

Title	When is $\Lambda_1 \otimes \Lambda_2$ hereditary?
Author(s)	Hijikata, Hiroaki; Nishida, Kenji
Citation	Osaka Journal of Mathematics. 1998, 35(3), p. 493-500
Version Type	VoR
URL	https://doi.org/10.18910/4537
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

WHEN IS $\Lambda_1 \otimes \Lambda_2$ HEREDITARY ?

HIROAKI HIJIKATA and KENJI NISHIDA

(Received April 18, 1997)

0. Introduction

Let R be a complete discrete valuation ring with the quotient field K . Assuming that R has a finite residue field, Janusz [4] gave a criterion for a tensor product of two R -orders $\Lambda_1 \otimes_R \Lambda_2$ to be hereditary or maximal. We shall extend his results by dropping the assumption that R has a finite residue field. In [4], finiteness of a residue field was mainly used to calculate the discriminant. In this paper, we shall do fairly ring theoretical argument and reduces the question to the center $Z(\Lambda)$ of an order Λ and $Z(\Lambda/J)$ of the residue ring modulo its radical J . These things enable us to handle the problem in a general setting. As for terminology, we mostly follow that of [1].

NOTATION 0.0. For a ring A , we shall consistently write as: $Z(A) :=$ center of A , $J(A) :=$ Jacobson radical of A , $\bar{A} := A/J(A)$, and $s(A)$ denote the number of isomorphism classes of indecomposable projective left A -modules.

Let π denote a prime of R , $J(R) = \pi R$. For an R -order Λ , put $e(\Lambda|R) := \min\{\nu \in \mathbb{N} : J(\Lambda)^\nu \subset \pi\Lambda\}$. An R -order Λ will be called *unramified* (over R) if and only if $e(\Lambda|R) = 1$ (i.e. $J(\Lambda) = \pi\Lambda$), Λ will be called *residually separable* if and only if $\bar{\Lambda}$ is a separable \bar{R} -algebra. An unspecified tensor product \otimes always means that over R . Note however, for R -orders Λ_i , $\bar{\Lambda}_1 \otimes \bar{\Lambda}_2 := \bar{\Lambda}_1 \otimes_R \bar{\Lambda}_2 \simeq \bar{\Lambda}_1 \otimes_{\bar{R}} \bar{\Lambda}_2$, so that in this case \otimes is in fact over the field \bar{R} .

Theorem 0.1. *Let Λ_i ($i = 1, 2$) be R -orders and assume that the following condition is satisfied*

$$(*) \quad \bar{\Lambda}_1 \otimes \bar{\Lambda}_2 \quad \text{is a semisimple ring.}$$

Then:

- (A) $\Lambda_1 \otimes \Lambda_2$ is hereditary if and only if both of Λ_i are hereditary and one of Λ_i , say Λ_1 , is unramified.
- (B) $\Lambda_1 \otimes \Lambda_2$ is maximal if and only if $\Lambda_1 \otimes \Lambda_2$ is hereditary and moreover the following condition is satisfied

$$(**) \quad s(Z(\bar{\Lambda}_1) \otimes Z(\bar{\Lambda}_2)) = s(\overline{Z(\Lambda_1)} \otimes \overline{Z(\Lambda_2)}).$$

Proof of (A), (B) and the next (B1) will be given in §2, as direct consequences of our Main Lemma 2.7. While, if one of Λ_i is residually separable, the condition (*) is certainly satisfied, so that we don't need to explicitly assume it in the following corollaries, where we can reduce the condition (**) into simpler forms.

Corollary 0.2. (B1) *Let Λ_1 be an unramified R -order such that $Z(\bar{\Lambda}_1) = \bar{R}$ and Λ_2 be any R -order. Then:*

$$\Lambda_1 \otimes \Lambda_2 \text{ is maximal if and only if } \Lambda_2 \text{ is maximal.}$$

(B2) *Let Λ_i ($i = 1, 2$) be connected residually separable maximal orders. Assume that Λ_1 is unramified and moreover $\overline{Z(\Lambda_1)}$ is a Galois extension of \bar{R} . Then:*

$$\Lambda_1 \otimes \Lambda_2 \text{ is maximal if and only if } \overline{Z(\Lambda_1)} \cap \overline{Z(\Lambda_2)} = \overline{Z(\Lambda_1)} \cap Z(\bar{\Lambda}_2),$$

where the intersection is taken in a fixed separable closure of \bar{R} (cf. §3 for detail).

