerical simulation based upon 

these modellings is then applied mainly to AlGaAs/GaAs high electron mobility transistors 

(HEMTs) to investigate firstly the influences of the DX centres in an N-A1GaAs electron supply 

layer (Sec. 2.2) and secondly those of more vague surface states (Sec. 2.3.1) on the device 

performance. Deep level induced surface recombination and related Fermi-level depinning 

phenomenon are also demonstrated in Sec. 2.3.2 by focusing in the extrinsic base region of 

heterojunction bipolar transistors (HBTs).

2.1 Macroscopic drift-diffusion transport in heterostructures with 

    SRH carrier trap processes
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2.1.1 Drift-diffusion modelling of carrier transport in semiconductor 

     heterostructures 

   To describe the motion of carriers in heterojuction devices we first have to introduce several 

new material parameters into the conventional drift-diffusion modelling of homogeneous 

semiconductor structures: An electron affinity x and discontinuities of conduction and valence 

bands, DEC and DEv, (see Fig. 2.1). All the parameters for alloy materials including transport 

properties have dependences on mole fractions.

Electron quasi-Fermi energy 0
Electron

Referencelevel - vo 

Vacuum level yr- Vo 

affinity x 

Conduction band edge E c= 

Valence band edge E v= E c 

ergy Op

W'- "Io+ X

AEv

Material 2 
(N - AlGaAs)

Hole quasi-Fermi en 

    Material 1 
    (p - GaAs)

+Eg

  Figure 2.1 Schematic energy band-diagram of an N-AIGaAs/p-GaAs 
  heterojunction with related parameters. 

Quasi-Fermi energies for electrons and holes, On and Op, are introduced in the conventional 

way to express electron and hole densities, n and p, as follows: 

  n = Nc F1/2 (E V ') (2.1) 
T E 

   p = Nv Fv2 Op V v (2.2) 

T where Nc and Nv are effective densities of states in the conduction and valence bands, F1/2 the 

Fermi-Dirac integral of order 1/2 [3], and VT the thermal voltage (= kBT/q). Equations (2.1) 

and (2.2) may be expressed in the following quasi-Boltzmann form:
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  n = ni exp ~y + 0V 1h~ - $n (2.3) 

T 

  p = ni exp ~p - (NV0-                                                        (2.4) 
              ,~ 
T 

by using the following degeneracy parameters, yn and yp,[4]: 

  yn = VT In exp {(E,, - ~h T) 
          F112 I(Ec - h)/VT) (2.5) 

  yp = VT 1n eXp 1($p - EV,T) (2.6) 
         F1/2 ((~p - Ev)NT) 

In equations (2.3) and (2.4) 0 is a band parameter [5] defined as follows: 

  0 = -o+x 2 - 2TlnN (2.7) 
where x is electron affinity. The conduction and valence band discontinuities, AEc and AEv, at 

a heterojunction between material 1 and 2 (see Fig. 2.1) are given by the following expressions: 

 AEv = (1 - 13) (Er2 - E 1) (2.8) 

  DEc = min (E2, gEg) - 4' - DEv (2.9) 

where Et, and Ea are band-gaps at I' and X points, and the discontinuity parameter 1i is chosen 
to be 0.6 for A1GaAs/GaAs heterojunctions [29] rather than the Dingle's value of 0.85 and 0.7 

for other heterojunctions. The electron and hole current densities, Jn and Jp, are then expressed 

by using quasi-Fermi potentials: 

   fn = -gpnnV4 (2.10) 

   Jp = -gppp04, (2.11) 

where µn, µp are low-field mobilities for electrons and holes. Substituting On and Op for in 

Eqs. (2.3) and (2.4) Eqs. (2.10) and (2.11) lead to current densities which consist of 

conventional drift and diffusion components which is exactly the same as those for 

homogeneous systems, and additional terms which are non-zero only at heterointerfaces.
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  The low-field mobilities for carriers in A1GaAs layers are generally expressed as a function 

of both the mole fraction x and total impurity concentration NJ (= ND + N,): 

  pn (NI, x) = pno (NI)- fn(x) (2.12) 

  pp (NI, x) = ppo (NI). ff(x) (2.13) 

  lin4NI) = An (2.14)          (1 
+ NI/Nno)a° 

A 

  1po(NI) _ (1 
+ NI/Npo)°CP (2.15) 

where all the parameters and functions f„ (x) and fp(x) are extracted from the experimental data 

reported by Neumann et al. [6] (see Fig. 2.2) and summarized in Table 2.1. 

                N-
            Q NxQ 1.Q 
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Figure 2.2 Electron and hole mobilities in Gal -xAlxAs as a function of AlAs mole 
fraction, x. The mobilities are normalized by values in GaAs. Solid and broken lines 
represent model functions for electron hole mobilities, respectively. The experimental 
data for electron mobility are from Neumann et al. [6]. After Ohtoshi et al. [9].

   Full transport properties of carriers are then simply modelled by using two types of 

velocity-field curves, velocity-overshoot and pieceiwse linear forms (see Fig. 2.3), in which the 

velocity in the low-field regime is given by the above mobility model. On the contrary the 

saturation velocity in the high-field regime is virtually independent of doping concentration and 

usually assumed to be 1.0 X 107 cm/sec which has been reported for bulk GaAs materials. For 

devices with very small dimensions, however, an appropriate figure of saturation velocity is 

controversial since velocity overshoot of carriers is seen locally in the conducting channel
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leading to an increase in current. In these circumstances more advanced transport calculations 

such as Monte Carlo simulations are usually adopted to estimate an effective saturation velocity 

which is sometimes more than twice as large as the bulk figure.

For electrons

An= 7200 [cm2 /Vs] 

Nnp= 3.1 x 1016 [1/cm3] 

an= 0.28 

fn (x) = -1.133 x + 1.000 (0.0 _< x S 0.30) 
     -8.571 x + 3.231 (0.30 < x <_ 0.37) 
      0.06 (0.37<x<_1.0)

For holes

An= 370 [cm 2 /Vs] 

Nnp=7.1 x 1016 [1/cm3] 

an= 0.30 

fp(x) _ (mpo/mp)•(1/Eho- 1/c10 YO /Eh - 1/E1 ) 

 mpo = 0.48 mo 

 mp=(0.48+0.31x)mo 

 ChO= 10.90 

  Eh=10.90-2.74x 

  c10 = 13.1 

  E1=13.1-3.0 x

Table 2.1 Parameters used for the mobility model (2.12) and (2.13) for electrons 
and holes in AlxGal_xAs layers.

v 
0 

> 1.0 x 1Ch 
  (m/sec) 

U

Velocity overshoot model

Saturation 
velocity

v=µE

Piecewise linear model

V=VS

Electric field

Figure 2.3 Two types of velocity-field curves used for the present simulation: A 
velocity overshoot model (solid line) and a piecewise linear model (broken line).

2.1.2 Shockley-Reed-Hall 

processes via deep

(SRH) 

levels

model for carrier emission-absorption
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   In this section carrier emission-absorption processes via deep levels in energy band-gaps 

are modelled based upon classical Schockley-Reed-Hall statistics. Baisc transport equations are 

then derived in which rate equations for these deep-level-induced processes are included. Let us 

start with derivation of rate equations for density at the deep trap states. The energies of deep 

donors and acceptors are first expressed in the following form: 

  AEDD = w+8-(E,-SEDD) (2.16) 

  AEDA = W+6-(Ev+SEDA) (2.17) 

where S EDD is an energy interval between the deep donor state and the conduction band edge, 

and S EDA that between the acceptor state and valence band edge (see Fig. 2.4).
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p C
D ep D

SEDD

     (a) Deep Donor 

Figure 2.4 Carrier emissio

Ec

NDA -

Ev

Cn A

CP A

en A

eP A SEDA

(b) Deep Acceptor

  Figure 2.4 Carrier emission and capture processes through deep levels in 
  semiconductors. Meaning of parameters is explained in the context. 

   Major deep levels in compound semiconductors are summarised in Tab. 2.2. Parameters 

listed here are used in the following numerical calculations. The time evolution of the density of 

carriers at the deep levels is given by the following rate equations [7]: 

 a NDD - NDD = ̀ CD NDD n - eD NDD - NDD, - (CD NDD - NDD P - eD NDD} (2.18) 
 at 

 a (NDA - ND-A) = I CA NDA p - eA (NDA - NDA } - (CA (NDA - NDA n - eA NDA } (2.19) 
 at
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Place
Semi-insurating

substrate
N-A1GaAs Surface (Spicer's model)

Deep levels EL2-donor DX centre Deep donor Deep acceptor

SF ,"'DA(eV) 0.82 *EDX(x) 0.925 0.75

Electron capture rate
(cm3/sec)

1.7 x 1013 1.0x 108 1.0x 108

Hole capture rate
(CM 3/sec)

2.0 x 1018 0 1.0x108 1.0x 108

Density 1.0 x 1016 (/cm3 ) ND dependent 1.0 x 1013
(/cm2 )

- 1.0 x 1013

(/cm2 )

Table 2.2

         * E
DX(x) = 4.00 (meV) (x:5 0.25)                    1125 

x - 277.35 (meV) (0.25 < x <_ 0.37) 
                  -261 .54 x + 235.77 (meV) (x > 0.37) 

A list of major deep levels in compound semiconductor devices.

where the emission rates eD, eD, eA, eA are connected to the capture rates CD, CD, CA , CA as 

follows: 

  eD = CD nD (2.20) 

  eD = CD PD (2.21) 

  en = CA nA (2.22) 

  eA = CA PA (2.23) 

where nD, pD, nA, PA are given by the following expressions: 

  nD = ni gD eXp [(A k D 7                T/ )(2.24)                    s q 

  pD = ni gD eXp [(yp - A EDDY (2.25)               kBT/q 

  nA = ni gA exp (0kD- ~~ (2.26)           B T /q 

   pA = n; gA exp ('YP - A EDA) (2.27)                kBT/q



                                                    25 

In these equations gD and gA are the degeneracies of the deep donor and acceptor states. In 

steady states the concentrations of the ionized states are obtained from Eqs. (2.18) and (2.19) as 

follows: 

   + nD/CD+p/CD   NDD (n + nD) / CD + (p + PD) / CD NDD (2.28) 

     _ n/CA+pA/CA NDA 
                      / C (2.29) 

These ionized deep donors and acceptors alter the electrostatic potential via the following 

Poisson's equation : 

  V. (F- VV) _ -q(ND+NDD-NA-NDA-n+p) (2.28) 

where q is the magnitude of an electronic charge, E is the dielectric constant, ND and NA are the 

concentrations of ionized shallow donors and acceptors. It is normally assumed that shallow 

donors and acceptors in GaAs are fully ionized at room temperature (ND = ND, NA = NA) as 

these impurity states are located fairly close to the edge of the conduction or valence bands: In 

the case of Si donors in GaAs, these are about 4 meV below the conduction band edge and 

electrons are well thermally excited into the conduction band at high temperatures. 

   Additionally the deep levels induce the electron-hole recombination and so cause the change 

in the current distribution through the following continuity equations for carriers: 

   an 
   q a t = V J„+G-R-(CDNDDn-eD(NDD-NDD } 

                  - {CA (NDA - NDA)n - eA NDA (2.29) 

  q ap = -0• Jp+G-R-(CD(NDD-NDD)P-eDNDD} 
                   - 1CA NDA P - eA (NDA - NDA)} (2.30) 

where G and R represent the conventional electron-hole pair generation and recombination 

terms of bulk semiconductors. In steady states these equations reduce to the following current 

continuity equations :
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V. Jr, = -(G-R-RDD-RDA) 

V. JP = (G-R-RDD-RDA)

(2.31) 

(2.32)

where RDD and RDA are the recombination rates through the deep donor and acceptor levels 

D 
   RDD _ n p - nl 1 ) 

/ C NDD (2.33)      (n+nD)/CD+(p+pD D 

                    A A 
        = np-nl Pi   RDA NDA (2.34) 

      (n+ni)/CA+(p+pi)/CA 

   Poisson's equation (2.28) and current continuity equations (2.31) and (2.32) are in general 

discretized on a two-dimensional finite difference mesh lattice and then numerically solved in an 

iterative way under the conventional Gummel's scheme: the ICCG (Incomplete Cholesky 

Conjugate Gradient) method [8],[9] has been adopted for solving the discretized linear 

equations as the resultant matrices are all symmetric. As the SRH terms introduced into the 

above equations have a non-linear dependence on variation in electrostatic potential, they should 

be expanded in a series of the change in electrostatic potential, and only linear terms are usually 

used in iterative calculations. This linearization avoids divergence in the numerical calculations 

due to a strong feedback from the SRH term which we often come across for the case that the 

density of the trap levels is relatively high.

2.2 Fermi-level pinning due to DX centres in submicron-gate 

    A1GaAs/GaAs HEMTs

   The existence of DX centres [10],[11] in Si-doped AIGaAs layers grown by using MBE 

has been one of the crucial problems in developing high-speed heterojunction devices. For 

example, persistent photoconductivity [10] in HEMTs, saturable pulsation of laser diodes [12], 

and persistent photocapacitance in p-N GaAs/A1GaAs heterojunction diodes [ 13] are attributed 

to DX centres. In AlGaAs/GaAs HEMTs, two-dimensional electron gas (2DEG) formed at the 

N-A1GaAs/undoped-GaAs heterointerface is used as a conducting channel. DX centres thus 

have an influence on the electron transfer between the N-A1GaAs and undoped-GaAs layers 

[14] - [16], resulting in the saturation in sheet electron density of 2DEG [17]. Therefore, it is



                                                    27 

vital to suppress the effects of DX centres to achieve further improvement in A1GaAs/GaAs 

HEMTs performance. 

   Up to now these effects of DX centres on performance of heterojunction devices have not 

yet been fully investigated. Several groups have reported one-dimensional numerical analysis of 

controllability of 2DEG via gate bias [18]-[20]. Park et al. [19] have shown by using a simple 

one-dimensional analysis that gate capacitance-voltage characteristics of AlGaAs/GaAs HEMTs 

are well modelled by taking account of Fermi-level pinning due to DX centres. In this section a 

fully two-dimensional numerical analysis of AIGaAs/GaAs HEMTs is presented based on a 

hydrodynamic device simulation introduced in the previous section. DX centres are modelled by 

using a single deep donor level which varies with aluminum mole fraction as shown in Tab. 

2.2. Electron capture process caused by DX centres is then expressed by using the SRH rate 

equation. DX centres are shown to pin the quasi-Fermi level leading to a great decrease in 

transconductance of HEMTs. The superior performance of InGaAs/A1GaAs pseudomorphic 

HEMTs is discussed in terms of the disappearance of the Fermi-level pinning.
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Source Gate Drain
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Figure 2.5 A cross sectional view of a 0.5 ,um gate AIGaAs/GaAs HEMT.

   Figure 2.5 shows a schematic cross section of a 0.5-mm-gate planar AIGaAs/GaAs HEMT 

which has a 15-nm-thick undoped A10.3Ga0.7As surface layer [21 ], a 25-nm-thick highly doped 

N-Al0 .3Ga0_7As layer, and a 0.2-nm-thick undoped AI0.3Ga0,7As spacer layer above the 2DEG
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channel. A slightly doped p--GaAs is adopted for the channel layer rather than undoped GaAs. 

The doping concentration of layers used is listed in Table 2.3. For simplicity the source and 

drain alloy regions are modelled by heavily doped n+-GaAs. The electron mobility in the 

undoped GaAs and N-A1GaAs layers are assumed to be 7200 and 1500 cm2/(V. sec), 

respectively, according to the mobility model described in Sec. 2.1. The Schottky-barrier height 

of the gate electrode is assumed to be 0.8 V.

Layer Doping concentration (1/cm )

undoped(p--)-Al o.3Ga O,,As 1.0 x 1013

N -Al 0.3Ga o.,As 2.0 x 1018

undoped(p -)-A10,3Ga ,,. As 1.0 x 1013

p -GaAs 1.0 x 1014

p -Al 0.3Ga O.,As 1.0 X 1014

p- -GaAs 1.0 x 1014

Semi-insulating GaAs substrate

Table 2.3 Doping concentration in each layer of the AIGaAs/GaAs HEMT

SOURCE GATE DRAI N

J
) w

un-AIGaAs
i

n-AIGaAs

r

1 1
0V 0 .1V0 .2V

p-Ga As

0.9v-

0.8V-

0.7V-0
.4V

I 

0.5V 0.6V

0.3V

Figure 2.6 Two-dimensional electrostatic potential distribution and electron current 
distribution around the AIGaAs/GaAs heterojuction for Vds = 1.0 V and Vgs = OV. 
Electrostatic potentials are shown by contour lines with an interval of 0.1 V.
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  Figure 2.6 shows the two-dimensional electrostatic potential distribution and electron 

current distribution around the A1GaAs/GaAs heterojunction calculated at a source-drain bias, 

Vds, of 1.0 V and a source-gate bias, Vgs, of 0 V. The length of arrows shown in Fig. 2.6 

measures the magnitude of current densities at various points and so indicates that a major 

current flow is confined within a fairly thin region near the heterojunction as expected. No 

current flow is seen in the N-A1GaAs layer as the thickness and doping concentration have been 

chosen so that electrons are well depleted in this layer. Parallel conduction through the N-

AlGaAs layer in general results in a decrease in transconductance as electron mobility in the N-

A1GaAs is much lower than that of 2DEG and thus required to be negligibly small. 

  The full transistor characteristics of the HEMT with a gate width of 200 mm calculated at a 

room temperature is shown in Fig. 2.7(a). To make clear the effects of DX centres on the 

characteristics it is convenient to introduce another model in which all the donors in N-A1GaAs 

layers are assumed to be ideally ionized as well as n-GaAs layers: this model does not take 

account of DX centres at all and hence called a perfect ionization model in the following 

discussion. The characteristics calculated by using the perfect ionization model .are shown in 

Fig. 2.7(b).
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Figure 2.7 The full transistor characteristics of the AIGaAsIGaAs HEMT with a 

gate width of 200 l.un calculated at 300K. (a) Using the DX centre model. (b) Using 
the perfect ionization model.
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The saturation current calculated by using the DX centre model is found about 30 percent of 

magnitude smaller than that obtained through the perfect ionization model. In addition an 

increase in drain current, Ids, with increasing Vgs becomes smaller near zero gate bias (Fig. 

2.7(a)) though a virtually equal increase is seen for the case of the perfect ionization model (Fig. 

2.7(b)).

  The situation becomes clearer by plotting the calculated gate bias dependences of drain 

current, Ids, and transconductance, gm,: Figures 2.8(a) and (b) shows Ids versus Vgs and gm 

versus Vgs at Vds = 1.2 V. Calculated results by using the DX centre model (solid lines) are 

compared with those by using the perfect ionization (broken lines).
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Figure 2.8 Gate bias dependence of calculated and experimental (a) drain current 
Ids and (b) transconductance g„ Z. Solid lines represent the calculated results using the 
DX centre model, and broken lines using the perfect ionization model. The 
experimental data are shown by open circles.

As shown in Fig. 2.8(a), the drain currents calculated by using these two models are nearly 

equal at the threshold voltage, but the difference between them increases when the gate bias
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approaches zero. The drain current calculated by using the DX centre model tends to saturate, 

and the transconductance falls off rapidly near Vgs = 0. Experimental results obtained from 

fabricated HEMTs with the same structural parameters as those in Table 2.3 are shown by using 

open circles in Figs. 2. 8(a) and (b) which are in a good agreement with the results calculated 

by using the DX centre model.

   A brief discussion may be necessary on these results in terms of velocity overshoot in the 

2DEG channel. As explained earlier the DD transport modelling obviously can not reproduce 

any local non-equilibrium effect of hot electrons on device characteristics which is expected to 

occur in the channel region between the gate and drain electrodes. Thus the velocity overshoot 

effect has been incorporated into the present calculations by adopting the enhanced saturation 

velocity, vs, which has been determined by the following way. Figures 2. 9(a) and (b) show 

the calculated drain current and transconductance as functions of gate bias with various values

of vs.
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Figure 2.9 Drain current (a) and transconductance (b) calculated as functions of 

gate bias with various values of vs. Experimental results are plotted by open circles.
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Excellent agreements with experimental data have been achieved for both quantities by using vs 

of 2.0 X 107 cm/sec which is consistent with other reported values [20]-[23]. In the HEMT 

structures, the electrostatic potential steeply drops near the drain side edge of the gate electrode 

as is seen in Fig. 2.6. A high electric field appears over a very short length (about 0.05 µm) of 

the channel, and maximum electric field in this region is higher than 20 kV/cm. The electron 

velocity in this region is inferred to exceed the drift velocity of electron in a uniform 2DEG 

channel for which a figure as high as 1.5 X 107 cm/sec at 300K has been obtained by using 

Monte Carlo simulation [24]. Taking account of these, the field dependence of vs estimated 

above is thought to be fairly reasonable.

   Now we discuss the results obtained above in terms of the relation between DX centres and 

quasi-Fermi levels. Conduction band profiles as a function of depth from the surface which are 

calculated in equilibrium are shown in Figs. 2.10(a) and (b): (a) is the band diagram obtained 

by use of the DX centre model, and (b) the one by use of the perfect ionization model.
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Figure 2.10 Calculated energy-band diagram as a junction of distance referred to 
the device surface in thermal equilibrium. (a) Using the DX centre model. (b) Using 
the perfect ionization model.



33

The DX centres in the N-A1GaAs layer are indicated by the thick broken line in Fig. 2.10(b). 

The Fermi level (thin solid line) shown in Fig. 2.10(a) is found to lie near the DX centres in the 

N-A1GaAs layer. In contrast, that in Fig. 2. 10(b) is located fairly close to the minimum of the 

conduction band edge. It should be noted that DX centres act as an effective conduction band 

edge.
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Figure 2.11 Calculated electron quasi-Fermi energy measured from the conduction 
band minimum as a function of gate bias. Solid lines represent the calculated results 
using the DX centre model, and broken lines using the perfect ionization model. The 
energy of DX centres at the conduction band minimum is indicated by a broken line 
with a dot.

Figure 2.11 shows the electron quasi-Fermi energy, ~n, relative to the conduction band 

minimum (see inset of Fig. 2.11) as a function of gate bias: a solid line represents 4n calculated 

by using the DX centre model and a broken line that by using the perfect ionization model. For 

gate bias Vgs < -1.OV, the result calculated by using the DX centre model is almost the same as
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that calculated by using the perfect ionization model. A splitting becomes noticeable between 

them around Vgs = -0.8 V and is as large as the energy of the DX centres (denoted as AE0 in the 

figure) for Vgs > -0.5 V. With increasing gate bias towards zero, 4 does not come close to the 

conduction band minimum as On for the perfect ionization case but approaches to LED. Further 

increase in Vgs over zero actually results in saturation of On at this energy: the electron quasi-

Fermi level is pinned at the DX centre states in the N-A1GaAs layer.

   The Fermi-level pinning in the N-A1GaAs layer influences on electron distribution in 

HEMTs in the following way. Figure 2. 12 shows the electron distributions under the gate 

electrode as a function of distance referred to the device surface calculated under the same 

conditions as Fig. 2. 12. It is seen that the peak value of the free electron concentration in the 

N-A1GaAs layer calculated by using the DX centre model is much smaller than that in the 

perfect ionization scheme. This is because fairly large numbers of electrons are still trapped by 

DX centres, which do no contribute to conduction. This indicates that parallel conduction in the 

N-AlGaAs layer is reduced by DX centres capturing conducting electrons which have lower 

mobility. 
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Figure 2. 12 Calculated electron distribution around the heterojunction in thermal 
equilibrium as a function of depth measured from the device surface.
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Figure 2. 13 Calculated electron concentration accumulating at the heterointerface 
as a function of gate bias. A solid line represents the calculated results using the DX 
centre model, and a broken line using the perfect ionization model. Experimental 
results are plotted by open circles.

At the same time, however, the Fermi level pinning due to DX centres affects the amount of 

high mobility 2DEG as well: a decrease in a peak concentration of 2DEG is seen in Fig. 2. 12. 

The gate bias dependences of the sheet electron concentration of 2DEG, nSDEG , calculated by 

using the DX centre model (solid line) and the perfect ionization model (broken line) are shown 

in Fig. 2. 13 as well as the experimental data (open circles). The present DX centre model 

reproduces the observed non-linear dependence of nSDEC on gate bias. These results manifest 

that the Fermi-level pinning due to DX centres makes it difficult to modulate nSDEG through gate 

bias in the high gate bias regime. Degradation of transconductance seen in Fig. 2. 7 is 

attributable to lower controllability of nSDEG in this regime.

   Finally, in this section, the advanced performance of InGaAs/A1GaAs pseudomorphic 

HEMTs [25],[26] is discussed from standpoints of the Fermi-level pinning. Pseudomorphic 

HEMTs in which a strained InGaAs layer is adopted for a channel are going to substitute the 

conventional A1GaAs/GaAs HEMTs because of their excellent device characteristics. As the 

strained InGaAs has a narrower band gap a large conduction band discontinuity is easily 

achieved by using AlGaAs barrier layer with a small aluminum mole fraction (x < 0.2) in which 

DX centres are supposed not to be created (see Fig. 2.). The AlGaAs/InGaAs pseudomorphic 

HEMT structure, thus, enables us to obtain high values of nsDEG without suffering from the
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Fermi-level pinning due to DX centres. In addition, electron transport properties of InGaAs are 

better than those of GaAs both in low and high electric field regions: A lighter electron effective 

mass in InGaAs layers directly results in higher electron mobility, and a larger separation 

between the lowest I'-valley and upper valleys leads to less intervalley scattering and thus high 

electron saturation velocity. In this discussion we focus on the DX-centre-free properties of the 

pseudomorphic system. 

   The A1GaAs/InGaAs pseudomorphic HEMT analyzed here has the same structure as the 

conventional HEMT investigated above except the following two points. All the Al0.3Ga0_7As 

layers (including spacer and cap layers) are replaced with A1o.i5Ga0.85As layers without any 

change in thickness and doping concentration. A strained p--In0.25Ga0.75As layer then 

substitute the p--GaAs channel layer; the indium mole fraction of 0.25 is chosen so that the 

resultant threshold voltage of the pseudomorphic HEMT is nearly equal to that of the above 

AlGaAs/GaAs HEMT. In the present simulation lattice mismatch induced change in the energy 

band gap is introduced only through a hydrostatic component of the elastic strain [27],[28]. The 

electron mobility in the strained InGaAs layer is controversial and, in this analysis, it is 

intentionally kept the same as that of GaAs to demonstrate only the DX centre related change in 

the device characteristics. For the same purpose the same saturation velocity is assumed for 

electrons in this layer as that in GaAs layers though higher values have been reported as 

mentioned above. We can then directly compare device performance with and without the DX 

centres' effect through these assumptions. 

   Figures 2. 14(a) and (b) show Ids and g,,, calculated for two HEMTs as functions of Vgs: 

the solid lines represent the calculated results for A1GaAs/InGaAs pseudomorphic HEMT, and 

the broken lines for the conventional A1GaAs/GaAs HEMT. It should be noted that 

improvements are seen for the pseudomorphic HEMT in the high gate bias regime. This is 

because the Fermi level is no longer pinned at such deep levels as DX centres and freely comes 

close to the conduction band edge leading to much larger electron accumulation in the 2DEG 

channel. The maximum transconductance is enhanced to 325 mS/mm which is about 30 percent 

larger than that of the conventional HEMT. It should be emphasized that the transconductance is 

increased even though the mobility and saturation velocity of electrons have been kept 

unchanged: The enhancement of g,,, results entirely from the disappearance of the Fermi level 

pinning due to DX centres.
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Figure 2.14 Gate bias dependence of (a) drain current Ids and (b) transconductance 

g,n. solid lines represent the calculated results for the AIGaAs/InGaAs HEMT, and 
broken lines for the A/GaAs/GaAs HEMT.

2.3 Effects of surface trap 

submicron devices

levels on characteristics of deep

   The shorter the gate length is the more the extrinsic regions of devices have influences on 

their performance. In this section two different phenomena caused by extrinsic surface of 

HEMTs and HBTs are investigated. Firstly, in Sec. 2.3.1, the Fermi-level pinning caused by 

deep levels on both sides of the gate electrode is investigated in deep submicron gate 

A1GaAs/GaAs HEMTs. Secondly, in Sec. 2.3.2, surface-level-induced carrier recombination is 

analyzed.

2.3.1 Surface potential effects on nanometer-gate HEMTs 

   A schematic cross sectional view of the deep submicron gate HEMT is shown in Fig. 2. 

15. In these devices a deeply recessed gate structure is adopted both to reduce the parasitic 

source-to-gate resistance by introducing a thick highly doped GaAs cap layer and to achieve a 

high gate-to-drain breakdown voltage by putting the gate electrode away from the drain 

electrode. The deep submicron gate electrode is fabricated by using the EB lithography 

technique on the surface of the undoped A1GaAs layer after the highly doped GaAs cap layer is
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etched away around the electrode. The spacing between the edge of the gate electrode and that 

of the recessed GaAs region is designed to be 0.2 tm on both source and drain sides of the gate 

which is as long as (or even longer than) the gate length itself. Deep carrier states explained in 

Sec. 2.1 are then formed on whole the device surface indicated by using open circles in Fig. 2. 

