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List of notation

C : the complex number field,

P" . the n-dimensional projective space over C,

Yq : the Hirzebruch surface of degree a,

HY(X,F) : the i-th cohomology group of a sheaf F,

h'(X,F) : the dimension of H (X, F),

X(X,F) : the Euler characteristic of a coherent sheaf F,

Pic(X) : the Picard group of a variety X,

Div(X) : the Cartier divisor class group of a variety X,

Ox (D) : the invertible sheaf associated to a divisor D on a variety X,

wy : the canonical sheaf of a nonsingular variety X,

Kx : the canonical divisor of a nonsingular variety X,

D ~ D’ : linear equivalence of divisors,

|D| : the complete linear system of a divisor D,

D.D’ : the intersection number of divisors,

D? : the self-intersection number of a divisor D,

g;, : a one-dimensional linear system (i.e. a pencil) of degree k on an algebraic curve,
Ty : the algebraic torus defined by a free Z-module N,

Op : the lattice polytope of a divisor D on a toric surface (cf. §2.4 in detail),
Int Op : the interior of Op (cf. §4.2 in detail),

#A : the cardinality of a set A.






Introduction

In this thesis, the author studies algebraic curves on toric surfaces and provides two
results which are independent each other. Throughout this thesis, we assume that
algebraic varieties are irreducible and defined over the complex number field.

In the study of algebraic curves, a computation of invariants such as intersection
numbers and cohomology dimensions is one of the most essential operation what we
have to do, although it is not so easy in general. On the other hand, the theory of
toric varieties has been established at the beginning of the 1970’s independently by
Demazure, Mumford, Satake, Miyake, Oda and others. It revealed the close relation
between algebraic geometry and the geometry of convex polytopes in real affine spaces,
and produced various interesting applications. We can utilize this relation to reduce
to elementary convex geometry a lot of problem in the study of toric varieties. In fact,
for curves on toric surfaces, one can easily compute invariants mentioned above by
investigating the properties of the associated lattice polytopes (see Section2.4). Then
it seems plausible to expect that we should understand such curves more precisely than
other general curves. It is a consistent motivation in the author’s works.

This thesis consists of four parts. The first chapter is devoted to review the classical
and fundamental facts in the study of algebraic geometry. In the second chapter, we
introduce toric surfaces which are the main stage of our consideration in this thesis.
The third and fourth chapters contain the author’s two main results Theorem 3.1.6 and
4.1.3 which are explained in detail below.

The first work is about the so-called gonality conjecture. The gonality is a significant
invariant in the study of linear systems on curves, which is defined as the minimal degree
of surjective morphisms from a complete nonsingular curve C' to P! and denoted by
gon(C). Clearly, gon(C) = 1 means that C is a rational curve. Besides, gon(C) is
equal to two if and only if C' is elliptic or hyperelliptic. The following classical result

gives an upper bound of the gonality.

Theorem 0.0.1. Let C' be a nonsingular curve of genus g. Then

L 9+3

gon(C) 5



8 INTRODUCTION

For a nonsingular plane curve of degree d (> 2), it is well known that its gonality

isequal tod —1:

Theorem 0.0.2 ([26]). Let C be a nonsingular plane curve of degree d > 2. Then
gon(C) = (d — 1) and any pencil of degree d — 1 is cut out by lines passing through a
fized point on C'.

