When is $\Lambda_1 \otimes \Lambda_2$ hereditary?

Hijikata, Hiroaki; Nishida, Kenji

Osaka Journal of Mathematics. 35(3) P.493-P.500

1998

publisher

https://doi.org/10.18910/4537

10.18910/4537
WHEN IS $\Lambda_1 \otimes \Lambda_2$ HEREDITARY?

Hiroaki Hijikata and Kenji Nishida

(Received April 18, 1997)

0. Introduction

Let R be a complete discrete valuation ring with the quotient field K. Assuming that R has a finite residue field, Janusz [4] gave a criterion for a tensor product of two R-orders $\Lambda_1 \otimes_R \Lambda_2$ to be hereditary or maximal. We shall extend his results by dropping the assumption that R has a finite residue field. In [4], finiteness of a residue field was mainly used to calculate the discriminant. In this paper, we shall do fairly ring theoretical argument and reduces the question to the center $Z(\Lambda)$ of an order Λ and $Z(\Lambda/J)$ of the residue ring modulo its radical J. These things enable us to handle the problem in a general setting. As for terminology, we mostly follow that of [1].

Notation 0.0. For a ring A, we shall consistently write as: $Z(A) :=$ center of A, $J(A) :=$ Jacobson radical of A, $\overline{A} := A/J(A)$, and $s(A)$ denote the number of isomorphism classes of indecomposable projective left A-modules.

Let π denote a prime of R, $J(R) = \pi R$. For an R-order Λ, put $e(\Lambda|R) := \min\{\nu \in \mathbb{N} : J(\Lambda)^\nu \subseteq \pi \Lambda\}$. An R-order Λ will be called unramified (over R) if and only if $e(\Lambda|R) = 1$ (i.e. $J(\Lambda) = \pi \Lambda$), Λ will be called residually separable if and only if $\overline{\Lambda}$ is a separable \overline{R}-algebra. An unspecified tensor product \otimes always means that over R. Note however, for R-orders Λ_i, $\overline{\Lambda}_1 \otimes \overline{\Lambda}_2 := \overline{\Lambda}_1 \otimes_R \overline{\Lambda}_2 \approx \overline{\Lambda}_1 \otimes_{\overline{R}} \overline{\Lambda}_2$, so that in this case \otimes is in fact over the field \overline{R}.

Theorem 0.1. Let Λ_i ($i = 1, 2$) be R-orders and assume that the following condition is satisfied

\[(*) \quad \overline{\Lambda}_1 \otimes \overline{\Lambda}_2 \text{ is a semisimple ring.}\]

Then:

(A) $\Lambda_1 \otimes \Lambda_2$ is hereditary if and only if both of Λ_i are hereditary and one of Λ_i, say Λ_1, is unramified.

(B) $\Lambda_1 \otimes \Lambda_2$ is maximal if and only if $\Lambda_1 \otimes \Lambda_2$ is hereditary and moreover the following condition is satisfied

\[(**) \quad s(Z(\overline{\Lambda}_1) \otimes Z(\overline{\Lambda}_2)) = s(Z(\overline{\Lambda}_1) \otimes Z(\overline{\Lambda}_2)).\]
Proof of (A), (B) and the next (B1) will be given in §2, as direct consequences of our Main Lemma 2.7. While, if one of \(\Lambda_i \) is residually separable, the condition (*) is certainly satisfied, so that we don’t need to explicitly assume it in the following corollaries, where we can reduce the condition (**) into simpler forms.

Corollary 0.2. (B1) Let \(\Lambda_1 \) be an unramified \(R \)-order such that \(Z(\Lambda_1) = \overline{R} \) and \(\Lambda_2 \) be any \(R \)-order. Then:

\[\Lambda_1 \otimes \Lambda_2 \text{ is maximal if and only if } \Lambda_2 \text{ is maximal.} \]

(B2) Let \(\Lambda_i \) (\(i = 1, 2 \)) be connected residually separable maximal orders. Assume that \(\Lambda_1 \) is unramified and moreover \(Z(\Lambda_1) \) is a Galois extension of \(\overline{R} \). Then:

\[\Lambda_1 \otimes \Lambda_2 \text{ is maximal if and only if } Z(\Lambda_1) \cap Z(\Lambda_2) = Z(\Lambda_1) \cap Z(\Lambda_2), \]

where the intersection is taken in a fixed separable closure of \(\overline{R} \) (cf. §3 for detail).