15. Among them the surface states those formed in the highly doped GaAs regions do not 

influence so much on carrier transport in the intrinsic region of the HEMT as they just capture 

some electrons near the surface of the highly doped regions which are relatively far from the 

2DEG. On the other hand, however, those formed on the bottom of the recess are lying adjacent 

to the 2DEG and may cause serious change in the characteristics of the HEMT.
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Figure 2. 15 A schematic cross sectional view of the deep submicron recessed gate 
HEMT.

   In this section, therefore, let us focus on the effects of the surface states formed around the 

recessed gate structure. Spicer's two level model introduced in Sec. 2.1 is implemented in the 

following analysis, and the concentrations of the deep donors and acceptors are assumed to be 5 

x 1012 /cm2 which is generally supposed to be a typical figure for the free surface state density. 

Additionally the deep EL2-donors [1] and shallow carbon acceptors have been introduced for 

the semi-insulating substrate as well as the DX centres for the N-A1GaAs electron supply layer 

(see Sec. 2.2). 

   Figure 2. 16 shows the full transistor characteristics calculated for the gate length of (a) 0.3 

tm and (b) 0.15 tm in which solid lines represent the results obtained by using the surface 

state model and broken lines those which do not take account of the surface states. The spacing 

between the gate and recess edges is kept 0.2 µm in common for the both cases. Experimental
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data are shown in these figures by the use of open circles. It is found that the present surface 

state model reproduce both experimental results very well within an error of 5 percent overall. 

The results obtained by neglecting the surface states in general show larger drain conductance 

and thus the difference in the drain currents becomes larger with increasing drain voltage. 

Comparing Figs. 2. 16(a) and 2. 16(b) the difference between the solid and broken lines is seen 

to be larger for the 0.15 mm case than the 0.3 mm case.
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Figure 2.16 The full transistor characteristics of the deep submicron gate 
AIGaAs/GaAs HEMTs with (a) Lg = 0.3 pm and (b) Lg = 0.15 ,um. Solid and 
broken lines represent calculated results obtained by using Spicer's surface state 
model and the non-surface-state model, respectively. Experimental data are shown by 
using open circles.

   The gate bias dependences of the drain current Ids and transconductance gm calculated for 

the gate length of 0.3 gm and 0.15 gm are also shown in Figs. 2.17 and 2.18, respectively: 

Figures 2.17(a) and 2.18(a) shows Ids versus Vgs and Figs. 2.17(b) and 2.18(b) gm versus Vgs 

at Vds = 2.0 V. Solid and broken lines represent the calculated results in the same way as in Fig. 

2.16. Generally speaking the non-surface-state model leads to a larger threshold voltage than 

the experimental one and consequently underestimates the maximum of the transconductance. In 

other words the non-surface-state model tends to enhance the short channel effects .
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This fact stands out for shorter gate lengths, and in the case of LO, = 0.15 gm the characteristics 

calculated for the non-surface-state model do not exhibit the current pinch-off. The results 

obtained by using the present surface state model exceedingly accord with the experimental data
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for both gate lengths. This fact implies that the surface states formed on the bottom of the 

recessed structure contribute to suppress the short channel effects .
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Figure 2.19 Two-dimensional electron distributions around the recessed gate 
calculated for three typical bias conditions by using the non-surface-state model ((a) -
(c)) and the surface-state model ((d)-(t)): Figs. 2.19(a) & (d) are calculate in thermal 
equilibrium, (b) & (e) in a current saturation regime, and (c) & (J) near the threshold.
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Figure 2.20 Two-dimensional electrostatic potential and current density 
distributions around the recessed gate calculated for three typical bias conditions by 
using the non-surface-state model ((a) - (c)) and the surface-state model ((d)-(f)): 
Figs. 2.20(a) & (d) are calculate in thermal equilibrium, (b) & (e) in a current 
saturation regime, and (c) & (j) near the threshold.

   Now we consider these results in terms of changes in the potential and electron 

distributions around the gate electrode. Figures 2.19 shows the two-dimensional distribution of 

electron concentration around the recessed gate calculated in equilibrium (Figs. 2.19(a) and 

(d)), in a current-saturation regime, Vds = 2.0 and Vas = 0.0 V, (Figs. 2.19(b) and (e)), and 

near current threshold, Vds = 2.0 and Vgs = -1.0 V, (Figs. 2.19(c) and (f)). Arrows in these 

figures indicate the edges of recessed n+-GaAs regions. The three figures on the left side ((a) -
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(c)) have been obtained by using the non-surface state model, and those on the right side ((d) -

(f)) by using the surface state model. In the case of the non-surface state model, carrier 

modulation through gate bias is seen just under the gate electrode as usual. In the case of the 

surface state model, however, the electron depletion is seen over the whole region between the 

recess edges as if the whole surface would act as a gate electrode. 

   The corresponding electrostatic potential and current density distributions are also shown in 

Figs. 2.20(a) - (f). The intervals between equi-potential lines along the 2DEG channel turn out 

to be larger for the cases taking the surface states into consideration ((d) - (f)) than those for the 

surface-state-free cases ((a) - (c)). This indicates that the potential in the conducting channel 

varies in a more gradual way than that expected for these deep submicron HEMTs. 

Consequently the punch-through current flowing across the depletion region becomes much 

smaller, resulting in a reduction of the short channel effect on the characteristics.
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Figure 2.21 Threshold voltages, maximum transconductances, and drain 
conductances plotted as functions of the gate length. Solid and broken lines represent 
the results calculated by using the surface-state model and non-surface-state model. 
Experimental data are indicated by using open circles.
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   The resultant gate length dependences of threshold voltage, maximum transconductance, 

and drain conductance are summarized in Fig. 2.21: Calculated results by using the surface-

state model and non-surface-state model are plotted by the solid and broken lines, respectively. 

It should be noted that the effects of the surface states become significant for the gate length less 

than 0.3 gm. It is apparent that these quantities shown in this figure are less dependent on the 

gate length than those obtained by assuming surface-state free recessed structure.

2.3.2 Surface carrier recombination in an extrinsic base region of HBTs 

   Another significant effect of the surface trap levels is electron-hole recombination which 

frequently occurs on the surface of the extrinsic base region of HBTs. The surface carrier 

recombination has been one of the serious problem for compound semiconductor bipolar 

transistors as it may result in a drastic increase in excess base current and so degrade current 

gain. This phenomenon is a combination of the Fermi-level pinning studied in the last section 

and the deep-level-induced recombination of majority carriers in the base region with injected 

minority carriers and so more complex than the conventional recombination seen in a bulk base 

regime. In this last section excess base current is simulated by using the same Spicer's model, 

and the relation between the surface trap density and current gain is investigated.
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Figure 2.22 A schematic cross sectional view of an analized AIGaAsIGaAs HBT. 
Surface of an extrinsic base region is indicated by using a broken line.
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Layer Doping concentration (1/cm )

Emitter
n+-GaAs 5.0 x 1018

N -Al o.,Ga o,As 3.0 x 1017

Base p+-GaAs 5.0 x 1018

Collector
n--GaAs 5.0 x 1016

n+-GaAs 5.0 x 1018

Table 2.4 Doping concentration in each layer of the AIGaAs/GaAs HBT.
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extrinsic base surface (see inset): (a) Results calculated by using the deep-level-free 
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Figure 2.22 shows cross sectional view of an A1GaAs/GaAs HBTs used for the present 

analysis: The interface between the extrinsic p+-GaAs base region and air is indicated by a 

broken line for which the same surface-state model has been applied.

   First we investigate the energy band-diagram in equilibrium along the vertical line across 

the extrinsic base surface (see inset of Fig. 2.23). Two equilibrium energy band-diagrams are 

shown in Fig. 2.23(a) and (b) which represent the results calculated by assuming ideal deel-

level-free surface (a) and those by introducing deep levels with sheet concentration of 1013 /cm2 

(b). 
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Figure 2.24 Electron and hole current flow around the edge of the extrinsic base 
surface (see inset): (a) Results calculated by using the deep-level-free surface model 
and (b) those by using Spicer's surface state model.
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In Fig. 2.23(b) downward band bending is seen which is caused as electrons on high density 

deep donors compensate holes adjacent to surface. The Fermi-level is thus pinned at the surface 

donor energy (0.5 eV measured from the valence band edge). This acts as an attractive potential 

for electrons which come close to the surface. 

   Figure 2.24(a) shows visualized flow of electrons (right) and holes (left) around the edge 

of the extrinsic base surface calculated for the emitter-base bias VEB of 1.2V and the base-

collector bias of OV. It is found that some electrons injected into the base region which are 

placed close to the extrinsic base surface change their directions towards the surface. These 

electrons reach the surface and then cause recombination with majority holes near the surface. 

This recombination leads to the excess base current which can be seen as a flow of holes 

towards the edge of the extrinsic base surface in Fig. 2.24(a). If there existed no surface state, 

no such flow could be found as is shown in Fig. 2.25. 
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Figure 2.25 (a) Base-emitter bias VEB dependences of collector and base currents 
and (b) collector current dependence of current gain hFE calculated for various values 
of 6s.

   Figure 2.25(a) shows the emitter-base bias dependences of collector and base currents, IC 

and IB, calculated with various values of surface state density 6s. An increase in the base 

current induced by the surface carrier recombination is large enough to be seen in this figure 

while the decrease in the collector current is negligibly small. This becomes much clearer by 

plotting the collector current dependence of current gain, hFE = IC/IB in Fig. 2.25(b). It is
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found that hFE is decreased down to about 60 for 6s of 1013 /cm2 from the value of about 300 

obtained for the ideal surface-state-free case. These results are summarized in Fig. 2.26 as the 

dependences of the surface potential, Vs, and h where Vs is the amount of the downward 

bending at the surface. It is seen that Vs increases steeply as 6s is changed from 1012 to 1013 

/cm2. Correspondingly h decreases drastically in this regime and turns out to be constant 

once the Fermi level pinning is completed around 6s of 1013 /cm2. In this regime the surface-

recombination-induced base current proves to be crucial for him.
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Figure 2.26 Current gain hFE(solid line) and surface potential Vs (broken line: see 
inset) calculated as functions of surface state density Qs.

  Finally it should be noted in Fig. 2.25(b) that gradual increases can be seen in hr as IC 

becomes relatively large. In this high current regime, the amount of electrons pulled by the 

surface field towards the extrinsic base becomes very large, and thus the surface recombination 

can not consume all the electrons which reach the surface leading to electron accumulation in the
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surface triangle potential well. The space charge build-up in the well then compensates the 

charge of ionised deep donors and gives rise to the Fermi-level depinning phenomenon. This 

self-induced field prohibits further electron-hole recombination on the surface and results in 

some amount of recovery of hFE.

      In summary of this chapter the SRH modelling of carrier emission-absorption 

processes has been successfully incorporated into DD-trasnport modelling of heterojunction 

devices. By using the present modeling it has been revealed that inevitable deep trap levels 

characteristic to compound semiconductor devices sometimes make great influences on device 

performances. One of the major effects is the Fermi-level pinning which, generally speaking, 

degrade controllability of conduction current via gate bias as has been seen for DX centres in the 

N-AJGaAs supply layer and the surface states in the conventional AlGaAs/GaAs. In addition, 

more complicated deep levels induced carrier recombination processes have also turned out to 

be crucial as demonstrated for the excess base current of AlGaAs/GaAs HBTs.
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ClIkipuam

   COHERENT QUANTUM TRANSPORT 

IN RESONANT TUNNELLING DIODES (RTDs)

   The following three chapters are intended to describe study of three different aspects of 

quantum transport in nanometer-scale semiconductor heterostructures. Firstly Chapter 3 deals 

with coherent quantum transport of electrons in multi-layered nanostructures in which electron 

waves propagate throughout device without experiencing any phase-breaking scattering events. 

Analysis mainly focuses on resonant tunnelling diodes (RTDs) which may be the most 

promising quantum mechanical device and have been intensively studied. The idea of global 

coherent transport is introduced to provide an intuitive and clear picture of the resonant 

tunnelling. Tsu-Esaki formula based on the linear response theory is adopted and combined 

with the transfer matrix method to calculate tunnelling current through the double barrier 

resonant tunnelling structures. The global coherent tunnelling model is then improved by taking 

account of Hartree's self-consistent field to simulate the potential distribution not only inside the 

resonant tunnelling structures but also in the emitter and collector accurately. By using the 

present modelling multiple-well resonant tunnelling diodes are numerically studied, and 

possibility of their applications to multiple-valued logic is discussed by comparing the calculated 

results with experimental data. Finally in this chapter the idea of incoherent resonant tunnelling 

induced by the phase-breaking scattering is introduced. The problem of collision-induced 

broadening is then discussed in terms of peak-to-valley (P/V) current ratio of the devices by 

using a phenomelogical Breit-Wigner broadening model.

3.1 Resonant tunnelling in double barrier heterostructures 

   Let's start with a simple discussion on the resonant tunnelling through a double barrier 

heterostructure depicted in Fig. 3.1(a). A resonant tunnelling diode in general consists of
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undoped quantum well layer sandwiched with undoped barrier layers with wider energy band 

gaps, and heavily doped emitter and collector contact regions on both sides.
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Figure 3.1 Conduction band profiles of a double barrier resonant tunnelling diode at 

four different bias states: (a) zero bias, (b) threshold bias, (c) resonance, and (d) off-
resonance. Hatched regions represent the Fermi sea in the emitter and collector layers.

The RTD is thus an open system in which electronic states are all scattering states with 

continuous distribution in an energy space rather than bound states with discrete energy 

spectrum. Under these circumstances quasi-bound states are formed in the quantum well (the
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lowest state is denoted as Eo in figures) which accommodate electrons for a certain time 

characteristic to the double barrier structure. 

  The energy-band structures of the double barrier RTD under four bias conditions are shown 

in Figs. 3.1(a) - (d): (a) at zero bias, (b) at threshold, (c) at the resonance, and (d) at the off-

resonance. 

Resonant tunnelling through the device occurs when the energy of the electrons coming from 

the emitter coincides with a quasi-bound state in the quantum well (denoted as Eo in Fig. 3.1), 

and the effect of the external bias, V, is to sweep alignment of the emitter and quasi-bound 

states. Thus resonant tunnelling current starts to flow when Eo reaches at the quasi-Fermi level, 

EF, in the emitter (Fig. 3.1(b); this is hereafter called the threshold state), reaches its maximum 

while Eo passes through the Fermi sea in the emitter (Fig. 3.1(c); the resonant state), and 

continues until Eo falls below the conduction band edge in the emitter (Fig. 3.1 (d); the off-

resonant state). 

   In this simple form of tunnelling both energy and momentum parallel to the barriers are 

conserved since the resonant tunnelling structure is totally translationally invariant. In other 

words total energy of electron, E (k), can be separated into lateral (x- and y-directions) and 
vertical (z-direction) components as follows: 

  E (k) t2 (2 m" ky) + EZ (3.1) 

as the lateral motion of electrons is simply expressed in a plane-wave form with a lateral 

wavevector, kii = (kx, ky). Later we will show that this basic assumption is no longer correct 

when other effects which break the lateral symmetry in the system on the tunnelling 

characteristics are significant. In this chapter, however, this simple assumption will be adopted 

to give an intuitive understanding of resonant tunnelling. 

   Resonant tunnelling current through a double barrier structure basically depends on the 

detail of the transmission probability which is introduced later in this section. Nevertheless the 

expected shape of current-voltage characteristics can be obtained from the following simple 

consideration. In the three-dimensional emitter, at zero temperature, the electrons lie within a 

Fermi sphere of radius kF where kF is the Fermi wave number in the emitter (see Fig.3.2(a)).
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Figure 3.2 (a) A Fermi sphere of electrons in the emitter and the corresponding 
schematic energy-band diagram. (b) Expected current-voltage characteristics.

So long as tunnelling into the quantum well conserves the lateral momentum, kX and ky, and the 

normal (z-direction) energy, the electronic states involved in such a process can be represented 

by the interaction of the plane kZ = qR with the Fermi sphere where qR is the wave number 

associated with the energy of the resonant state referred to the conduction band edge: 

      2m*(Eo - Ec) 
   qR = h (3.2) 

where Ep is the energy of the resonant state in the quantum well, and EL is the energy of the 

conduction band edge in the emitter. The tunnelling current density will then be proportional the 

density of these states indicated by the gray intersecting circle in Fig. 3.2(a). Therefore, as long 

as transmission probability of the resonant state is nearly constant through the range of applied 

bias, the tunnelling current is expressed as follows: 

  J °° n (kF - qR) °° (EL - Eo) (3.3) 

where EL is the local Fermi energy in the emitter defined as EL = EF + EC (see Fig. 3.1). As EL 
- Eo is proportional to the applied bias , J increases linearly until Eo goes below the conduction 

band edge in the emitter: the triangular shape of the I-V characteristics is then obtained as seen 

in Fig. 3.2(b). 

   The triangle shape obtained through the above simple discussion is indeed observed for the 

current-voltage characteristics of fabricated double barrier RTDs. Figure 3.3 shows a typical 

example of the I-V characteristics measured at 93K for the double barrier resonant tunnelling
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structure which consists of a GaAs quantum well layer sandwiched with two AlAs barrier 

layers [12]-[15].
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Figure 3.3 Current-voltage characteristics for an AlAslGaAs/AIAs double barrier 
RTD with a mesa area of 4 pun x 4 pun measured at 93K in both forward and reverse 
bias directions.

Layer Thickness (nm)

n - GaAs (ND = 1.0 x 1018 cm 3 ) 20.0

undoped - GaAs 5.0

undoped - AlAs 1.5

undoped - GaAs 4.5

undoped - AlAs 1.5

undoped - GaAs 5.0

n - GaAs (ND= 1.0x 1018cm3) 20.0

Table 3.1 Structural parameters of the double barrier RTD Sample 1.

Detailed geometry of the layer structure of the fabricated RTD is listed in Table 3.1: the sample 

is called Sample 1 in the following study. The characteristic is found to reflect the basic nature 

of the resonance although its details are quite different from those shown in Fig. 3.2(b).

   An exact formulation of the tunnelling current at finite temperatures is derived from the 

following expressions:
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   J = J_, - J, (3.4.a) 

  J+ = 2 e vz T(Ez) fL(k) (1 - fR(k)) 
           k, , ky, kZ > 0 

    = I k, dkii dkZ e vz T(Ez) fL(k//, kz) (1 - fR(ku, kz)) (3.4.b) 
       2n2 0 0 

  Jam. = 2 e vz T(Ez) fR(k) (1 - fL(k)) 
           k, , ky, kZ < 0 

0 

    = 1 ki, dk/i dkZ e vz T(Ez) fR(k//, kz) (1 - fL(k//, kz)) (3.4.c)     2rc2 0 f-
where T(Ez) is the transmission probability which will be explained in the next section, and 

fL(k) and fR(k) are the Fermi distribution functions in the emitter and collector regions: 

  fL,R (k) = 1 
              ~k)- R (3.5)           1 +exp k

B T 

where EE = EF + V when the external voltage of V is applied to the RTD. By using 

     - 1 dEz (3 .6)    VZ - h dk
7 

and integrating over kX and ky, 

  J = dEz T(EZ) S(EZ) (3.7) 

0 where S(Ez) is the electron supply function defined as follows:

S(Ez) - m* e kB T In 

  2 It2 h3

1 + exp k I (EF - Ej
1 + exp( 1 

    'kB
(OF - EZ)\I 
e transmission function T(Ez) 

Ez). Replacin         T(Ez) with 8(E

(3.8)
             L T 

It will be shown in the next section that th in general varies far 

more quickly than the supply function S( z - EO), it can be easily g 

shown that Eqs. (3.6) and (3.7) reduce to the expression (3.3) at zero temperature under large 

applied bias (eV > EF).
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3.2 Theory of global coherent resonant tunnelling 

   In this section a simple theory of quantum transport is introduced which is based upon a 

global coherent tunnelling picture in which an electron goes throughout the device without 

having an experience of phase-coherence breaking events. Later in this chapter it is shown that 

this theory does not necessarily provide an appropriate description of the transport of the 

electron waves, especially in a system where the transport is very energy-dissipative. This 

theory, however, gives us an intuitive understanding of the quantum transport and always 

becomes a basis for more sophisticated transport theory. First the transfer matrix method for 

one-dimensional scattering problems is introduced to calculate the transmission probability 

function in Eq. (3.7). One-dimensional Schrodinger equation is numerically solved with 

scattering boundary conditions on the wavefunctions and the transfer matrices for an arbitrary 

heterostructures are calculated. The Schrodinger equation is solved without including any 

scattering potentials except the ideal multi-barrier potential resulting from the deferences in an 

electron affinity in heterojunction systems. In Sec. 3.2.1, the theory is expressed in a non-self-

consistent scheme neglecting electron-electron interactions in the device. Then, in Sec. 3.2.2, 

the effects of space charge build-up in the quantum well on the global coherent tunnelling are 

taken into consideration by adopting Hartree's self-consistent field model.

3.2.1 Transfer matrix theory of transmission probability 

   Let's start from the one-dimensional time-independent effective mass Schrodinger 

equation: 

  H T(z) _ - 22 0( 1 V) W(z) + V(z) 11f (z) = Ez W(z) (3.9) 
               m*(z) 

where m*(z) is the z-dependent conduction band effective mass. The potential energy, V(z), 

consists of the electron affinity and the Hartree's self-consistent potential which will be 

introduced in Sec. 3.2.2. In the transfer matrix method the potential distribution of a resonant 

tunnelling structure is approximated by a series of small steps [ 16] as shown in Fig. 3.4. The 

wavefunction in the i-th section can be expressed in a plane wave form: 

    (') 0) c> (i                                          o~    Wko) (z)=A eXp(i k~ z) + B exp(- i k~ z) (3.10) 

where kZ') is the complex wavenumber defined as follows:
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kZ') _ 

V(z)

2 m*(') (EZ - V(')) 
    -i

TL WN

Emitter

1 ~N -1

Ti

211 T1R

Collecto

ti

(3.11)

                                    ZNZN-1 -------------• Zi Zi-I ------------ Z2Z1Zo 

  Figure 3.4 A series of small potential steps used for the transfer matrix calculations of 
   a double barrier resonant tunnelling structure. 

   From the continuity of the probability flux of electrons, the following conditions on the 

wavefunctions hold at all boundaries: 

    (i) (i+1)    W
kZ')(Zi+1) _ TkZi+i)(zi+1) (3.12.a) 

   1 a kc (z) _ 1 a k~Z+i)(Z) 
   MO) a z z = z.+t m*(i+l) (3.12.b)                                            a Z z = z.+i 

The coefficients in the adjacent sections are then related each other as follows: 

  Ak'Z+ii ANZ 
         = T('> (3 .13) 

  Bk'z+I) BkZc) 

where the matrix T(') is defined as 

     = a+) P a(') / Q    TO) _ (3.14.a) 
         a~')Q a(')/P 

  a+ _ 2 { 1 ± (m / m *0)) (kz / kz )) (3.14.b) 

   P = exp (i (k(') - kZ,+1)) zi+1) (3.14.c) 

   Q = exp (i (kz') + kzi+1)) zi+1) (3.14.d)
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Thus the coefficients at the cathode and anode edges are connected by using the transfer matrix 

T as follows: 

          = T (3.15.a) 
    BL E B R              E, 

   T = T(N) T(N - 1) T(N - 2) ... T(2) T(1) (3.15.b) 

A complete set of wavefunctions is obtained by using the following scattering boundary 

conditions: 

  (Ak, BR) = (1, 0) (3.16) 

for an incident electron wave coming from the emitter edge, and 

         = (0, 1) (3.17)   (Ak, BE) 
when it comes from the collector edge of the device. The transmission probability T(EZ) through 

the RTD is then given as follows: 

                  R2 

  T(E2) = mR kL ~~L~2 (3.18)                 "mod 

   Numerical results for the energy dependence of the transmission probability at zero bias for 

Sample 1 is shown in Fig. 3.5.
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C w
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0.4
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                  10-5 10-4 10-3 10-2 10-1 100 
                  Transmission probability 

Figure 3.5 Transmission probability T(EZ) versus energy EZ calculated for Sample 
1 under zero external bias.
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Material constants of A1GaAs/GaAs heterosystems used for the calculations are summarised in 

Table 3.2. With increasing Ez, the transmission probability through the double barrier 

structures increases as a whole and reaches unity at several values of energy. This is because a 

resonance occurs in the quantum well for certain wavelengths of incoming electrons giving a 

unity transmission probability - the situation is analogous to the Fabry-Perot interferometer in 

optics.

1. Electron effective mass m* 

m*(E) = 0.067(1 - 6a(E - Ec)lEg) ;GaAs 
m* = (0.067 + 0.083x) m0 ;AI,Ga 1-,BAs 

          Band gap Eg= 1.42eV 

           Non-parabolicity parameter a = -0.824

2. Couduction band discontinuity LEc 

4Ec(x)= f1.247x (0 <x<0.45) 
LEc(x) = /3 (1.247x + 1.147 (x -0.45) 2) 

                  (0.45 < x) 
          Band parameter 0 = 0.6 (Miller's rule)

3. Dielectric constant 

  E(x)=13.1 -3.Ox

E(x)

TABLE 3.2 Material parameters of 
AIGaAs/GaAs heterostructures.

   Although the transmission probability can be now calculated numerically for any kinds of 

multi-barrier structures it is worth deriving analytical expressions for some special tunnelling 

structures to study properties of T(EZ) in further detail. First we consider a single barrier 

structure under a zero bias condition shown in Fig. 3.6 (a). By using Eqs. (4.13) - (4.18) it is 

straightforward to show that A3/A' is given by the following expression: 

3 

  AF = e-i kzd Jcosh(KZd) - i 2Ez - V sinh(KZd)I 1 (3.19) 
  A I 2 EZ(V-EZ) I 

and then the transmission probability through a single barrier, TSB(EZ), as follows:
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1   TSB(Ez) = S 1 + 4Ez(V2 Ez) sinh2(Kzd) I (3.20) 
where kZ and Kz are defined as 2m*Ez/ t2 and 2m* (V - Ez)/-h2, respectively. If the energy 

Ez is much smaller than the energy barrier height V, Eq. (3.20) reduces to: 

   TSB(Ez) _ l6Ez(V - Ez) e_2Kzd (3.21) 
           V2 

     44 4 D>

    E E ~ ~      C C 

         (a) (b) 

  Figure 3.6 Simplified conduction band profiles of (a) single barrier and (b) double 
  barrier structures at zero bias. 

  The transmission coefficient for a double barrier structure [17] at zero bias (Fig. 3.6(b)) is 

also expressed in the following analytical form: 

AF, = e-i kZ (2d + D) cosh(Kzd) - i 2 2EZV V                              sinh(Kzd) 2e- i kzD + Ez(V E) sinh2(Kd) k,.D 1 A Ez( z) z 
                                                       (3.22) 

It is shown that Eq. (3.22) is well reduced to the following simple form around a resonance 

[18]: 

  A5    `Q'E, = e-ik,(2d+D) r (3.23) 
  A (Ez-EO,)+ir 

where the resonant energy E° and the resonant width I, are approximately determined by the 

following equations:

0
--E

-

V
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0 
  2cos(k°D) + V - 2EZ sin(k°D) = 0 (3.24) 

  I = 4E~ e 2K°d (kOD + 2k°/K°)-1 = 2hTsB(E°) v9/(D + 2/KK) (3.25) 

where v2 is electron velocity (=tkzO/m*), and TSB M) is the transmission probability through a 

single barrier (Eq. (3.21)) at EZ = E° given as follows: 

  TsB(E°) - e-2K°d (3.26) 

This simple expression (3.23) for the transmission coefficient is called a Breit-Wigner form 

[19] which is a general form to describe the resonant scattering spectrum and is widely used 

because of its simplicity. 

   Another important quantity, tunnelling escape time (or dwell time), tesc, [20] [21 ] 

associated with the resonant width r is then defined through the following expression: 

      - 1   t esc D + 2/KO, - (3.27) 
     2F TsB(E°) vo 

This proves to be equivalent to the classical multiple reflection time of an electron in a quantum 

well with a quantum mechanical correction term, 2/KO,, due to penetration of an electron wave 

into potential barriers.

 3.2.2 Self-consistent calculations - Introduction of space-charge build-up -

   The theory described in the previous section does not include any effects of electronic 

charge. Space charge distribution in RTDs basically reflects the existence probabilities of 

electrons like those shown in Fig. 3.5 and leads to non-uniform potential distribution . 

Determination of the charge distribution in RTDs under non-equilibrium conditions is one of 

crucial issues under a lively discussion as it is closely related to energy dissipation processes in 

the system which we study in Chapter 4. The energy dissipation process of tunnelling electrons 

such as LO-phonon emission varies the distribution function far from the one in equilibrium . 

Thus a simple Fermi-Dirac distribution function does not necessarily describe the accumulated 

electrons in the well and a complex non-equilibrium transport theory would be in general 

required. In this section, however, we stay within a frame of a global coherent tunnelling 

picture and then may express the electron distribution in RTDs as follows: 

  n(z) = 2 WkZ(z) 2 fL(k) + 2 Wk,(Z)I2 fR(k) 
              kZ> 0 k,< 0
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    = kBT2 IWiZ(z)I2 m* In 1 + explELLF _ T Z) dkZ          2it Ti 0 B 

    f 0 R           + IWk,.(z)2 m* In 1 + exp (OF T Z) dkZ (3.28) 

B 

   The space charge distribution determined by Equation (3.26) results in a self-consistent 

potential ,V,,(z), which is obtained through the following Poisson's equation: 

  dz (c(z) dV z)) _ _ e ̀ND(z) - n(z)} (3.29) 
The self-consistent potential is then added to V(z) in Schrodinger equation. The set of 

Equations (3.26) and (3.27) with Schrodinger equation is the well-known Hartree equation in 

which an exchange correlation between electrons is neglected. These equations are numerically 

solved in an iterative way until the self-consistent solutions for Wkz(z) and VSc(z) are finally 

obtained [22]-[25]. 