For singular plane curves, there are results of Coppens, Kato, Ohkouchi and Sakai
(Theorem 3.1.1 and 3.1.2). On the other hand, Martens has computed the gonality
of a nonsingular curve on a Hirzebruch surface (Theorem 3.1.3). Although there are
many attempts to compute the gonality, in general, it is not so easy to determine it.
Under such circumstances, the gonality conjecture proposes a new way to approach
this problem. This conjecture predicts that one can read off the gonality of a curve
from the minimal resolution of any one line bundle of sufficiently large degree (Conjec-
ture 3.1.5). Aprodu has shown this conjecture holds for curves on Hirzebruch surfaces
(cf. [1]). The author’s first work is a natural continuation of this result, e.g., it treats
the gonality conjecture for curves on compact nonsingular toric surfaces. Such a toric
surface is obtained from a projective plane or a Hirzebruch surface by a finite succes-
sion of blowing-ups with Ty-fixed points (i.e. points which are invariant with respect
to the action on a toric surface by the algebraic torus) as centers, and has finite P!-
fibrations by toric morphisms. In Chapter 3, we will prove the conjecture affirmatively
for nonsingular irrational curves on compact nonsingular toric surfaces which have only
one toric morphism to P! (Theorem 3.1.6). As we shall see in Chapter 2, a Hirzebruch
surface is one of the simplest examples of such toric surfaces.

The second work deals with Weierstrass gap sequences. For a point P on a complete

nonsingular algebraic curve C, a positive integer j is called a gap value at P if

The set of all gap values is called a Weierstrass gap sequence (or, simply, gap sequence)
of C" at P. By Riemann-Roch theorem, its cardinality is equal to the genus of C.
The gap sequence {1,2,..., g} is said to be trivial, and a point on a curve is called a
Weierstrass point if its gap sequence is nontrivial. The following classical result is a

basic tool in the study of gap sequences.

Theorem 0.0.3 (Weierstrass gap theorem). Let C' be a nonsingular projective

curve of genus g > 1, and P a point on C. Then any gap value at P is less than 2g.

For a point on a hyperelliptic curve, there are two types of gap sequences:
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Theorem 0.0.4. Let P a point on a hyperelliptic curve C' and @ g : C — P! the

holomorphic map associated to |K¢]|.

(i) If P is a ramification point of @k, then the gap sequence of C at P is the set of
odd numbers {1,3,...,2g — 1}.
(i) If @k | is unramified at P, then the gap sequence of C' at P is {1,2,...,g}.

Namely, in the case of hyperelliptic curves, the notion of Weierstrass points coincides
with that of ramification points of the canonical morphism. For trigonal curves, the list
of the gap sequences has been obtained by Coppens and Kim (Theorem 4.1.1 and 4.1.2).
Besides, Coppens and Kato studied inflection points of plane curves with ¢ ordinary
nodes, and gave a list of all possible gap sequences for 6 < 5([7]). In Chapter4, the
author aims to establish the new technique to compute gap sequences on curves on toric
surfaces which is based on the theory of toric surfaces. As a result, for certain points on
a nonsingular nef curve on a compact nonsingular toric surface, we obtain a sufficient
condition for a positive integer to be the gap value at these points (Theorem4.1.3).
Furthermore, under the suitable condition, it becomes the necessary and sufficient
condition. This means that we can determine the gap sequence in its entirety. In the
last section of Chapter4, we will see some examples to which we can apply our new

technique.






Chapter 1
Fundamentals of algebraic geometry

In this chapter, let X be a nonsingular projective variety of dimension n defined over
the complex number field, and denote by ¢ its genus in the case where n = 1. We
collect some fundamentals needed in this thesis without the proofs. For the proofs of

these facts, we refer the reader to [14].

The following two theorems are extremely important to compute the dimension of

the cohomology group of a sheaf on X.

Theorem 1.0.1 (Serre duality theorem). Let F be a locally free sheaf on X. Then
H{(X,F) and H" (X, wx ® F') are dual each other for any integer 0 < i < n.

Theorem 1.0.2 (Riemann-Roch theorem). Let D be a divisor on X.

(i) If n =1, then x(X,0x(D)) = degD + 1 — g.
(i) If n =2, then x(X,0x(D)) = +D.(D — Kx) + x(X, Ox).

Corollary 1.0.3. IfdimX =1, then degKx = 2g — 2.

Combining Corollary 1.0.3 and the following theorem, we obtain a quick method of

computing the genus of a curve on a surface.