Remark 0.3. (i) If \(R \) has a finite residue field, our (A) (respectively, (B2)) specializes to Theorem (a) (respectively, (b)) of [4].

(ii) In [1] (26.26), (26.29), the results of [4] are quoted without proof, as valid over any complete discrete valuation ring \(R \), provided that \(K \otimes \Lambda_i \) are separable over \(K \). However, not only the proof but also the statements of results of [4] do not apply for general \(R \). For example, if \(\overline{R} \) has a non-trivial Brauer group, there always exists a central division \(K \)-algebra \(D \neq K \) with the maximal order \(\Lambda_1 \) such that \(Z(\Lambda_1) = \overline{R} \) and \(e(\Lambda_1|R) = 1 \) (by [5, Satz 1]). For such a \(\Lambda_1 \), by (B1):

\[\Lambda_1 \otimes \Lambda_2 \text{ is maximal if and only if } \Lambda_2 \text{ is maximal.} \]

(iii) The above remark was already recognized and effectively used in [5] (proof of Satz 2), to derive the following remarkable result.

(c) If \(\Lambda \) is a connected residually separable maximal order, then \(Z(\Lambda) \) is always a cyclic Galois extension of degree \(e(\Lambda|Z(\Lambda)) \) over \(Z(\Lambda) \).

In §3, we shall use (c) to derive our final Proposition 3.2, which contains (B2) as a special case.

By the way, relatively recently, (c) is (reproved in [3] in another way and) extensively used in [6].

1. Hereditary orders

1. Recall from [1] §23: an \(R \)-lattice means a finitely generated free \(R \)-module; an \(R \)-order means an \(R \)-algebra which is also an \(R \)-lattice. Let \(\Lambda \) be an \(R \)-order, then the \(K \)-algebra \(\Lambda := K \otimes \Lambda \) has the same free rank over \(K \) as the free rank of \(\Lambda \) over \(R \), \([\Lambda : K] = [\Lambda : R]\). A left (respectively, right) \(\Lambda \)-lattice means a left (respectively,
right) \Lambda\text{-module which is also an } R\text{-lattice. An } R\text{-order } \Lambda \text{ is called a \textit{hereditary order} if and only if any left (or equivalently right) } \Lambda\text{-ideal is projective as a } \Lambda\text{-module.}

For a general facts on hereditary orders, we refer to [7] §39, or [1] §26, where the results are stated under the assumption that \Lambda is separable over \(K \). However, if \Lambda is hereditary, then \Lambda is necessarily semisimple ([(2) 1.7.1]), and at least for local theory, as is easily seen, semisimplicity is enough.

In particular, an \(R\)-order \(\Lambda \) is hereditary if and only if its Jacobson radical \(J(\Lambda) \) is projective as a left (or right) \(\Lambda\)-module. An \(R\)-order \(\Lambda \) will be called a \textit{principal order} if and only if \(J(\Lambda) \) is a principal ideal. Thus we have the implications:

\[\text{maximal } \implies \text{principal } \implies \text{hereditary.} \]

1.1 Let \(\Lambda \) be a connected (i.e. having no non-trivial central idempotents) hereditary \(R\)-order, then \(\Lambda \) is also connected so that has the form \(\Lambda = M_n(D) \) by some division \(K\)-algebra \(D \). Let \(\Delta \) be the unique maximal order of \(D \).

By the structure theorem [1] (26.28), there is associated a decomposition \((n_1, ..., n_s) \) of \(n \) \((n = \sum n_i, \ 0 < n_i \in \mathbb{N}) \), such that \(\Lambda \) is \(\Lambda^x\text{-conjugate to the suborder of } M_n(\Delta) \) defined by the block decomposition as

\[\Lambda \simeq \{ (\Lambda_{ij})_{1 \leq i, j \leq s} : \Lambda_{ij} = M_{n_i, n_j}(\Delta) \ (i \leq j); \Lambda_{ij} = M_{n_i, n_j}(J(\Delta)) \ (i > j) \} \subset M_n(D). \]

Hence, it is straightforward to derive the following relations, in the notation of 0.0.

