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0. Introduction

Let R be a complete discrete valuation ring with the quotient field K. Assuming
that R has a finite residue field, Janusz [4] gave a criterion for a tensor product of
two R-orders A; ® g A2 to be hereditary or maximal. We shall extend his results by
dropping the assumption that R has a finite residue field. In [4], finiteness of a residue
field was mainly used to calculate the discriminant. In this paper, we shall do fairly
ring theoretical argument and reduces the question to the center Z(A) of an order A
and Z(A/J) of the residue ring modulo its radical J. These things enable us to handle
the problem in a general setting. As for terminology, we mostly follow that of [1].

Noration 0.0.  For a ring A, we shall consistently write as: Z(A) := center of
A, J(A) := Jacobson radical of A, A := A/J(A), and s(A) denote the number of
isomorphism classes of indecomposable projective left A-modules.

Let m denote a prime of R, J(R) = wR. For an R-order A, put e(A|R) :=
min{v € N: J(A)* C wA}. An R-order A will be called unramified (over R) if and
only if e(A|R) =1 (i.e. J(A) = wA), A will be called residually separable if and on-
ly if A is a separable R-algebra. An unspecified tensor product ® always means that
over R. Note however, for R-orders A;, A1 ® Ay := A; ®r A2 ~ A; ®7 A,, so that in
this case ® is in fact over the field R.

Theorem 0.1. Let A; (i = 1, 2) be R-orders and assume that the following
condition is satisfied

(*) AL ® Ay is a semisimple ring.

Then:

(A) A1 ® Ay is hereditary if and only if both of A; are hereditary and one of A;,
say Ay, is unramified.

(B) A1 ® A is maximal if and only if A1 ® Ay is hereditary and moreover the fol-
lowing condition is satisfied

(%) s(Z(A1) ® Z(A2)) = 5(Z(A1) ® Z(A)).
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Proof of (A), (B) and the next (B1) will be given in §2, as direct consequences
of our Main Lemma 2.7. While, if one of A; is residually separable, the condition (x)
is certainly satisfied, so that we don’t need to explicitly assume it in the following
corollaries, where we can reduce the condition (*x) into simpler forms.

Corollary 0.2. (B1) Let A; be an unramified R-order such that Z(A;) = R
and Ao be any R-order. Then:

A1 ® A is maximal if and only if Ay is maximal.

(B2) Let A; (i = 1, 2) be connected residually separable maximal orders. As-
sume that Ay is unramified and moreover Z(A,) is a Galois extension of R. Then:

Ay ® Ay is maximal if and only if Z(A1) N Z(A2) = Z(A1) N Z(As),
where the intersection is taken in a fixed separable closure of R (cf. §3 for detail ).

Remark 0.3. (i) If R has a finite residue field, our (A) (respectively, (B2)) spe-
cializes to Theorem (a) (respectively, (b)) of [4].

(i) In [1] (26.26), (26.29), the results of [4] are quoted without proof, as valid
over any complete discrete valuation ring R, provided that K ® A; are separable over
K. However, not only the proof but also the statements of results of [4] do not apply
for general R. For example, if R has a non-trivial Brauer group, there always exists a
central division K-algebra D (# K) with the maximal order A; such that Z(A;) = R
and e(A;|R) =1 (by [5, Satz 1]). For such a A;, by (B1):

A1 ® A2 is maximal if and only if Ay is maximal.

(iii) The above remark was already recognized and effectively used in [5] (proof
of Satz 2), to derive the following remarkable result.
() If A is a connected residually separable maximal order, then Z(A) is al-
ways a cyclic Galois extension of degree e(A|Z(A)) over Z(A).
In §3, we shall use (c) to derive our final Proposition 3.2, which contains (B2) as
a special case.
By the way, relatively recently, (c) is (reproved in [3] in another way and) exten-

sively used in [6].