Theorem 1.0.4 (Adjunction formula). Let D be a nonsingular prime divisor on
X. Then KD = (D+Kx)|D

Besides, Theorem 1.0.2 gives elementary but useful criterions to know some prop-

erties of divisors on X :

Theorem 1.0.5 ([14, IV, Example. 1.3.4, Corollary 3.2]). Assume n =1 and let D be
a divisor on X. Then the following hold :

(i) If degD > 2g — 1, then D is nonspecial.

(i) If degD > 2g, then the complete linear system |D| has no base points.

11



12 CHAPTER 1. FUNDAMENTALS OF ALGEBRAIC GEOMETRY

The following Theorem 1.0.6 plays an essential part in the study of the linear sys-

tems.

Theorem 1.0.6 (Bertini’s theorem). Let D be a divisor on X. Then a general
member of |D| is nonsingular outside the set of base points of |D|. Besides, if n >
2, dim|D| > 2 and |D| has no fixzed components, then a general member of |D| is

wrreducible.
Lastly, we see the identity between sheaves, line bundles and divisors on X.

Theorem 1.0.7 ([14, II, Ex.5.18]). There is a one-to-one correspondence between
isomorphism classes of invertible sheaves on X and isomorphism classes of line bundles

over X.

Theorem 1.0.8 ([14, II, Proposition. 6.15]). There is an isomorphism Div(X)/ ~ =~

Pic(X), where ‘~’ denotes linear equivalence.

Because of Theorem 1.0.7 and 1.0.8, we often use the notion “invertible sheaf”,
“line bundle” and “Cartier divisor” interchangeably, if no confusion seems likely to

result.

Proposition 1.0.9 ([14, I, Lemma7.8)). Let D be a divisor on X. Then the following
are equivalent :

(i) |D| has no base points.

(ii) Ox (D) is globally generated.



Chapter 2

Toric varieties

As declared in the introduction, throughout this thesis, we consider curves on toric
surfaces. Hence, first of all, we shall review the theory of toric varieties. As is well
known, it has the close connection with the geometry of convex polytopes. This fact is
the greatest advantage of considering curves on toric surfaces. Many basic properties
of toric varieties and divisors on them can be interpreted in terms of the elementary
geometry of fans. Many of the theoretical facts included in this chapter owe a lot to
[15] and [28].

2.1 Cones and fans

We first define elementary objects in convex geometry called cones and fans. Let
N ~ 7" be a free Z-module of rank r and M = Homy(N,Z) its dual Z-module. By
scalar extension to the rational number field R, we have r-dimensional R-vector spaces
Ng = N®zR and Mg = M ®zR. Then there is a canonical Z-bilinear (resp. R-bilinear)
pairing (,) : M x N — Z (resp. (,) : Mg x Ng — R).

Definition 2.1.1. A subset o of Ny is called a convez rational polyhedral cone if there

exist a finite number of elements nq,...,ng in N such that
o=Ryong + -+ Rxons.

Moreover, o is said to be strongly convez if o N (—o) = {O} holds. The dimension of
o is defined by dim o = dimg (o + (—0)).

For a convex rational polyhedral cone o, we define the subset o¥ of Mg as
o' ={mé& Mg | (m,n) >0, "nco}.

In fact, 0¥ becomes the convex rational polyhedral cone in Mg ([15, Theorem1.2.2]).

13



14 CHAPTER?2. TORIC VARIETIES

Definition 2.1.2. A subset 7 of ¢ is called a face if there is an element mgy € oV such
that 7 = {n € o | (my,n) = 0}, and is denoted 7 < 0.

We are now in a position to introduce the most fundamental notion in the toric

theory.

Definition 2.1.3. A nonempty set A of strongly convex rational polyhedral cones in
Npg is called a fan in N if it satisfies the following properties:
(i) Every face of a cone in A is also a cone in A,

(ii) The intersection of any two cones in A is a face of each.

2.2 Toric varieties

In this section, we will see the process of constructing toric varieties from fans. Since
a cone yields the normal integral domain naturally (Proposition2.2.2), we can obtain
the affine algebraic variety. We construct a toric variety by gluing together such affine
toric varieties which are associated to cones contained in the fan. From now on, a cone

will always means a strongly convex rational polyhedral cone.