(0) \(Z(\Lambda) \simeq Z(\Delta)^{(s)} : = Z(\Delta) \oplus ... \oplus Z(\Delta) \) (\(s\)-times).
(1) \(s = s(\Lambda) = s(\Lambda) = s(Z(\Lambda)). \)
(2) \(Z(\Lambda) \simeq Z(\Delta). \)
(3) \(f(\Lambda|R) := [\Lambda : R] = f(\Delta|R) \sum_{i=1}^{s} n_i^2. \)
(4) \(e(\Lambda|R) = se(\Delta|R). \)
(5) \(\Lambda \) is maximal if and only if \(s = 1. \)
(6) \(\Lambda \) is principal if and only if \((s|n \text{ and}) n_i = n/s. \)
(7) \(\Lambda \) is basic if and only if \(s = n, \ n_i = 1. \)

Concerning the statement of Theorem (A) (B), we shall remark:
(i) An unramified order is maximal (by (4)).
(ii) If \(\Lambda_1 \otimes \Lambda_2 \) is hereditary and \((\ast\ast) \) is satisfied, then both of \(\Lambda_i \) are maximal (by (0)).

1.2 Let \(\Lambda \) be a connected hereditary \(R\)-order, then

\[e(\Lambda|R)f(\Lambda|R) \geq [\Lambda : R] = [\Lambda : K]. \]

The equality holds if and only if \(\Lambda \) is principal.
Proof. By (3) and (4), \(e(\Delta|R)f(\Delta|R) = e(\Delta|R)f(\Delta|R) s \sum n_i^2 \). As is well-known (and as is easily seen), \(e(\Delta|R)f(\Delta|R) = [D : K] \). While \(\sum n_i^2 = \sum (n/s + (n_i - n/s)^2 = \sum (n/s)^2 + \sum (n_i - n/s)^2 \geq \sum (n/s)^2 = n^2/s \), so that \(e(\Delta|R)f(\Delta|R) \geq [D : K]n^2 = [\Lambda : K] \), as wanted. The equality holds if and only if \(n_i = n/s \) so that \(\Lambda \) is principal by (6).

1.3 Let \(\Lambda \) be a hereditary \(R \)-order. Then:

\[\Lambda \text{ is maximal if and only if } s(Z(\Lambda)) = s(Z(\Lambda)). \]

Proof. It obviously suffices to prove for a connected \(\Lambda \). When connected, the claim is a consequence of (1) (2) and (5).

2. Proof of theorems

2. Let \(\Lambda_i \) \((i = 1, 2)\) be \(R \)-orders. Put \(J_i := J(\Lambda_i) \), \(e_i := e(\Lambda_i|R) \). Since \(\Lambda_i \) is free over \(R \), one may consider \(J_1 \otimes \Lambda_2 \) and \(\Lambda_1 \otimes J_2 \) as submodules of \(\Lambda_1 \otimes \Lambda_2 \), and \(J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2 \) is a two-sided ideal of \(\Lambda_1 \otimes \Lambda_2 \). Let \(\varphi_i : \Lambda_i \to \Lambda_i := \Lambda_i/J_i \) be the natural \(R \)-algebra epimorphism.

2.1 The \(R \)-algebra epimorphism \(\varphi_1 \otimes \varphi_2 : \Lambda_1 \otimes \Lambda_2 \to \Lambda_1 \otimes \Lambda_2 \) induces the exact sequence

\[0 \to J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2 \to \Lambda_1 \otimes \Lambda_2 \to \Lambda_1 \otimes \Lambda_2 \to 0. \]

Proof. Let \(\iota_i : J_i \to \Lambda_i \) be the natural monomorphism. Then straightforward computation yields

\[\text{Ker}(\varphi_1 \otimes \varphi_2) = \text{Im}(\iota_1 \otimes id_{\Lambda_2}) + \text{Im}(id_{\Lambda_1} \otimes \iota_2). \]

2.2 \((J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2)^{e_1 + e_2 - 1} \subset \pi(\Lambda_1 \otimes \Lambda_2)\).