REMARK 0.3. (i) If R has a finite residue field, our (A) (respectively, (B2)) specializes to Theorem (a) (respectively, (b)) of [4].

(ii) In [1] (26.26), (26.29), the results of [4] are quoted without proof, as valid over any complete discrete valuation ring R , provided that $K \otimes \Lambda_i$ are separable over K . However, not only the proof but also the statements of results of [4] do not apply for general R . For example, if \bar{R} has a non-trivial Brauer group, there always exists a central division K -algebra D ($\neq K$) with the maximal order Λ_1 such that $Z(\bar{\Lambda}_1) = \bar{R}$ and $e(\Lambda_1|R) = 1$ (by [5, Satz 1]). For such a Λ_1 , by (B1):

$$\Lambda_1 \otimes \Lambda_2 \text{ is maximal if and only if } \Lambda_2 \text{ is maximal.}$$

(iii) The above remark was already recognized and effectively used in [5] (proof of Satz 2), to derive the following remarkable result.

(c) If Λ is a connected residually separable maximal order, then $Z(\bar{\Lambda})$ is always a cyclic Galois extension of degree $e(\Lambda|Z(\Lambda))$ over $\overline{Z(\Lambda)}$.

In §3, we shall use (c) to derive our final Proposition 3.2, which contains (B2) as a special case.

By the way, relatively recently, (c) is (reproved in [3] in another way and) extensively used in [6].

1. Hereditary orders

1. Recall from [1] §23: an R -lattice means a finitely generated free R -module; an R -order means an R -algebra which is also an R -lattice. Let Λ be an R -order, then the K -algebra $\tilde{\Lambda} := K \otimes \Lambda$ has the same free rank over K as the free rank of Λ over R , $[\tilde{\Lambda} : K] = [\Lambda : R]$. A left (respectively, right) Λ -lattice means a left (respectively,

right) Λ -module which is also an R -lattice. An R -order Λ is called a *hereditary order* if and only if any left (or equivalently right) Λ -ideal is projective as a Λ -module.

For a general facts on hereditary orders, we refer to [7] §39, or [1] §26, where the results are stated under the assumption that $\tilde{\Lambda}$ is separable over K . However, if Λ is hereditary, then $\tilde{\Lambda}$ is necessarily semisimple ([2] 1.7.1), and at least for local theory, as is easily seen, semisimplicity is enough.

In particular, an R -order Λ is hereditary if and only if its Jacobson radical $J(\Lambda)$ is projective as a left (or right) Λ -module. An R -order Λ will be called a *principal order* if and only if $J(\Lambda)$ is a principal ideal. Thus we have the implications:

$$\text{maximal} \implies \text{principal} \implies \text{hereditary}.$$

1.1 Let Λ be a connected (i.e. having no non-trivial central idempotents) hereditary R -order, then $\tilde{\Lambda}$ is also connected so that has the form $\tilde{\Lambda} = M_n(D)$ by some division K -algebra D . Let Δ be the unique maximal order of D .

By the structure theorem [1] (26.28), there is associated a decomposition (n_1, \dots, n_s) of n ($n = \sum n_i$, $0 < n_i \in \mathbb{N}$), such that Λ is $\tilde{\Lambda}^\times$ -conjugate to the sub-order of $M_n(\Delta)$ defined by the block decomposition as

$$\begin{aligned} \Lambda \simeq \{(\Lambda_{ij})_{1 \leq i, j \leq s} : \Lambda_{ij} = M_{n_i, n_j}(\Delta) \ (i \leq j); \ \Lambda_{ij} = M_{n_i, n_j}(J(\Delta)) \ (i > j)\} \\ \subset M_n(D). \end{aligned}$$

Hence, it is straightforward to derive the following relations, in the notation of 0.0.

