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0. Introduction

Let R be a complete discrete valuation ring with the quotient field K. Assuming

that R has a finite residue field, Janusz [4] gave a criterion for a tensor product of

two β-orders ΛI ®H Λ2 to be hereditary or maximal. We shall extend his results by

dropping the assumption that R has a finite residue field. In [4], finiteness of a residue

field was mainly used to calculate the discriminant. In this paper, we shall do fairly

ring theoretical argument and reduces the question to the center Z(A) of an order Λ

and Z ( A / J ) of the residue ring modulo its radical J. These things enable us to handle

the problem in a general setting. As for terminology, we mostly follow that of [1].

NOTATION 0.0. For a ring A, we shall consistently write as: Z(A) := center of

A, J(A) := Jacobson radical of A, A := A/J(A\ and s(A) denote the number of

isomorphism classes of indecomposable projective left A-modules.

Let π denote a prime of R, J(R) = πR. For an β-order Λ, put e(λ\R) :=

min{ί/ G N : J(A)" C πΛ}. An border Λ will be called unramified (over R) if and

only if e(λ\R) = 1 (i.e. J(Λ) = πΛ), Λ will be called residually separable if and on-

ly if Λ is a separable Λ-algebra. An unspecified tensor product ® always means that

over R. Note however, for β-orders Λ;, ΛI ®Λ 2 := ΛI (8>#Λ2 ~ ΛI 0^Λ2, so that in

this case <8> is in fact over the field R.

Theorem 0.1. Let Λ, (i — 1, 2) be R-orders and assume that the following

condition is satisfied

(*) ΛI (g) Λ2 is a semisimple ring.

Then:

(A) ΛI ® Λ2 is hereditary if and only if both of Λ; are hereditary and one of Λj,

say ΛI, is unramified.

(B) ΛI 0 Λ2 is maximal if and only if ΛI 0 Λ2 is hereditary and moreover the fol-

lowing condition is satisfied

(**) s(Z(λl) ® Z(A2)) - «(Z(Aι) 0 Z(A2))
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Proof of (A), (B) and the next (Bl) will be given in §2, as direct consequences

of our Main Lemma 2.7. While, if one of A» is residually separable, the condition (*)

is certainly satisfied, so that we don't need to explicitly assume it in the following

corollaries, where we can reduce the condition (**) into simpler forms.

Corollary 0.2. (Bl) Let ΛI be an unramified R-order such that Z(λι) — R

and Λ2 be any R-order. Then:

ΛI <8> A2 is maximal if and only if Λ2 is maximal.

(B2) Let Λ j (i = 1, 2) be connected residually separable maximal orders. As-

sume that ΛI is unramified and moreover Z(λι) is a Galois extension of R. Then:

ΛI (8) Λ2 is maximal if and only if Z(Aι) Π Z(Λ2) = Z(λι) Π Z(A2),

where the intersection is taken in a fixed separable closure of R (cf. §3 for detail ).

REMARK 0.3. (i) If R has a finite residue field, our (A) (respectively, (B2)) spe-

cializes to Theorem (a) (respectively, (b)) of [4].

(ii) In [1] (26.26), (26.29), the results of [4] are quoted without proof, as valid

over any complete discrete valuation ring R, provided that K 0 A; are separable over

K. However, not only the proof but also the statements of results of [4] do not apply

for general R. For example, if R has a non-trivial Brauer group, there always exists a

central division K-algebra D (/ K} with the maximal order ΛI such that Z(\\) — R

and e(λι\R) = 1 (by [5, Satz 1]). For such a ΛI, by (Bl):

ΛI <8> Λ2 is maximal if and only if Λ2 is maximal.

(iii) The above remark was already recognized and effectively used in [5] (proof

of Satz 2), to derive the following remarkable result.

(c) If Λ is a connected residually separable maximal order, then Z(Λ) is al-

ways a cyclic Galois extension of degree e(Λ|Z(Λ)) over Z(A).

In §3, we shall use (c) to derive our final Proposition 3.2, which contains (B2) as

a special case.

By the way, relatively recently, (c) is (reproved in [3] in another way and) exten-

sively used in [6].

1. Hereditary orders

1. Recall from [1] §23: an R-lattice means a finitely generated free ^-module;

an R-order means an Λ-algebra which is also an β-lattice. Let Λ be an β-order, then

the K-algebra Λ := K ® Λ has the same free rank over K as the free rank of Λ over

jR, [Λ : K] = [Λ : R]. A left (respectively, right) λ-lαttice means a left (respectively,



WHEN is ΛI <g> Λ2 HEREDITARY 495

right) Λ-module which is also an /2-lattice. An Λ-order Λ is called a hereditary order
if and only if any left (or equivalently right) Λ-ideal is projective as a Λ-module.