In particular, \(J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2 \subset J(\Lambda_1 \otimes \Lambda_2) \).

Proof. From \((J_1 \otimes \Lambda_2)^{e_1} \subset \pi\Lambda_1 \otimes \Lambda_2 = \pi(\Lambda_1 \otimes \Lambda_2), \) \((\Lambda_1 \otimes J_2)^{e_2} \subset \pi(\Lambda_1 \otimes \Lambda_2) \), the claim is obvious.

2.3 The following six conditions for \((\Lambda_1, \Lambda_2)\) are equivalent.

\((*) \) \(\Lambda_1 \otimes \Lambda_2 \) is a semisimple ring.

\((*1) \) \(J(\Lambda_1 \otimes \Lambda_2) = J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2 \).

\((*2) \) \(\Lambda_1 \otimes \Lambda_2 \cong \Lambda_1 \otimes \Lambda_2 \).
WHEN IS $\Lambda_1 \otimes \Lambda_2$ HEREDITARY

(*3) $Z(\Lambda_1 \otimes \Lambda_2) \cong Z(\Lambda_1) \otimes Z(\Lambda_2)$.

(*4) $Z(\Lambda_1) \otimes Z(\Lambda_2)$ is a semisimple ring.

(*5) $k_1 \otimes k_2$ is a semisimple ring for any R-subalgebra k_i of $Z(\Lambda_i)$.

Proof. (*) \Rightarrow (1) by 2.1 and 2.2; (1) \Rightarrow (2) by 2.1; (2) \Rightarrow (3) obvious; (3) \Rightarrow (4) since $\Lambda_1 \otimes \Lambda_2$ is semisimple; (4) \Rightarrow (5) since $k_1 \otimes k_2$ cannot have nilpotent elements; (5) \Rightarrow (4) obvious; (4) \Rightarrow (*) It obviously suffices to prove the claim when Λ_i are simple so that $k_i := Z(\Lambda_i)$ are finite extension fields of $k := \overline{R}$. Assume (4), so that $k_1 \otimes k_2 \simeq \bigoplus_{j=1}^{t} T_j$ by finite extension fields T_i. We have $\Lambda_1 \otimes \Lambda_2 = (\Lambda_1 \otimes k_1) \otimes (k_2 \otimes \Lambda_2) \simeq \bigoplus_{j=1}^{t} (\Lambda_1 \otimes k_1, T_j \otimes k_2 \Lambda_2)$. Since Λ_1 is central simple over k_1, $\Lambda_1 \otimes k_1, T_j$ is simple, which implies that $(\Lambda_1 \otimes k_1, T_j) \otimes k_2 \Lambda_2$ is also simple. \square

2.4 If (Λ_1, Λ_2) satisfies the condition (*), then

$$e(\Lambda_1 \otimes \Lambda_2|R) \leq e_1 + e_2 - 1.$$

Proof. By 2.3 (1) and 2.2. \square

2.5 Assume that Λ_1 is unramified, Λ_2 is hereditary and moreover the condition (*) is satisfied, then $\Lambda_1 \otimes \Lambda_2$ is hereditary.

Proof. By 2.3 (1), $J(\Lambda_1 \otimes \Lambda_2) = J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2 = \pi \Lambda_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2 = \Lambda_1 \otimes \pi \Lambda_2 + \Lambda_1 \otimes J_2 = \Lambda_1 \otimes J_2$. Since Λ_2 is hereditary, we have $J_2 \otimes X \simeq \Lambda_2^{(\nu)}$, so that $(\Lambda_1 \otimes J_2) \otimes (\Lambda_1 \otimes X) \simeq \Lambda_1 \otimes (J_2 \otimes X) \simeq \Lambda_1 \otimes \Lambda_2^{(\nu)} \simeq (\Lambda_1 \otimes \Lambda_2)^{(\nu)}$, hence $J(\Lambda_1 \otimes \Lambda_2) = \Lambda_1 \otimes J_2$ is $\Lambda_1 \otimes \Lambda_2$-projective. \square

2.6 ([4, Proposition 3]). If $\Lambda_1 \otimes \Lambda_2$ is hereditary, then both of Λ_i are hereditary.