- (0) $Z(\tilde{\Lambda}) \simeq Z(\tilde{\Delta})^{(s)} := Z(\tilde{\Delta}) \oplus \dots \oplus Z(\tilde{\Delta})$ (s -times).
- (1) $s = s(\Lambda) = s(\tilde{\Lambda}) = s(Z(\tilde{\Lambda}))$.
- (2) $Z(\Lambda) \simeq Z(\Delta)$.
- (3) $f(\Lambda|R) := [\tilde{\Lambda} : R] = f(\Delta|R) \sum_{i=1}^s n_i^2$.
- (4) $e(\Lambda|R) = se(\Delta|R)$.
- (5) Λ is maximal if and only if $s = 1$.
- (6) Λ is principal if and only if ($s|n$ and) $n_i = n/s$.
- (7) Λ is basic if and only if $s = n$, $n_i = 1$.

Concerning the statement of Theorem (A) (B), we shall remark:

- (i) An unramified order is maximal (by (4)).
- (ii) If $\Lambda_1 \otimes \Lambda_2$ is hereditary and $(**)$ is satisfied, then both of Λ_i are maximal (by (0)).

1.2 Let Λ be a connected hereditary R -order, then

$$e(\Lambda|R)f(\Lambda|R) \geq [\Lambda : R] = [\tilde{\Lambda} : K].$$

The equality holds if and only if Λ is principal.

Proof. By (3) and (4), $e(\Lambda|R)f(\Lambda|R) = e(\Delta|R)f(\Delta|R)s \sum n_i^2$. As is well-known (and as is easily seen), $e(\Delta|R)f(\Delta|R) = [D : K]$. While $\sum n_i^2 = \sum(n/s + (n_i - n/s))^2 = \sum(n/s)^2 + \sum(n_i - n/s)^2 \geq \sum(n/s)^2 = n^2/s$, so that $e(\Lambda|R)f(\Lambda|R) \geq [D : K]n^2 = [\bar{\Lambda} : K]$, as wanted. The equality holds if and only if $n_i = n/s$ so that Λ is principal by (6). \square

1.3 Let Λ be a hereditary R -order. Then:

$$\Lambda \text{ is maximal if and only if } s(\overline{Z(\Lambda)}) = s(Z(\bar{\Lambda})).$$

Proof. It obviously suffices to prove for a connected Λ . When connected, the claim is a consequence of (1) (2) and (5). \square

2. Proof of theorems

2. Let Λ_i ($i = 1, 2$) be R -orders. Put $J_i := J(\Lambda_i)$, $e_i := e(\Lambda_i|R)$. Since Λ_i is free over R , one may consider $J_1 \otimes \Lambda_2$ and $\Lambda_1 \otimes J_2$ as submodules of $\Lambda_1 \otimes \Lambda_2$, and $J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2$ is a two-sided ideal of $\Lambda_1 \otimes \Lambda_2$. Let $\varphi_i : \Lambda_i \rightarrow \bar{\Lambda}_i := \Lambda_i/J_i$ be the natural R -algebra epimorphism.

2.1 The R -algebra epimorphism $\varphi_1 \otimes \varphi_2 : \Lambda_1 \otimes \Lambda_2 \rightarrow \bar{\Lambda}_1 \otimes \bar{\Lambda}_2$ induces the exact sequence

$$0 \longrightarrow J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2 \longrightarrow \Lambda_1 \otimes \Lambda_2 \longrightarrow \bar{\Lambda}_1 \otimes \bar{\Lambda}_2 \longrightarrow 0.$$

Proof. Let $\iota_i : J_i \rightarrow \Lambda_i$ be the natural monomorphism. Then straightforward computation yields

$$\text{Ker}(\varphi_1 \otimes \varphi_2) = \text{Im}(\iota_1 \otimes id_{\Lambda_2}) + \text{Im}(id_{\Lambda_1} \otimes \iota_2). \quad \square$$

2.2 $(J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2)^{e_1+e_2-1} \subset \pi(\Lambda_1 \otimes \Lambda_2)$.