For a general facts on hereditary orders, we refer to [7] §39, or [1] §26, where

the results are stated under the assumption that Λ is separable over K. However, if Λ

is hereditary, then Λ is necessarily semisimple ([2] 1.7.1), and at least for local theory,
as is easily seen, semisimplicity is enough.

In particular, an Λ-order Λ is hereditary if and only if its Jacobson radical J(Λ)

is projective as a left (or right) Λ-module. An β-order Λ will be called a principal
order if and only if J(Λ) is a principal ideal. Thus we have the implications:

maximal => principal =^ hereditary.

1.1 Let Λ be a connected (i.e. having no non-trivial central idempotents) here-
ditary β-order, then Λ is also connected so that has the form Λ = Mn(D) by some
division K-algebra D. Let Δ be the unique maximal order of D.

By the structure theorem [1] (26.28), there is associated a decomposition

(nι,...,n5) of n (n = Σni> 0 < rii £ N), such that Λ is Λx-conjugate to the sub-
order of Mn(Δ) defined by the block decomposition as

Λ ~ {(Ay )!<«,,•<. : Ay = Mni,ny(Δ) (i < j); Ay - Mni,n.(J(Δ)) (i > j)}

C Mn(D).

Hence, it is straightforward to derive the following relations, in the notation of
0.0.

(0) Z(Λ) ~ Z(Δ)W := Z(Δ) Θ ... θ Z(Δ) (s-times).
(1) 8 = S(λ) = s(K) = s(Z(K)).

(2) Z(A) ~ Z(Δ). _

(3) /(A|Λ) := [Λ : R] = /(Δ|Λ) Σ*=ι n?.
(4) e(λ\R) = βe(Δ|Λ).
(5) Λ is maximal if and only if s = 1.
(6) Λ is principal if and only if (s\n and) U{ — n/s.
(7) Λ is basic if and only if s = n, Hi = 1.
Concerning the statement of Theorem (A) (B), we shall remark:
(i) An unramified order is maximal (by (4)).

(ii) If ΛI (g> Λ2 is hereditary and (**) is satisfied, then both of Λ, are maximal (by

(0)).

1.2 Let Λ be a connected hereditary β-order, then

e(A|Λ)/(A|Λ) > [Λ : R] = [A : K].

The equality holds if and only if Λ is principal.
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Proof. By (3) and (4), e(λ\R)f(λ\R) = e(Δ|fl)/(Δ|Λ)«Σni As is well-
known (and as is easily seen), e(Δ|fl)/(Δ|β) = [D : K]. While £n? = Σ(n/s +

(m-n/s))2 = Σ(n/s)2+Σ(rii-n/s)2 > Σ(™/*)2 = ™2/*> so that e(A|Λ)/(A|Λ) >
[D : K]n2 — [A : A"], as wanted. The equality holds if and only if Ui = n/s so that

Λ is principal by (6). Π

1.3 Let Λ be a hereditary j?-order. Then:

Λ is maximal if and only if s ( Z ( Λ ) ) — s(Z(A.)).

Proof. It obviously suffices to prove for a connected Λ. When connected, the

claim is a consequence of (1) (2) and (5). D

2. Proof of theorems

2. Let Λ< (i = 1, 2) be β-orders. Put J{ := J(Λ;), e* := e(A.|fl). Since A* is
free over Λ, one may consider Ji 0 Λ2 and ΛI 0 J2 as submodules of ΛI 0 Λ2, and

Ji 0 Λ2 + ΛI 0 J2 is a two-sided ideal of ΛI 0 Λ2. Let ψi : Λ; ->> Λ j := A»/ Jj be the
natural Λ-algebra epimoφhism.

2.1 The ̂ -algebra epimoφhism y?ι 0 φ% : ΛI 0 Λ2 —> ΛI 0 Λ2 induces the exact

sequence

0 —> Jι 0 Λ2 + ΛI 0 J2 —^ ΛI 0 Λ2 —> ΛI 0 Λ2 —> 0.

Proof. Let ^ : Ji ->• A, be the natural monomoφhism. Then straightforward
computation yields

0 φ2) =

2.2 (Ji 0 Λ2 + ΛI 0 J2)
eι+€2-1 C ττ(Λι 0 Λ2).

In particular, J\ 0 Λ2 -f ΛI 0 J2 C J(Λι 0 Λ2).