Proof. Let M be a (left) ideal of Λ_2. Since Λ_1 is free over R, M is a direct summand of $\Lambda_1 \otimes M$. Since $\Lambda_1 \otimes \Lambda_2$ is hereditary, $\Lambda_1 \otimes M$ is $\Lambda_1 \otimes \Lambda_2$-projective, which implies, since Λ_1 is free over R, $\Lambda_1 \otimes M$ is Λ_2-projective so that M is Λ_2-projective. \square

Main Lemma 2.7. Let Λ_i ($i = 1, 2$) be connected hereditary orders satisfying the condition (*). If $\Lambda_1 \otimes \Lambda_2$ is hereditary, then one of Λ_i is unramified.

Proof. (I) First we assume that both of Λ_i are principal. Decompose $\Lambda_1 \otimes \Lambda_2$ into the connected components Γ_j ($1 \leq j \leq t$), $\Lambda_1 \otimes \Lambda_2 = \bigoplus \Gamma_j$. Putting $f_i := [\Lambda_i : \overline{R}]$, $e_j := e(\Gamma_j|R)$ and $f_j := [\overline{\Gamma}_j : \overline{R}]$, we have

1) $\sum f_j = \sum [\overline{\Gamma}_j : \overline{R}] = [\Lambda_1 : \overline{R}] [\Lambda_2 : \overline{R}] = f_1 f_2$.

Since Γ_j's are hereditary and A_i's are principal, by 1.2, we have

$$\sum e_j f_j \geq \sum [\Gamma_j : R] = [A_1 \otimes A_2 : R] = [A_1 : R][A_2 : R] = f_1 e_1 f_2 e_2.$$

Combining 1) and 2), we get

$$\sum (e_j' - e e_2) f_j' \geq 0.$$

From $e(\Theta \Gamma_j | \Lambda) = \max e(\Gamma_j | R) \geq e'$, using 2.4, we get $e_1 + e_2 - 1 \geq e(\Lambda_i \otimes \Lambda_2 | R) \geq e_j'$, so that

$$-\left(e_1 - 1 \right) (e_2 - 1) \sum f_j' = \sum (e_1 + e_2 - 1 - e_1 e_2) f_j' \geq \sum (e_j' - e_1 e_2) f_j' \geq 0,$$

where the last inequality is by 3). Since $e_i \geq 1$, one of $e_i = 1$.

(II) Let A_i^j be a basic (hence principal) hereditary order which is Morita equivalent with A_i. We shall show that $A_i^j \otimes A_i^j$ is Morita equivalent with $A_i \otimes A_2$ (hence is also hereditary). Indeed, A_2 has the form $A_2 = \text{Hom}_{A_2}(P, P)$ by some progenerator P, A_2 is free (hence flat) over R, and P is finitely presented as A_2-module, so that we have

$$A_i^j \otimes A_i^j \simeq A_i^j \otimes \text{Hom}_{A_2}(P, P) \simeq \text{Hom}_{A_i^j \otimes A_i^j}(A_i^j \otimes P, A_i^j \otimes P).$$

Since $A_i \otimes P$ is a progenerator for $A_i \otimes A_2$, $A_i^j \otimes A_i^j$ is Morita equivalent with $A_i \otimes A_2$. By the same reason, $A_i^j \otimes A_2$ is Morita equivalent with $A_i \otimes A_2$.