Theorem 2.2.1 ([28, Proposition 1.1]). Let o be a cone in Ng and put S(c) = M Nao".
Then S(0) is a finitely generated additive subsemigroup of M.

For a cone o in Ng, let C[S(0)] = D,,c5(,)Ce(m) be the semigroup algebra of
S(o) over C, where {e(m) | m € S(0)} is the set of indeterminates and the ring
multiplication is defined by

e(m)e(m’) = e(m +m'),

(S cnem)( 5 cwetm) = £ (5 cut el

meS(o) m/eS(o) m”"eS(o) \ m+m/=m’

The quotient field of C[S(0)] is equal to that of C[M] ([15, Lemmab.5.2]).

Theorem 2.2.2 ([15, Theorem 5.5.1]). Let o be a cone in Ng. Then the semigroup

algebra C[S(0)] is finitely generated over C, and is a normal integral domain.

By Theorem 2.2.2, for a cone ¢ in N, we can obtain an r-dimensional irreducible
affine algebraic variety U, whose coordinate ring is C[S(o)], which is called an affine
toric variety associated to the cone o. Here we note that by the general theory of

algebraic varieties, we can identify U, with the set of C-valued points of C[S(0)], i.e.,
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the set of C-algebra homomorphisms C[S(c)] — C. Moreover, the map

{C-valued points of C[S(0)]} — {u:S(c) — C|u(0) =1,
u(m +m') = u(m)u(m’) for"m,m’ € S(o)}

[ up(m) == fe(m))

is one-to-one. Consequently, U, can be canonically identified with the set of subsemi-
group algebras from S(o) to multiplicative semigroup C which map zero to one.

We are now ready to construct toric varieties. Our construction is carried out by
gluing together affine toric varieties, where the following proposition plays an important

role.

Theorem 2.2.3 ([28, Proposition 1.3]). Let o be a cone in Ng and T a face of 0. Then
there ezists my € S(o) such that T = {n € o | (mg,n) = 0}. Hence T is also a cone in
Nr. Moreover, the equalities S(1) = S(0) +Zso(—my) and U, = {u € U, | u(my) # 0}
hold.

By Theorem 2.2.3, for a cone o in Ng, an affine toric variety associated to a face
of o becomes an open subset of U,. For a fan A in N and o, 7 € A, the intersection
ocN71 € A is clearly a face of both ¢ and 7 by the definition of a fan. Thus by
Theorem 2.2.3, U,n~, is naturally an open subset of both U, and U,. Therefore we can
naturally glue {U, | ¢ € A} together to obtain an r-dimensional irreducible normal
algebraic variety Ty (A), which is called a toric variety associated to the fan A. For

Ty (A), its nonsingularity and compactness can be dealt with by means of the properties
of the fan A.

Theorem 2.2.4 ([28, Theorem 1.10]). A toric variety Tn(A) is nonsingular if and
only if each o € A is generated by a part of a Z-basis of N.

Theorem 2.2.5 (|28, Theorem 1.11]). A toric variety Tiy(A) is compact if and only if
o € A is finite set and its support |A| =|J,cn o is the hole space Ng.

2.3 A torus action

In this section, let X = Tx(A) be a toric variety associated to a fan A in N ~ Z". We
will see an action of an algebraic torus on X.

A cone {O} is contained in A, and is a face of every ¢ € A. Obviously, S({O}) = M
and Uyoy is an r-dimensional algebraic torus Ty o~ (C*)". Thus we have that T is an

open subset of U, for any ¢ € A by Theorem 2.2.3. Consequently, X contains T as an
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open subset. For t € Ty and u € U,, we define tu : S(o) — C by tu(m) := t(m)u(m)
for m € S(o). Since tu is an element of U,, this gives an action of T to U,. In the
case of X, we can obtain an action of Ty on X called a torus action by natural gluing
of the above action.