   Once we start a numerical calculation using the above self-consistent theory, the question 

would arise about the modelling of heavily doped emitter and collector regions (and, if used, 

undoped spacer regions as well): whether or not these regions can be treated in the same way as 

the resonant tunnelling barrier region. As mentioned earlier the present theory is based on an 

assumption that the electron waves propagate throughout the system without any phase-

coherence breaking scattering. This could be a plausible assumption as long as the theory is 

applied only for a thin undoped double barrier structure though it will be shown soon later that 

the effect of scattering processes on the coherent tunnelling picture often becomes significant. In 

the thick heavily doped contact regions on both sides of the barrier structure, however, impurity 

scattering will occur frequently as well as LO-phonon scattering. Consequently these contact 

regions are frequently modelled by using a classical Thomas Fermi approximation in which 

electrons are assumed to occupy continuous energy states above the conduction band edge and 

so the electron density n(z) in Equation (3.27) is given only by the difference between the 

quasi-Fermi level and the conduction band edge. Fully quantum-mechanical treatment of the 

contact regions should be made by adopting a dissipative quantum transport theory such as the 

density matrix theory or non-equilibrium Green's function theory which we study in Chapter 4. 

    Examples of the self-consistent solutions based on these assumptions are shown in Fig. 

3.7. These figures show the equilibrium energy-band diagrams and electron distributions 

calculated self-consistently at a room temperature for A10.26Gao.74As/GaAs/A1o.26Gao.74As
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double barrier structures with well thickness of (a) 5 nm, (b) 6 nm and (c) 7 nm (the barrier 

thickness is fixed to be 3 nm). Highly doped emitter and collector regions with donor 

concentration of 1.0 X 1018 cm-3 are set adjacent to the barriers without a spacer layer.
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Figure 3.7 Self-consistently calculated energy-band diagrams and electron 

distributions of double barrier RTDs with various well widths Lw: (a) 5 nm, (b) 6 

nm, and (c) 8 nm. In the figures on the left the resonant energy levels and the 

existence probability of electrons are also shown by using dotted curves and solid 

curves, respectively.
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It can be seen that the conduction band edge at the centre of the quantum well is pushed towards 

higher energy with increasing the well width. This is because the energy of the lowest quasi-

eigenstate comes down closer to the Fermi energy in the case of wider well and more electrons 

can populate this state. Larger electron accumulation in the quantum well gives rise to stronger 

self-consistent field resulting in a larger band bending. 

   The self-consistent modelling has been applied to Sample 1 (see Sec. 3.1): the I-V 

characteristics calculated at 77K (solid line) and 300K (broken line) are shown in Fig. 3.8.
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Figure 3.8 I-V characteristics calculated self-consistently for Sample 1 at 77K 

(solid line) and 300K (gray line). Arrows indicate three typical bias points: 
Threshold, peak, and valley voltages. The inset shows I-V curve calculated using 

piecewise linear model.

In Fig. 3.8 the I-V curve calculated by using the piecewise linear modelling of the band diagram 

(see, for example, Fig. 3.1(b) - (d)) is also shown in the inset to demonstrate the effect of the 

self-consistent calculations on the band diagram. It can be seen that the resonant peak voltage 

obtained from the self-consistent calculations is much larger than that from the non-self-

consistent calculations since the applied voltage is assume to drop only in a double barrier 

region in the piecewise linear modelling of the band diagram. Calculated energy band diagrams 

are also shown for three typical bias points: At zero bias (Fig. 3.9(a)), at the peak state (Fig.
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3.9(b)), and at the valley state (Fig. 3.9(c)). In the self-consistent modelling the voltage drop 

can be seen also in the emitter and collector regions leading to a relatively smaller voltage drop 

in the double barrier region. This results in a shift of the current peak towards a large voltage 

regime. The peak voltage obtained from the self-consistent calculations is 0.56 V which shows 

a good agreement with the value of 0.54 V observed experimentally (see Table . 3.3). This 

indicates that the self-consistent calculations reproduce the energy band diagrams in the device 

very well.
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Figure 3.9 Self-consistently calculated energy-band diagrams and transmission 

properties at three different bias points indicated by using arrows in Fig. 3.8: (a) at 
current threshold, (b) at the peak current state, and (c) at the valley current state.

100

Calculated (77K) Observed (77K) I

Peak voltage (mV) 560 540 I

Peak current density (A/cm2) 2.04 x 105 1.6 x 105 I

Valley current density (A/cm 2) 5.01 x 103 6.2 x 104 I

P/V current ratio 41 2.6

Table 3.3 Comparison 

experimental data.

of the calculated peak voltage an d current densities with

   The calculated peak and valley current densities are also given in Tab. 3.3 with 

experimental data. Taking consideration of an inevitable uncertainty in layer thickness (interface 

roughness) the calculated peak current density accords quite well with the experimental data. On 

the other hand, however, the calculated valley current density is far smaller than that observed 

in the experiment, and so the resulting P/V current ratio is more than one order of magnitude 

larger than experimental data. These differences between the calculated and observed valley 

currents are hardly attributable to the uncertainty of the material parameters used for the
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calculations and thought to result from a mechanism which has not been taken into account in 

this global coherent tunnelling theory. The mechanism we have to think of first is LO-phonon 

scattering which may play an important role even in the present structure because a typical 

momentum relaxation time of electrons due to the LO-phonon scattering is as short as the 

tunnelling escape time studied in Sec. 3.2.2. The inelastic LO-phonon scattering is in general 

expected to have influences both on the spectrum (i.e. transmission probability) and distribution 

of electrons. The change expected for the distribution results from frequent energy dissipation 

processes in the well (sequential tunnelling processes; see Fig. 3.10) and is investigated in 

Chapter 4 by using dissipative quantum transport theory. Another important effect of the 

electron-LO-phonon interactions is expected for the transmission probability. Firstly a real LO-

phonon emission process may open additional resonant tunnelling channel which can be 

represented by a satellite transmission peak. Secondly a virtual LO-phonon emission-absorption 

process might cause a broadening of the transmission peak by breaking phase-coherence of 

electron waves under resonant tunnelling partly. These phenomena expected for transmission 

probability will be discussed in Sec. 3.4 by using a phenomelogical broadening model.

EC

Figure 3.10 Schematic viewgraph of an energy relaxation process (sequential 
tunnelling) expected in a quantum well.

   As shown above the simple global coherent tunnelling theory in general reproduces the 

characteristics of the double barrier RTDs quite well. The self-consistent calculations can
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provide the correct peak voltage of the RTDs by taking account of the electron accumulation and 

depletion regions in the emitter and collector. Also the calculated peak current density at 

resonance is in accordance with the experimental data. The calculated valley current and hence 

the P/V current ratio, however, are far from the experimental values. This implies that the 

completely coherent picture adopted here is not adequate to describe the off-resonance situation.

3.3 Multiple-well resonant tunnelling structures and multi-valued 

   logic applications 

   In this section some more complicated resonant tunnelling structures than the conventional 

double barrier structures are studied by using the global coherent tunnelling theory described 

above. Device structures are here discussed from a viewpoint of their application to multiple 

valued logic. Several functional devices have been proposed based on the single NDC 

characteristics of the double barrier resonant tunnelling structures. Alternative way to use the 

resonant tunnelling diodes may lie in the field of multiple-valued logic which can reduce the 

number of devices needed for one logic function. For this purpose multiple negative differential 

conductance is necessary in which all the peak currents are nearly equal (see Fig. 3.11).
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Figure 3.11 Schematic current-voltage characteristics of a RTD suitable for 
multiple logic applications. Points Q1, Q2, Q3, Q4 represent stable points of a simple 
circuit which comprises of a RTD and a load resistance.
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In the case of simple double barrier structures shown in the previous section, the peak currents 

caused by higher order resonances are significantly larger than that at the first resonance (see 

Fig. 3.12). This results from the larger resonant widths at higher resonances as well as the 

increase in the non-resonant excess current under high applied bias conditions. It is, thus, fairly 

difficult to achieve the multiple NDC required for the multiple logic applications by the use of 

simple double barrier structures. 

           Absolute 
              Current 
           (A)

10'2

10'3

10-4

10'5

10'6
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Y

-10 .0 -8.0 -6 .0 -4.0 
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Figure 3.12 I-V characteristics for the AlAs/GaAs/AlAs double barrier RTD 
Sample 2 (see Chapter 4 for detail) for large applied voltages. Arrows show 
structures due to higher resonances. A broken line represents tunnelling current 
observed with decreasing bias which shows current hysteresis in the NDC region 
with a solid line for increasing bias.

  One certain method to overcome the difficulty is to simply integrate several double barrier 

diodes in parallel or in sequential. These integrated double barrier RTDs provide the same 

number of equivalent current peaks as the number of integrated diodes. However this integrated 

RTD may lead to unexpected multi-stability in their current-voltage characteristics which results 

from heavily doped regions whose electrical potentials are not externally fixed. Unless all the



                                                    72 

double barrier structures are exactly the same, the system could be switched from one stable 

state to another with a different current density by a weak external perturbation. 

  The purpose of the work described in this section is to investigate possible resonant 

tunnelling structures in which multiple resonances can occur under the global coherent 

tunnelling picture resulting in the ideal multiple NDC characteristics. First a triple-well 

(quadruple-barrier) resonant tunnelling diode is examined and applied for triple-valued logic 

operation. The role of the first quantum well is discussed from viewpoints of its energy filtering 

effects on the incident electron waves compared with the conventional double barrier structures. 

Second alternative double-well (triple-barrier) resonant tunnelling structure is studied by using 

the InGaAs/InAlAs heterostructures which are all lattice-latched to InP substrate and known for 

their superior transport properties.

3.3.1 An AIGaAs/GaAs triple-well RTD for multiple-valued logic applications

LB1 Lw] LB2 Lw2 LB3 Lw3 LB4 
0. 4 `4 ) 4 -0H' ` H

Emitter
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Figure 3.13 

structure

                            n GaAs 

                  i-GaAs 

Schematic energy-band diagram of the triple-well resonant tunnelling
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  Figure 3.13 shows the band diagram of the newly proposed triple-well RTD [6] ,[7],[26] 

which consists of three quantum wells of undoped GaAs (denoted W1 , W2, and W3), four 

barriers (two undoped AlAs and two undoped A10.26Gap.74As), and highly doped n-type GaAs 

(ND = 1.0 x 1018 cm-3) emitter and collector layers on both sides. Structural parameters are 

listed in Table 3.4.

Layer Thickness (nm)

i-AlAs LB I 1.0

i-GaAs Lwi 11.9

i-Al 0.26 Ga 0.74 As LB2 3.0

i-GaAs LW2 5.7

i-Al 0.26 Ga O.74As LB3 3.0

i-GaAs Lw3 6.9

i-AlAs LB4 1.0

TABLE 3.4 Structural parameters of the triple-well RTD

The energy band diagram calculated self-consistently (see Sec. 3.2.3) near zero bias (V = 20 

mV) is shown in Fig. 3.14(a) as well as the corresponding energy dependence of the 

transmission probability in Fig. 3.14(b). In Fig. 3.14(a) the existent probability of electrons at 

quasi-eigenstates is plotted over the energy band diagram. Calculation has been performed for 

the energy ranging from 0 to the top of the A10.26Ga .74As barriers in which seven quasi-

eigenstates are found. The electron density distribution, WR(z)I2, obtained self-consistently is 
also shown in Fig. 3.14(c). The three lowest quasi-eigenstates (denoted as WR, qR, and WR 
hereafter) are now considered to derive double NDC in the I-V characteristics as described in 

the following.
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   Figure 3.14 The energy-band diagram (a), transmission probability (b), and 
   electron distribution (c) of the triple-well RTD self-consistently calculated at T = 

   220K near equilibrium. 

  As shown in Fig 3.14(a), IWR(zI2, ITR(z)I2, and ITR(z)IZ strongly reflect natures of ground 
states of the wells W1, W3, and W2, respectively. Consequently, the quasi-eigenenergies ER, 

ER, and ER are mostly determined by the well thickness LW1, LW3, and LW2. In this structure 

the widest well W I has been designed so that the lowest quasi-eigenstate is located below the 

quasi-Fermi energy in the emitter and plays as an injection level for incoming electrons. Only
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when incident electrons have energy close to ER, this state would let them go into the well W l. 

The peak electron density in W1 is thus higher than those in W2 and W3 in Fig. 3.14(c). The 

electric field in W 1 is largely screened by these accumulated electrons and the bottom of the well 

W 1 is kept virtually flat until the resonances occur under large applied voltages. The width of 

narrower wells, LW2 and LW3, are chosen so that the condition, ER<EF<E22 <ER, can be 

satisfied. The transmission probability through this level is very small in equilibrium as is seen 

in Fig. 3.14(a), but approaches 100 percent when the states R or WR just resonates with the 

injection level 1R under an larger applied bias. Therefore, current peak widths in the IN 
characteristics would be very small, and valley currents are expected to be greatly decreased. 

   The current-voltage characteristics have been calculated by using the self-consistently 

obtained T(Ez) and Eq. (3.7). Figure 3.15 shows the I-V curve calculated at 220 K where 

nearly equal double current peaks are experimentally observed as shown later. The 

characteristics with double NDC could have three stable points with an appropriate load 

resistance as the valley current at the second off-resonance is smaller than the first peak current.
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Figure 3.15 Calculated current-voltage characteristics of the triple-well RTD self-
consistently calculated at 220K. Three typical states are pointed out by using 
arrows: an arrow 1 for the first current peak, 2 for the current valley, and 3 for the 
second current peak.
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Figure 3.16 The energy-band diagram (left), transmission probability (centre) , 
and electron distribution (rigft) of the triple-well RTD self-consistently calculated at 
the first resonance (a), the first valley (b), and the second resonance (c).

The first and second current peaks results from resonances of WR and IR with WR. Energy
band diagrams, transmission probabilities, and electron density distributions are shown in Figs.
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3.16(a) - (c) at three different states indicated by the arrows in Fig. 3.15: at the first resonance 

(Fig. 3.16(a)), at the off-resonance (Fig. 3.16(b)), and the second resonance (Fig. 3.16(c)). 

Therefore, two peak voltages Vpj and VP2 (see Fig. 3.15) are determined by the eigen-energy 

separations ER - ER and ER - ER, respectively. Thus, two peak voltages can be independently 

altered with the well thickness LW3 and LW2 as shown in Figs. 3.17(a) and 3.17(b). These 

figures are the LW3 dependence of Vpj and VP2 (Fig. 3.17(a)) and the LW2 dependence of them 

(Fig. 3.17(b)). It is clearly seen that Vpj can be controlled through LW3 without changing VP2, 

and similarly VP2 through LW2. Such an independent controllability of Vpj and VP2 is a special 

feature of this triple-well RTD.
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Figure 3.17 Peak voltages versus quantum well widths: (a) LW3 dependence of 
the peak voltage Vp j and VP2 and (b) LW2 dependence of them.

   Based on the numerical calculations, a triple-well RTD has been fabricated [6]. Figure 3.18 

shows a cross sectional view of the device. On a Si-doped (100) GaAs substrate, a 500-nm Si-

doped (1.0 x 1018 cm-3) GaAs buffer layer, a 10-nm-thick undoped GaAs offset layer, a triple-

well structure listed in Table 3.2, and finally, a 300-nm-thick Si-doped (1.0 x 1018 cm-3) GaAs 

layer were successively grown. All the layers in a triple-well structure are unintentionally doped 

(typically p-type with a hole concentration of 1.0 x 1014 cm-3). Growth was interrupted for 3 

min at each interface between different materials. The offset layer introduced under the barriers 

is to avoid diffusion of ionized Si ions from n+-GaAs collector region into the intrinsic region
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which would cause the impurity scattering in the quantum well. The wafer was processed by 

conventional photolithography and wet chemical etching to define device area, followed by a 

deposition of AuGe alloy, lifting off, and sintering at 400 C for 2 min in N2 gas ambient to 

form ohmic contacts. Devices with various sizes of top contact pad ranging from 4 X 4 µm2 to 

100 X 100 µm2. 

   The current-voltage characteristics measured at 220 K and 300 K are shown in Figs. 

3.19(a) and (b). The characteristics have quite a large temperature dependence as we discuss 

later, and at 220K two peak currents are nearly the same for this device. It can be seen that the 

device exhibits a significant double NDC and the characteristics at 220 K can be used for triple-

value logic applications.
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Triple-well
structure

Collector

i-AlAs (1.0 nm)

Collector

I n+GaAs (ND=1 * 101 cm-3)

i-GaAs (11.9 nm)

r i-A1GaAs (x=0.26,3 nm)
i-GaAs (5.7 nm).

i-A1GaAs (x=0.26, 3 nm)

I i-GaAs (6.9 nm).

i-GaAs (10 nm)

n+GaAs (ND=1 * 101 cni3

ntGaAs substrate
(Si-doped (100))

Figure 3.18 Schematic cross sectional view of 
Shaded regions represent three quantum wells.

a fabricated triple-well RTD.
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Calculated Observed

First peak voltage Vp1(mV) 74 60

Second peak voltage VP2(mV) 152 160

Table 3.5 Calculated and observed peak voltages Vp j and Vp

The peak current dependences of two peak voltages extracted from devices with various areas 

are shown in Fig. 3.20: both are found to depend almost linearly on the current through a 

resistance of approximately 4 SZ which is supposed to be induced by the external measurement 

system and in series with the device. Intrinsic values of the peak voltages are extracted from the 

values at the intersections of VP1 and VP2 with the vertical axis (Ip = 0). These intrinsic peak 

voltages are listed in Table 3.5. The measured peak voltages are both in a good agreement with 

those obtained from the calculations despite a large voltage drop in the spacer region. This fact 

indicates that the present self-consistent modelling reproduces the overall band diagram quite 

well over a whole range of the applied bias.
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stable points are seen at 0.054, 0.155, and 0.25 V.
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  By using the fabricated device with an area of 100 X 100 µm2 a simple circuit has been 

designed with a load resistance of 100 SZ (see inset of Fig. 3.21). Input-output characteristics of 

this circuit is shown in Fig. 3. 21 in which three stable states are successfully observed at 

0.065, 0.1.55, and 0.250 V when an input bias of 100 V is applied to the circuit. Since the 

second current decreases with a further decrease in temperature, the tri-stable operation can be 

observed only in the range from 230 K down to 180 K. 

   Before closing this section the temperature dependence of the second peak current is 

analyzed as this limits the temperature range of the device operation. As seen in Fig. 3.19 the 

second peak current has a strong temperature dependence: the I-V curves measured at various 

temperatures are shown in Fig. 3.22.
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Figure 3.22 Current-voltage characteristics of the fabricated triple-well RTD 
measured at various temperatures.

To make clear the mechanism of this temperature dependence the second resonance state has 

been investigated in some detail. As we have seen, under relatively low bias conditions, the 

bottom of the injection well W1 is kept fairly flat and the lowest quasi-eigenstate can play as an
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injection level. This self-consistent field effect on the whole potential distribution continues until 

charge accumulation in other wells becomes comparable with that in W l. Approaching the 

second resonance (see Fig. 3.18), however, such locally enhanced screening is no longer 

effective since almost the same amount of electrons are accumulated in W2. The voltage drop, 

thus, occurs almost linearly over the whole structure resulting in a shift of the injection level WR 

towards lower energy. It should be noted that the injection level TR is located at an energy 
fairly close to the conduction band edge in the emitter region in Fig. 3.18(a). Let's take a look at 

the temperature dependence of this level. Figure 3.23(a) and (b) show the energy band 

diagrams and electron distributions calculated at 300 K (solid lines) and at 77 K (dashed lines). 

It can be seen that TR at 77K is located below the conduction band edge in the emitter while 
that at 300K stays above it. Namely, "R at 77K is not a scattering state but a half-bound state 
and no longer acts as an injection level for electrons from the emitter region.
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As a result of disappearance of the injection level the second peak current has the large 

temperature dependence as shown in Fig. 3.24 which agree qualitatively with the experimental 

results. These calculated results have been obtained under the global coherent tunnelling picture 

and may be affected by inclusion of dissipation process in the well which we discuss in the next 

chapter: a sequential tunnelling process could occur in the present structure in which electrons 

tunnel into the first excited state of W l, qR, then relaxed to TR, and finally tunnel out. As 

shown in Fig. 3. 16(c), however, iR at the second resonance is still located above the quasi-
Fermi level in the emitter region, and the tunnelling current due to this sequential process is 

supposed to be relatively small.
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Figure 3.24 Current-voltage characteristics of the triple-well RTD calculated at 
various temperatures

3.3.2 An InGaAs/InAlAs double-well resonant tunnelling diode 

   As shown in the previous section a RTD with good P/V current ratios at all resonances is 

in general required for its multiple-valued logic applications. The P/V ratios obtained from the 

A1GaAs/GaAs triple-well RTD are much smaller than those calculated by using the global 

coherent tunnelling theory: the difference is attributable to the effects of phase-coherence 

breaking scattering which have been neglected so far. These results firstly indicate that other 

materials with better transport properties are favourable rather than conventional AlGaAs/GaAs
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systems. An InGaAs/InAlAs system grown on InP under a lattice-matching condition has been 

found to have an excellent transport characteristics: high electron mobility has been found in a 

HEMT based on this system as well as high saturation velocity. This superior transport 

properties are basically attributed to its different energy-band structure of L and X valleys which 

are located at much higher energies above the conduction band edge at the I' point and so 

electron intervalley scattering is greatly reduced. It has been already demonstrated that an 

InAlAs/InGaAs/InAlAs double barrier RTD exhibits a superior P/V current ratio: these results 

are basically consistent with the good transport properties of the system. 

   The results in the previous sections secondly imply that a simpler (or we should say 

thinner) resonant tunnelling structures are much preferred for the purpose of preventing the 

phase-coherence breaking scattering. Thicker resonant tunnelling barriers generally result in a 

longer tunnelling escape time, and electrons bound in the structure are tend to suffer from the 

scattering more frequently. Therefore, a simpler double-well structure than the triple-well 

structure should be examined for the present purpose though two peak voltages can not be 

altered separately like the triple-well RTD. 

   A double-well resonant tunnelling structure has been already studied by Nakagawa et al [5] 

by using an AlGaAs/GaAs system. Their double-well structure is shown in Fig. 3.25: two 

equivalent quantum well are placed on the emitter side of a thick A1GaAs barrier.

Emitter Well I

Well 2

Collector

Figure 3.25 Energy-band diagram of a conventional double-well RTD proposed 
by Nakagawa et al. [5].
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Observed multiple NDC characteristics were attributed to the resonances of quasi-eigenstates of 

the second narrower well with the lowest quasi-eigenstates of the first wider well (the injection 

level). Excellent P/V current ratios achieved in this device result from the energy filter function 

of the injection level for the incoming electron waves as explained in the previous section. 

Despite the good P/V ratios, however, peak currents due to higher resonances are more than 

one order of magnitude larger than that at the first resonance: the NDC characteristics are not 

suitable for the present purpose. It seems that nearly uniform peak current densities required for 

multiple valued logic applications are hardly achievable in this sort of simple structures. 

   To overcome this problem we have proposed the following new double well structure 

shown in Table 3.6.

Layer Thickness (nm)

i-In 0.53 G a 0 47 A s L sPACER 10.0

i-In 0.52 Al 0.48 As LBI 2.5

i-In 0.53 Ga 0.47 As Lwl 5.0

i-In 0.52 Al 0.48 As LB2 5.0

i-In 0.53 Ga 0.47 As LW2 15.0

i-In 0.52 Al 0.48 As LB3 2.5

Table 3.6 A layer structure of the InGaAs/InAlAs double-well RTD

1. Electron effective mass m* 

  m*( In0 .53Gaa.47As)= 0.044 m0 

   m*(Ino .52 A1b.48As)= 0.084 mo

2. Couduction band discontinuity 4Ec 

   AEc = J3 (E 9 (In0.52AI0.48As) 
          - E 9 (Ino.53Gao.47As)) 
     E 9 (In 0.53Ga0.47 As) = 0.71 eV 

    E 9 (Ino.52 A'0 48 As) = 1.51 eV 
                  Band parameter P=0.667

3. Dielectric constant E 

  E(In0.53Gao.47As) = 13.9 

  E(1no.52A'0.48As) = 12.45

Table 3.7 Material parameters of InP lattice-matched InGaAslInAlAs heterostructures
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The structure is different from previously reported ones in the following points: first, the 

thickness ratio between two quantum wells is three which is much larger than the previous one, 

and second, the thinner quantum well (denoted as WI) is placed on the emitter side and used as 

an injection well (a wider well is denoted as W2 in the same way as in the previous section). 

The principle of operation and the advantages of this structure in realizing high peak current 

density and uniform NDC peaks are described in the following. 

   The large thickness ratio between two quantum wells leads to a large difference between the 

lowest quasi-eigenenergies of two quantum wells; consequently, resonances are expected to 

take place between the ground state of W1 and highly excited states of W2. The energy band 

diagram and associated quasi-eiegenstates are shown in Fig. 3.26.
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Figure 3.26 Energy band-diagram and asociated quasi-eigenstates of an InGaAsl 
InAlAs double-well RTD calculated at zero bias.

As the quasi-eigenstates displayed in this figure is those calculated for an incident wave from 

the collector side, it may be a bit difficult to see the quasi-eigenstates of W l: the states indicated 

by E3 and E6 are the lowest and first excited quasi-bound states of W I . As seen in this figure, 

resonances of the second, third, and fourth excited states of W2 (E4, E5, and E7) with the 

injection level E3 would lead to multiple NDC in the I-V characteristics. The use of the excited
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states would provide high peak current densities as well as good P/V ratios which are attributed 

to less scattering events in the present InGaAs/InAlAs system than the conventional 

AlGaAs/GaAs systems.
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  An InGaAs/InAlAs double well structure described in Table 3.6 was grown on an semi-

insulating InP substrate by MBE with a 2 min growth interrupt at each interfaces. The layers 

were all lattice matched to the substrate. The grown wafer was processesd into a mesa structure. 

Then Mo/Au non-alloyed ohmic electrode was formed on the top and the bottom layers. The I-V 

characteristics of the diode with 6 X 6 µm2 in size measured at 84K is shown in Fig. 3.26. 

Three current peaks have been clearly observed with respective P/V ratios of 1.3, 2.9, and 2.1. 

The differences among the peak currents are much smaller than those of the A1GaAs/GaAs 

triple-well RTD as is expected. Furthermore, the second and third peak and valley currents 

satisfy the condition required for triple-value memory operation. 

   Self-consistently calculated I-V characteristics of the device is shown in Fig. 3.27 along 

with the experimental data. The overall agreement between them is again very good for peak 

voltages. It should be pointed out again that the excellect agreement between all the calculated 

and observed peak voltages confirmes that the self-consistent modelling can reproduce the 

potential distribution very well. Relatively good agreement has been seen also for peak currents, 

but the observed current peaks have turned out to be much broader than the calculated ones as 

we have seen in the previous section. Consequently, the observed valley currents are higher 

than those in the calculations. From temperature dependence of the valley currents, we would 

expect that LO-phonon scattering at least partly contributes to the broadening of the peaks as 

mentioned earlier.

  Finally it is worth noting that, at the third resonance, the top of the third barrier adjacent to 

the collector goes down below the resonant level E7 as shown in Fig. 3.28. The third resonance 

is not a resonance between two quasi-bound states as the first or second one. Instead, it is a 

resonance of an virtually bound (or interference) state E7 with a quasi-bound state E3. At this 

resonance, electrons tunnel through only first two barriers and, thus, tunnelling current could 

be much larger than those at the first or second resonances. Nevertheless, the peak current is 

just twice as large as the second one. This may be attributable to the use of an injection level; the 

injection level functions as an energy collimater as discussed before and limits the total number 

of electrons tunnelling through the structure. As it is desirable to have such multiple NDC 

characteristics, this limiting effect of the injection well on the tunnelling current is supposed to 

be crucial in designing RTDs for multiple-valued logic applications.
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Figure 3.28 Energy band-diagram calculated at third resonance of the 
InGaAs/InAlAs double-well RTD.

3.4 Effects of scattering process on global coherent tunnelling 

   Up to now we have assumed that electrons do not experience any scattering process while 

they tunnel through double barriers and conserve energy and lateral momentum . This 

assumption has led to the picture of the global coherent tunnelling which is analogous to the 

resonant transmission of light through a Fabry-Perot etalon . It has been shown in the last 

section that the electrons are confined in the quantum well for a certain time , the intrinsic life 

time of the quasi-bound state Tesc , which is determined by the strength of the electron transfer 

through the single barrier and then escape into the collector region . In a realistic situation, 

however, this is not necessarily a proper assumption because the tunnelling electrons in general 

interact with phonons, impurities, and even electrons each other . As explained in Sec. 3.2, 

complete transparency of the double barriers is achieved for an incident electron wave at 

resonance when backward electron waves with different phases which results from multiple 

reflections from the double barriers cancel out each other. The scattering process which is not 

only inelastic but also elastic apparently breaks the cancellation of the backwards waves and 

thus makes the resonant tunnelling partly incoherent [27]-[30] .
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   We have already seen that the global coherent tunnelling theory always underestimates the 

valley current at off-resonance. The effects of the scattering events in RTDs on the valley 

currents have been discussed by many groups and some aspects of them have been made clear 

through experimental and theoretical investigations. In this section the effects of these scattering 

processes on the transmission probability, i.e. spectrum, are discussed. Another important 

effect on the electron distribution is investigated in the next chapter. 