1. Hereditary orders

1. Recall from [1] §23: an R-lattice means a finitely generated free R-module;
an R-order means an R-algebra which is also an R-lattice. Let A be an R-order, then
the K -algebra A := K ® A has the same free rank over K as the free rank of A over
R, [A : K] = [A : R]. A left (respectively, right) A-lattice means a left (respectively,
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right) A-module which is also an R-lattice. An R-order A is called a hereditary order
if and only if any left (or equivalently right) A-ideal is projective as a A-module.

For a general facts on hereditary orders, we refer to [7] §39, or [1] §26, where
the results are stated under the assumption that A is separable over K. However, if A
is hereditary, then Ais necessarily semisimple ([2] 1.7.1), and at least for local theory,
as is easily seen, semisimplicity is enough.

In particular, an R-order A is hereditary if and only if its Jacobson radical J(A)
is projective as a left (or right) A-module. An R-order A will be called a principal
order if and only if J(A) is a principal ideal. Thus we have the implications:

maximal = principal = hereditary.

1.1 Let A be a connected (i.e. having no non-trivial central idempotents) here-
ditary R-order, then A is also connected so that has the form A = M, (D) by some
division K-algebra D. Let A be the unique maximal order of D.

By the structure theorem [1] (26.28), there is associated a decomposition
(n1,...,ms) of n (n = Y n;, 0 < n; € N), such that A is Kx-conjugate to the sub-
order of M, (A) defined by the block decomposition as

A~ {(Aij)i<ij<s 2 Aij = Mp, n;(A) (1 < 5); Aij = Mn, n;(J(A)) (8> 5)}
C M, (D).

Hence, it is straightforward to derive the following relations, in the notation of
0.0.
0 ZA)~ZA)®) :=Z(A)®...® Z(A) (s-times).
(1) s=s(A) =s(A) =s(Z(A)).
2 ZA) =~ Z(A_). .
(3 f(AIR):=[A:R] = f(AIR) T, n.
4) e(A|R) = se(A|R).
(5) A is maximal if and only if s = 1.
(6) A is principal if and only if (s|n and) n; = n/s.
(7) A is basic if and only if s =n, n; = 1.
Concerning the statement of Theorem (A) (B), we shall remark:
(i)  An unramified order is maximal (by (4)).
(i) If A; ® Ay is hereditary and (*x) is satisfied, then both of A; are maximal (by

0)).
1.2 Let A be a connected hereditary R-order, then
e(A|[R)f(A|[R) > [A: R]=[A: K].

The equality holds if and only if A is principal.
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Proof. By (3) and (4), e(A|R)f(A|R) = e(A|R)f(A|R)sY_n?. As is well-
known (and as is easily seen), e(A|R)f(A|R) = [D : K]. While }_n? = Y (n/s +
(ni=n/s))? = 3(n/s)*+ ¥ (ni—n/s)* > 3(n/s)* = n’/s, so that e(A|R)f(A|R) >
[D : K]n? = [A : K], as wanted. The equality holds if and only if n; = n/s so that
A is principal by (6). O

1.3 Let A be a hereditary R-order. Then:

A is maximal if and only if s(Z(A)) = s(Z(A)).

Proof. It obviously suffices to prove for a connected A. When connected, the
claim is a consequence of (1) (2) and (5). O

2. Proof of theorems

2. Let A; (i =1, 2) be R-orders. Put J; := J(A;), e; := e(A;|R). Since A; is
free over R, one may consider J; ® A, and A; ® J> as submodules of A; ® A, and
J1 ®As + A ® Jo is a two-sided ideal of A; ® As. Let ; : A; = A; := A;/J; be the
natural R-algebra epimorphism.

2.1 The R-algebra epimorphism ¢; ® 3 : A; ® Ay = A; ® A, induces the exact
sequence

0> 1A +A10J, — A1 ® Ay ——-—)K1®K2'-—>0.

Proof. Let ¢; : J; — A; be the natural monomorphism. Then straightforward
computation yields

Ker(p1 ® p2) = Im(1y; ® idp,) + Im(idp, @ t2). ]

2.2 (Jl QA +A ® J2)e1+e2_1 - W(Al ® Az)
In particular, J; ® A2 + A1 ® Jo C J(A1 ® A3).