2.8 Proof of Theorem (A): 'If part' is by 2.5. 'Only if part' is easily derived from 2.7.

(B): By 1.3, $A_i \otimes A_2$ is maximal if and only if $A_i \otimes A_2$ is hereditary and

$s(Z(A_i \otimes A_2)) = s(Z(A_1 \otimes A_2)).$

By 2.3 (*3), we have $Z(A_i \otimes A_2) = Z(A_i) \otimes Z(A_2)$ since $Z(A_i)$ is an R-subalgebra of $Z(A_i)$, by 2.3 (*5), $Z(A_i) \otimes Z(A_2)$ is semisimple, hence by 2.3, $Z(A_i) \otimes Z(A_2) = Z(A_1) \otimes Z(A_2).$ Thus $A_i \otimes A_2$ is maximal if and only if $s(Z(A_i) \otimes Z(A_2)) = s(Z(A_1) \otimes Z(A_2))$.

(B1): Assume that $Z(A_1) = R$. Then $Z(A_1) \otimes Z(A_2) \simeq Z(A_2)$ and $Z(A_1) \otimes Z(A_2) \simeq Z(A_2)$. $A_1 \otimes A_2$: maximal $\iff s(Z(A_2)) = s(Z(A_2)) \iff A_2$: maximal (by 1.3).

3. Proof of Corollary (B2)

3. Let A_i ($i = 1, 2$) be connected maximal R-orders satisfying (*). Put $k := \overline{R}$, $k_i := \overline{Z(A_i)}$ and $k'_i := Z(A_i)$. Then k'_i is an extension field of k containing k_i, and $k_1 \otimes k_2 = \oplus_{j=1}^T T_j$ is a direct sum of extension fields T_j of k. Obviously the following two conditions are equivalent:

$$s(k'_1 \otimes k'_2) = s(k_1 \otimes k_2),$$

(II) Let A_i^j be a basic (hence principal) hereditary order which is Morita equivalent with A_i. We shall show that $A_i^j \otimes A_i^j$ is Morita equivalent with $A_i \otimes A_2$ (hence is also hereditary). Indeed, A_2 has the form $A_2 = \text{Hom}_{A_2}(P, P)$ by some progenerator P, A_2 is free (hence flat) over R, and P is finitely presented as A_2-module, so that we have

$$A_i^j \otimes A_i^j \simeq A_i^j \otimes \text{Hom}_{A_2}(P, P) \simeq \text{Hom}_{A_i^j \otimes A_i^j}(A_i^j \otimes P, A_i^j \otimes P).$$

Since $A_i \otimes P$ is a progenerator for $A_i \otimes A_2$, $A_i^j \otimes A_i^j$ is Morita equivalent with $A_i \otimes A_2$. By the same reason, $A_i^j \otimes A_2$ is Morita equivalent with $A_i \otimes A_2$.

2.8 Proof of Theorem (A): 'If part' is by 2.5. 'Only if part' is easily derived from 2.7.

(B): By 1.3, $A_i \otimes A_2$ is maximal if and only if $A_i \otimes A_2$ is hereditary and

$s(Z(A_i \otimes A_2)) = s(Z(A_1 \otimes A_2)).$

By 2.3 (*3), we have $Z(A_i \otimes A_2) = Z(A_i) \otimes Z(A_2)$ since $Z(A_i)$ is an R-subalgebra of $Z(A_i)$, by 2.3 (*5), $Z(A_i) \otimes Z(A_2)$ is semisimple, hence by 2.3, $Z(A_i) \otimes Z(A_2) = Z(A_1) \otimes Z(A_2).$ Thus $A_i \otimes A_2$ is maximal if and only if $s(Z(A_i) \otimes Z(A_2)) = s(Z(A_1) \otimes Z(A_2))$.

(B1): Assume that $Z(A_1) = R$. Then $Z(A_1) \otimes Z(A_2) \simeq Z(A_2)$ and $Z(A_1) \otimes Z(A_2) \simeq Z(A_2)$. $A_1 \otimes A_2$: maximal $\iff s(Z(A_2)) = s(Z(A_2)) \iff A_2$: maximal (by 1.3).