   The most striking effect of the LO-phonon scattering process is the LO-phonon assisted 

resonant tunnelling [31],[33] (see Fig. 3.29(a)). Resonant tunnelling electrons emit a single 

LO-phonon during tunnelling. This tunnelling process leads to a replica peak in the valley 

current regime which is observable at low temperatures. A typical example of the characteristics 

is shown in Fig. 3.29(b). A low broad peak seen at about V is attributed to the LO-phonon 

assisted resonant tunnelling.
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Figure 3.29 (a) The LO-phonon emission assisted resonant tunnelling process. (b) 
I-V characteristics of an A/As/GaAslAlAs double barrier RTD (Material 3; see Sec. 
4.1 for detail) measured at 4.2K. A shallow broad peak after the main resonance is 
caused by the LO-phonon emission assisted tunnelling. Data taken by C Goodings, 
Microelectronics research centre, University of Cambridge, in collaboration with the 
author.

2.5

Magnetotunnelling measurement (see Sec. 4.1) on this Material has revealed that the replica 

peak includes contributions of both GaAs-type phonon (37 meV) and an AlAs-type phonon (50
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meV). This inelastic resonant tunnelling process can be still described within a framework of 

transmission probability though lateral momentum is no longer conserved in these processes: 

The transmission probability is then expressed as functions of both EZ and k// [35]. It has been 

shown that this process results in a satellite peak of the transmission probability found at a 

higher energy than the main resonant tunnelling peak . 

   Another important effect of the scattering is the scattering induced broadening of the 

transmission peaks: This is indeed more vital to achieve large P/V current ratios . The scattering 

broadening is a common phenomenon for various kinds of scattering processes which is 

attributed to the electron self-energy induced by multiple scattering events in the quantum well. 

Fertig et al [33],[34] performed numerical calculations of the total tunnelling current at zero 

temperature by using a microscopic perturbation theory and finally found that the results are in 

good agreement with those calculated by using the phenomelogical Breit-Wigner formula with 

an impurity-scattering-induced broadening parameter rim. The LO-phonon-scattering induced 

broadening has been also theoretically reported by [35] as well as other scattering assisted 

processes explained above. These results indicate that the scattering broadening can be easily 

taken into consideration by using the extended Breit-Wigner type formulation of the 

transmission probability though the detailed mechanisms are quite different. 

  The phenomelogical broadening model may be incorporated with the transfer matrix theory 

described in Sec. 3.2 in the following way. As shown in Fig. 3.30 the multiple-well resonant 

tunnelling structures are divided into N-regions denoted as T1, T2, T3........ TN in which 

well-localized quasi-eigenstates are defined. Introducing scattering broadening widths, I's 1, 

F52, F53........ FSN, in these regions, the total transmission probability may be expressed as 

follows:
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where W represents the amplitude of the going electron wave transmitted through the region 
Ti. It should be noted that Eq. (3.30) reduces to Eq. (3.18) when all the scattering broadening 

goes to zero as the Lorentzian functions are replaced by delta functions.
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structures.

A scattering broadening model for multi-barrier resonant tunnelling

   Equation (3.30) has been applied to the triple-well RTD (see Sec. 3.3.2) by dividing the 

structure into three regions, obviously the quantum wells Wl, W2, and W3. For simplicity, a 

common broadening width, rs, is assumed for all the wells neglecting its energy dependence.
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Figure 3.31 Scattering broadening effects on the transmission probability at the 

first resonance. The energy dependence of the transmission probability calculated by 
using Fs = 1.0 meV is compared with that calculated by using global coherent 
tunnelling model (Ts = 0 meV).
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Figure 3.31 shows the energy dependence of the transmission probability at the first resonance 

of the device calculated by assuming IFS of 1 meV. For comparison the transmission probability 

under the global coherent tunnelling model (FS = 0) has been also plotted. A small peak 

separation seen for the global coherent tunnelling model is attributed to a weak interference 

between the wells W 1 and W2. This double peak structure has been smeared out by introducing 

the scattering broadening, and the whole transmission peak has become much broader . Also the 

peak transmission probability calculated by the scattering broadening model is found to decrease 

more than one order of magnitude from that by the global coherent tunnelling model.
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Figure 3.32 Current-voltage characteristics calculated by using various values of Ts.

   The I-V curves calculated for rs of 0, 1.0, and 2.0 meV are shown in Fig. 3.32 . As a 

result of the decrease in the transmission probability at the resonance seen in Fig . 3.31, the first 

peak current decreases with increasing I'S. On the other hand, currents at the first off-resonant 

state increase with increasing I'S, resulting in a large degradation of the P/V current ratios. 

Similar changes are also found at the second resonance, but these are smaller than those at the 

first resonance as the intrinsic broadening of the quasi-bound state is larger and less sensitive 

for the increase in 1 S in this range. 

   Figure 3.33 shows the rs dependences of the first current peak width (solid line) and the 

first P/V current ratio. These quantities are plotted as functions both of I'S itself (bottom axis) 

and the ratio rs/ri (upper axis) where Fi represents the intrinsic broadening of the first quasi-
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eigenstate at resonance (corresponding to the resonant width I' for double barrier structures 

defined by Eq. (3.25)) which is found to be about 0.3 meV from the global coherent tunnelling 

calculations (see Fig. 3.32). 
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 Figure 3.33 Fs-dependences of both the first current peaks width and P/V current ratios 

It can be seen that the peak width increases and the P/V ratio decreases rapidly when the ratio 

rs/I'i exceeds unity. This fact indicates that the ratio is a crucial quantity which measures to 

what extent the phase-coherence of the electron waves is maintained. If Fs/I'; > 1, the resonant 

tunnelling is far from the global coherent picture. The first resonant peak width and P/V ratio 

observed experimentally are indicated by open circles on both longitudinal axes in Fig. 3.33. 

By comparing the calculated results with these experimental data, it is found that I s of 

approximately 2.5 meV gives a good agreement on both quantities. 

   Let's examine the value of I's obtained by fitting the results above. Major causes of the 

scattering broadening would be polar-optical phonon scattering and acoustic deformation 

potential scattering. The momentum relaxation time, -cm, due to these scattering may be given by 

the following expressions:
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1      __ 1 (1)                 - 3
.31    TM + (          Zm LO ~m DP ) 

 (1) = a (b(O)1/2N (In a + 1 + ex (a) in 1 + b) )    timLO E 9 a-1 pT 1-b (3.32 

  (1) = (2 E)1"2 m*3i2 D2 kBT                                                        (3.33)    Fm ):DP 7E ji4 CL 
where Nq, a, and b are defined as follows: 

1   N
y 

exp O - 1 (3.34)     (T) 
  a = (1 +fl 1/2 (3.35)         E ) 

  b = Re(1 -jE ,1/2 (3.36) 
Assuming the LO-phonon energy hwLO of 36 meV, the Debye temperature Q of 417K , the 

polar constant a of 0.067, the deformation potential constant D of 13.5 eV, the longitudinal 

elastic constant CL of 1.44 X 1011 NM-2, and the electron energy E at the first resonance of 

about 48 meV, the values of (1/t )LO and (1/tm)DP are estimated to be 5.21 X 1012 sec-1 and 

4.34 X 1011 sec-1 at 220K, respectively. The scattering broadening may be obtained from the 

momentum relaxation time through the uncertainty principle: 

 I'S _ Ti/2t (3.37) 

I's is then evaluated to be 1.9 meV (see Table 3.8) which is quite close to the value obtained in 

Figure 3.33.

Momentum relaxation time Tm (sec) Scattering broadening Fs (meV)

Polar-optical phonon
scattering 1.92 x 1013 1.72

Deformation potential

scattering 2.30 x 1012 0.14

Total
-13

1.77 x 10 1.86

Table 3.8 Phonon induced scattering broadening derived from Eqs. (3.31) - (3.37).

   In addition to the phonon induced scattering broadening , the ionized impurity scattering 

may contribute to the broadening as described earlier since Si ions are likely to diffuse from the
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heavily doped collector region into the quantum well as well as the inevitable residual 

impurities. In the present structure, however, the 10-nm-thick undoped GaAs spacer layer 

adopted in the present structure is supposed to prevent the diffusion of Si ions, and the effect of 

the ionized impurity scattering on I'S is much smaller than the above phonon-induced 

broadening. Also a different broadening also exists which arises from deviations of layer 

thickness from their averaged values [36]. All these factors may give a small influence on the 

P/V current ratios.

   In summary of this section the effects of scattering events on the global coherent tunnelling 

has been discussed focusing on the change in the transmission spectrum of the resonant 

tunnelling barriers. By using the triple-well RTDs introduced in the previous section the LO-

phonon scattering induced broadening has been studied. A phenomelogical broadening model 

explains the observed P/V current ratios by using a single broadening parameter obtained from 

the momentum relaxation times. These results indicate that the phase-coherence of electron 

waves is partly lost during the stay in the quantum well, and the change in the transmission 

probability is described by using a simple broadening model quite well. In the next chapter 

another vital effect of the scattering processes, the non-equilibrium aspect of the electron 

distribution, is studied in detail.

3.5 Reference III 

[1] R. Tsu and L. Esaki, "Tunneling in a finite superlattice", Appl. Phys. Lett. 22, 562, 1973. 

[2] L. L. Chang, L. Esaki and R. Tsu, "Resonant Tunneling in Semiconductor Double 

   Barriers", Appl. Phys. Lett. 24, 593, 1974. 

[3] T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck, 
   "Resonant Tunneling through Quantum Wells at Frequencies Up to 2.5 THz", Appl. Phys. 

   Lett. 43, 588, 1983. 

[4] S. Sen, F. Capasso, A. Y. Cho, and D. Sivco, "Resonant Tunneling Device with Multiple 

   Negative Differential Resistance: Digital and Signal Processing Applications with Reduced 

   Circuit Complexity", IEEE Trans. Electron Dev. ED-34, 2185, 1987. 

[5] T. Nakagawa, H. Inamoto, T. Kojima, and K. Ohta, "Observation of Resonant Tunneling 

   in A1GaAs/GaAs Triple Barrier Diodes", Appl. Phys. Lett. 49, 73, 1986.



                                                   97 

[6] T. Tanoue, H. Mizuta, and S. Takahashi, "A Triple-Well Resonant Tunneling Diode for 

   Multiple-Valued Logic Application", IEEE Electron Device Lett. EDL-9, 365, 1988. 

[7] H. Mizuta, T. Tanoue, and S. Takahashi, "A New Triple-Well Resonant Tunneling Diode 

   with Controllable Double-Negative Resistance", IEEE Trans. Electron Devices ED-35, 

  1951, 1988. 

[8] F. Capasso and R. A. Kiehl, "Resonant Tunneling Transistor with Quantum Well Base and 

   High-Energy Injection: A New Negative Differential Resistance Device", J. Appl. Phys. 

  58, 1366, 1985. 

[9] N. Yokoyama, K. Imamura, S. Muto, S. Hiyamizu, and H. Nishi, "A New Functional 

   Resonant Tunneling Hot Electron Transistor (RHET)", Jpn. J. of Appl. Phys. 24, L853, 

  1985. 

[10] A. R. Bonnefoi, T. C. Mcgill, and R. D. Burnham,'Resonant Tunneling Transistors 

   with Controllable Negative Differential Resistances", IEEE Electron Device Lett. EDL-6, 

  636, 1985. 

[11] A. C. Seabaugh, W. R. Frensley, J. N. Randall, M. A. Reed, D. L. Farrington, and R. J. 

  Matyi, "Pseudomorphic bipolar quantum resonant-tunneling transistor", IEEE Trans. 

  Electron Devices ED-36, 2328, 1989. 

[12] M. Tsuchiya, H. Sakaki, and J. Yoshino, "Room tenperature observation of differential 

  negative resistance in an AlAs/GaAs/AlAs resonant tunneling diodes", Jpn. J. Appl. Phys. 

  24, L466, 1985. 

[13] M. Tsuchiya and H. Sakaki, "Precise control of resonant tunneling current in 

  AlAs/GaAs/AlAs double barrier diodes with atomically-controlled barrier widths", Jpn. J. 

  Appl. Phys. 25, L185, 1986. 

[14] M. Tsuchiya and H. sakaki, "Dependence of resonant tunneling current on well widths in 

  AlAs/GaAs/AlAs double barrier diode structures", Appl. Phys. Lett. 49, 88, 1986. 

[ 15] D. Landheer, G. C. Aers, and Z. R. Wasilewski, "Effective mass in the barriers of 

  GaAs/AlAs resonant tunneling double barrier diodes", Superlattices and Microstructures 

  11, 55, 1992. 

[16] A. Harwit, J. S. Harris, Jr., and A. Kapitulnik, "Calculated quasi-eigenstates and quasi-

  eigenenergies of quantum well superlattices in an applied electric field", J. Appl. Phys. 60, 

  3211, 1986.



                                                    98 

[17] B. Ricco and M. Y. Azbel, "Physics of resonant tunneling. The one-dimensional double-

  barrier case", Phys. Rev. B29, 1970, 1984. 

[18] H. C. Liu, 'Tunneling time through heterojunction double barrier diodes", Superlattices 

  and Microstructures 3, 379, 1987. 

[19] D. D. Coon and H. C. Liu, "Frequency limit of double barrier resonant tunneling 

  oscillators", Appl. Phys. Lett. 49, 94, 1986. 

[20] N. Harada and S. Kuroda, "Lifetime of resonant state in a resonant tunneling system", 

  Jpn. J. Appl. Phys. 25, L871, 1986. 

[21] M. Tsuchiya, T. Matsusue, and H. Sakaki, "Tunneling escape rate of electrons from 

  quantum well in double-barrier heterostructures", Phys. Rev. Lett. 59, 2356, 1987. 

[22] H. Ohnishi, T. Inata, S. Muto, N. Yokoyama, and A. Shibatomi, "Self-consistent analysis 

  of resonant tunneling current", Appl. Phys. Lett. 49, 1248, 1986. 

[23] K. F. Brennan, "Self-consistent analysis of resonant tunneling in a two-barrier-one-well 

  microstructure", J. Appl. Phys. 62, 2392, 1987. 

[24] M. A. Reed, W. R. Frensley, W. M. Duncan, R. J. Matyi, A. C. Seabaugh, and H. L. 

  Tsai, "Quantitative resonant tunneling spectroscopy: Current-voltage characteristics of 

  precisely characterized resonant tunneling diodes", Appl. Phys. Lett. 54, 1256, 1989. 

[25] B. Jogai, C. I. Huang, and C. A. Bozada, "Electron density in quantum well diodes", J. 

  Appl. Phys. 66, 3126, 1989. 

[26] H. Mizuta, T. Tanoue, and S. Takahashi, "Theoretical analysis of peak-to-valley ratio 

   degradation caused by scattering processes in multi-barrier resonant tunneling diodes", 

   Proceedings of IEEE/Cornell conference on advanced concepts in high speed 

   semiconductor devices and circuits", 274, 1989. 

[27] S. Luryi, "Physics of resonant tunneling devices", Proceedings of International Workshop 

   on Future Electron Devices - Superlattice Devices -, Tokyo, 21, 1987. 

[28] A. D. stone and P. A. Lee, "Effect of inelastic processes on resonant tunneing in one 

   dimension", Phys. Rev. Lett. 54, 1196, 1985. 

[29] M. Jonson and A. Grincwaig, "Effect of inelastic scattering on resonant and sequential 

   tunneling in double barrier heterostructures", Appl. Phys. Lett. 51, 1729, 1987. 

[30] B. Movaghar, J. Leo, and A. Mackinnon, "Elastic and inelastic tunneling in multiple 

   quantum well structures", Surface Science 196, 381, 1988.



                                                  99 

[31 ] V. J. Goldman, D. C. Tsui, and J. E. Cunningham, "Evidence for LO-phonon-emission-

  assisted tunneling in double-barrier heterostructures", Phys. Rev . B36, 7635, 1987. 

[32] M. L. Leadbeater, E. S. Alves, L. Eaves, M. Henini, O. H. Hughes, A. Celeste, J. S. 

  Portal, G. Hill, and M. A. Pate, "Magnetic field studies of elastic scattering and optic -

  phonon emission in resonant-tunneling devices", Phys. Rev. B39, 3438, 1989. 

[33] H. A. Fertig and S. Das. Sarma, "Elastic scattering in resonant tunneling systems", Phys. 

  Rev. B40, 7410, 1989. 

[34] H. A. Fertig, Song He, and S. Das. Sarma, "Elastic-scattering effects on resonant 

  tunneling in double-barrier quantum-well structures", Phys. Rev. B41 , 3596, 1990. 

[35] N. Zou and K. A. Chao, "Inelastic electron resonant tunnelling through a double-barrier 

  nanostructure", Phys. Rev. Lett., 69, 3224, 1992 . 

[36] Y. Fu and M. Willander, "Lateral-nonuniformity effect on the I-V spectrum in a double-

  barrier resonant-tunneling structure", Phys. Rev. B44, 13631 , 1991.



100

CAWTIR 4

DISSIPATIVE QUANTUM TRANSPORT AND ELECTRON 

  DYNAMICS IN RESONANT TUNNELLING DIODES

  Following the study of the coherent quantum transport in the previous chapter this chapter 

deals with investigation of more complicated incoherent aspect of quantum transport. The 

simple global resonant tunnelling model based on a quantity of the transmission probability 

throughout the structures has been shown to facilitate an intuitively understandable picture of 

resonant tunnelling. It has been also shown that the idea of the transmission probability could 

have been extended into a partly incoherent transport regime in which the phase-coherence 

breaking scattering events affect the tunnelling. Namely we have concentrated on the spectrum 

of the resonant tunnelling structures. In this chapter we go beyond the simple global coherent 

tunnelling picture and investigate two other important aspects of electron transport in RTDs: 

non-equilibrium distribution and femtosecond dynamics of tunnelling electrons. As discussed 

in Sec. 3.4 the coherent electron-waves may suffer from scattering processes which cause 

momentum and energy relaxations of electrons resulting in a more complicated transmission 

spectrum than that obtained from the global coherent tunnelling model. These relaxation 

processes, at the same time, might cause a change in the electron distribution in the quantum 

well. In Sec. 3.2.2 we have calculated the self-consistent energy-band diagram and electron 

distribution, and studied the effect of electrons accumulated in the well. This self-consistent 

theory has been completely based on an assumption of the global coherent tunnelling and is no 

longer correct if the relaxation processes occur so frequently that they alter the electron 

distribution in an energy space. It has been shown that this indeed happens in some cases and 

transport is then described by an incoherent sequential tunnelling picture [1] rather than the 

global coherent tunnelling. 

   The sequential tunnelling model has been proposed by Luryi [1], [2] as an alternative 

explanation of resonant tunnelling about ten years after the global coherent resonant tunnelling
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was reported by Tsu and Esaki. This model describes the resonant tunnelling as two continuous 

tunnelling processes, that is tunnelling from the emitter into the quantum well followed by that 

to the collector. Between these two processes the electrons suffer from the phase breaking 

scattering processes in a quantum well and are relaxed into a locally quasi-equilibrium states. 

This sequential tunnelling picture is thus a mixture of both coherent and incoherent tunnelling 

processes. In the limit of no scattering the sequential tunnelling model has been shown [3] to 

naturally reduce to the coherent global tunnelling as is expected from the definition of the 

model.

   Proper theoretical description of this situation obviously should rely on non-equilibrium 

quantum transport theory such as the density matrix [4], the Wigner function [5], Green 

functions [6], and path-integrals [7]. The non-equilibrium transport theory has not yet been well 

established itself, and numerical calculations based on these modelling are still far from practical 

use. Very recently, however, the quantum-mechanical Wigner function has been solved 

numerically [8]-[l 1] to analyze electron transport in RTDs. The equation of motion based on the 

Wigner function, which is derived from the Liouville-von Neumann equation for the statistical 

density matrix by applying the Wigner-Weyl transformation, has been solved in the finite-

difference scheme, and some calculated results have been reported on the steady-state I-V 

characteristics and transient behaviour of RTDs. 

   New experimental techniques have been also introduced to investigate the dissipation 

process, non-equilibrium electron distribution and electron dynamic process in RTDs. 

Magnetotransport and magnetocapacitance measurement techniques have turned out to be an 

excellent method to directly measure space-charge build-up and non-equilibrium distribution of 

electrons in resonant tunnelling structures. One of the recent success is to have revealed that the 

device has an intrinsic bistability in the negative differential conductance region which stems 

from dynamical redistribution of electrons in the quantum well. A time-resolved 

photoluminescence technique with a picosecond laser has been also adopted on purpose to 

study the dynamical aspect of the resonant tunnelling.

   In this chapter, resonant tunnelling through a double barrier structure is studied in some 

detail by focusing on non-equilibrium distribution and femtosecond dynamics of electrons . 

First, in Sec. 4.1, electron accumulation in a triangle potential well in the emitter and related 2D
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- 2D resonant tunnelling are discussed to introduce the idea of energy dissipation into the 

coherent tunnelling picture in the previous chapter. Second numerical calculations based on the 

density matrix theory are carried out in Sec. 4.2 to analyze femtosecond dynamics of electrons 

in RTDs as well as dynamical space charge build-up in the double barrier structure. In Sec. 4.3, 

magnetotransport measurement is then introduced to estimate the space charge build-up 

experimentally.

4.1 Non-equilibrium electron distribution and 2D - 2D resonant 

    tunnelling 

   In the previous chapter we have seen that the energy-band diagram in the emitter region 

sometimes exhibits a shallow triangle potential well with an emitter barrier under large applied 

bias (for example, see Fig. 3.9). We have assumed that the electronic states in the emitter and 

collector regions are described by using both classical continuous energy spectrum with Fermi-

Dirac equilibrium distribution function. This convenient assumption is, however, no longer 

valid if a relatively thick undoped (or even low-doped) spacer layer is introduced on the emitter 

side. In these cases an external voltage largely drops in these undoped regions as well as the 

double barrier structure resulting in a pseudo-triangle quantum well as shown in Fig. 4.1.

Emitter

Pseudo-triangle well

Quasi-bound states Depletion region

Collector

Figure 4.1 Schematic energy-band diagram of a doubl 
low-doped regions on both side of the barriers.

e barrier RTD with thick



103

In general low doping concentration near resonant tunnelling barriers results in large P/V 

current ratios and hence is widely used though current densities are relatively low. An example 

of advanced contact structures are shown in Figs. 4.2: in these structures a graded doping 

profile has been adopted in which doping concentration is varied from 5 x 1018 cm-3 at the edge 

of emitter to 1 x 1016 cm-3 near the barriers. In the following sections two AlAs/GaAs/AlAs 

double barrier RTDs which have this graded contact structure are newly introduced. These are 

hereafter called as Sample 2 (4.2nm/5.9nm/4.2nm) and Sample 3 (5.Onm/7.Onm/5.Onm).

Emitter

n-GaAs (Si: 5 x 1018 /cm3) 150 nm

n-GaAs (Si: 2 x 1017 /cm3) 150 nm
n-GaAs (Si: 8 x 1016 /cm3) 200 nm

n-GaAs (Si: 3 x 1016 /cm3) 250 nm

n-GaAs (Si: 1 x 1016 /cm3) 450 nm

undoped-GaAs 5 nm

Double barrier structure

undoped-GaAs 5 nm

n-GaAs (Si: 1 x 1016 /cm3) 450 nm

n-GaAs (Si: 3 x 1016 /cm3) 250 nm

n-GaAs (Si: 8 x 1016 /cm3) 200 nm

n-GaAs (Si: 2 x 1017 /cm3) 150 nm

n-GaAs (Si: 5 x 1018 /cm3) 500 nm

Collector

Figure 4.2 Emitter and collector structures with a graded doping profile used for 
Samples 2 & 3.

   Under a large external bias the low-doping region in the emitter forms a pseudo-triangular 

quantum well next to the emitter barrier. Electronic states in this triangle well are both quasi-

bound states in the low energy region (see Fig. 4.1) and scattering states in the high energy 

region. Electrons which occupy the quasi-bound states of the triangle well form a two-

dimensional electron gas (2DEG). Resonant tunnelling then occurs between these two
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dimensional states in the triangle well and the resonant state in the double barrier structure: this 

is hence called 2D - 2D resonant tunnelling [12] and distinguished from the conventional 

resonant tunnelling which should be now denoted as 3D - 2D resonant tunnelling in a 

corresponding manner. 

  A question then arises about the distribution of electrons in the triangle well: how are the 

incoming electrons redistributed between the quasi-bound states and scattering states? As long 

as we use the global coherent tunnelling model introduced in the previous section, the incoming 

electrons run through this triangle well in a completely ballistic way without any change in the 

occupation of these quasi-bound states because they are located below the conduction band edge 

of the emitter (see Fig. 4.3(a)). This is, however, not a realistic assumption as the incoming 

electrons may suffer from dissipative scattering processes and redistribute through these quasi-

bound states (see Fig. 4.3(b)). In this case, the electron distribution is not expressed simply by 

the Fermi-Dirac distribution function which is basically for equilibrium system but a 

complicated non-equilibrium distribution function. Thus the electrons tunnelling into the 

resonant state in the double barrier structure may come from both these 2D quasi-bound states 

(2D - 2D PT) and the 3D scattering states (3D -2D RT) depending on temperature. If both 

electrons equally contribute to the resonant tunnelling, some distinguishable structures might be 

seen in the current-voltage characteristics.

L E
P

(a) (b)

Figure 4.3 Two extreme cases for electron accumulation in a pseudo-triangle 

potential well: (a) no charge build-up due to ballistic electron transport, and (b) 
significant build-up caused by electrons which suffer from energy dissipation 
processes.
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  The current-voltage and conductance-voltage characteristics are given for both Samples 2 

and 3 at various temperatures in Figs. 4.4 and 4.5. A single sharp current peak is seen at low 

temperatures which is thought to reflect the nature of 2D - 2D resonant tunnelling discussed 

above. For both samples, however, a broad current shoulder becomes noticeable at higher 

temperatures before the main resonance occurs. Such a feature has been observed by Gobato et 

al. [ 13] and Zheng et al. [ 14] who both saw similar characteristics and ascribed them to the 

electrons which go through the 3D scattering states ballistically. Contributions of these 3D 

ballistic electrons have been successfully modelled by Chevoir & Vinter [15]. Also Goldman et 

al. [16] has discussed a more complex case in which only the lowest quasi-eigenstate in the 

triangle well is resolved and others are merged with the 3D continuous scattering states.
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Figure 4.4 Current (a) and conductance (b) versus voltage measured for Sample 2 
at various temperatires. For clarity curves have been offset in both graphs. Dotted 
lines in (a) show hysteresis in NDC regime.

  The fact that the current shoulders are observed more clearly at higher temperatures is 

consistent with these theoretical explanations because the number of electrons which occupies 

the 3D continuous states will increase. In addition it is easily expected from these theoretical 

explanations that application of an magnetic field perpendicular to the barriers separates the 3D 

components from the 2D ones [14]. This has been observed in Sample 2 as shown in the inset
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to Fig. 4.4(b) 

4.2K.

: two distinct peaks can be seen in the conductance-voltage characteristics even at
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Figure 4.5 Current (a) and conductance (b) versus voltage measured for Sample 3 
at various temperatires. For clarity curves have been offset in both graphs. Dotted 
lines in (a) show hysteresis in NDC regime.

   The results shown in this section manifest that the electron distribution in the pseudo-

triangle well of the emitter is not expressed by a simple equilibrium distribution function. The 

reality lies in an intermediate situation between these two extreme cases shown in Fig. 4.1(a) 

and (b). Electrons in those non-equilibrium distributions tunnel into the double barrier structure 

and therefore make the distribution between double barriers more complex. In the following 

sections dynamic electron accumulation in double barrier structures is focused and investigated 

theoretically and experimentally.

4.2 Theory of dissipative quantum transport in RTDs 

   In this section a numerical study of non-equilibrium transport in RTDs is presented based 

upon the density matrix equation [4] which is the most fundamental equation in statistical 

quantum-mechanical physics. The statistical density matrix is a wavefunction-wavefunction 

correlation function, and its off-diagonal elements directly measure the phase-coherence of
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wavefunctions: one of the most significant parameters in electron-wave device design. The first 

numerical calculation of the density matrix equation was reported by Frensley [17] , who 

observed for the first time the time evolution of the density matrix for the resonant tunnelling 

diode. At the same time, however, a lot of problems were pointed out in this formalism , such as 

Ohmic contact boundary conditions, a correct initial density matrix, a self-consistent Hartree 

potential, and numerical instability in transient calculations. Very recently, the Monte Carlo 

calculation was also reported to simulate the effect of electron-phonon interaction on the density 

matrix [18]-[20]. In this section, we report a numerical quantum device modelling based on the 

direct calculation of the density matrix equation, which includes new boundary- and initial-

conditions for the density matrix and an implicit scheme for time-integration. The correct 

density matrix in thermal equilibrium is calculated by solving the Schrodinger equation and 

Poisson's equation self-consistently. Using the thermal equilibrium density matrix as an initial 

state, the time-dependent density matrix equation is then solved directly. The Hartree self-

consistent field model and the relaxation-time approximation are introduced for electron-electron 

interactions and scattering processes, respectively. The present simulation technology is applied 

to the simple A1GaAs/GaAs resonant tunnelling diodes, and transient behaviours of electron 

build-up in the quantum-well and development of long-range phase-correlations between quasi-

bound electron-waves and free electron-waves are demonstrated. In addition, the switching 

behaviour from the peak (valley) to the valley (peak) of the IN characteristics and the effects of 

scattering on the peak-to-valley current ratio are discussed.