Proof. From (J1®A3)®* C A1 ®Ax = (A1 ®A2), (A1 ®J2)°2 C n(A1®A2),
the claim is obvious. O

2.3 The following six conditions for (A;, As) are equivalent.
(*) A; ® A, is a semisimple ring.
*1) JAI®A)=J1 QA2+ A1 ® Jo.
(*2) AL ®A; ~A; ®A,.
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(*3) Z(A1®Az) ~ Z(A1) ® Z(Az).
(*4) Z(A1) ® Z(A2) is a semisimple ring.
(*5) ki ® ko is a semisimple ring for any R-subalgebra k; of Z (Ki).

Proof. () = (*1) by 2.1 and 2.2; (x1) = (x2) by 2.1; (¥2) = (x3) obvious;
(*3) = (*4) since A; ® A, is semisimple; (x4) = (*5) since k3 ® ko cannot have
nilpotent elements; (¥5) = (*4) obvious; (x4) = (*): It obviously suffices to prove
the claim when A; are simple so that k; := Z(A;) are finite extension fields of k :=
R. Assume (x4), so that k; ®p ko ~ EB;:lTj by finite extension fields T;. We have
A @ Ay = (A) @, k1) @k (k2 Ok, A2) ~ B (A1 ®k, Tj @k, Az). Since A; is central
simple over ki, Ay ®x, Tj is simple, which implies that (A; ®x, T;) ®k, Az is also
simple. J

2.4 If (A1, A») satisfies the condition (), then

e(A1 ® A2|R) <e; +ex—1.

Proof. By 2.3 (x1) and 2.2. O

2.5 Assume that A; is unramified, A, is hereditary and moreover the condition
(%) is satisfied, then A; ® A2 is hereditary.

Proof. By 2.3 (x1), J(Al QA)=J1 QA+ M @Sa=7AM ®A2+ A1 ®J2 =
A ®7As + AL ® J, = Ay ® Jo. Since A, is heredirary, we have Jo & X ~ A("), )
that (A; ® o) ® (A1 ® X) ~ A ® (Ja ® X) ~ A; @ AL ~ (A ® A3)™), hence
J(Al ® A2) =A®Jis A1 ® Ag-projective. O

2.6 ([4, Proposition 3]). If A;®A; is hereditary, then both of A; are hereditary.
Proof. Let M be a (left) ideal of A,. Since A; is free over R, M is a direct
summand of A; ® M. Since A; ® A, is hereditary, A; ® M is A1 ® A2-projective, which
implies, since A; is free over R, A; ® M is Aq-projective so that M is A,-projective.

O

Main Lemma 2.7. Let A; (i = 1, 2) be connected hereditary orders satisfying
the condition (x). If A1 ® Ay is hereditary, then one of A; is unramified.

Proof. (I) First we assume that both of A; are principal. Decompose A; ® A2
into the connected components I'; (1 < j < t), Ay ® Ay = ®T';. Putting f; := [Ki :
R], €} :=e(Tj|R) and f:= [T : R], we have

1 Y fi=>[T;:Rl=[A:R|A:: R] = fifo.
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Since ng are hereditary and Als are principal, by 1.2, we have
2) N €ifj > [T;:Rl=[A1®Az: R =[As: R)[As: R] = fre1 foep.
Combining 1) and 2), we get
3) Z(e; —eiez)f; > 0.

From e(®T';|R) = maxe(I';|R) > €/, using 2.4, we get e; +ez — 1 > e(A1 ® A2|R)
> e;, so that

—(e-D(e-1)) fi= (1 +ea—1—eiedff > ) (€} —ere2)fj >0,

where the last inequality is by 3). Since e; > 1, one of e; = 1.

(Il) Let A} be a basic (hence principal) hereditary order which is Morita equiv-
alent with A;. We shall show tha A} ® A} is Morita equivalent with A; ® A, (hence
is also hereditary). Indeed, A} has the form A} ~ Homy, (P, P) by some progenerator
P, A, is free (hence flat) over R, and P is finitely presented as A;-module, so that
we have

A} ® Ay ~ A} ® Homy, (P, P) ~ Homy; ga, (A} ® P, A} ® P).