A prime divisor on X is called a T-invariant divisor if it is invariant with respect
to the torus action, and a group consisting of Txy-invariant divisors is denoted by
TyDiv(X). In order to examine their properties of in detail, we next consider orbits

of toric varieties. For a cone o, we define o+ = {m € Mg | (m,n) =0, 'n € ¢} and
orb(¢) = {u : M No* — C* group homomorphism}.

Theorem 2.3.1 ([28, Proposition 1.6]). For any ¢ € A, we can regard orb(c) as a
Tn-orbit in X by an embedding

orb(c) — U,
. u(m) (me Mnaot),
0 (m¢Mnot).

Moreover, every Ty-orbit is of this form, and in this way, A is in one-to-one corre-

spondence with the set of Tx-orbits in X.

Corollary 2.3.2 (]28, Corollary 1.7]). Assume that X is compact. Then, for o € A,
a closure V(o) of orb(c) in X becomes an (r — dimo)-dimensional normal closed

subvariety of X.

We define A(a) = {0 € A | dimo = a} for a non-negative integer a. Then a set
{V(o) | o € A(1)} is a Z-basis of TyDiv(X). For ¢ € A(1), n € N No is called
a primitive element of o if there are no elements of N on the line segment from the
origin to n. Consider a compact nonsingular toric variety X. Then by Theorem 2.2.4
and 2.2.5, we can take a subset of A(1) such that their primitive elements compose a

Z-basis of N. For any such subset {o71,...,0,}, there is a group isomorphism

@ AUCD

=1

Pic(X) ~ TyDiv(X) = P ZV(U)/

c€eA(1)
([28, Corollary2.5]). Hence the Picard number of X is equal to §A(1) — r. Besides, a
set of Ty -fized points (i.e. points which are invariant with respect to the torus action)

on X coincides with a set of subvarieties defined by r-dimensional cones.
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2.4 Toric surfaces

From now on, we restrict our interest to two-dimensional toric varieties, i.e., toric
surfaces. Namely, we consider toric varieties associated to fans in Ng such that N ~ Z2.
Let S = Tn(A) be a toric surface associated to a fan A.

In Subsection 2.4.2, for divisors on toric surfaces, we will define the associated lattice
polytopes. Then one can read off basic invariants (e.g. the intersection numbers and the

cohomology dimensions) of such divisors from the information of the lattice polytopes.

2.4.1 Classification of toric surfaces

We first construct a holomorphic map between two toric surfaces. A fan A’ in N is
called a subdivision of A if for every cone ¢’ in A’, there is a cone o in A including
o’. It is obvious that S(o) C S(¢’) in this case. Hence we naturally obtain a surjective
holomorphic map U,, — U,. Obviously, this map is equivariant with respect to the
torus action. Hence we obtain an equivariant holomorphic map T (A’) — S by gluing
affine pieces together ([28, Theorem1.13]). Moreover, this map is proper, that is, the
inverse image of each compact subset is also compact ([28, Theorem1.15]). For instance,
a blowing-up of S with center a T-fixed point can be described as a subdivision of A

as follows::

Theorem 2.4.1 ([28, Proposition 1.26]). Let S = T (A) be a nonsingular toric surface
and P = V(o) a Ty-fized point defined by a cone 0 = Rsogny + Rsong € A(2). Put
o; = Roon; + Rso(ny + ng) fori=1,2, and define the subdivision

A*(o) = (A \ o) U {the faces of o; | i = 1,2}

of A. Then the equivariant holomorphic map Ty(A*(c)) — S coincides with the
blowing-up of S with center P.

For a toric surface, a composite of a finite succession of blowing-ups with Ty-fixed
points as centers is called a toric morphism. In the study of toric surfaces, the following

theorem is one of the most fundamental results.