In particular, $J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2 \subset J(\Lambda_1 \otimes \Lambda_2)$.

Proof. From $(J_1 \otimes \Lambda_2)^{e_1} \subset \pi \Lambda_1 \otimes \Lambda_2 = \pi(\Lambda_1 \otimes \Lambda_2)$, $(\Lambda_1 \otimes J_2)^{e_2} \subset \pi(\Lambda_1 \otimes \Lambda_2)$, the claim is obvious. \square

2.3 The following six conditions for (Λ_1, Λ_2) are equivalent.

(*) $\bar{\Lambda}_1 \otimes \bar{\Lambda}_2$ is a semisimple ring.

(*1) $J(\Lambda_1 \otimes \Lambda_2) = J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2$.

(*2) $\overline{\Lambda_1 \otimes \Lambda_2} \simeq \bar{\Lambda}_1 \otimes \bar{\Lambda}_2$.

- (*3) $Z(\overline{\Lambda_1 \otimes \Lambda_2}) \simeq Z(\overline{\Lambda}_1) \otimes Z(\overline{\Lambda}_2)$.
- (*4) $Z(\overline{\Lambda}_1) \otimes Z(\overline{\Lambda}_2)$ is a semisimple ring.
- (*5) $k_1 \otimes k_2$ is a semisimple ring for any \overline{R} -subalgebra k_i of $Z(\overline{\Lambda}_i)$.

Proof. $(*) \Rightarrow (*1)$ by 2.1 and 2.2; $(*1) \Rightarrow (*2)$ by 2.1; $(*2) \Rightarrow (*3)$ obvious; $(*3) \Rightarrow (*4)$ since $\overline{\Lambda_1 \otimes \Lambda_2}$ is semisimple; $(*4) \Rightarrow (*5)$ since $k_1 \otimes k_2$ cannot have nilpotent elements; $(*5) \Rightarrow (*4)$ obvious; $(*4) \Rightarrow (*)$: It obviously suffices to prove the claim when $\overline{\Lambda}_i$ are simple so that $k_i := Z(\overline{\Lambda}_i)$ are finite extension fields of $k := \overline{R}$. Assume (*4), so that $k_1 \otimes_k k_2 \simeq \bigoplus_{j=1}^t T_j$ by finite extension fields T_j . We have $\overline{\Lambda}_1 \otimes_k \overline{\Lambda}_2 = (\overline{\Lambda}_1 \otimes_{k_1} k_1) \otimes_k (k_2 \otimes_{k_2} \overline{\Lambda}_2) \simeq \bigoplus_j (\overline{\Lambda}_1 \otimes_{k_1} T_j \otimes_{k_2} \overline{\Lambda}_2)$. Since $\overline{\Lambda}_1$ is central simple over k_1 , $\overline{\Lambda}_1 \otimes_{k_1} T_j$ is simple, which implies that $(\overline{\Lambda}_1 \otimes_{k_1} T_j) \otimes_{k_2} \overline{\Lambda}_2$ is also simple. \square

2.4 If (Λ_1, Λ_2) satisfies the condition $(*)$, then

$$e(\Lambda_1 \otimes \Lambda_2 | R) \leq e_1 + e_2 - 1.$$

Proof. By 2.3 (*1) and 2.2. \square

2.5 Assume that Λ_1 is unramified, Λ_2 is hereditary and moreover the condition $(*)$ is satisfied, then $\Lambda_1 \otimes \Lambda_2$ is hereditary.