 4.2.1 Time-dependent statistical density matrix and Wigner distribution 

function 

  The first step of the quantum device simulation is to find the correct statistical density matrix 

for a system in thermal equilibrium, which is used as an initial condition for the time-dependent 

density matrix equation. Provided that an unperturbed quantum-mechanical open system is in 

thermal equilibrium with its surroundings, the statistical density matrix based on the 

independent-particle approximation is expressed by the following equation: 

   po(x,x';0) _ Kw(x)`P*(x')/ _ I'k(x)'k(x') f(k) (4.1) 
                                          k,6 

where Wk(x) is the eigen-function of the unperturbed Hamiltonian , and f(k) is the Fermi-Dirac 

distribution function. Equation (4.1) shows that the statistical density matrix is a function of the
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two positions x and x': The diagonal elements represent the real electron density in the system 

and the off-diagonal elements measure the phase correlations of the wavefunctions. Also it is 

sometimes convenient to introduce the following Wigner distribution function, fW (x, k, t), 

which is the Weyl transform of the density matrix: 

  fw(X, k, t) = 2n eik~ p(x, C, t) (4.2) 

where x and C are absolute and relative coordinates, (x+x')/2 and x-x', respectively. This is in 

analogy to the classical distribution function defined in the (k, x) phase space. A complete set 

of wave functions required to calculate the density matrix (4.1) is obtained by solving the time-

independent effective-mass Schrodinger equation: 

  H Tk(X) _ - 2 V 1 V Wk(r) + V(x)Tk(x) = EkWk(x) (4.3)           (m*(x) ) 
where m*(x) is the electron effective mass and V(x) is the potential energy distribution which 

consists of the electron affinity, V0(x), and the Hartree potential, Vsc(x), due to the charge 

density of electrons and ionized donors. The Hartree potential is determined self-consistently by 

solving Poisson's equation: 

   - V2 Vsc(X) = E(ND(x) - I IZ k(X)I2 f(k) (4.4)                   ) k,6 

  The Schrodinger equation (4.2) is solved by using the finite-difference method rather than 

the transfer matrix method. From the point of view of numerical calculations, the transfer matrix 

method is more accurate than the finite difference method because wavefunctions between mesh 

points are stored as plane-wave states. However, the use of the solutions obtained by the 

transfer matrix method sometimes brings about an unrealistic current density at hetero-interfaces 

when the resultant density matrix is used as an initial solution for the time-dependent density 

matrix equation. This is because of the difference in the ways in which the Schrodinger 

equation and the density matrix equation are discretized. In the present work, we adopt exactly 

the same finite difference discretization for both equations. 

   A set of incoming scattering states (emitter- and collector-incident plane waves) [21] is used 

as boundary conditions to solve the Schrodinger equation. When the finite-difference method is 

used for solving the Schrodinger equation solutions are no longer expressed as coefficients of 

plane waves. It is therefore necessary to decompose the wavefunctions obtained at the edge of
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devices into incident and reflected plane waves to find a normalization factor. From the 

unnormalized solutions on the first two mesh points, we evaluate the coefficients for the 

incident and reflected waves and normalize the wavefunctions. Accuracy of this normalization 

method depends on the first mesh-spacing and, to some extent, can be judged from the resultant 

electron density calculated at the emitter and collector edge. 

  In the present work, we adopt the simple structure of an A1GaAs/GaAs double barrier 

resonant tunnelling diode to examine the new simulation technology. The assumed structure 

consists of a undoped GaAs quantum well of 5 nm in thickness, two undoped A1o.33Ga0.67As 

barriers of 4 nm in thickness, and highly doped n-type GaAs( ND = 1x1018 cm-3 ) emitter and 

collector layers of 20 nm in thickness with undoped GaAs spacer layers of 6 nm in thickness. 

The conduction band discontinuity in the GaAs/AlGaAs heterostructure is assumed to be 60 

percent of the I' -band energy gap difference. Positional dependence of electron effective mass, 

m*(x), is taken into account by assuming the simple Al-mole fraction dependence of electron 

mass in AlGaAs: m*(GaAs) = 0.067 mo and m*(Alo.33Gao.67As) = 0.094 mo. Figure 4.6 (a) 

shows the real parts of the equilibrium density matrix (the imaginary parts are exactly zero), and 

Fig. 4.6 (b) the energy band-diagram calculated self-consistently at a temperature of 300 K. An 

energy mesh with a spacing of 0.5 meV was used to calculate and store all the wavefunctions of 

the system with eigenenergies up to 200 meV. The normalization method for wavefunctions 

described above appears to be successful since charge neutral regions assured by the flat 

energy-band are obtained near the emitter and collector edges. The small peak in the centre of 

Fig. 4.6 (a) represents accumulated electrons in the quantum well. These electrons are thermally 

distributed around the first quasi-bound state (the resonant state) at the energy of about 60 meV 

measured from the bottom of the quantum well. The steep decrease in electron density near the 

double barriers stems from a quantum repulsion of electron-waves [10]. In Fig. 4.6 (b), the 

upward shift of the potential diagram near the heterointerfaces in the emitter and collector layers 

is caused by the self-consistent field from electrons injected into the spacer layers. A typical 

mesh grid adopted for the density matrix of the resonant tunnelling diode is shown in Fig. 4.7: 

Mesh spacing was chosen to be smaller in the region of the double barrier structure. This sort of 

non-uniform mesh is useful to save the computational time and memory when solving the 

density matrix equation although it complicates the coefficient matrix of the discretized equation.
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  As mentioned earlier, off-diagonal structures of the density matrix measure the phase-

correlations between the electron wavefunctions at different positions. In Fig. 4.6(a), the 

density matrix in the emitter and collector regions varies steeply along the cross-diagonal
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direction, and its dependence on a relative distance x-x' is approximately expressed by the 

following Gaussian-like analytical form for the free electron density matrix: 

   PFE(X,X') E 1 exp(- (x-x')2/2? + EF/kBTI (4.5) 
            2n3 X, 

where a thermal coherence length of the electron wave, XT, is defined as follows: 

   XT = 1i2/(m*kBT) (4.6) 

The thermal coherence length, which is about 7 nm for GaAs at room temperature, is a critical 

length in multi-mode (multi-phased) electron wave devices, and the correlation between 

thermally distributed free electrons decreases steeply beyond ?T because of the superposition of 

electron waves with various phases. In Sec. IV, the development of dynamical interference 

between these free electron-waves and quasi-bound electron-waves at the resonant state is 

demonstrated. 

   The second step of the quantum device simulation is to solve the fundamental equation of 

motion for the density matrix. The equilibrium density matrix, PO, obtained in the previous 

section is used as an initial state for the density matrix equation. The time evolution of the 

density matrix under an applied electric field is given by the following Liouville-von Neumann 

equation: 

   ap = ii-h [H(t),p] + Cco1P (4.7) 
where H(t) is the Hamiltonian under an applied bias, and Cco1 is a collision operator, discussed 

later. Using the position-space representation, the density matrix equation is given by the 

following expression: 

    ap(x,x';t) _ i-h a 1 a a 1 a 
      at 2 ax m*(x) ax ax' m*(xI) ax' 

           + il-h (V(x;t) - V(x';t)} p(x,x';t) + C"01 p(x,x';t) (4.8) 

    V(x;t) = Vo(x) + Vsc(x;t) (4.9) 

where the time-dependent Hartree potential Vsc(x;t) is determined by the diagonal elements of 

the density matrix as follows: 

     (£(x) dV x~t) = - q{ND(x) - Re(p(x,x;t))) (4.10)     dx dx
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The time-dependent conduction current density, j(x;t), is then calculated by the following 

formula: 

            i aa    j(
x;t) q~          - *

(x) i ax _ ax' P(x,x';t) (4.11)           2m *(x) 

Equation (4.7) is discretized in x and x' by using exactly the same spatial grid as the 

equilibrium density matrix and then deformed to algebraic equations. For the time integral of 

Eq. (4.8), an implicit scheme is used to obtain stable convergence in the numerical calculations 

because explicit schemes usually require extremely small time steps [17]. Since the Hartree 

potential depends on the density matrix(Eq. (4.10)), full implicit treatment for Eq. (4.8) gives 

rise to a complicated system of coupled non-linear equations. Here, we employ the implicit 

scheme only for the density matrix and treat the Hartree potential explicitly. The resultant finite-

difference equation is as follows:

pi,j(t+At) - pi,j(t) = c
2

1 Pi+l,j(t+Ot) - pi,.j(t+At) + 1 pi-l,j(t+At) - pi,j(t+At)

    At \Aim*~i xl iAxi m1*- 1 Axi-1 I                      l - -                         2 2 

                  1 1 Pi,j+l(t+Ot) - pi,j(t+At) + 1 Pi,j-l(t+At) - pi j(t+At) 
                 Axj m* l Axj m* 1 Oxj-1 

                       ~+ 2 J 2 

             + (Vi(t) - Vj(t)) p ,j(t+At) + [Cco1P]i,j(t+At) 

        + (1 - c) i2J._i_I_1 Pi+l,j(t) - Pi,j(t) + 1 Pi-l,j(t) - Pi,j(t) 
                     1Am* x i 1+ . l Axi m1.- 1 Axi-1                          - -

                          2 2 

               J 1 1 Pij+1(t) - Pij(t) + 1 Pij-1(t) - Pij(t) l                 Axj m + 1 Axi m* 1 Axj-1 
                           2 2 

              + (Vi(t) - Vj(t)) Pi,j(t) + [Cco1P]ij(t) (i,j = 1,2,.. .,N) (4.12) 

where indices i and i+1/2 represent original- and half- meshpoints, Axi and Aii the distances 

between the original- and half-meshpoints, respectively. A numerical constant, c, varies from 

zero to unity depending on the implicit scheme used: the scheme c=1/2 is a usual Crank-

Nicolson-type implicit scheme, and c=l is a backward Euler. The coefficient matrix of these

I 
I
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simultaneous equations (4.11) is basically sparse (except for the unknown collision term) 

although it is not symmetric and contains complex elements. This contrasts with the fact that the 

coefficient matrix in the Wigner-function formalism is generally dense. The discretized Wigner 

function requires storage proportional to NXNk2 [9] where NX and Nk represent numbers of 

meshpoints in the position and momentum spaces, while the density matrix equation only 

necessitates storage proportional to N2 where N represents the number of meshpoints in x and 

x' dimensions. Thus, from the viewpoint of numerical calculation, the density matrix formalism 

has the great advantage of saving computational memory. By converting these N complex 

equations into 2N equations with real coefficients, equation (4.11) can be solved by several 

methods for sparse linear systems. We adopt here the conjugate gradient method for non-

symmetric sparse matrices. 

   The collision term, Ccoip, which introduces dissipation processes and causes time-

irreversibility of the system, is a nontrivial part of the quantum transport theory. Several 

discussions have been reported on the collision term in the density matrix formalism. First, an 

accurate quantum-mechanical expression for electron-phonon interaction was reported by 

Levinson [23]. He derived the closed equation for the density matrix of electrons which are 

weakly interacting with equilibrium phonons. In his formula, however, the interaction term 

involves time integrations (i.e. the past history of the system), for which numerical calculations 

are non-trivial. Second, a semi-classical model was proposed by Caldeira and Legget [24] 

relating to the theory of quantum Brownian motion: 

C'olp(x,x;t) y(x - X') ap(x,x';t) ap(x,x';t) - 2m*YkBT (x - x,)2 p(x,                                                     ,x;t) (4.13) 
                   ax ax -h2 

where Y is the coupling constant of electrons to a reservoir system. Although the expression is 

simple enough to be applied to numerical simulations, it is verified that this model is only 

correct when thermal energy, kBT, is much larger than the coupling energy between the 

electrons and the reservoir. Third, the simplest model for the collision term is a well-known 

relaxation-time approximation: 

                P(x,x';t) - PQE(x,x') (4.14) 
                        'Cs 

where PQE is the quasi-equilibrium density matrix under an external bias, and 'C, is a 

macroscopic relaxation-time parameter which represents all of the scattering processes. In the 

present work, we choose the relaxation-time approximation because of its simplicity in
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numerical calculations. One difficulty with the use of this approximation for a real device is the 

fact that the distribution of electrons varies with position and external bias. Equation (4.13) has 

an effect on the position-space distribution of electrons and, if the thermal equilibrium density 

matrix Po is used directly as PQE, this results in a breaking of the current continuity. Obviously, 

an adequate model for PQE is necessary which has the same electron distribution as p(x,x';t). 

The following approximation for PQE has been proposed by Frensley [17] assuming Boltzmann 

statistics for electrons: 

   pQE(x,x';t) = p(x,x;t) p(x',x';t) expi- (x - x')2/aT} (4.15) 
This expression is easily found to be correct for the thermally distributed free-electrons, but its 

general justification might rely on the fact that Eq. (4.15) reproduces the correct thermal 

equilibrium density matrix given by Eq. (4.1) [17]. In the present work, we adopt Eq. (4.15) 

for PQE by adding a numerical correction for the difference between Boltzmann and Fermi-Dirac 

distributions. The resultant expression gives us a quantitatively proper reproduction of off-

diagonal elements of Po in thermal equilibrium. 

   The ohmic contact boundary condition for the density matrix is also an active field of study 

in the quantum transport theory in connection with the time-irreversibility of quantum devices. 

The density matrix elements on boundaries represent correlations between wavefunctions at an 

electrode and at all other points in the device. Obviously, Dirichlet-type boundary conditions 

cannot be used on the density matrix because it means that quantum current density at the ohmic 

contact is fixed from the beginning (see Eq. (4.11)). This fact is one of the big problems of the 

density matrix method in contrast to the Wigner function formalism where the so-called time-

irreversible boundary condition [9],[25] has been proposed. One possible solution is to use 

Neumann-type boundary conditions. Frensley [17],[25] proposed the following special 

boundary condition: 

    a + a p(x,x';t) = 0 (4.16)     ax aX' lboundary 
for the density matrix taking account of the symmetry of the density matrix for thermally 

distributed free electrons (see Eq. (4.5)). From the physical point of view, this boundary 

condition models a black-body contact which absorbs incoming electron-waves. The boundary 

condition (4.16) conserves electron density at the device edge when external bias is applied to 

the device. Thus, it is suitable to describe the boundary of the so-called ohmic region near
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electrodes where free electrons are thermally distributed. This boundary condition, however, 

cannot be used for the whole boundary because it is correct only when the system has at least 

approximately translational invariance. For example, it is successfully applied to simple 

structures such as n+ - n- - n+ diodes where the electron-wavefunctions are spatially widespread 

over the system, and the wavenumber k is a good quantum number. Typical quantum device 

structures, however, such as finite superlattices and quantum wells make (quasi-)bound 

electron states and are no longer translationally invariant except in the ohmic regions near the 

emitter and collector electrodes. The correlations between those localised electrons and free 

electrons in the emitter and collector layers are long-range, and the density matrix varies along x 

and x' directions rather than the cross-diagonal direction. In these cases, therefore, the 

following Neumann boundary conditions 

    ap(x,x';t) = 0 
         ax x=o, L 

    ap(x,x';t) = 0 (4 .17) 
         ax, x'=o, L 

are plausible rather than the boundary condition (4.16). These boundary conditions physically 

mean that there is no source at the electrodes to have an influence on the correlation function 

within the device. In the present work, we divide the system into two parts: the ohmic region 

which is now defined as the n+-GaAs region of 20 nm in thickness, and the essential double-

barrier region (with spacer layers) causing quantum mechanical effects. The boundary condition 

(4.16) is used only for the boundaries of the ohmic regions, and those of the active region are 

treated by using Eq. (4.17).

 4.2.2 Femtosecond electron dynamics in RTDs 

   In this section the transient behaviour of the resonant tunnelling diode under an applied bias 

is simulated numerically by solving the discretized density matrix equation (4.12). The 

equilibrium density matrix obtained in Sec. 4.2.1 is used as an initial condition, and the spatial 

mesh grid shown in Fig. 4.7 is adopted. The new Neumann-type boundary condition described 

in the previous section is implemented to solve the density matrix equation.
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Figure 4.7 Position mesh grid used for the density matrix of the double. barrier 
RTD. Mesh spacing has been chosen to be small for AIGaAs barriers and the GaAs 

quantum well.

In the present calculations values of 1.0 to 2.0 femtoseconds are used for the time step, At, 

which are small enough to represent the transient response of the resonant tunnelling diode. The 

relaxation-time parameter, Ts, due to scattering is typically set to be 100 femtoseconds, which 

corresponds to a mobility of 2600 cm2V-lsec-1 for n-GaAs with donor concentration of 

lx1018 cm-3 at room temperature. The density matrix, potential profile, and current density 

calculated by using Eq. (4.11) are monitored to see the convergence of the system to a steady 

state. The correctness of the thermal equilibrium density matrix as an initial condition is 

continually checked by solving the density matrix equation under zero applied voltage. The 

maximum errors in the potential profile and current density under zero bias are less than 1.0 

meV and 1.0 A/cm2 at a time of 1500 femtoseconds, respectively. These are small enough to 

assure the propriety of evaluated values under an applied voltage. The transient calculation has 

been done on a DECsystem 5810 (18.7 MIPS machine) and usually required approximately 180 

minutes of CPU time to reach a steady state. 

   The calculated transient response of the density matrix for the resonant tunnelling diode is 

shown in Figs. 4.8 and 4.9. These figures show the evolution of the real (Fig. 4.8) and 

imaginary (Fig. 4.9) parts of the density matrix at time t after an external voltage of 120 mV, 

corresponding to the peak voltage of the device, is suddenly applied at t=0: (a) at t=50 fsec;
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    Figure 4.8 Real parts of the density matrix at various times under an applied bias of 
120mV: (a) at 50 fsec; (b) at 100 fsec; (c) at 200 fsec; (d) at 600 fsec; and (e) at 1000 fsec . It 
can be seen that density of electrons accumulated in the quantum well increases with time. 
Electron depletion in the collector layer and accumulation in the emitter layer can be seen.
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Figure 4.9 Imaginary parts of the density matrix at the same times as in Fig. 4.8. Large 
cross-diagonal variation (indicated by A) represents plasma oscillation. The remarkable 
oscillatory feature (indicated by B in (e)) measures quantum interference between the 
resonant-tunnelling electron and free electrons in the emitter and collector.
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(b) at t=100 fsec; (c) at t=200 fsec; (d) at t=600 fsec; and (e) at t=1000 fsec. The system reaches 

the steady state at a time of about 1000 fsec, and no numerical instability [17] was observed. 

This is presumably because of improvements in the present model such as the self-consistent 

Hartree field, a correct initial condition, the new boundary condition, and the implicit scheme 

for time integration. The calculated density matrix enables us to observe not only the time-

dependent variation of the electron distribution but also that of the electron correlations in the 

system. The diagonal of the real parts shows time-dependence of electron-build-up in the 

quantum well as well as that of electron accumulation in the emitter region and depletion in the 

collector region. In the steady state, peak concentration of electrons in the quantum well 

amounts to 2.5 x 1017 cm-3 . In Figs. 4.8 and 4.9, three major features should be noticed on 

the off-diagonal elements of the density matrix. The large cross-diagonal structure (indicated by 

point A in Fig. 4.9 (a)) in the imaginary parts represents short-range phase-correlations, which 

cause plasma current oscillations. If the momentum-space representation is used instead of the 

position-space representation, it is equivalent to the centre of the distribution function oscillating 

along the momentum axis. In other words, electrons are in collective motion in the emitter and 

collector regions . This phenomenon can be also observed as an oscillation of real electron 

density (the diagonal of Fig. 4.8). 

   The most remarkable feature is an oscillatory behaviour of the imaginary parts (indicated by 

point B in Fig. 4.9 (e)). It should be noted that this extends from the centre to the edges of the 

domain. It is caused by a quantum interference between the quasi-bound electron-waves at the 

resonant state and free electron-waves in the emitter and collector layers. We believe this to be 

the first direct observation of the dynamical correlations of the electron-waves in the resonant 

tunnelling diode under an applied voltage. The calculated results reveal that the electron-waves 

at the resonant state correlate with free electron-waves over the whole device. In other words, 

the phase-coherence of the resonant electron-waves is still maintained although they are 

suffering from degradation of coherence due to scattering. The relation between amplitude of 

the oscillation and the scattering relaxation time is discussed in the next section. Another 

oscillatory behaviour along the diagonal direction (indicated by point C in Fig. 4.9 (e)) 

represents correlations between free electrons in the emitter and collector regions by normal 

tunnelling through the double barriers, which can be observed even in a single barrier structure.
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   The corresponding transient current calculated by using equation (4.11) is shown in Fig . 

4.10, and its interpretation is given below. Strictly speaking, the current density defined by 

equation (4.11) is correct only in the steady state since we do not include the time-dependent 

displacement current. Because of this simplification, the transient current density has a 

positional dependence in Fig. 4.10: the current density at the emitter edge, the collector edge, 

and in the quantum well are shown by a solid line, a broken line, and a broken line with a dot , 

respectively. Although it is possible to calculate the displacement current from the time-

derivative of the self-consistent Hartree potential, we intentionally show only the time-

dependence of the current caused by the change in electron density. The current density at the 

emitter edge (or the collector edge) can be regarded as the total current because the displacement 

current at the device edge is nearly zero.
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Figure 4.10 Time-dependence of current density calculated by using equation 

(4.11). Current densities at different positions in the device are monitored versus 
time: at the emitter edge (solid line); at the collector edge (broken line); and in the 

quantum well (broken line with a dot). The first arrows in the figure ((a) - (e)) 
indicate the times when the real and imaginary parts of the density matrix were drawn 
in Fig. 4.8 and 4.9.
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As described above, large current oscillation is observed in Fig. 4.10 as a result of a plasma-

type motion of electrons in the emitter and collector regions, which was seen in the imaginary 

parts of the density matrix(Figs. 4.9(a) - (e)). The period of the current oscillation of about 150 

fsec is mainly determined by the density and effective mass of electrons in the emitter and 

collector layer. The system reaches the steady state at a time of about 1000 fsec, resulting in the 

steady current of 3.1 x 104 A/cm2. It should be noted that the first peak-current of the plasma 

oscillation is more than one order of magnitude larger than the steady current. 

   The corresponding transient Wigner distribution functions defined by Eq. (4.2) are also 

shown in Fig. 4.11 in a position-wavenumber plane as the classical distribution functions. 

Space-charge build up in the quantum well as well as in the emitter region explained above can 

be seen in these figures. In addition current plasma oscillation observed above is seen as a 

variation in the Wigner distribution functions in the emitter and collector regions.
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Figure 4.11 Transient Wigner distribution functions calculated at the same times as 
in Fig. 4.8 and 4.9 by using Eq. (4.2): (a) at 50 fsec; (b) at 100 fsec; (c) at 200 fsec; 
(d) at 600 fsec; and (e) at 1000 fsec.
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Figure 4.11 continued.
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Figure 4.11 continued.
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(a)

T = 0050 fsec

(b)

                                                        T = 0100 fsec 

Figure 4.12 Wigner distribution functions at 50 fsec (a) and 100 fsec (b) seen 
from a different angle from those in Fig. 4.11.

The Wigner functions at T = 50 fsec and 100 fsec seen from a different angle are shown in Fig . 

4.12(a) and (b). It can be seen that the centre of the distribution function at the edge of the 

device is displaced from the origin of the k-axis representing the current flow . Comparing Figs. 

4.12(a) and (b) it is found that the overall distribution function shifts along the k-axis depending 

on a time. This actually demonstrates that electrons in the highly doped emitter and collector 

regions are in a collective mode, plasma oscillation , resulting in the current oscillation in Fig. 

4.10. 

  Calculated switching behaviours of the device with spacer layers are also shown in Fig . 

4.13. Figure 4.13 (a) shows the current transient when the initial bias of 115 mV ,
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corresponding to the peak voltage, is suddenly switched to 170 mV, corresponding to the valley 

voltage. The initial state at t=0 is a steady state under an applied bias of 115 mV, which was 

obtained as a result of continuous transient calculations with an small applied bias as described 

above (see inset in Fig. 4.13 (a)).
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Figure 4.13 Time-dependence of current density for (a) peak-to-valley and (b) 
valley-to-peak switching of the device with spacer layers (see inset in (a)).
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The meanings of three lines in these figures are the same as in Fig. 4.10. Plasma current 

oscillation with the same period as Fig. 4.10 is observed in the emitter and collector layers. The 

time-dependence of current density in the quantum well shows small oscillatory behaviour 

within some tens of femtoseconds. Because a similar rapid current transient has been observed 

in Wigner function calculations which neglect the self-consistent Hartree potential [9], this can 

be considered to arise from the rapid change in density of electrons accumulated in the quantum 

well after a sudden increase in applied voltage. The current transient for the reverse switching is 

shown in Fig. 4.13(b). The applied bias is suddenly switched from 170 mV to 115 mV. The 

current density initially drops, and then oscillates with almost the same period as in (a). For 

both peak-to-valley and valley-to-peak switching, the device reaches the steady-state at about 

one thousand femtoseconds, and the switching time is mainly determined by the plasma current 

oscillation which is a result of introducing the Hartree self-consistent field.

4.3 Space-charge build-up in a quantum well and intrinsic current 

   bistability 

4.3.1 Numerical analysis of intrinsic bistability 

  As mentioned in Chapter 3 double barrier RTDs frequently exhibit current hysteresis in 

their NDC regime which have given rise to heated controversies about its origin over a few 

years. One simple origin of the hysteresis is, as easily understood, current oscillation seen in 

the whole system which consists of this sort of NDC devices and series resistance in the 

extrinsic parts. This circuit-induced current bistability is exceedingly common among NDC 

devices and not characteristic to RTDs at all: This is thus called extrinsic bistability [26],[27] to 

distinguish it from another bistability which is significant from a physical point of view . A 

simple way to get rid of the extrinsic bistability and observe intrinsic characteristics is to connect 

a capacitor in parallel to the RTDs. In 1987 Goldman et al. [16] have first reported a different 

kind of current bistability which can be seen even after suppressing the oscillations. They 

termed it intrinsic bistability and ascribed it to dynamical charge build-up in the quantum well. 

Figures 4.14 (a) and 4.14 (b) show I-V characteristics near the first resonance for Samples 2 

and 3, respectively. Both samples show a clear hysteresis. The fact that the hysteresis is similar 

in both cases, even though the currents are a factor of 100 different, suggests that it cannot be 

attributed to the extrinsic effects of series resistance.
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   Let's start with the following simple discussion based on continuity of tunnelling current. 

The sheet concentration of the electrons accumulated in the well, 6u,,, can be expressed by using 

density of the resonant tunnelling current, J, and the tunnelling escape time,'tesc, of electrons in 

the well introduced in Sec. 3.2.1: 

  6W = J-Tesc (4.18) 

e This means that aW has a feedback dependence on the tunnelling current. The electrostatic 

interactions between the electrons accumulated in the well give rise to the energy shift of the 

quasi-bound state in the well leading to the change in the tunnelling current. Thus there is a 

possibility, at least qualitatively, of having two stable states of the device, high current with 

large accumulation and low current with small accumulation, in some voltage regime though 

numerical calculations are obviously necessary for further discussions on this issue.
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Figure 4.14 I-V characteristics for Samples 2 (a) and 3 (b)at 4.2K. The bias 
voltage was swept in both directions to show the hysteresis - the solid lines are for 
increasing voltage and the dashed line for decreasing voltage. where the lines overlay, 
only the solid curve is shown.

   In parallel to the experimental work by Goldman et al. several theoretical studies has been 

also reported to demonstrate the possibility of the space charge build-up: analysis based on the 

self-consistent calculations of tunnelling current (see Sec. 3.2.2) by Berkowtz et al [28], Mains 

et al [29] and more analytical calculations based on the rate equation for the electron occupancies 

in the well conducted by Sheard et al [30] are pioneering works to demonstrate the space charge
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build-up phenomenon inherent to RTDs. In these works the electrons stored in the well have 

been evaluated in two extreme situations, i.e. the global coherent tunnelling and incoherent 

sequential tunnelling limits. Recent numerical simulations [10],[22] ,[31] based on the quantum 

transport theory shown in the previous section facilitates us to investigate the dynamics of 

tunnelling electrons in the more realistic intermediate non-equilibrium regime . Figure 4.15 

shows the I-V characteristics of the device calculated at room temperature by using the density 

matrix theory described in Sec. 4.2.1. The steady-state I-V characteristics have been obtained 

by repeating the transient calculations shown in Sec. 4.2.2. First, a small external voltage , 

which is typically 5 to 10 mV, is applied to the device in thermal equilibrium . The current value 

after a time of 1500 fsec is stored as a steady-state current, and then the same step voltage is 

applied to this steady-state value. This process is repeated until the external bias reaches its 

maximum value. The I-V characteristics of the device without a spacer layer (thicknesses of 

highly doped n-type GaAs emitter and collector layers set to 24 nm) is also shown in this 

figure. Then the potential is decreased by applying a small negative bias to observe any 

hysteresis in the I-V characteristics. The peak voltage of the device with the spacer layers 

becomes larger than that without spacer layers because of the large voltage drop across them . 