Proof. From (Λ0Λ2)
e ι C πΛι0Λ 2 = τr(Λι0Λ 2), (Λι0J2)

62 C π(Λι0Λ 2),

the claim is obvious. Π

2.3 The following six conditions for (Λi, Λ2) are equivalent.

(*) ΛI 0 Λ2 is a semisimple ring.

(*1) J(Λι 0 Λ2) = Ji 0 Λ2 -h ΛI 0 J2.
(*2) ΛI 0Λ 2 ~ ΛI 0Λ 2.
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(*3) _

(*4) Z(Λι) (g) Z(Λ2) is a semisimple ring.

(*5) k\ <8) fc2 is a semisimple ring for any β-subalgebra fc; of

Proof. (*) ̂  (*1) by 2.1 and 2.2; (*1) ^ (*2) by 2.1; (*2) ^ (*3) obvious;

(*3) =>> (*4) since ΛI <8> Λ2 is semisimple; (*4) =>• (*5) since k\ <8> &2 cannot have

nilpotent elements; (*5) =ϊ (*4) obvious; (*4) ^ (*): It obviously suffices to prove

the claim when A» are simple so that fc; := Z(Λj) are finite extension fields of k :=

R. Assume (*4), so that kι <8>fc &2 — θ5 =1Tj by finite extension fields Ti. We have

AI ®fc Λ2 = (Λi <8>fc! fei) (8>fc (fc2 ®*2 Λ2) - Θj(Aι (8)fc1 Γj (g)fc2 Λ2). Since ΛI is central

simple over &ι, ΛI (8)̂ ! Tj is simple, which implies that (Λi (8)fca 7j) <8)fc2 A2 is also

simple. D

2.4 If (Λi, Λ2) satisfies the condition (*), then

<eι +e 2 -l.

Proof. By 2.3 (*1) and 2.2. D

2.5 Assume that ΛI is unramified, Λ2 is hereditary and moreover the condition

(*) is satisfied, then ΛI (g) Λ2 is hereditary.

Proof. By 2.3 (*1), J(Aι (8) Λ2) = Jx (g) Λ2 + ΛI (g) J2 = πΛi (8) Λ2 -h ΛI (g> J2 =

ΛI (g) πΛ2 H- ΛI (g) J2 = ΛI (g) J2. Since Λ2 is heredirary, we have J2 Θ X ~ Λ2 , so

that (Ai (8) J2) Θ (Ai <8) A") ~ ΛI (8) (J2 Θ X) ~ ΛI (8) Λ^} ~ (Ai 0 A 2 )W, hence

J(Λι <8) Λ2) = ΛI (8> J2 is ΛI (8) Λ2-projective. D

2.6 ([4, Proposition 3]). If Λι®Λ 2 is hereditary, then both of A» are hereditary.

Proof. Let M be a (left) ideal of Λ2. Since ΛI is free over R, M is a direct

summand of Λι0M. Since Λι®Λ 2 is hereditary, Λι®M is Λι(8)Λ2-projective, which

implies, since ΛI is free over Λ, ΛI ® M is Λ2-projective so that M is Λ2 -project! ve.

D

Main Lemma 2.7. Let Λ; (z = 1, 2) Z?^ connected hereditary orders satisfying

the condition (*). If ΛI (8) Λ2 w hereditary, then one of Λ j w unramified.

Proof. (I) First we assume that both of A» are principal. Decompose ΛI (8) Λ2

into the connected components Γj (1 < j < t), ΛI (8) Λ2 = θΓj. Putting /; := [A» :

β], ej := e(Γj|Λ) and /j := [Γ, : β], we have

]) Σ fj =



498 H. HIJIKATA AND K. NlSHIDA

Since Γ^ s are hereditary and Λ^s are principal, by 1.2, we have

Combining 1) and 2), we get

3)

From e(ΘΓj|Λ) = maxe(Γj\R) > e'j9 using 2.4, we get ei + e2 - 1 > e(Λι 0Λ 2 |Λ)

> βj, so that

-(ei - l)(ea - 1) /j = ι + e2 - 1 - eιe2)/j > ; - e l62)/j > 0,

where the last inequality is by 3). Since e, > 1, one of e; = 1.
(II) Let ΛJ be a basic (hence principal) hereditary order which is Morita equiv-

alent with Λ;. We shall show tha Λ'j 0 Λ^ is Morita equivalent with ΛI (g) Λ2 (hence

is also hereditary). Indeed, λ'2 has the form Λ^ c± HomΛ2 (Λ -P) by some progenerator
P, Λ2 is free (hence flat) over R, and P is finitely presented as Λ2 -module, so that

we have

Ai ® Λ2 ~ Ai (8) HomΛ2 (P, P) ~ HomΛ'lΘΛ2 (Ai 0 P, Ai ® P).