3. Proof of Corollary (B2)

3. Let A_i ($i = 1, 2$) be connected maximal R-orders satisfying (*). Put $k := \overline{R}$, $k_i := \overline{Z(A_i)}$ and $k'_i := Z(A_i)$. Then k'_i is an extension field of k containing k_i, and $k_1 \otimes k_2 = \oplus_{j=1}^T T_j$ is a direct sum of extension fields T_j of k. Obviously the following two conditions are equivalent:

$$s(k'_1 \otimes k'_2) = s(k_1 \otimes k_2),$$
WHEN IS $\Lambda_1 \otimes \Lambda_2$ HEREDITARY

$\Lambda_1 \otimes \Lambda_2$ is a field for any j (1 $\leq j \leq t)$.

3.0 Assume that Λ_1 is unramified and residually separable over R. Then, by (c) 0.3 (or more elementary Hilfssatz 3 of [5]), we have

$$k_1' = Z(\Lambda_1) = \mathbb{Z}(\Lambda_1) = k_1.$$

Being separable over k, k_1 has the form $k_1 = k[x]/f_k[x]$ by a separable polynomial f_k in $k[x]$. The decomposition $k_1 \otimes k_2 = \oplus T_j$ corresponds to the decomposition of $f = \Pi f_j$ as irreducible factors in $k_2[x]$. Thus (**1) is equivalent with

(**2) f_j is irreducible in $k_2'[x]$ for any j (1 $\leq j \leq t$).

3.1 Further assume that Λ_2 is also residually separable over R, so that k_2' is separable over k, and moreover k_2'/k_2 is a (cyclic) Galois extension by (c) 0.3. Since the condition (**2) depends only on the k-algebra structure of k_2', we consider that k_2' and k_1 are contained in a fixed separable closure k_{sep} of k, and apply Galois theory.

Let $G := \text{Gal}(k_{sep}/k)$ and $G(L) := \{\sigma \in G : \sigma|_L = id_L\}$ for $L \subset k_{sep}$. The decomposition of f in $k_2[x]$ (respectively $k_2'[x]$) corresponds to the double cosets decomposition $G(k_2) \backslash G/G(k_1)$ (respectively $G(k_2') \backslash G/G(k_1)$), so that (**2) is equivalent with

(**3) $G(k_2) \subset G(k_2') \sigma G(k_1) \sigma^{-1} = G(k_2') G(\sigma(k_1))$ for any $\sigma \in G$.

Proposition 3.2. Let Λ_i (i = 1, 2) be connected residually separable maximal orders and Λ_1 be unramified over R. Then:

(i) $\Lambda_1 \otimes \Lambda_2$ is maximal if and only if

$$k_2 = k_2' \cap \sigma(k_1)k_2 \text{ for any } \sigma \in \text{Gal}(k_{sep}/k).$$

(ii) If further, one of k_1 or k_2' is Galois over k, then:

$\Lambda_1 \otimes \Lambda_2$ is maximal if and only if

$$k_2 \cap \sigma(k_1) = k_2' \cap \sigma(k_1) \text{ for any } \sigma \in \text{Gal}(k_{sep}/k).$$

Proof. (i) Since $G(k_2')$ is a normal subgroup of $G(k_2)$:

$$G(k_2) \subset G(k_2') G(\sigma(k_1)) \Leftrightarrow G(k_2) = G(k_2') G(\sigma(k_1)) \cap G(k_2) = G(k_2') G(\sigma(k_1)k_2)$$

$$\Leftrightarrow k_2 = k_2' \cap \sigma(k_1)k_2.$$
(ii) \(G(k_2) \subset G(k'_2)G(\sigma(k_1)) \Rightarrow G(k_2) \subset G(k'_2), G(\sigma(k_1)) \Leftrightarrow k_2 \supset k'_2 \cap \sigma(k_1) \Leftrightarrow k_2 \cap \sigma(k_1) = k'_2 \cap \sigma(k_1) \).

At the first implication, the converse holds if one of \(k'_2 \) or \(k_1 \) is Galois over \(k \).

References

H. Hijikata
Department of Mathematics
Kyoto University
Kyoto, 606-8502, Japan

K. Nishida
Department of Mathematical Sciences
Shinshu University
Matsumoto, 390-8621, Japan

e-mail: kenisida@math.sinshu-u.ac.jp