The calculations in the negative differential resistance (NDR) regions are found to be slightly 

unstable compared with the positive differential resistance regions , and longer calculations were 

generally required to reach the steady-state. Small intrinsic bistabilities in NDR regions are 

observed in both devices. In the case of the device with spacer layers it seems that , when bias is 

decreased, the I-V curve in the NDR region shifts towards a lower voltage . Figure 4.16 shows 

energy-band diagrams corresponding to the two stable states of the device for an external bias 

of 0.15 V. When the bias is increasing, electrons with sheet concentration of 2 .1 x 1011 cm-2 

are accumulated in the quantum well at this bias . However, in the case of decreasing bias, the 

electron concentration goes down to 1.5 x 1011 cm-2 . The difference in the space charge build-

up leads to a different Hartree self-consistent field , and the bottom of the quantum well in the 

case of increasing bias is almost 10 meV higher than that in the case of decreasing bias . 

   Let's quickly take a look at the current shoulder in the NDR regions in Fig . 4.15. Similar 

structure has been sometimes observed experimentally in samples with large P/V current ratios , 

and several studies have been reported [32],[33] on extrinsic instability due to the bias circuit.
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Figure 4.15 I-V characteristics calculated for RTDs with and without spacer 
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Figure 4.16 Self-consistent energy-band diagrams calculated at two stable states 
under an applied bias of 0.15 V. Upper curve corresponds to the larger current state, 
and the lower curve the smaller current state.

From macroscopic circuit theory, it has been revealed that the I-V characteristics of the RTD 

with a bias circuit have a current shoulder whose shape depends on LCR parameters of the 

external circuit [33]. Because dynamics of electrons not only in the quantum well but also in the 

emitter and collector regions are now simulated exactly, the present results might show the 

existence of intrinsic instability of the system. We found that this current shoulder in the NDR 

region depends on the scattering-relaxation time and generally vanishes with decreasing 

relaxation time. This fact implies that the structure is produced by the electrons undergoing
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coherent tunnelling and becomes small as the phase-coherence of the electron-waves degrades 

with increasing scattering. However the microscopic physical mechanism causing this structure 

is not clear at present, and further investigation is necessary .

   Although the intrinsic bistability of symmetric double barrier RTDs have been well founded 

theoretically as shown here, its experimental observations have been a bit disputable because of 

the extrinsic bistability. A concrete experimental foundation of its existence was made by Alves 

et al. [34] and Leadbeater et al. [35] by the use of an asymmetric double barrier RID (see Fig . 

4.17). They have investigated the I-V characteristics of an Alo.4Gao.6As(8.3 nm)/ GaAs(5.8 

nm)/ A10.4GaO 6As(11.1 nm) double barrier RTD in both bias directions and found that the 

current bistability is observed only when the bias is applied so that the thicker barrier is on the 

collector side (this bias direction is defined reverse). The schematic energy band-diagram is 

shown in Fig. 4.17 at the first resonance in the reverse bias direction .

Emitter

Collector

Figure 4.17 Schematic energy band-diagram of an asymmetric double barrier 
RTD proposed by E. S. Alves et al.

In these circumstances the electrons which tunnel through the thinner barrier are stored in the 

quantum well for a long time because of the next thicker barrier leading to the large space charge 

build-up. On the contrary, in the forward bias direction, the electrons are much less 

accumulated in the quantum well since the electrons tunnel through the thinner barrier quickly 

from the quantum well. By using this device it was found that the I-V characteristics exhibit
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current bistability only in the reverse bias direction. This observation have reconfirmed the 

existence of the intrinsic bistability caused by the space charge build-up in the quantum well.

4.3.2 Magnetotransport measurements on space charge build-up 

  A more direct evidence of the space charge build-up in RTDs has been obtained by using 

magnetotransport measurement technique: It has been demonstrated that the amount of electron 

accumulation can be determined by analyzing oscillations of current and capacitance seen in a 

magnetic field perpendicular to the barriers [36]-[40]. In this section this powerful technique is 

adopted for further investigation of the space-charge build up and intrinsic bistability. 

   First let's see the simple discussion on resonant tunnelling in a magnetic field perpendicular 

to the barriers. It is well known that the lateral electronic states in both the accumulation region 

and the quantum well are given by replacing the lateral kinetic energy li2k/1/2m* with Landau 

subband energy, and thus the total electron energy E is expressed in both regions as follows: 

  E = E0 + (N + 1/2)liwc (4.19) 

where E0 is the lowest 2D-state energy in the emitter or quantum well, N the Landau-level 

quantum number, and ox the cyclotron frequency (= ehB/m*). Then a condition on resonant 

tunnelling under a magnetic field is simply expressed as follows: 

  E0(emitter) + (N + 1/2)1-icoc = E0(quantum well) + (N' + 1/2)liwc (4.20) 

Difference between N and N' represents the change in Landau level during the tunnelling. 

From Eq. (4.19) the N-th Landau level aligns to the local Fermi energy EF cal when the 

following condition is satisfied: 

  (1/B) =(N + 2) elocal (4.21) 
              M* EF 

This means that the tunnel current I and conductance G versus B curves exhibit peaks whenever 

the Landau Levels pass through the local Fermi level leading to oscillations with a definite 

period in 1/B. The interval between these peaks A(1/B) is thus related to the local Fermi energy 

EF cal by the following equation: 

          1 m* El cal  (A(IB))~ - e1•i (4.22) 

Therefore, the local Fermi energy can be extracted from the gradient of a graph of (1/B) versus 

the Landau index number N which for this purpose is arbitrary. Furthermore, if we assume that 

all of the Landau levels beneath the local Fermi level are full, that is electrons are completely
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thermalized, then the sheet concentration of the locally accumulated electrons 61oca1 is deduced 

from EF cal obtained above as follows: 

  EF cal = fit ~*1oca1 (4.23)

   An example of magneto-current characteristics for Sample 2 taken by C. Goodings, 

Microelectronics Research Centre, University of Cambridge, in collaboration with the author is 

shown in Fig. 4.18(a), where we see periodic structure. The positions of the peaks (or troughs) 

were extracted and plotted as (1/B) versus an arbitrary index N (see the inset). The data 

measured for Sample 3 (see Fig. 4.18(b)) are clearer than those for Sample 2, allowing the 

characteristics to be taken for a greater range of bias voltage.
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Figure 4.18 Magneto-current curves at 4.2K (a) for Sample 2, and (b) for 
Sample 3. The inset of (a) shows a plot of 11B versus the Landau index used to 
extract the Fermi energy and carrier density. (b) gives a set of normalised and offset 
curves for various bias voltages showing the asymmetry found at some biases. Data 
taken by C. Goodings, Microelectronics Research Centre, University of 
Cambridge, in collaboration with the author.

3.0

Thus for Sample 3 results could be obtained for the charge build-up in the post-resonance 

regime, while for Sample 2 this was not the case. The symmetry of the peaks was seen to vary 

with the applied bias - an observation also made by Thomas et al. [40]. Fig. 4.18(b) shows a 

series of magneto-current curves that show this effect for Sample 3, normalised to their zero-
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field values and offset. The characteristics with greatest asymmetry appear in the range of bias 

between the threshold and peak resonance voltage (0.3-0.6 V). 

   Bias dependence of charge accumulation in the emitter has been successfully measured for 

Sample 3 above the threshold voltage. The values obtained for EF and 6e in the emitter are 

shown in Fig. 4.19. Although the charge build-up in the quantum well c , has not been 

measured directly in this experiment, it can be determined in the following way. The main 

process that occurs between the threshold voltage and the peak resonance voltage is the build-up 

of charge in the quantum well. This gives a large amount of electrostatic feedback, screening the 

emitter barrier and accumulation region from the increasing fields. Thus we would expect, and 

see, the Fermi energy EF and the charge build-up in the emitter 6e to remain roughly constant in 

this range. As the bias is increased beyond the resonance peak, the resonant level in the 

quantum-well falls below that in the emitter and so the well suddenly becomes depopulated, 

giving a step change in the bias across the emitter barrier and accumulation region. This gives a 

sudden change in EF and 6e as seen in Fig. 4.19.
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Figure 4.19 Energy spacing between the local Fermi level and the lowest 2D-state 
in the accumulation layer and carrier density in the emitter region for Sample 3. The 
results show a marked step in charge accumulation at the resonance peak (marked by 
the arrows). Data taken by C. Goodings, Microelectronics research centre, University 
of Cambridge, in collaboration with the author.
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   Electrostatic feedback provided by the voltage drop across the depletion region ensures that 

the charge lost from the quantum well is roughly balanced by the charge gained in the 

accumulation region, i.e. w = A ((Ye). In Fig. 4.19, we see that the charge in the accumulation 

region increase from 2.3 x 1011 cm-2 to 3.3 x 1011 cm-2 as the device switches , and thus 

charge accumulation in the quantum well w is estimated to be about 1 x 1011 cm-2 . At 

resonance 6e of 3.7 x 1011 cm-2 and 2.3 x 1011 cm-2 were measured for Samples 2 and 3. 

Goldman et al. [41] suggest a very simple model for the estimation of the charge accumulation 

in a sample with no depletion region by treating the structure as a parallel-plate capacitor . 

Adapting this model, the following expression is derived for the charge accumulation in the 

emitter: 

  Ge = q d E w/2 (4.24) 

   Using values of E0 obtained from the transmission probability calculations, the charge 

accumulations of 6.2 x 1011 cm-2 and 3.5 x 1011 cm-2 are found for Samples 2 and 3 , in 

reasonable agreement with, but about 50% higher than, the measured values .

   An alternative technique was used by Leadbeater et al. [39]. The capacitance of a RTD will 

depend upon the charge contained since this affects the size of the depletion region , so that a 

periodic structure will be observed in the magneto-capacitance data as well. This technique has 

the advantage that the the charge can be measured even when there is no current flow , for 

example below threshold. However, the values of the capacitance are small , and for the 

relatively small-area devices would have been less than 1 pF and completely swamped by stray 

capacitances. Hence this method could be used only for large area devices . By using this 

magneto-capacitance method, Leadbeater et al. were able to separate the charge build-up in the 

quantum well and the accumulation region by taking the Fourier transform of the oscillatory 

structure. They measured the voltage dependence of the differential capacitance C of the 

asymmetric A10.4Ga0.6As(8.3 nm) /GaAs(5.8 nm) /A10.4Ga0.6As(11.1 nm) double barrier RTD 

in the low frequency regime from 10 kHz to 2 MHz . From the detailed Fourier analysis of the 

data they have found two series of oscillations which arise from the space charge build-up in the 

quantum well c and in the accumulation region in the emitter (Ye. A similar bias dependence of 

6e was found with a step increase at the current peak voltage . In addition it was clearly seen that 

the value of w begins to increase over threshold while 6e is kept constant to be 1.9 x 1011 cm-
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2 and reaches 1.6 x 1011 cm-2 near the peak voltage. They have also found the difference in the 

magneto-oscillations corresponding to the current bistability in the NDC regime.

  Finally in this section we will consider again about the assumption adopted to derive Eq. 

(4.22): the local Fermi energy EF cal requires an attention for its meaning. In the non-

equilibrium situation there is no justification of using the idea of Fermi energy for electrons in 

the quantum well: the distribution function is in general different from the Fermi distribution 

function. In the case that electrons frequently suffer phase-coherence breaking scattering in the 

quantum well, however, we may define the local quasi-Fermi energy for the equilibriated 
electrons in an approximate way. The theoretical analysis of the space charge build-up has been 

done by using the density matrix calculations shown in the last section.
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Figure 4.20 Applied voltage dependence of (a) current density and (b) sheet 
electron concentration in the quantum well calculated for the device without spacer 
layers with various values of 2S.
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Fig. 4.20(a) shows the I-V characteristics of the device without spacer layers calculated with 

various values of relaxation time due to scattering: ', = 100 fsec (solid line); 80 fsec (broken 

line); 60 fsec (one-point broken line); and 40 fsec (dotted line). As shown in this figure , the 

peak current decreases, and the valley current rapidly increases as the relaxation time decreases, 

resulting in a large degradation in the peak-to-valley current ratio. It should be noted that the I-V 

curve for a scattering time of 40 fsec no longer has a NDR region. This strong z, -dependence 

of the P/V current ratio is understood as follows: Fig. 4.20(b) shows the voltage dependence 

of the sheet concentration, ns, of electrons accumulated in the quantum well calculated with 

various values of the relaxation time. It can be seen that the ns -V curves have similar peak-to-

valley structures corresponding to the NDR of the I-V characteristics, and the peak-to-valley 

ratios also decreases with decreasing tis. A shorter relaxation time corresponds to more frequent 

momentum relaxation of electrons in the quantum well. In other words, the phase-coherence of 

the electron-waves at resonance degrades, and the tunnelling mechanism changes from coherent 

tunnelling to sequential tunnelling. The increase in ns for the valley-state indicates that a number 

of electrons are still present on the quasi-bound level even at off-resonance, resulting in a large 

valley current. 

   Figure 4.21 shows the imaginary parts of the density matrix at the peak-current state: 

calculated with tis of (a) 100 fsec and (b) 40 fsec. As explained earlier, the phase-coherence of 

the electron-waves at resonance can be observed as the oscillatory behaviour of the off-diagonal 

elements. Comparing these two figures, it can be clearly seen that amplitude of the oscillation in 

Fig. 4.21(b) is much smaller than that in Fig. 4.21(a). These figures show us directly the 

degradation of the electron-wave-coherence due to scattering.

   In summary of this chapter dissipative transport and non-equilibrium electron distribution 

in RTDs have been investigated. The statistical density matrix theory has been used to develop a 

tractable numerical modelling of dissipative aspect of resonant tunnelling in double barrier 

RTDs. By introducing the Hartree self-consistent field model for electron-electron interactions 

and the relaxation-time approximation for scattering processes, the one-dimensional time-

dependent Liouville-von Neumann equation for the electron density matrix has been solved . 

The modelling has been applied to the simple A1GaAs/GaAs double barrier RTDs and the 

femtosecond time-evolution of the density matrix under an applied field has been demonstrated .



140

u 
O 

Y. 

h 

y 
 Ca 

d 
Q 

E

0.5

0.0

Part o1 

Matrix 

1 Isec

V 
O 
u 

L 
h 

 .y 
C v 
Q

0.5

0.0

Part of 

Matrix 

 /sec

(u)

Figure 4.21 Imaginary part of the steady-state density matrix (at a time of 1500 

fsec) calculated with 2S of (a) 100 fsec and 9b) 40 fsec. The reduced oscillatory 
behaviour of the off-diagonal elements in (b) signifies degradation of the phase-
coherence in the device due to a shorter scattering relaxation time.

Remarkable oscillatory behaviour found in the off-diagonal elements reveals the existence of 

long-range phase-correlations of the electron-wave in the resonance state. Intrinsic bistability 

and switching characteristics of the device have been investigated from the viewpoint of charge 

accumulation in the quantum well, and the peak-to valley current ratio is discussed in terms of 

phase-coherence degradation of electron-waves due to scattering. 

   In addition,magnetotransport measurement technique has been used to observe the space 

charge build up and resultant intrinsic current bistability of RTDs. Reasonable values of the



                                                    141 

concentration of electrons accumulated in the pseudo-triangle well and quantum well have been 

obtained. These results manifest that electrons tunnelling into the quantum well are partly 

thermalized by phase-breaking scattering processes leading to the P/V current ratios of RTDs .

4.4 Reference IV 

[1] S. Luryi, "Frequency limit of double-barrier resonant-tunneling oscillators", Appl. Phys. 

  Lett. 47, 490, 1985. 

[2] S. Luryi, "Coherent versus incoherent resonant tunneling and implications for fast devices", 

  Superlattices and Microstructures, 5, 375, 1989. 

[3] T. Weil and B. Vinter, "Equivalence between resonant tunnelling and sequential tunnelling 

  in double-barrier diodes", Appl. Phys. Lett. 50, 1281, 1987. 

[4] D. Ter Haar, "Theory and Applications of the density matrix", Reports on progress in 

   Physics, 24, 304, 1961. 

[5] J. R. Barker and S. Murray, "A quasi-classical formulation of the Wigner function approach 

   to quantum ballistic transport", Phys. Lett. 93A, 271, 1983. 

[6] D. Y. Xing, and C. S. Ting, "Green's-function approach to transient hot-electron transport 

   in semiconductors under a uniform electric field', Phys. Rev. B35, 3971,1987. 

[7] B. A. Mason, and K. Hess, "Quantum Monte Carlo calculations of electron dynamics in 

   dissipative solid-state systems using real-time path integrals', Phys. Rev. B39, 5051, 

  1989. 

[8] U. Ravaioli, A. M. Osman, W. Poetz, N. C. Kluksdahl, and D. K. Ferry, "Investigation of 

   ballistic transport through resonant-tunneling quantum wells using Wigner function 

   approach", Physica 134B, 36, 1985. 

[9] W. R. Frensley, "Wigner-function model of a resonant-tunneling semiconductor device", 

   Phys. Rev. B36, 1570, 1987. 

[10] N. C. Kluksdahl, A. M. Kriman, D. K. Ferry, and C. Ringhofer, "Self-consistent study 

   of the resonant-tunneling diode", Phys. Rev. B39, 7720, 1989. 

[11] W. R. Frensley, "Quantum kinetic theory of nanoelectronic devices", 

  NANOSTRUCTURE PHYSICS AND FABRICATION, Proceedings of the International 

   Symposium, Academic Press, Inc., 231, 1989.



                                                     142 

[12] J. S. Wu, C. Y. Chang, C. P. Lee, K. H. Chang, D. G. Liu, and D. C. Liou, "Resonant 

  tunneling of electrons from quantized levels in the accumulation layer of double-barrier 

  heterostructures", Appl. Phys. Lett. 57, 2311, 1990. 

[13] Y. G. Gobato, F. Chevoir, J. M. Berroir, P. Bois, Y. Guldner, J. Nagle, J. P. Vieren and 

  B. Vinter, "Magnetotunnelling analysis of the scattering processes in a double-barrier 

  structure with a two-dimensional emitter", Phys. Rev. B43, 4843, 1991. 

[14] H. Zheng and F. Yang, in Resonant Tunneling in Semiconductors: Physics and 

  Applications, edited by L. L. Chang (pllenum, New York, 1990). 

[15] F. Chevoir and B. Vinter, in Resonant Tunneling in Semiconductors: Physics and 

  Applications, edited by L. L. Chang (pllenum, New York, 1990). 

[16] V. J. Goldman, D. C. Tsui, and J. E. Cunningham, "Observation of inelastic bistability in 

  resonant tunneling structures", Phys. Rev. Lett. 58, 1256, 1987. 

[17] W. R. Frensley, "Simulation of resonant-tunneling heterostructure devices", J. Vac. Sci. 

   Technol. B3, 1261, 1985. 

[18] R. Brunetti, C. Jacoboni, and F. Rossi, "Quantum theory of transient transport in 

   semiconductors: a Monte Carlo approach", Phys. Rev. B39, 10781, 1989. 

[19] P. Menziani, F. Rossi, and C. Jacoboni, "Impurity scattering in quantum transport 

   simulation", Sol. State Electr. 32, 1807, 1989. 

[20] F. Rossi and C. Jacoboni, "A quantum description of drift velocity overshoot at high 

   electric fields in semiconductors", Sol. State Electr. 32, 1411, 1989. 

[21] A. M. Kriman, N. C. Kluksdahl, and D. K. Ferry, "Scattering states and distribution 

   functions for microstructures", Phys. Rev. B36, 5953, 1987. 

[22] H. Mizuta and C. J. Goodings, "Transient quantum transport simulation based on the 

   statistical density matrix", J. Phys.: Condens. Matter 3, 3739, 1991. 

[23] I. B. Levinson, "Translational invariance in uniform fields and the equation for the density 

   matrix in the Wigner representation", Sov. Phys. JETP 30, 362,1970. 

[24] A. O. Caldeira and A. J. Leggett, "Path integral approach to quantum brownian motion", 

   Physica 121A, pp. 587-616, 1983. 

[25] W. R. Frensley, "Boundary conditions for open quantum systems driven far from 

   equilibrium", Rev. of Mod. Phys. 62, 745, 1990 

[26] T. C. L. G. Sollner, "Comments on "Observation of intrinsic bistability in resonant-

   tunneling structures", Phys. Rev. Lett. 59, 1622, 1987.



                                                    143 

[27] T. J. Foster, M. L. Leadbeater, L. Eaves, M. Henini, O. H. Hughes, C. A. Payling, F. 

   W. Sheard, P. E. Simmonds, and G. A. Toombs, "Current bistability in double-barrier 

   resonant tunneling devices", Phys. Rev. B39, 6205, 1989. 

[28] H. L. Berkowitz and R. A. Lux, "Hysterisis predicted in I-V curve of heterojunction 

   resonant tunneling diodes simulated by a self-consistent quantum method", J. Vac. Sci. 
  Technol. B5, 967, 1987. 

[28] R. K. Mains, J. P. Sun, and G. I. Haddad, "Observation of intrinsic bistability in resonant 

   tunneling diode modeling", Appl. Phys. Lett. 55, 371, 1988. 

[30] F. W. Sheard and G. A. Toombs, "Space-charge buildup and bistability in resonant-

   tunneling double-barrier heterostructures", Appl. Phys. Lett. 52, 1228, 1988. 

[31] K. L. Jensen and F. A. Bout, "Numerical simulation of intrinsic bistability and high-

   frequency current oscillations in resonant tunnelling structures", Phys. Rev. Lett. 66, 

  1078, 1991. 

[32] Jeff. F. Young, B. M. Wood, H. C. Liu, M. Buchanan, D. Landheer, A. J. 

   SpringThorpe, and P. Mandeville,"Effect of circuit oscillations of the dc current-voltage 

   characteristics of double barrier resonant tunneling structures", Appl. Phys. Lett.52, 1398, 
  1988 

[33] C. Y. Belhadj, K. P. Martin, S. Ben Amor, J. J. L. Rascol, R. C. Potter, H. Hier, and E. 
   Hempfling,"Bias circuit effects on the current-voltage characteristic of double-barrier 

   tunneling structures: Experimental and theoretical results", Appl. Phys. Lett. 57, 58, 1990 

[34] E. S. Alves, L. Eaves, M. Henini, O. H. Hughes, M. L. Leadbeater, F. W. Sheard, G. 
  A. Toombs, G. Hill, and M. A. Pate, "Observation of intrinsic bistability in resonant 

  tunnelling devices", Electron. Lett. 24, 1190, 1988. 

[35] M. L. Leadbeater, E. S. Alves, L. Eaves, M. Henini, O. H. Hughes, F. W. Sheard, and 

  G. A. Toombs, " ", Semicond. Sci. Technol. 3, 1060, 1988. 

[36] V. J. Goldman, D. C. Tsui, and J. E. Cunningham, "Resonant tunneling in magnetic 

  fields: Evidence for space-charge buidup", Phys. Rev. B35, 9387, 1987. 

[37] L. Eaves, G. A. Toombs, F. W. Sheard, C. A. Payling, M. L. Leadbeater, E. S. Alves, 
  T. J. Foster, P. E. Simmonds, M. Henini, O. G. Hughes, J. C. Portal, G. Hill, and M. A. 
  Pate, "Sequential tunneling due to intersubband scattering in double-barrier resonant 

  tunneling devices", Appl. Phys. Lett. 52, 212, 1988.



144

[38] C. A. Payling, E. S. Alves, L. Eaves, T. J. Foster, M. Henini, O. H. Hughes, P. E. 

  Simmonds, F. W. Sheard, G. A. Toombs, and J. C. Portal, "Evidence for sequential 

  tunnelling and charge build-up in double barrier resonant tunnelling devices", Surface 

  Science 196, 404, 1988. 

[39] M. L. Leadbeater, E. S. Alves, F. W. Sheard, L. Eaves, M. Henini, O. G. Hughes, and 

  G. A. Toombs, "Observation of space-charge build-up and thermalization in an asymmetric 

  double-barrier resonant tunnelling structure", J. Phys: Condense. Matter 1, 10605, 1989. 

[40] D. Thomas, "Magneto-tunneling studies of charge build-up in double barrier diodes", 

  Superlattices and Microstructures 5, 219, 1989. 

[41] V. J. Goldman, Bo Su, and J. E. Cunningham, in Resonant Tunneling in Semiconductors: 

  Physics and Applications, edited by L. L. Chang (Plenum, New York, 1990).



145

CBAIPU22 5

            QUANTUM TRANSPORT IN 

THREE-DIMENSIONALLY CONFINED HETEROSTRUCTURES

  The last chapter is devoted to the study of quantum transport through ultimate nanometer-

scale heterostructures, quantum dots. Recent rapid advance in nanofabrication technique has 

naturally led to an idea of resonant tunnelling through a three-dimensional confined quantum 

dot. Ultrasmall resonant tunnelling structures [1]-[8] in which electrons are confined laterally as 

well as vertically have become of great interest from the standpoints of both physics of quantum 

transport through three-dimensionally confined electronic states and device miniaturization 

towards highly integrated functional resonant tunnelling devices. The zero-dimensional resonant 

tunnelling diode (OD-RTD) is a virtually isolated quantum dot only weakly coupled to reservoirs 

and so is well suited to investigate electron-wave transport properties through three-

dimensionally quantized energy levels. By designing structural parameters such as barrier 

thickness, quantum well width, and dimensions of lateral confinement, it is possible to realize a 

"quantum box" in which the number of electrons is nearly quantized so the effect of single 

charge assisted transport, or called Coulomb blockade [9]-[l 1 ], becomes significant. After 

Reed et al. reported in 1988 their pioneering work on resonant tunnelling through a quantum 

pillar which was fabricated by using electron beam lithography and dry etching, several 

theoretical and experimental works have been reported to investigate the mechanism of the 

observed fine structures. Transport in the OD-RTD is generally much more complicated than 

that in a conventional large area resonant tunnelling diode ( this is hereafter called a 2D-RTD): 

problems such as lateral mode mixing due to non-uniform confinement potential, charge 

quantization in a quantum well, and an interplay between resonant tunnelling and Coulomb 

blockade single electron tunnelling are recently invoked for the OD-RTDs and still far from their 

conclusions.
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   This chapter is not intended to discuss the proper description of quantum transport in these 

systems but, by using preliminary but numerically tractable modellings, to make clear some 

novel transport properties. Theoretical framework adopted in this chapter is a natural expansion 

of the S-matrix theory used to describe the global coherent tunnelling in Chapter 3 into the 

present three-dimensional nanostructures. The classical hydrodynamic device simulation 

technique is utilized to have confinement potential profiles in the easiest way which are not 

completely exact but reasonably plausible. This method gives us numerical results which can be 

used to discuss the experimental results quantitatively by using currently usable computer 

resources. Taking consideration of these numerical results a novel gated OD-RTD is proposed 

and fabricated by using focused ion beam technique. Three-dimensional confinement effects 

and novel single impurity effects on the transport properties are investigated as quantitatively as 

possible.

5.1 Low-dimensional resonant tunnelling diodes 

   A pioneering work on resonant tunnelling through a three-dimensionally confined quantum 

well ("quantum dot") has been done by Reed et al. [1],[2]. The conventional resonant 

tunnelling wafer was etched vertically down to the n+-GaAs bottom contact layer and quantum 

pillars (see Fig. 5.1) were defined in the wafer. Reed et al. fabricated a collection of the 

quantum pillars with a diameter in the range 100-250 nm. An initial epitaxial structure is a 5 nm 

undoped Ino.o8Ga0.92As strained well sandwiched between 4 nm undoped A1o.25Gao.75As 

barriers with 10 nm undoped GaAs spacer and 20 nm graded n-GaAs layers grown on an n+-

GaAs contact layer. Electron beam lithography and highly anisotropic reactive ion etching were 

used to fabricate these structures with ohmic contact metal on top. Similar structure has also 

been formed by Su et al. [4] by using wet chemical etching. In these etched structures there 

exist defect states on the lateral surface of the pillar capture electrons and the density of the 

surface states is high enough to pin Fermi-level on the surface. Thus electrons in the 

nanostructure are laterally confined in a gutter shaped potential well shown in Fig. 5.2 which 

consists of parabolic (rc < r < rs) and flat (0 < r < rc) parts. This nanostructure is hereafter called 

a zero-dimensional resonant tunnelling diode (OD-RTD) compared to the conventional large area 

RTDs in which motion of electrons are not quantized in a two-dimensional plane parallel to a 

heterointerface and so should be referred as 2D-RTDs in this chapter. Reed et al. measured the
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I-V characteristics of the single OD-RTD at various temperatures [1],[2]. At high temperatures 

the OD-RTD shows a negative differential conductance in the I-V characteristics which is 

basically the same as that of the 2D-RTDs. Lowering the temperature, however, a series of 

small current peaks appears which is superimposed on the negative differential conductance . 

These fine structures were attributed to resonant tunnelling through three-dimensionally 

quantized states in the quantum dot.
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Figure 5.2 A gutter shaped lateral confinement potential formed in the simply 
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  A different type of the low-dimensional-RTD has been reported by Tarucha et al [3],[5]. 

They used focused Ga-ion beam implantation to define a zero-dimensional structure instead of 

etching shown above. A 100-nm-diameter Ga-FIB with a dose of 5x1012 cm-2 was scanned on 

the surface of the resonant tunnelling wafer leaving a small rectangular area as illustrated in Fig. 