Since A{®P is a progenerator for Aj® A2, A]® A} is Morita equivalent with A] ® A,.
By the same reason, A} ® Ay is Morita equivalent with A; ® A,. ]

2.8 Proof of Theorem (A): ‘If part’ is by 2.5. ‘Only if part’ is easily derived
from 2.7.

(B): By 1.3, A; ® Ay is maximal if and only if A; ® Ay is hereditary and
s(Z(A1 ® A2)) = s(Z(A1 ® Az)). By 2.3 (x3), we have Z(A; ® A3) = Z(A)) ®
Z(Ay). Since Z(A;) is an R-subalgebra of Z(A;), by 2.3 (*5), Z(A1) ® Z(A2) is
semisimple, hence by 2.3, Z(A1)®Z(A2) = Z(A1) ® Z(Az). Thus A;®A, is maximal
if and only if s(Z(A1) ® Z(A2)) = s(Z(A1) ® Z(A,)).

(B1): Assume that Z(A;) = R. Then Z(A;) ® Z(Az) ~ Z(As) and Z(A;) ®
Z(A3) ~ Z(Ay). Ay ® Ay: maximal & s(Z(Ag)) = s(Z(As)) & Ag: maximal (by
1.3). O

3. Proof of Corollary (B2)

3. Let A; (. =1, 2) be connected maximal R-orders satisfying (x). Put k := R,
ki := Z(A;) and k! := Z(A;). Then k! is an extension field of k containing k;, and
k1 ®ky = ®_,T; is a direct sum of extension fields T; of k. Obviously the following
two conditions are equivalent:

(%) S(k; ® ké) = S(kl ® kz),
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(xx1) ki ®, Tj ®r, kb is a field for any j (1< j<t).
1 17 2 V2

3.0 Assume that A; is unramified and residually separable over R. Then, by (c)
0.3 (or more elementary Hilfssatz 3 of [5]), we have

ki = Z(A1) = Z(Ay) = ka.

Being separable over k, k; has the form ki = k[z]/fk[z] by a separable polyno-
mial f in k[z]. The decomposition k; ® k; = @T; corresponds to the decomposition
of f =1If; as irreducible factors in ko[z]. Thus (**1) is equivalent with

(x%2) f; is irreducible in ky[z] for any j (1<j<t).

3.1 Further assume that A; is also residually separable over R, so that k) is sep-
arable over k, and moreover kj/ko is a (cyclic) Galois extension by (c) 0.3. Since the
contition (**2) depends only on the k-algebra structure of k!, we consider that k! and
k1 are contained in a fixed separable closure k.., of k, and apply Galois theory.

Let G := Gal(ksep/k) and G(L) := {0 € G : 0| = idp} for L C ksep. The
decomposition of f in kz[z] (respectively kj[z]) corresponds to the double cosets de-
composition G(k2)\G/G (k1) (respectively G(k5)\G/G(k1)), so that (¥x2) is equiva-
lent with

(**3) G(ky) C G(ky)aG(k1)o™ = G(ky)G(a (k1)) for any o € G.

Proposition 3.2. Let A; (i = 1, 2) be connected residually separable maximal
orders and A, be unramified over R. Then:
(i) A1 ® A is maximal if and only if

ky = ky Na(ki)ke for any o € Gal(ksep/k)-

(ii)  If further, one of k1 or ki is Galois over k, then:
Ay ® As is maximal if and only if

ke Na(k) =kyNo(ki) for any o € Gal(ksep/k).

Proof. (i) Since G(k}) is a normal subgroup of G(kz):

G(k2) C G(k3)G(o (k1)) & G(k2) = G(k3)(G(o (k1)) N G(k2)) = G(k3)G (0 (k1)k2)
S ky = ké ﬂa(kl)kz.
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G(ks) C G(k5)G(o (k1)) = G(k) C< G(k}),G(o(k1)) > ke DkyNo(k) &

kznd(kl) = ké ﬂo(kl).

At the first implication, the converse holds if one of ki or k; is Galois over k.

g
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