Proof. By 2.3 (*1), $J(\Lambda_1 \otimes \Lambda_2) = J_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2 = \pi\Lambda_1 \otimes \Lambda_2 + \Lambda_1 \otimes J_2 = \Lambda_1 \otimes \pi\Lambda_2 + \Lambda_1 \otimes J_2 = \Lambda_1 \otimes J_2$. Since Λ_2 is hereditary, we have $J_2 \oplus X \simeq \Lambda_2^{(\nu)}$, so that $(\Lambda_1 \otimes J_2) \oplus (\Lambda_1 \otimes X) \simeq \Lambda_1 \otimes (J_2 \oplus X) \simeq \Lambda_1 \otimes \Lambda_2^{(\nu)} \simeq (\Lambda_1 \otimes \Lambda_2)^{(\nu)}$, hence $J(\Lambda_1 \otimes \Lambda_2) = \Lambda_1 \otimes J_2$ is $\Lambda_1 \otimes \Lambda_2$ -projective. \square

2.6 ([4, Proposition 3]). If $\Lambda_1 \otimes \Lambda_2$ is hereditary, then both of Λ_i are hereditary.

Proof. Let M be a (left) ideal of Λ_2 . Since Λ_1 is free over R , M is a direct summand of $\Lambda_1 \otimes M$. Since $\Lambda_1 \otimes \Lambda_2$ is hereditary, $\Lambda_1 \otimes M$ is $\Lambda_1 \otimes \Lambda_2$ -projective, which implies, since Λ_1 is free over R , $\Lambda_1 \otimes M$ is Λ_2 -projective so that M is Λ_2 -projective. \square

Main Lemma 2.7. Let Λ_i ($i = 1, 2$) be connected hereditary orders satisfying the condition $(*)$. If $\Lambda_1 \otimes \Lambda_2$ is hereditary, then one of Λ_i is unramified.

Proof. (I) First we assume that both of Λ_i are principal. Decompose $\Lambda_1 \otimes \Lambda_2$ into the connected components Γ_j ($1 \leq j \leq t$), $\Lambda_1 \otimes \Lambda_2 = \bigoplus \Gamma_j$. Putting $f_i := [\overline{\Lambda}_i : \overline{R}]$, $e'_j := e(\Gamma_j | R)$ and $f'_j := [\overline{\Gamma}_j : \overline{R}]$, we have

$$1) \quad \sum f'_j = \sum [\overline{\Gamma}_j : \overline{R}] = [\overline{\Lambda}_1 : \overline{R}][\overline{\Lambda}_2 : \overline{R}] = f_1 f_2.$$

Since Γ'_j 's are hereditary and Λ'_i 's are principal, by 1.2, we have

$$2) \quad \sum e'_j f'_j \geq \sum [\Gamma_j : R] = [\Lambda_1 \otimes \Lambda_2 : R] = [\Lambda_1 : R][\Lambda_2 : R] = f_1 e_1 f_2 e_2.$$

Combining 1) and 2), we get

$$3) \quad \sum (e'_j - e_1 e_2) f'_j \geq 0.$$

From $e(\oplus \Gamma_j | R) = \max e(\Gamma_j | R) \geq e'_j$, using 2.4, we get $e_1 + e_2 - 1 \geq e(\Lambda_1 \otimes \Lambda_2 | R) \geq e'_j$, so that

$$-(e_1 - 1)(e_2 - 1) \sum f'_j = \sum (e_1 + e_2 - 1 - e_1 e_2) f'_j \geq \sum (e'_j - e_1 e_2) f'_j \geq 0,$$

where the last inequality is by 3). Since $e_i \geq 1$, one of $e_i = 1$.

(II) Let Λ'_i be a basic (hence principal) hereditary order which is Morita equivalent with Λ_i . We shall show that $\Lambda'_1 \otimes \Lambda'_2$ is Morita equivalent with $\Lambda_1 \otimes \Lambda_2$ (hence is also hereditary). Indeed, Λ'_2 has the form $\Lambda'_2 \simeq \text{Hom}_{\Lambda_2}(P, P)$ by some progenerator P , Λ_2 is free (hence flat) over R , and P is finitely presented as Λ_2 -module, so that we have

$$\Lambda'_1 \otimes \Lambda'_2 \simeq \Lambda'_1 \otimes \text{Hom}_{\Lambda_2}(P, P) \simeq \text{Hom}_{\Lambda'_1 \otimes \Lambda_2}(\Lambda'_1 \otimes P, \Lambda'_1 \otimes P).$$