5.3. After a rapid thermal annealing the implanted Ga ions convert n-type GaAs regions in the 

wafer into p-type and then form the PN jucntion based lateral confinement potential similar to 

that of the etched nanostructure (Fig. 5.2).

lumen mrc_,

        ,6. 
a

Figure 5.3 Schematic top view of a zero-dimensional structure fabricated by 
Tarucha et al. by using Ga ion-beam implantation.

They have focused on the structures with rectangular lateral confinement (Lx < Ly) in which 

electronic states are quantized only in x-dimension as Ly is not small enough to achieve 

quantization: these structures are thus called 1 D-RTDs. This structure enables us to see the 

effects of lateral quantization in a clearer way since electrons are confined in the one-

dimensional gutter potential well resulting in nearly equal splitting between quantized energy EX 

in the x-dimension. They measured the I-V characteristics of the 1 D-RTDs with various areas 

(LxxLy) at 4 K [3]. The largest sample with Lx of 310 nm shows only single NDC associated 

with the first quasi-bound state of the double barrier structure. A series of small current peaks is 

observed for the smaller samples in the NDC regime which is attributable to the quantization in 

the x-dimension and is more pronounced in the case of Lx of 155 nm with a bigger interval
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between them. Tarucha et al. analyzed the observed peak voltages by comparing with subband 

energies calculated for the one-dimensional gutter potential and assigned these peaks up to the 

7th quantized level in relatively good agreement with the calculations [3].

   Theoretical description of the OD-resonant tunnelling is much more complicated than that 

for the conventional 2D-resonant tunnelling because of the lateral confinement. The difficulty 

stems from the non-uniform lateral confinement potential which is formed by differences in 

surface depletion even though the device is fabricated to be geometrically straight in a vertical 

direction. Figure 5.4 shows an example of the lateral confinement potential distribution which 

looks like an hourglass along the channel: the detail of this figure is explained in the next 

section. This non-uniform confinement mainly results in the following two effects. First the 

lateral quantized energies varies gradually in the z-dimension. The energy separation between 

the lateral energies in the quantum well is larger than that in the cathode and anode regions. 

Second the non-uniform confinement causes lateral wavefunction mismatch and mixes the 

lateral electronic states (lateral mode mixing): theoretical work reported by Bryant [13]-[15] has 

demonstrated the importance of the lateral mode mixing in this system. It is therefore difficult to 

serve an intuitive picture of the OD-resonant tunnelling and proper theoretical modelling requires 

three-dimensional transport theory as shown in the next section. A rather simple modelling, 

however, was proposed by Reed et al. [5] based on the transfer Hamiltonian type picture which 

is worth introducing before preceding the three-dimensional theory. 

   Following the early theoretical work by Bryant [14] Reed et al. introduced two quantum 

numbers n and n' to describe lateral motions of electrons in the cathode region and in the 

quantum well, respectively. Thus energy of electrons in these two regions are approximately 

expressed as Ey + Ekz and Ey + Ekz0 where Ey is the energy of the T-th lateral mode, EkZ the 

z-component of electrons (= h2kz2/2m*), and Ekz0 the energy of the lowest quasi-bound state in 

the quantum well. An interval of the lateral energy Ey+l - Ey in the quantum well is thus larger 

than Ey+l - Ey in the cathode region. A series of quantized levels in these regions is 

schematically shown in Fig. 5.5 (a). Reed et al. reported that the observed fine structure can be 

modelled as resonances of the levels in the well with those in the cathode under an applied bias 

(see Fig. 5.5 (b)). Each time when a level in the well crosses one of the levels in the cathode 

electrons tunnel through to the anode region leading to a resonant current peak .
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If y = Y the tunnelling conserves lateral mode (momentum) and if not it is lateral mode non-

conserving tunnelling. To evaluate transition rates and selection rules for these tunnelling, three-

dimensional numerical calculations by using the profile of the confinement potential are 

apparently necessary. Reed et al. picked up all the crossings of the quantum well levels with the 

cathode levels as a function of applied bias and compared with the observed peak voltages [2]. 

The calculated results agree well with the experimental results as shown in [2] and indicate that 

the lateral mode non-conserving tunnelling actually contributes to the current. Tarucha et al. also 

adopted this model to analyze the experimental results of the 1 D-RTDs [5] and found that extra 

structures newly observed at lower temperatures are attributable to the lateral mode non-

conserving tunnelling. 

As shown above this simple model gave us an intuitive understanding of the low-dimensional 

resonant tunnelling. In the next section further quantitative analysis of multi-mode resonant 

tunnelling is presented by introducing the three-dimensional S-matrix theory which fully 

includes lateral mode mixing.

5.2 Theory of zero-dimensional resonant tunnelling 

5.2.1 Three-dimensional S-matrix theory 

   In this section a multi-mode S-matrix theory based on the three-dimensional Schrodinger 

equation for open systems is presented to look into the detail of electron transport through the 

OD-RTDs. Several theoretical studies of the two-dimensional scattering equation have been 

reported for laterally patterned two-dimensional electron gas systems [17]-[24]. Because direct 

numerical calculations usually have large computational time and memory requirements, several 

useful alternative methods have also been proposed. Also the three-dimensional Schrodinger 

equation has been solved by Kumar for a completely isolated quantum dot under a magnetic 

field [25] and a structure periodic in one direction [26]. Since the electronic states become 

completely bound states or subbands rather than continuous scattering states in these 

circumstances, this method is not adequate for the present purpose. Very recently, Nakazato et 

al. [27] have analyzed transport properties of lateral quantum wires with geometrical 

confinement by solving the two-dimensional scattering equation numerically and have shown 

anti-resonance dips of conductance resulting from lateral mode mixing. In this paper we present
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the three-dimensional scattering formulation and calculate the scattering matrix (S-matrix) 

numerically to investigate the effect of two-dimensional lateral mode mixing on transport 

properties of OD-RTDs. In the present calculation the self-consistent Hartree potential, which 

would be crucial to analyze Coulomb blockade, is neglected for simplicity. 

   We start from the three-dimensional time-independent Schrodinger equation: 

   ~2 a2 a2 a2   - - + - + - (x,y,z) + V(x,y,z)(x,y,z) = EW(x,y,z) (5 .1) 
   2m* ax2 aye az2 

where m* is the conduction-band effective mass and V(x,y,z) is the three-dimensional potential 

distribution which consists of lateral confinement potential VLC(X,Y,Z), the electron affinity 

VO(z) and the potential along a channel due to an external bias VEX(z) which are both assumed 

to be dependent only on z-coordinate, and any other scattering potentials such as a single 

ionised donor potential VIM(x,y,z) discussed in sec. 5.3.3: 

  V(X,y,Z) = VLC(x,Y,Z) + VOW + VEX(Z) + VIM(x,Y,Z) (5.2) 

The three-dimensional wavefunction W(x,y,z) is decomposed by using a complete set of two-

dimensional lateral wavefunctions at each z point, 9y (x,y I z), as follows: 

   T(x,y,z) _ cpy(x,y Iz )Xy(Z) (5.3) 

Y The lateral wavefunction cpy (x,y I z) is obtained by solving numerically the following two-

dimensional Schrodinger equation: 

    -h2 a2 a2     - - + y(x,y Iz ) + VLC(x,y,z)q (x,y Iz) = sy(z)cpy(x,y Iz) (5 .4) 
    2m* ax2 aye 

with the Dirichlet boundary conditions, (py (x,y I z) = 0, on the boundaries of the device. The 

index 'y represents a two-dimensional lateral mode number and &y (z) a corresponding 'y-th 

lateral eigenenergy. 

   Substituting Eq. (5.3) into Eq. (5.1), the three-dimensional Schrodinger equation reduces 

to the following one-dimensional scattering equation for the z-component of the wavefunction 

xy(z): 

 dz2 xy(z) + k2(Z) xY(z) + (2c°:1kz)- ~, x,(z) + do,))(z) x"(z)) = 0 (5.5) 
Y where ky(z) denotes a complex wavenumber given by 

  ky(z) = 2* (E - &y(z) - Vo(z) - VEX(z)) (5.6)
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Mode mixing coefficients Cy,'y, and CyY'y, are written as 

Cy°;')(Z) = j dx1 dy cpy(x,y Iz) a cp.1(x,y Iz) 
a (5.7) 

z 2 

 C(°',2)(z) = j dx J dy cpy(x,y Iz) r--cpy(x,y Iz) (5.8) 

a and are evaluated by using the previously obtained set of lateral wavefunctions . The third term 

in Eq. (5.5) causes the mixing of lateral modes and is non-zero unless the system is uniform in 

the z-direction. The first derivative term of Xy(z) in Eq. (5.5) can be eliminated by applying the 

unitary transformation: 

 XY(z) _ My,Y(z) fy(z) (5.9) 

where a unitary matrix My(z) is defined as follows: 

Z 

          f C(,O,'"')(z')dz' (5.10)  MY,Y(z) = exp -

The matrix Myy(z) is calculated by using a second order expansion approximation [27] which 

guarantees unitarity of the matrix. Substituting Eqs. (5.9) and (5.10) into Eq. (5.5), the 

transformation leads to the following equation: 

 dz2 fy(z) = -~ o'oY,Y(z) f,(z) (5.11) 
Y where a matrix GJyy>(z) is written as 

   ,Y(z) _ Z Z (M_')Y,Y'(z) WY"'/"(z) my" Y(z) (5.12) 
             y„ yl„ 

      = 2yz)Sy,Y - (C(°,1)(Z))2 - 1, 1)(Z) - 2m* VIM(,)  WY,Y(z) k ,Y Y,Y 
X12 Y,Y (5.13) 

  Cy1~r')(z) = J dx J dy 
a-~py(x,y Iz )- -cpy(x,y Iz) (5.14) 

 VIM (z) = f f dx dy cp,(x,y Iz) VIM(x,y,z) cpy~(x,y Iz) (5.15) 
and the expression i C(°°')(z) ),2y y. in Eq. (13) means the (y, y')-element of the multiplied matrix 

C(°'')(z)•C(0'')(z).
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   A set of renormalized complex wavenumbers KY(z) , which includes the lateral mode 

mixing, is obtained by solving an eigenvalue equation: 

 E WY,Y'(z) V_'',. (z) = (K,/(Z))2 VY,y(z) (5.16) 
 Y" 

where VYY'(z) is a unitary matrix which diagonalizes the matrix W '(z). Then the z-component 

of the wavefunction can be expressed as a superposition of plane waves: 

 XY(z) _ M.,,-I(z) Vy,.y,(z)(A.?u(z)exp(iKy-(z) z) + B.y'(z)exp(- iKyi(z) z)) (5.17) 

where AY (z) and BY (z) are coefficients of forward and backward plane waves in the y-th lateral 

mode with the complex wavenumber K. (z). Equation (16) is discretized on the finite-difference 

z-mesh points. Assuming these coefficients to be constant between two adjacent z-mesh points, 

the three-dimensional wavefunction W(x,y,z) can be finally written as 

W(')(x,y,z) . c (x,y Iz)Iv1 V( Y (A ,exp(iK(i,`~ z) + B(i,',exp(- k                                             ~ z) 1 (5.18) 
          Y Y Y" 

where the index (i) denotes a small region between adjacent z-mesh points zi and zi+1. 

   From the continuity of electron probability flux of electrons through the system, the 

following conditions on the total wavefunctions hold at the z-mesh point zi+l for given x and y: 

  TO) (x,y,zi+t) = W(i+')(x,y,zi+i) (5.19) 

  1
* a W(i)(x,y,z) _ 1* a W(i+])(x,y,z) (5.20)   m az IZ = zi+I m az z = zi+i 

The coefficients at the adjacent z-mesh points are then related as follows: 

   AiY+ I A~ 
                                                        (5.21)        = T(')(Y' ) 

   B' % 

A matrix 1(i>(y }~') can be expressed as 

        ct+')('W) exp( i (K,('') - K(+i)) zi+i) a(')(y,y) expj- i (K,(i,') + K4i+i)) zi+1) 
T(')(y,'/) _ 

             expj i (K(~') + KYi+t)) zi+i) a+')(y, ') expj- i (Ky) Zi+i, 
          (i)           X

Y,Y, (5.22) 

where matrices a+~)(Y, Y') and X(y~ Y' are given by the following expressions:
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                K0)    0) mi
+1 

  ± 2 m* K(i+1) (5.23) 

  XY,Y V171 "Y M,71 1 -13 V(; Y (5.24) 
          71 Yz Ys 

Hence the coefficients at the cathode (Ay, BY) and anode (Ay, By) edges of the device are 

related by using a multi-mode transfer matrix T('Y y'): 

 Ay A 
     = Z T(y/) (5.25) 

  By Y' BY 

 T = T(N)T(N-1)T(N-2)...T(2)T(1) (5.26) 

It should be noted that the transfer matrix contains both propagating and evanescent modes 

depending on the total energy and lateral mode eigenenergies. Nakazato et al. [27] calculated a 

reduced transfer matrix from the above full transfer matrix to separate the propagating modes 

from the evanescent ones. In the present calculations, however, there is always a difference in 

the number of the propagating modes at the cathode and anode edges under a non-zero external 

bias, and the resulting reduced transfer matrix is no longer regular. Thus in the following 

calculations the full transfer matrix is adopted rather than the reduced transfer matrix. A relevant 

multi-mode scattering matrix S (y, y) which is defined as 

  By 
                                                     (5.27) 

  Ay y BR 

is calculated from the transfer matrix. The multi-mode transmission probability t L,R(E; y i/) 

and the total transmission rate T(E) , i.e. conductance at zero temperature, are then obtained 

from the S-matrix as follows: 

tR(E; y /) = IS 12(Y,/ )12 (5.28) 

 tL(E; y ?/) = IS 21(Y,y )12 (5.29) 

T (E) _ E tR(E; y'/)9(E - 4y) 6(E - 4) _ tL(E; y /)9(E - 4) O(E - 4) 
         Y Y' Y y' 

                                                     (5.30) 

where 9(E) is the step-function. A complete set of the three-dimensional wavefunctions 

W(x,y,z) can be obtained by using the following scattering boundary conditions:
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 (AY, BR) = ( , 7 , 0) (,y=1,2,3 ,..... ) (5.31) 

for an incident electron-wave with a lateral mode Yo originating at the cathode edge of the 

system, and 

 (Ay, BR) = (0 , w, yo) (Y= 1,2,3,..... ) (5.32) 

when it originates at the anode edge. In Eqs. (5.30) and (5.31) Sy,Yo is the delta function. If the 

system has a real bound state which may be caused by an attractive scatterer such as an InGaAs 

quantum well or a deep donor trap level, a bound state problem has to be solved as well as the 

above scattering state problem to obtain a complete set of wavefunctions. Finally, total 

tunnelling current Itunnel is calculated assuming the global coherent tunnelling of electron waves 

throughout the device as follows: 

 Itunnel = T(E) (fL(E) - fR(E)) dE (5.33) 

where fL(E) and fR(E) are Fermi distribution functions in the cathode and anode regions 

respectively.

5.2.2 Lateral mode conserving and non-conserving resonant tunnelling 

   In this section the three-dimensional scattering theory described in the previous section is 

applied to the OD-RTD structure shown in. Fig. 5.4, and multi-mode quantum transport is 

analyzed numerically. The hour-glass shaped confinement potential due to surface Fermi-level 

pinning is calculated in advance using a classical device simulation with Spicer's surface defect 

model (see Tab. 2.2). This potential is then used to solve the three-dimensional Schrodinger 

equation. We focus on the effect of lateral mode mixing which is caused by elastic scattering 

due to the hour-glass shaped confinement potential on the multi-mode transmission properties 

and current-voltage characteristics of the device. The S-matrix is calculated to analyze 

momentum non-conservation tunnelling which can be observed in the off-diagonal components 

of the transmission probability. Furthermore a total tunnelling current through the device is 

calculated and compared with results for a device with uniform lateral confinement in order to 

investigate the mechanism of the fine structure in the current-voltage characteristics. 

   In the present work we adopt a laterally confined A1GaAs/InGaAs/A1GaAs double barrier 

resonant tunnelling structure. The assumed layer structure consists of a undoped 

InO.o8Ga0.92As quantum well of 5 nm in thickness, two undoped A10.25Ga0.75As barriers of 4
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nm in thickness, two undoped GaAs spacer layers of 6 nm in thickness, and n+-type GaAs 

cathode and anode layers with donor concentration of 1.0 X 1018 cm-3. The conduction band 

discontinuities in the GaAs / A10.25Gap.-75As and GaAs / InO 08Gap.92As heterostructures are 

assumed to be 187.0 and -37.2 meV respectively. The electron effective mass in the GaAs , 

A10.25Gao 75As, and InO.O8Gao.92 layers are assumed to be 0.067, 0.088, and 0.064 m0 

respectively. Lateral dimensions of the device are set to be 80 nm in both x and y dimensions . 

  The first part of the numerical simulation is to obtain a realistic lateral confinement potential 

distribution created by carrier trap levels on the lateral surface. The exact lateral confinement 

potential should be determined through a fully self-consistent calculation of the three-

dimensional Schrodinger equation. However, this would require an enormous amount of 

computational time which is beyond our present requirements. The self-consistent calculations 

are left for a future analysis of Coulomb blockade tunnelling where the self-consistent field 

produced by a single electron is dominant. In the present work the confinement potential is 

calculated by using a classical device simulation [28] in which surface carrier traps are taken 

into consideration by using Spicer's unified defect model [29]: a deep donor level at 0.925 eV 

measured from the conduction band edge and a deep acceptor level at 0.75 eV from the valence 

band edge are assumed for the GaAs lateral surface. As long as the size of the lateral 

confinement is much larger than the width of the quantum well, the calculated potential 

distribution should be a fairly good approximation for the exact potential distribution determined 

by the self-consistent calculation. Figure 5.4 shows the calculated potential distribution where 

the sheet concentration of the surface deep level is assumed to be 5.0x1012 cm-2, which is a 

plausible value large enough to pin the Fermi-level on the surface. It can be seen that the hour-

glass shaped confinement potential results from the different surface depletion widths in the 

intrinsic and contact regions. 

   The second part of the simulation is to calculate the lateral eigenenergies and two-

dimensional eigenstates at each z-point by using the hour-glass confinement potential. Equation 

(5.4) is discretized by using a three-dimensional finite-difference mesh lattice, shown in Fig. 

5.6, which has a uniform mesh spacing in the x and y dimensions and a non-uniform spacing in 

the z dimension.
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Cathode

mm~

I
n+-GaAs 20 nm 

i - GaAs 6nm 
i - AIGaAs 4 nm 

i - lnGaAs 5 nm 
i - AIGaAs 4 nm 
i-GaAs 6nm 

n GaAs 20 nm

Anode

Figure 5.6 Three-dimensional finite difference mesh lattice used for numerical 
calculations. The mesh spacing has been chosen to be small for the double barrier 
structure.

Eigenenergies of the resultant finite-difference equation are obtained up to a given value of total 

energy by using the bisection method following Householder's tridiagonalization. The 

corresponding eigenvectors are then calculated by the inverse iteration method. To speed up 

finding the eigenvectors, the set of eigenstates obtained at the previous z-mesh point is used as 

an initial guess for the eigenstates at the next z-mesh point. For numerical calculations a cut-off 

value is introduced for the maximum eigenenergy although all of lateral modes would be 

necessary to make a complete set. The number of wavefunctions required for realistic 

calculations depends on the system under consideration. In general at least all of the lateral 

eigenstates with eigenenergies below the Fermi energy should be taken into account. In the 

present calculations, for instance, there are four lateral eigenstates below the Fermi level and 

thirteen lateral modes are calculated for all z-mesh points. 

   By making use of the lateral eigenstates, the mixing coefficients, Cy~'y> and C,,, , and the 
unitary transformation matrix, Myy'(z), can be evaluated from Eqs. (5.7), (5.8), and (5.10). 

The eigenvalue equation (5.16) is then solved to get the renormalized wavenumbers, Ky(z), and 

the unitary matrix, Vyy>(z). As the matrix Wy ,'(z) is real and symmetric, all of the eigenvalues 

and eigenvectors can be obtained by using the QL method. Finally, by using the lateral 

eigenstates at the cathode and anode edges, the multi-mode transfer matrix and the resultant 

scattering matrix are calculated from Eqs. (5.21) - (5.27).
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   The multi-mode transmission probability calculated for the OD-RTD structure is shown in 

Fig. 5.7. Figure 5.7 (a) shows the total energy dependence of transmission probability for the 

diagonal tunnelling from the 'Yth-incident-mode to the 'Yth-transmission-mode, IS 12(7 yA2 and 
Fig. 5.7 (b) that for the off-diagonal tunnelling from the 1 st-incident-mode to 'Yth-transmission-

mode, IS 120, A2.

(a)
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(b)
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0        50 100 E
F 

TOTAL ELECTRON ENERGY (meV)

Figure 5.7 Multi-mode transmission probability calculated for the OD-RTD with 
the hour-glass lateral confinement: (a) total energy dependence of transmission 
probability for the diagonal tunnelling from the y-th-incident mode to'Y-th-
transmission mode, IS 2(7, y)12, and (b) that for the off-diagonal tunnelling from the 

1st-incident-mode to y-th-transmission mode, IS 12(1, ~I2. The S-matrix elements are 
drawn for l's up to 11. A thick solid line represents total transmission probability 
T(E) defined by Eq. (5.30).
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The S-matrix elements are drawn for values of 'Y's up to 11. In addition, the transmission 

probability calculated for a device with completely uniform confinement is shown in Fig. 5.8. 

Before proceeding the detailed discussion of these results, it is worth commenting on this 

structure. The uniform lateral confinement used for the calculation in Fig. 5.8 could be realized 

by doping the resonant tunnelling structure uniformly as well as the contact regions. However, 

resonant tunnelling is hardly observed in such doped structures because resonant electron-

waves suffer from frequent impurity scattering in the quantum well. Thus the results in Fig. 5.8 

are based on an unrealistic assumption that electron-waves travel ballistically even in a doped 

tunnelling structure and are given simply for comparison with the results for the hour-glass 

confinement. In Fig. 5.8 the S-matrix has no off-diagonal elements since there is no lateral 

wavefunction mismatch anywhere in the system. This is called independent channel tunnelling, 

as the lateral modes are not mixed. The total transmission rate is then just a superposition of the 

transmission probabilities through these independent channels shown as a thick solid line in 

Fig. 5.8.

..., 100 

,.C 
0 

C 10-2 
0 U, 

5 

  10~ 

H

Uniform confinement

Total

     0 50 100     E F 
            TOTAL ELECTRON ENERGY (meV) 

Figure 5.8 Multi-mode transmission probability IS 12('Y, y)12calculated for the OD-
RTD with the uniform lateral confinement. The off-diagonal elements are now zero.

Electronic states corresponding to the first three transmission probability peaks in Fig. 5.8 are 

shown in Figs. 5.9 (a) - (d). These figures show visualized three-dimensional existent 

probability of electrons, I'E(x, y, z)12, in the device: (a) k'E(x, y, z)12 obtained for the 1st mode 

incident wave from the cathode at the first peak energy, (b) for the 2nd mode incident wave
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from the cathode at the second peak energy, (c) for the 3rd mode incident wave from the 

cathode at the second peak energy, and (d) for the 4th mode incident wave from the cathode at 

the third peak energy. It should be noted that the wavefunctions for these states are virtually 

localized in the quantum box and clearly reflect eigenstates of the quantum box itself. This fact 

means that the lateral mode index 'Y is a good quantum number throughout the device.

r 0
.I.

(a)

 IWavefunetion(x,y,z)1**2 

for 1st mode incident wave 

 at Energy = 39.9 meV

(b)

  Wavefunction(x,y,z)j * 2 

for 2nd mode incident wave 

  at Energy = 46.6 meV

y

d

  Wavefunetion(x,y,z)I"2 

for 3rd mode incident wave 

  at Energy = 46.6 meV

  Wavefunetion(x,y,z)I**2 

for 4th mode incident wave 

 at Energy = 53.2 meV

     (c) (d) 

Figure 5.9 Visualised three-dimensional existence probability of electrons, 
 'E(x, y, z)12, at the lowest three transmission peaks in Fig. 5.8: (a) for the 1st 

incident mode at the first peak energy, (b) for the 2nd incident mode at the second 
peak energy, (c) for the third incident mode at the second peak energy, and (d) for the 
4th-incident mode at the third peak energy. It should be noted that the second peak in 

Fig. 5.8 is caused by both tunnelling processes 2 -j 2 and 3 -- 3. It can be seen that 
the electron distribution clearly reflects the lateral eigenstates in the quantum box.
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   On the other hand the following two major differences can be seen in the tunnelling 

properties of the hour-glass confinement shown in Fig. 5.7. First, the energy intervals between 

transmission probability peaks become larger than those in Fig. 5.8 leading to a large peak-to-

valley ratio of transmission probability. Second, the elastic scattering due to the the hour-glass 

confinement potential mixes the lateral modes and opens new off-diagonal tunnelling channels. 

In Fig. 5.7 (b) two peaks can be found in the off-diagonal elements of the S-matrix which 

represent lateral-mode non-conserving resonant tunnelling. It should be noted that off-diagonal 

tunnelling with the 1st incident mode is observed only for the 5th, 6th, and 11th transmission 

modes. This is purely because of a selection rule for parity of lateral wavefunctions. Because 

the elastic scattering due to the hour-glass confinement potential does not break symmetry under 

mirror reflection in x and y dimensions, a lateral mode couples only with other modes having 

the same parity. The lowest wavefunction has even parities in both x and y dimensions, and can 

therefore couple only with upper modes described above. Additional structures are also 

observed in the diagonal elements in Fig. 5.7 (a). For example, an asymmetric resonant 

structure can be seen at a total energy of 91.7 meV. It should be noted that the off-diagonal 

tunnelling probability is quite large for the process, 1 . -j 5, at this energy.

Mode 1 Mode 1

(a)

V15

Mode 1

• • • • • . 

Mode 5 

  (b)

1<v51
Mode 1

Figure 5.10 Diagramatic representation of two processes involved in the diagonal 

tunnelling, 1 -j 1, at Fano resonance: (a) zero order tunnelling and (b) second order 

tunnelling. V51 and V15 denote the elastic scattering between 1st and 5th lateral 
modes due to an hour-glass confinement potential.
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In these circumstances the ratio of the second order diagonal tunnelling is enhanced in which 

two elastic scattering events are involved between the 1st and 5th lateral modes: this is shown 

diagrammatically in Fig. 5.10 (b). This process is now at resonance and interferes with the 

major diagonal tunnelling process, shown in Fig. 5.10 (a), which is at off-resonance. The 

interaction between these two tunnelling processes results in the Fano-resonance type lineshape 

in the transmission probability [30]. The three-dimensional existent probability of electrons, 

*E(x, y, z)12, at the energy of 91.7 meV is shown in Fig. 5.11. It should be noted that the 

electron existent probability in the quantum box reflects features of the 5th-mode rather than 1 st-

mode despite the 1st mode nature of the incoming wave. This signifies that a large part of the 

incoming wave is converted to the 5th-mode in the quantum box by suffering from lateral mode 

non-conserving perturbation due to the change in the lateral confinement. In these circumstances 

the lateral mode index 'Y is no longer a good quantum number for the system.

(W averunclion(x,y,z)I**2 

for 1st mode incident wave 

 at Energy = 91.7 meV

Figure 5.11 Visualised three-dimensional existent probability of 
electrons,[WE(x, y, z)12 , for the first incident mode at an energy of 91.7 meV which 
corresponds to the dip of the Fano-resonance in Fig. 5.7. It should be noted that the 
electron existent probability in the quantum box reflects feature of the 5th-mode rather 
than 1st-mode despite the first mode nature of the incoming wave.

   The applied voltage dependence of the total tunnelling current is calculated by assuming 

ballistic transport throughout the device (Eq. (5.33)). Figure 5.12 (a) shows the I-V 

characteristics of the device with the hour-glass lateral confinement calculated at a temperature 

of 77 K. Under an applied bias a piecewise linear model has been adopted for the external
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potential VEX(Z) in Eq. (5.2), which was introduced in Sec. 3.3.2 for large-area RTDs: uniform 

external electric field is assumed in the intrinsic regions of the device.
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Figure 5.12 (a) Applied voltage dependence of total tunnelling current calculated 
by using Eq. (5.33) at a temperature of 77K: Observed satellite current peaks and 
shoulders are indicated by arrows. (b) I-V characteristics calculated at lower 
temperatures.
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Several satellite current peaks and shoulders are observed superposed on the conventional 

negative conductance characteristics of 2D-RTDs. Figure 5.12 (b) shows the I-V characteristics 

calculated at lower temperatures. The fine structure in the I-V characteristics can be seen more 

clearly at a lower temperature.
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Figure 5.13 (a) Comparison of current-voltage characteristics calculated at 77K for 
the hourglass confinement (solid line) with those for the uniform confinement 
(broken line). (b) The 1-V characteristics calculated at T = OK for the uniform lateral 
confinement of 100 nm * 100 nm.
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   Also the current-voltage characteristics are compared with those of the device with the 

uniform confinement (broken line) in Fig. 5.13. It should be noted that, at a temperature of 

77K, only one major current peak is found without any fine structure in the case of the uniform 

confinement as the peak-to-valley ratio of the transmission probability shown in Fig. 5.8 is not 

large enough to separate the contribution from each mode at this temperature. At lower 

temperatures peaks and shoulders are clearly seen which exactly correspond to transmission 

peaks as indicated in Fig. 5.13(b). 
   In the case of the hour-glass confinement, on the other hand, the mechanism of the fine 

structure seen in Fig. 5.12 is found more complicated as is explained below. The total energy 

dependence of the transmission probability calculated at the first four peak (shoulder) voltages 

are shown in Figs. 5.14 (a) - (h): the diagonal elements, IS 12(Y, y)12, calculated at the first, 

second, third, and fourth peak voltages in Figs. 5.14 (a), (c), (e), and (g) and the off-diagonal 

elements, (S 12(1,1')12, in Figs. 5.14 (b), (d), (f), and (h). Total transmission rate is shown by 

using thick solid lines as in Figs. 5.7 and 5.10. The current peak (shoulder) appears when the 

new transmission peak (indicated by an arrow) plunges into the Fermi sea. It can be seen that all 

of the four peaks are caused mainly by the diagonal tunnelling (Figs. 5.14 (a), (c), (e), and (g)) 

since the off-diagonal tunnelling shown in Figs. 5.14 (b), (d), (e), and (h) contributes much 

less to the total transmission probability. Thus these four peaks mainly result from the lateral-

mode conserving resonant tunnelling: 1 -> 1 tunnelling for the first main peak, 2 --> 2 and 3 -a 

3 for the second, 4 -44 for the third, and 5 -> 5 and 6 . - 6 for the fourth. As shown in Fig. 