Since Λ^P is a progenerator for Λ /

1®Λ2, Λί(8)Λ2 is Morita equivalent with Λ /

1®A2.
By the same reason, Λ'x 0 Λ2 is Morita equivalent with ΛI 0 Λ2. Π

2.8 Proof of Theorem (A): ςlf part' is by 2.5. Only if part' is easily derived

from 2.7.
(B): By 1.3, ΛI 0 Λ2 is maximal if and only if ΛI 0 Λ2 is hereditary and

s(Z(Λι0Λ 2 )) = a(Z(Aι ® A2)) By 2.3 (*3), we have Z(Aι 0Λ 2 ) = Z(Aι) 0
Z(A2). Since Z(Λi) is an fi-subalgebra of Z(Aj), by 2.3 (*5), Z(Aι) 0 Z(A2) is
semisimple, hence by 2.3, Z(Λι)®Z(Λ2) = Z(Λι) 0 Z(Λ2). Thus Λι0Λ2 is maximal

if and only if s(Z(Λι) 0 Z(Λ2)) = s(Z(Kι) 0 Z(Λ2)). _ _
(Bl): Assume that Z(Λι) = Λ. Then Z(Aι) 0 Z(Λ2) ~ Z(A2) and Z(Aι) 0

Z(Λ2) ~ Z(A2). ΛI 0 Λ2: maximal Φ> s(Z(Λ2)) = β(Z(A2)) Φ> Λ2: maximal (by

1.3). D

3. Proof of Corollary (B2)

3. Let A{ (ί = 1, 2) be connected maximal β-orders satisfying (*). Put k := R,

ki := Z(Λj) and k( := Z(Λi). Then ^ is an extension field of k containing fcj, and

kι 0fc2 = θ*=1Tj is a direct sum of extension fields Tj of k. Obviously the following

two conditions are equivalent:

(**) s(k[ 0A;2) =s(kι (8)*2),
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(**1) k( ®kl Tj 0fc2 k'2 is a field for any j (1 < j < t).

3.0 Assume that ΛI is unramified and residually separable over R. Then, by (c)

0.3 (or more elementary Hilfssatz 3 of [5]), we have

Being separable over fc, k\ has the form k\ = k[x]/fk[x] by a separable polyno-

mial / in k[x]. The decomposition k\ ® k2 — ΘTj corresponds to the decomposition

of / = Hfj as irreducible factors in k 2 [ x ] . Thus (**1) is equivalent with

(**2) fj is irreducible in k'2[x] for any j (1 < j < t).

3.1 Further assume that Λ2 is also residually separable over R, so that k2 is sep-

arable over fc, and moreover k'2/k2 is a (cyclic) Galois extension by (c) 0.3. Since the

contition (**2) depends only on the fc-algebra structure of k'2, we consider that k'2 and

fci are contained in a fixed separable closure ksep of k, and apply Galois theory.

Let G := Gal(ksep/k) and G(L) := {σ e G : σ|L = idi,} for L C fcsep. The

decomposition of / in k2[x] (respectively k'2[x]) corresponds to the double cosets de-

composition G(k2)\G/G(kι) (respectively G(k2)\G/G(kι))9 so that (**2) is equiva-

lent with

(**3) G(k2) C G(kl

2)σG(k1)σ-1 = G(kl

2)G(σ(k1)) for any σ € G.

Proposition 3.2. L ί̂ Λ» (i = 1, 2) fo connected residually separable maximal

orders and ΛI be unramified over R. Then:

(i) ΛI ® Λ2 w maximal if and only if

k2 = k'2 Π σ(&ι)&2 /or αnj σ G

(ii) If further, one of k\ or k2 is Galois over k, then:

ΛI 0 A2 is maximal if and only if

k2 Π σ(kι) = k'2 Π σ(feι) for any σ G Gal(ksep/k).

Proof, (i) Since G(k2) is a normal subgroup of G(k2):

G(k2) C G(k'2)G(σ(kl)) & G(k2) = G ( k ' 2 ) ( G ( σ ( k l ) ) Π G(k2)) = G(k'2)G(σ(kl)k2)

& k2 = k'2 Γ}σ(kι)k2.
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(ii) G(k2) C G(kβG(σ(kι)) => G(*2) C< G(k'2),G(σ(k1)) >& fc2 D k'2Πσ(kl) Φ>
&2 Πσ(fcι) = k'2 Πσ(fcι).

At the first implication, the converse holds if one of k'2 or kι is Galois over k.

D
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