Since $\Lambda'_1 \otimes P$ is a progenerator for $\Lambda'_1 \otimes \Lambda_2$, $\Lambda'_1 \otimes \Lambda'_2$ is Morita equivalent with $\Lambda'_1 \otimes \Lambda_2$. By the same reason, $\Lambda'_1 \otimes \Lambda_2$ is Morita equivalent with $\Lambda_1 \otimes \Lambda_2$. \square

2.8 Proof of Theorem (A): ‘If part’ is by 2.5. ‘Only if part’ is easily derived from 2.7.

(B): By 1.3, $\Lambda_1 \otimes \Lambda_2$ is maximal if and only if $\Lambda_1 \otimes \Lambda_2$ is hereditary and $s(\overline{Z(\Lambda_1 \otimes \Lambda_2)}) = s(\overline{Z(\Lambda_1 \otimes \Lambda_2)})$. By 2.3 (*3), we have $Z(\overline{\Lambda_1 \otimes \Lambda_2}) = \overline{Z(\Lambda_1)} \otimes \overline{Z(\Lambda_2)}$. Since $\overline{Z(\Lambda_i)}$ is an R -subalgebra of $Z(\overline{\Lambda_i})$, by 2.3 (*5), $\overline{Z(\Lambda_1)} \otimes \overline{Z(\Lambda_2)}$ is semisimple, hence by 2.3, $\overline{Z(\Lambda_1)} \otimes \overline{Z(\Lambda_2)} = \overline{Z(\Lambda_1) \otimes Z(\Lambda_2)}$. Thus $\Lambda_1 \otimes \Lambda_2$ is maximal if and only if $s(\overline{Z(\Lambda_1)} \otimes \overline{Z(\Lambda_2)}) = s(\overline{Z(\Lambda_1) \otimes Z(\Lambda_2)})$.

(B1): Assume that $Z(\overline{\Lambda_1}) = \overline{R}$. Then $\overline{Z(\Lambda_1)} \otimes \overline{Z(\Lambda_2)} \simeq \overline{Z(\Lambda_2)}$ and $Z(\overline{\Lambda_1}) \otimes Z(\overline{\Lambda_2}) \simeq Z(\overline{\Lambda_2})$. $\Lambda_1 \otimes \Lambda_2$: maximal $\Leftrightarrow s(\overline{Z(\Lambda_2)}) = s(\overline{Z(\Lambda_2)}) \Leftrightarrow \Lambda_2$: maximal (by 1.3). \square

3. Proof of Corollary (B2)

3. Let Λ_i ($i = 1, 2$) be connected maximal R -orders satisfying (*). Put $k := \overline{R}$, $k_i := \overline{Z(\Lambda_i)}$ and $k'_i := Z(\overline{\Lambda_i})$. Then k'_i is an extension field of k containing k_i , and $k_1 \otimes k_2 = \bigoplus_{j=1}^t T_j$ is a direct sum of extension fields T_j of k . Obviously the following two conditions are equivalent:

$$(**) \quad s(k'_1 \otimes k'_2) = s(k_1 \otimes k_2),$$

$$(**1) \quad k'_1 \otimes_{k_1} T_j \otimes_{k_2} k'_2 \text{ is a field for any } j \ (1 \leq j \leq t).$$

3.0 Assume that Λ_1 is unramified and residually separable over R . Then, by (c) 0.3 (or more elementary Hilfssatz 3 of [5]), we have

$$k'_1 = Z(\bar{\Lambda}_1) = \overline{Z(\Lambda_1)} = k_1.$$

Being separable over k , k_1 has the form $k_1 = k[x]/fk[x]$ by a separable polynomial f in $k[x]$. The decomposition $k_1 \otimes k_2 = \bigoplus T_j$ corresponds to the decomposition of $f = \prod f_j$ as irreducible factors in $k_2[x]$. Thus (**1) is equivalent with

$$(**2) \quad f_j \text{ is irreducible in } k'_2[x] \text{ for any } j \ (1 \leq j \leq t).$$

3.1 Further assume that Λ_2 is also residually separable over R , so that k'_2 is separable over k , and moreover k'_2/k_2 is a (cyclic) Galois extension by (c) 0.3. Since the condition (**2) depends only on the k -algebra structure of k'_2 , we consider that k'_2 and k_1 are contained in a fixed separable closure k_{sep} of k , and apply Galois theory.