5.12 (b) the fourth peak becomes smaller with decreasing temperature since it is caused by the 

tunnelling of electrons which are thermally excited to the 5th and 6th modes located above the 

quasi-Fermi level in the cathode region. Obviously other higher diagonal channels such as the 7 
- 7, 8 --) 8, etc. play a negligibly small role since very few electrons occupy the higher 

eigenstates in the cathode region. 

   Let us now turn to the two small current peaks at higher applied voltages in Fig. 5.12. The 

total energy dependence of the transmission probability calculated at the two peak voltages are 

shown in Figs. 5.15 (a) - (d). Figs. 5.15 (a) and (b) show the diagonal, (S 12(y, y)F , and off-

diagonal, IS 120, y)12, at the fifth peak voltage, and Figs. 5.15 (c) and (d) the diagonal, 

IS 12(1, y)12 , and the off-diagonal, IS 12(2, y)F, at the sixth peak voltage.
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Figure 5.14 Total energy dependence of the transmission probability calculated at 
the first four peak (shoulder) voltages indicated by arrows with numbers 1, 2, 3, and 

4 in Fig. 5.12: (a), (c), (e), and (g) show the diagonal elements,I S 12(y, y)12 , and (b), 

(d), (f), and (h) the off-diagonal elements, IS 120, y)F. Total transmission rate is 
shown by using thick solid lines as in Figs. 5.7 and 5.8.
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Figure 5.15 Total energy dependence of the transmission probability calculated at 
the last two peak voltages indicated by arrows with numbers 5 and 6 in Fig. 5.12.: 

(a) and (c) show the diagonal elements,1 S 12(1, y)[ , (b) the off-diagonal,I S 12(1,. -y)I2 , 
and (d) the off-diagonal, IS 12(2, y)[2.

Small transmission peaks located under the Fermi energy are again found which lead to the fifth 

and sixth current peaks. These transmission peaks are, however, attributed not to the diagonal 

tunnelling but to the off-diagonal tunnelling: the lateral-mode non-conserving resonant 

tunnelling 1 -) 5 for the fifth peak shown in Fig. 5.15 (b) and 2 -j 9 for the sixth peak in 

shown Fig. 5.15 (d). It should be mentioned that, for the sixth current peak, the 3 --> 10 

tunnelling channel is simultaneously opened with the 2 - 9 channel. As described above, the 

fourth current peak is mainly due to the 5 - 5 and 6 -4 6 diagonal tunnelling, along with a 

small contribution from the 1 --j 5 off-diagonal tunnelling. Even after the diagonal tunnelling 

channels close, at a voltage such that the fifth and sixth lateral eigenstates in the quantum well 

simultaneously line up with the fifth and sixth lateral eigenstates in the cathode region, the off-

diagonal channel 1 -j 5 is still open resulting in another current peak. Thus the fifth 1 -4 5 peak 

can be thought of as a satellite peak of the main fourth 5 -) 5 peak. However, in the case of the 

sixth 2 - 9 peak the diagonal 9 - 9 channel cannot give rise to a main peak because the 9th 

eigenstate in the cathode region is essentially unoccupied, and the 2 --) 9 channel gives rise to a 

new main peak.
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   As shown here the number of extra current peaks (shoulders) observed in the I-V 

characteristics directly measures the number of the resonant tunnelling channels in which the 

lateral mode is not conserved. Also it is possible to estimate the magnitude of the lateral mode 

mixing by analyzing the extra peak current.

5.3 Gated resonant tunnelling structures -squeezable quantum dots-

  As found in the previous section the hourglass shaped confinement potential in a simply 

etched structure results in the lateral mode mixing and makes the characteristics of the device 

difficult to understand. Ideal lateral confinement that we want to have is the one which is 

virtually flat around the tunnelling barriers (see Fig. 5.16) and does not cause the complicated 

mode mixing. As shown in Sec. 5.2.2 the independent mode tunnelling would be achieved if 

the pseudo-uniform confinement were realised. In addition, the size of the confinement is 

desired to be controllable for systematic investigations of three-dimensional confinement.

u'

Gate

4vv 

  r v vv?'v

 r~ .

   Gate

1

Figure 5.16 Ideal pseudo-uniform confinement potential controlled by gate 
electrodes.

  For this purpose a new variable area resonant tunnelling diode (VARTD) [31] has been 

fabricated by Chris Goodings of Microelectronics Research Centre, University of Cambridge , 

in collaboration with the author by using Samples 2 and 3. Specifications of the tunnelling 

barrier structures in Samples 2 and 3 can be found in Fig. 4.2. Cross sectional and perspective 

views of the VARTD are shown in Fig. 5. 17 (a) and (b), respectively.
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In the VARTD lateral confinement arises from a reverse biased p-n junction which is formed by 

using beryllium focused ion beam implantation (at 60 keV with dose of 1 x 1014 cm-2) after an 

anisotropic etch of depth 800 nm above the barriers. In both Samples 2 and 3 a graded doping 

profile is adopted in which the concentration of Si is reduced from 5 x 1018 cm-3 adjacent to 

the contact to 1 x 1016 cm-3 near the barriers in order to achieve a large variation in depletion 

width. Thickness of a layer remained above the barriers is adjusted to be about 200 nm so that 

the concentration peak of the implanted Be+ can be aligned to the quantum well resulting in a 

symmetric confinement potential. The size of the top contact pad is varied from 5 µm down to 

1 µm in diameter.

Figure 5.18 A perspective view of a completed device. 
of the photograph is a device area.

A small dot seen at centre
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A perspective view of a completed device is also shown in Fig. 5.18 in which two sets of the 

VARTDs are framed. In this picture the VARTD has been already planarized by using a thin 

dielectric layer and then an interconnect to the top contact has been deposited.

  The potential and current distributions are calculated for a VARTD with a large-area contact 

pad by using the same classical hydrodynamic device simulation HIHEART introduced in 

Chapter 2 to see the effects of the graded doping on the shape of the lateral confinement. 

Figures 5.19 (a) - (c) show (a) potential distribution, (b) current distribution, (c) lateral 

confinement potential wells calculated for a 2 gm VARTD at a gate voltage of -2.0 V and an 

emitter-collector voltage of 1.0 V. In Figs. 5.19 (a) and (b) lateral confinement turns out to be 

virtually flat around the barriers as required. This results from the alignment of a concentration 

peak of implanted ions to the double barrier structure and enables us to reduce cumbersome 

effects of the asymmetric confinement potential on the characteristics which have been reported 

in the resonant tunnelling device with a surface Schottky gate [33]-[35]. 

   We see from (c) that, as expected for a device of this size, the width of the lateral 

confinement potential well is far from the region in which the lateral quantization would appear 

and a smaller-area VARTD is necessary to observe the lateral confinement effects. In the next 

section, however, we first analyze VARTDs with 2 gm and 3 .tm top contact pads which are 

supposed to be in an intermediate regime between conventional 2D-RTDs with complete lateral 

translational invariance and three-dimensionally confined OD-RTDs. We show the squeezing 

effects of applied gate bias on the current-voltage characteristics. In Sec. 5.3.2, secondly, the 

results on three-dimensional confinement effects obtained from smaller VARTDs are presented.

5.3.1 Variable area resonant tunnelling devices 

   First let's see the characteristics for the large-area VARTDs. Devices with various size top 

contact pads (from 2.tm to 5 gm in diameter) have been fabricated by using Sample 2. Typical 

I-V characteristics for a 3 tm diameter VARTD at 4.2K are shown in forward and reverse bias 

directions in Fig. 5.20. With increasing negative gate bias the peak current can be altered by a 

factor of approximately 2. The range of the negative gate bias is limited by reverse breakdown 

of the P-N junction which occurs at about -7 V. So a pinch-off regime where the effects of 

lateral quantization are expected to be observable can not be seen in this 3 .tm device.
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values of gate bias calculated for a 2 µm device by using HIHEART (see Chap . 2).
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  It should be noted that a small shift is seen in the resonant voltage for the 3 µm device (Fig. 

5.20), and it is pronounced more for a 2 gm device (see Fig. 5.21). For larger devices than 3 

.tm this shift is not noticeable and becomes greater as the device size is further reduced as 

shown in the next section.
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Figure 5.20 Characteristics of a 3 pm diameter device at 4.2K in (a) forward bias 
and (b) reverse bias. The gate bias is referred to the potential of the bottom contact. 
Gate leakage currents of order 100 pA were measured for this device. Data taken by 
C. Goodings, Microelectronics research centre, University of Cambridge, in 
collaboration with the author.
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reverse bias. Data taken by C. Goodings, Microelectronics research centre, 
University of Cambridge, in collaboration with the author.
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The shift of the resonant voltage towards a larger bias regime observed for the 3 gm device 

indicates that the gate depletion regions induced by the reverse biased PN junction begins to 

affect the potential energy of the channel though it is still small, and the system is under 

transition from two-dimensional to zero-dimensional. This becomes clearer by plotting the 

resonant voltage as a function of the applied voltage relative to the turn-on voltage of the PN-

juction which is discussed in the next chapter.

  The symmetry of the lateral confinement potential around the barriers which is expected for 

the VARTD becomes evident through the observed P/V current ratios. In the case of the surface 

gated VARTDs referred above it has been found by Beton et al. [38] that the P/V ratio in one 

bias remained roughly constant while in the other bias the ratio diminished rapidly with applied 

gate voltage. This has been attributed to a gate-voltage dependent asymmetry in the lateral 

confinement potential, resulting from the gate electrode located on the surface . In the present 

case, however, the P/V ratio shows similar characteristics in both the forward and reverse 

directions as seen in Fig. 5.20. With increasing negative gate bias, a gradual decrease is found 

in the P/V current ratio which could be caused by the gate-bias induced asymmetry of the 

confinement potential discussed below, The amount of degradation is, however, similar for 

both the positive and negative gate voltages. This indicates that the implanted gate is itself 

roughly symmetrical. 

   From the data shown in Fig. 5.20 an effective device diameter can be estimated as a 

function of gate bias, and some information can be derived on the amount of the depletion 

occuring at the resonant tunnelling barriers. We introduce the effective device diameter, (D - x ), 

defined by the following expression: 

  I = 10 ic(D - x )2 /4 (5.34) 

where 10 is the peak current density. The effective device diameter obtained for both 3 µm and 2 

µm diameter devices are shown in Fig. 5. 22 as a function of gate voltage.
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Figure 5.22 Effective electrical device diameter for 2 µm and 3 pin diameter top 

pads in forward and reverse bias at 4.2K. Data taken by C. Goodings, 
Microelectronics research centre, University of Cambridge, in collaboration with the 
author.

It should be noted that a difference in the depletion is seen for the diodes in positive and 

negative bias directions. This asymmetry in the I-V characteristics arises not from the 

asymmetry in the implanted region but from the geometry of the fabricated device and the 

configuration of electrodes: the potential distribution inside the present device is not symmetric 

for two ways of applying bias. The amount of squeezing depends on the voltage difference 

between the gate and the channel (the n-type region between the gate). For the present material 

there is a large voltage drop across the barriers at resonance which significantly affects this. For 

the measurement configuration used, the potential difference between the gate and the lower part 

of the channel remains constant in both forward and reverse bias, whereas the potential 

difference between the gate and the upper part of the channel alters by approximately twice the 

resonance voltage, with the greatest squeezing occurring in forward bias. For the 3 µm device 

here this is about 3.4 V. Assuming that the implant is symmetrical we would therefore expect 

that the effective device diameter for the 3 µm diode in forward and reverse bias would be 

identical but displaced by a gate voltage of about 3.4 V. The results in Fig. 5.21(a) are indeed 

consistent with this.
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 5.3.2 Three-dimensional confinement effects on tunnelling characteristics 

     Now let's consider smaller devices in which we would expect to see three-dimensional 

quantization effects on the characteristics. VARTDs with top pads of 1.4, 1.2, and 1.0 gm have 

been fabricated by using the same material. Among these devices the smallest 1.0 gm one has 

been found to be completely pinched off even at zero gate bias. This is contrasted with the 

results obtained by using the surface-gated VARTDs which has an open channel even for sizes 

as large as 0.4 gm. This fact implies that the implanted gate structure can achieve a wider 

depletion region, which enables us to observe an important regime by using relatively large 

devices. Therefore VARTDs with sizes between 1.0 and 2.0 gm are supposed to be appropriate 

for the present purpose. Figure 5.23 shows the characteristics of a 1.4 gm device at various 

gate bias: this device is pinched off with a gate bias of about -3.5 V.
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Figure 5.23 Characteristics of a 1.4 pm diameter device at 4.2K in reverse bias. 
The main resonance peak is seen to sharpen and extra structure occurs in the valley 
current. Data taken by C. Goodings, Microelectronics research centre, University of 
Cambridge, in collaboration with the author.
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This device, in contrast to the larger devices, is found to have the I-V characteristics rich in 

structure: six small current peaks can be seen in total and their positions strongly depend on the 

gate bias. Also an increase in the resonance voltage with increasing gate bias is much larger than 

that for 3 p.m device. The I-V curves are given in an extended voltage region, and so a steep 

increase in the current is seen at a larger voltage than the peak voltage which results from the 

turn-on of the gate-to-emitter PN-junction. The shift of the current threshold for the turn-on of 

the PN-junction is found almost exactly the same as the increase in the applied gate bias as 

expected. The resonant peak voltage increases more slowly than the turn-on voltage for smaller 

gate bias, but starts to follow it as the gate bias is increased.
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Figure 5.24 The voltage positions of fine structure relative to the PN junction turn-
on threshold. The points connected by a dashed line correspond to a shoulder seen on 
the main resonance in Fig. 5.23.

   The situation becomes much clearer by calibrating the observed fine structure relative to the 

turn-on voltages. Due to the unknown amount of depletion region on the collector side of the 

barriers, the absolute voltages of the observed peaks are not meaningful. However, the PN 

threshold relates the emitter voltage to the gate voltage so as to be used as a reference point.



                                                      179 

Figure 5.24 shows the gate voltage dependence of all the six peak voltages . Except the first 

current shoulder indicated by a broken line the graph appears to show some sort of splitting of 

levels up to a gate voltage of about -2.0 V followed by a common shift in the relative peak 

positions. This shoulder is reminiscent of the characteristics produced by the 3D-emitter states 

discussed in Sec. 4.1. As mentioned there, the low-doped emitter region gives rise to a triangle 

potential well next to the emitter barrier and an electrostatic bump forms slightly further away. 

The main tunnelling occurs from the localised 2D states in the emitter well , but the small 

contribution from non-localised 3D-states results in broadening of the resonance and in even a 

separated resonance peak of it's own under the right conditions . If this is the case here, 

increasingly negative gate bias will act to raise the electrostatic bump still further , thereby 

reducing the contribution to the non-localised states and sharpening the resonance .

  Lateral confinement potential profiles calculated for the 1.4 gm device by using the 

classical simulation HIHEART are shown in Fig. 5.25. 
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Figure 5.25 Lateral confinement potential profile calculated for the 1.4 dun device 
at various negative gate bias by using HIHEART (see Chap. 2).
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As the gate bias is increased the lateral confinement well becomes progressively 

narrower until about -2.OV, where a minimum size is reached. Beyond this bias voltage 

the effect is simply to shift the whole well upwards in energy without altering its shape. 

Such a result appears consistent with the observations of a splitting of levels followed 

by a uniform shift. Therefore energy level splitting between quantized levels are no 

longer increased after this squeezing limit. The energy level splitting evaluated at Vg = -

1.5 V is about 5.5 meV which is sufficiently large to be resolved at 4.2K. Using the 

energy level associated with the large-area RTD resonance to calibrate the measured 

voltages to the energies in the well, this predicts a measured splitting of about 150 mV, 

which is again consistent with Fig. 5.24. 

   Similar results have been observed for the 1.2 µm device which are shown in Figs. 

5.26 (a) and (b). In Fig. 5.26, all the curves become flatter for higher gate voltages 

since the system exceeds the squeezing limit at a lower value than that for the 1.4 µm 

device. These results are consistent with the above discussion on the fine structure and 

may indicate that the fine structure obtained here is attributable to the three-dimensional 

quantization.

5.3.3 Tunnelling through a single impurity state 

   Fabricated VARTDs in general exhibit another interesting feature at their current 

threshold. Figure 5.27 shows the I-V characteristics of the 2 gm device around the threshold in 

forward bias (see the difference in the scale for the longitudinal axis from that in Fig. 5.21). 

This shows a series of plateau-like structures at threshold. Similar structures are seen for 

devices with different sizes: I-V curves of the 4.tm device are shown in Fig. 5.27 for both bias 

directions: (b) in forward and (c) reverse bias. It should be noted that the structure seen is 

different in forward and reverse bias directions. The gate bias dependences of these 

characteristics look different: for the 2 gm device the position of these is dependent on gate 

voltage, while for the larger devices this is not the case. This gate bias dependence seen for the 

2.tm device, however, is supposed to be caused by the same mechanism of the peak voltage 

shift explained in the previous section. Thus the present fine structure is expected to have very 

small gate bias dependence in general.
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   Very similar results have been reported by Dellow et al. [33]-[35] for their surface-gated 

VARTDs. They pointed out that a possibility for the origin of the structure is tunnelling through 

impurity states in the active region of the device (see Fig. 5.28). An ionised donor in the 

quantum well will give a localised potential well and associated bound states through which 

electron tunnelling can occur for biases below the threshold voltage. The binding energy of 

such states depends on the position of the donors in the well with a maximum for donors in the 

centre of the well. Using modelled results by Greene and Bajaj [36],[37] we can estimate this
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maximum binding energy to be about 14 meV for the system, indicating that these effects are 

much greater than the thermal broadening at 4.2K. For relatively large-area devices such 

numerous donors randomly distributed in the well wash out any fine structure so that just a 

collisional broadening of the resonant state is remained as discussed in Sec. 3.4. However, for 

small devices with a single or few donors only, fine structure will be expected to appear around 

threshold as electrons tunnel through the local quasi-bound state associated with the ionised 

donors.

Single ionized 
donor potential 

f

Eo

Ec'

z

(a) (b)

Figure 5.28 Schematic energy band-diagram of the device in which a single 
ionized donor is placed: (a) in lateral and (b) in vertical directions.

   The total number of donor states expected in the quantum well can be estimated from the 

background doping density and the active device volume (Tab . 5.1). Taking a background 

doping of 1014 cm-3 this gives an estimate of 1 to 5 donor sites in the three device sizes 

considered here, which is consistent with the single- or few-electron tunnelling picture . The 

observed asymmetry of the forward and reverse characteristics is also consistent with this 

picture as a single impurity is placed in a completely random way in the well. Unless the 

impurity is located at the centre of the active area, some asymmetry is always expected for the 

characteristics.
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   Let's consider an extreme case in which only one electron can contribute at a time to the 

conduction. Tunnelling current associated with a single electron tunnelling through a single 

ionised donor state is roughly estimated by the following expression: 

  I = e/t (5.35) 

which corresponds to Eq. (4.18) for large-area devices. By assuming this model and using the 

observed current of the first plateau the values of 'resc are obtained for three VARTDs which are 

listed in Table 5.1.

Device diameter First plateau current (pA) Tunnelling excape time (ps)

2.0 500 320

3.0 250 640

4.0 150 1500

Table 5.1 A list of the first plateau currents and associated lifetimes derived by 
using Eq. (5.35) assuming that only single electron tunnelling is involved.

The value of 'Lesc obtained for large-area devices by using Eq. (4.18) and 6w estimated from the 

magnetotransport measurement (see Sec. 4.3.2) is about 500 psec. The above calculated values 

of 'Lesc by assuming the single electron tunnelling model (Eq. (5.35)) are fairly close to this 

value derived for the large-area devices. This fact may indicate that the observed plateaus are 

attributable to single electron tunnelling through few ionised donor states. The tunnelling escape 

time varies with device size as seen in Tab. 5.1, but this could be accounted for the difference in 

the effective electric field across the double barrier structure.

  Detailed analysis of the single impurity related tunnelling requires the three-dimensional S-

matrix simulation introduced in Sec. 5.2. Attractive potential due to an ionized single donor, 

Vjm(x,y,z), is simply modelled by using three-dimensional delta function: 

  VIM (r) = - V0 S('r - ro) (5.36)

which is introduced into Eq. (5.2). Scattering matrix elements (Eq. (5.15)) are calculated by 

using the lateral wavefunctions which are obtained from two-dimensional Schrodinger equation 

(Eq. (5.4)). Uniform lateral confinement has been adopted for the present analysis taking into 

account that the virtually flat confinement is achieved in the developed gated RTD. Present 

analysis has been performed for the A10.3Gao.7As(4 nm)/GaAs(5 nm)/A10.3Gao.7As(4 nm)
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double barrier RTDs with a relatively large area (150 nm * 150 nm) in which contributions from 

different lateral modes are hardly separable, and so the I-V characteristics show only a single 

current peak even at zero temperature if no ionized impurity is introduced. 

   Current-voltage characteristics for the RTD in which a single ionized donor is located at 

centre of the structure is shown in Fig. 5.29. Beside a main current peak seen at about 120 V, 

an additional small peak is found near current threshold.
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Figure 5.29 Current-voltage characteristics of a large area RTD with an single 
ionized donor placed at centre of the resonant tunnelling structure calculated at 42K 
(solid line) and 10K (dotted line).

Multi-mode transmission probability through the RTD in which a single ionized donor is located 

at the centre of the structure is shown in Figs. 5.30(a) - (c). Figure 5.30(a) shows 

characteristics calculated at threshold (V = 55 mV). A single transmission peak is found at 

lower energy isolated from a series of other peaks which are well overlapped leading to a broad 

transmission band. This transmission peak is found to give rise to a small current peak as 

shown in Fig. 5.30(b). Three-dimensional existence probability calculated for the 1st mode 

incident wave at an energy of 80.5 meV under an applied bias of 55 mV is shown in Fig . 5.31: 

It can be clearly seen that the electron wave is now localized around the single ionized donor 

despite a widely spread nature of the incident wave at the emitter edge . After this single peak 

goes down below the conduction band edge in the emitter, a group of other transmission peaks
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falls down to the Fermi sea leading to a main current peak (Fig. 5.30(c)). These preliminary 

results demonstrate that a single ionized donor placed in a quantum well indeed gives rise to a 

small but observable current peak near the threshold of the main current peak.
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Figure 5.30 Transmission probability through a large area RTD with an single 
ionized donor placed at centre of the resonant tunnelling structure calculated at three 
different bias: (a) at current threshold, (b) at subcurrent peak , and (c) at main current 
peak. An arrow indicates that transmission peak caused single ionized donor 
potential.
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Figure 5.31 Visualized existent probability of electrons calculated for the 1st mode 
incident wave with an energy of 80.5 meV (at a single impurity related resonance) . 
An ionized donor places at centre of the structure
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   In summary of this chapter multi-mode resonant tunnelling through a laterally-confined 

double barrier nanostructure has been investigated. A three-dimensional S-matrix theory has 

been introduced to analyze the effect of lateral mode mixing, caused by elastic scattering due to 

an hour-glass shaped confinement potential, on the transmission properties. The calculated S-

matrix shows new transmission peaks in the off-diagonal components which measure the lateral 

mode non-conserving process as well as the related Fano-resonance type structures in the 

diagonal components. This transmission properties lead to a fine structure in the I-V 

characteristics in which satellite peaks in the high voltage regime result from the lateral mode 

non-conserving tunnelling. 

  To achieve uniform and controllable confinement a gated resonant tunnelling device has 

been fabricated by adopting graded doping profile and beryllium ion implantation. A large area 

device with a 3 mm top contact shows single peak NDR and, by applying negative gate bias, 

the peak current is altered by a factor of 2. The characteristics for a smaller 1.4 mm device show 

five small peaks in a pinch-off regime. Voltage intervals between these peaks first increase with 

increasing gate bias and then remain almost constant. This result indicates that the fine structure 

may attributable to three-dimensional quantization. Also different fine structure near the current 

threshold seen in relatively larger devices has been investigated and found likely to result from a 

few ionized donor impurities unintentionally located in a quantum well.
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1CAIPTIIR

SUMMARY

   Electron transport in nanometer-scale compound semiconductor devices has been 

theoretically studied. Four different transport regimes have been described and investigated in 

detail: classical drift-diffusion transport, coherent quantum transport, dissipative quantum 

transport, and zero-dimensional quantum transport. These transport phenomena may be 

classified based on a typical dimension of structures under consideration. Heterojunction 

devices with sizes of deep submicrometers which are currently under development have been 

first dealt with in Chapter 2 by using the classical drift-diffusion modelling. The SRH 

modelling of carrier emission-absorption processes via deep trap states which are inevitable in 

compound semiconductor devices has been successfully incorporated into DD-trasnport 

modelling of heterojunction devices. Two major deep-level-related phenomena which are 

dominant in heterojunction devices with sizes of deep submicrons have been analyzed by using 

the present modelling: The Fermi-level pinning effects of DX centres in A1GaAs/GaAs HEMTs 

and the surface-state-induced Fermi-level pinning and carrier recombination effects on the 

characteristics of A1GaAs/GaAs HEMTs and HBTs. It has been revealed that the Fermi-level 

pinning in general degrades transconductance of the HEMTs as has been seen for DX centres in 

the N-AIGaAs supply layer and the surface states. Also the deep level induced carrier 

recombination processes have been found to influence current gain of HBTs greatly. 

   Chapter 3 has described a coherent quantum transport of electrons in resonant tunnelling 

heterojunction devices. The global coherent tunnelling model has been adopted which is based 

on Tsu-Esaki formula with the transfer matrix calculations and takes account of Hartree's self-

consistent field. By using this modelling multiple-well resonant tunnelling diodes have been 

numerically studied, and possibility of their applications to multiple-valued logic has been 

discussed: The new A1GaAs/GaAs triple well structure and the InGaAs/InAlAs double well 

structures are found suitable for triple value logic applications. Finally the effects of collisional
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broadening on the coherent tunnelling calculations has been discussed by using a 

phenomelogical Breit-Wigner modelling. Fairly good agreements have been found for the 

current peak widths and P/V current ratios within reasonable values of phase-coherence 

breaking time estimated for LO-phonon scattering. 

   Chapter 4 has been dedicated to analysis of dissipative resonant tunnelling and resultant 

non-equilibrium distribution in RTDs which are theoretically studied by using the statistical 

density matrix and the Wigner distribution function. Time-dependent one-dimensional 

Liouville-von Neumann transport equation for statistical density matrix has been introduced to 

investigate femtosecond electron dynamics and quantum correlations in the device and to 

discuss the P/V ratio degradation due to dissipation process. Dynamical space-charge build-up 

has been demonstrated in the quantum well resulting in the intrinsic current bistability in the 

negative differential conductance regime of RTDs. Further investigations of the space-charge 

build up has been studied by using magneto-transport measurement . Reasonable values of the 

concentration of electrons accumulated in the pseudo-triangle well and quantum well have been 

obtained. It has become evident that electrons tunnelling into the quantum well are partly 

thermalized by phase-breaking scattering processes leading to the P/V current ratios of RTDs . 

   Finally Chapter 5 has been intended to study the zero-dimensional quantum transport 

through three-dimensionally confined nanostructures which is topical and controversial at 

present. A three-dimensional S-matrix theory has been introduced to analyze the effect of lateral 

mode mixing, caused by elastic scattering due to an hour-glass shaped confinement potential , 

on the transmission properties. The calculated S-matrix shows new transmission peaks in the 

off-diagonal components which measure the lateral mode non-conserving process as well as the 

related Fano-resonance type structures in the diagonal components . This transmission 

properties lead to a fine structure in the I-V characteristics in which satellite peaks in the high 

voltage regime result from the lateral mode non-conserving tunnelling . Based on these results a 

new gated resonant tunnelling device has been proposed and fabricated by adopting graded 

doping profile and beryllium ion implantation to achieve uniform and controllable confinement . 

Fine current peaks have been successfully observed in a pinch-off regime of relatively small 

devices. Voltage intervals between these peaks were found to increase with increasing gate bias 

and then remain almost constant. These results are supposed to indicate that the fine structure is 

attributable to three-dimensional quantization. Another different fine structure seen near the 

current threshold has been investigated by using the S-matrix simulation in which a single
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impurity scattering is included and found to result from a few ionized donor impurities 

unintentionally located in a quantum well.
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