Let $G := \text{Gal}(k_{sep}/k)$ and $G(L) := \{\sigma \in G : \sigma|_L = id_L\}$ for $L \subset k_{sep}$. The decomposition of f in $k_2[x]$ (respectively $k'_2[x]$) corresponds to the double cosets decomposition $G(k_2) \backslash G/G(k_1)$ (respectively $G(k'_2) \backslash G/G(k_1)$), so that (**2) is equivalent with

$$(**3) \quad G(k_2) \subset G(k'_2)\sigma G(k_1)\sigma^{-1} = G(k'_2)G(\sigma(k_1)) \text{ for any } \sigma \in G.$$

Proposition 3.2. *Let Λ_i ($i = 1, 2$) be connected residually separable maximal orders and Λ_1 be unramified over R . Then:*

(i) $\Lambda_1 \otimes \Lambda_2$ is maximal if and only if

$$k_2 = k'_2 \cap \sigma(k_1)k_2 \text{ for any } \sigma \in \text{Gal}(k_{sep}/k).$$

(ii) If further, one of k_1 or k'_2 is Galois over k , then:

$\Lambda_1 \otimes \Lambda_2$ is maximal if and only if

$$k_2 \cap \sigma(k_1) = k'_2 \cap \sigma(k_1) \text{ for any } \sigma \in \text{Gal}(k_{sep}/k).$$

Proof. (i) Since $G(k'_2)$ is a normal subgroup of $G(k_2)$:

$$\begin{aligned} G(k_2) \subset G(k'_2)G(\sigma(k_1)) &\Leftrightarrow G(k_2) = G(k'_2)(G(\sigma(k_1)) \cap G(k_2)) = G(k'_2)G(\sigma(k_1)k_2) \\ &\Leftrightarrow k_2 = k'_2 \cap \sigma(k_1)k_2. \end{aligned}$$

(ii) $G(k_2) \subset G(k'_2)G(\sigma(k_1)) \Rightarrow G(k_2) \subset \langle G(k'_2), G(\sigma(k_1)) \rangle \Leftrightarrow k_2 \supset k'_2 \cap \sigma(k_1) \Leftrightarrow k_2 \cap \sigma(k_1) = k'_2 \cap \sigma(k_1)$.

At the first implication, the converse holds if one of k'_2 or k_1 is Galois over k .

□

References

- [1] C.W. Curtis and I. Reiner: *Methods of Representation theory*, vol.1, Wiley-Interscience, New York, 1981.
- [2] H. Hijikata and K. Nishida: *Bass orders in non-semisimple algebras*, J. Math. Kyoto Univ. **34** (1994), 797–837.
- [3] V.I. Jancevskii and V.P. Platonov: *On a conjecture of Harder*, Soviet Math. Dokl. **16** (1975), 424–427.
- [4] G.J. Janusz: *Tensor products of orders*, J. London Math. Soc. (2) **20** (1979), 186–192.
- [5] T. Nakayama: *Divisionalgebren über diskret bewerteten perfekten Körpern*, J. für reine angew. Math. **178** (1937), 11–13.
- [6] V.P. Platonov: *The Tannaka-Artin problem and reduced K-theory*, Math. USSR Izvestija, **10** (1976), 211–243.
- [7] I. Reiner: *Maximal orders*, Academic Press, New York, 1975.

H. Hijikata
 Department of Mathematics
 Kyoto University
 Kyoto, 606-8502, Japan

K. Nishida
 Department of Mathematical Sciences
 Shinshu University
 Matsumoto, 390-8621, Japan
 e-mail: kenisida@math.sinshu-u.ac.jp