Theorem 2.4.2 ([28, Theorem 1.28]). Any compact nonsingular toric surface is iso-
morphic to the surface obtained from the following (i) or (ii) by a toric morphism :

(i) the complex projective plane P2,

(i) the Hirzebruch surfaces ¥, of degree a > 0.
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Let (ny,n2) be a Z-basis of N. Then the fans which define P? and X, are

Rzonl + Rzong + Rzo(—nl — ng),
Rzonl + Rzong + Rzo(—nl + ang) + Rzo(—ng),

respectively (Fig. 2.1). Hence any toric surface is defined by a fan which is a subdivision

—n1 + ans

UPX ) | g7

—— —
O m O n
T —nNo e '

Figure2.1.

of either of these fans.

2.4.2 Divisors on toric surfaces

Here we collect several basic properties of divisors on toric surfaces. In the remaining
part of this section, we assume that S is compact and nonsingular, and let D be a
divisor on S. In the case where the complete linear system |D| has no base points, we
have the following two results.

Theorem 2.4.3 (|28, Theorem 2.7]). If |D| has no base points, then h'(S, D) =0 for

any positive integer 1.
Theorem 2.4.4 (|25, Theorem 3.1]). The following are equivalent :

(i) |D| has no base points.

(ii) D has a non-negative intersection number with every Ty-invariant divisor on S.

By the fact mentioned in the last paragraph of the previous section, Ty Div(S) is in
one-to-one correspondence with A(1), i.e., the set of half-lines starting from the origin.
We denote by Dy, ..., Dy the Ty-invariant divisors on S, by o; a one-dimensional cone
corresponding to D; and by (z;,y;) its primitive element. Since Ule D; is a simple

chain of nonsingular rational curves, we can assume the following properties :

DD — 1 (j=i1—1,i+1),
"7 1 0 (otherwise),

where we formally set
DO fd Dd7 Dd+1 - _Dl.
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There are essentially two ways to label the T-invariant divisors according to the value
of x;1;_1 — y;x;_1 is one or minus one. In this thesis, we adopt the former, that is, we
assume the equality

TilYi—1 — YiTi—1 = 1

for each integer 1 < ¢ < d. This means that the one-dimensional cones o1, ...,0, are

arranged clockwise (Fig. 2.2). The self-intersection numbers of T-invariant divisors

S A
-~ Dy oy
D, Ly
01
e (T 9

Dz N
Figure2.2.

are computed by the following formula.
Theorem 2.4.5 (]28, Proposition 1.19]). For any integer 0 <i <d and 1 < j < d,

2 _
D = —xi 1 — Ty,

yiDiQ = —Yi-1 — Yi+1-

The Picard group of S is generated (not freely) by the classes of Ty-invariant
divisors D1, ..., D,;. Hence we can write the linear equivalence class of D as the sum

of them with integral coefficients. For example, the canonical divisor Kg of S is

d
i=1

2

where the symbol “~” means linear equivalence. There is the following relation be-
tween the coefficients of the linear equivalence class of D and the primitive elements

of the cones:

Proposition 2.4.6. Let D ~ Zle a;D; be a divisor on S. Then, for each integer
1<k <d,
k—1
ar = T1(Yatr — Y10a) — Yk(Taar — v10a) + D (Txys — yrai)C.D;.
i=1
PrRoOF. By Theorem 2.4.5, an easy computation shows that
21(Yaa1 — y1aq) — y1(Ta@1 — T1a4) = T1Ya01 — Y1401 = ay,

xz(ydﬂh - ylad) - y2($da1 - 951%) + (nyl - ?/2$1)C-D1 = _alD% —aqg+ C.Dy = as.
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We proceed by induction on integer k. By computing, we have

k-1
> (xryi — yk;)C.D;
=1

k—1 k-1
= a2k . Yiaio1 + a;D? + ai1) — ye 3 wi(aio1 + a;DF 4 a;qq)
i=1 i=1
k—1

k—1
=2 Yy (Yitim1 — (Yic1 + Yir1) @i + Yi@iv1) — Yk Y (a1 — (21 + Tig1)a; + Ti0541)
= i=1

= T (Y10d — Ya1 — YpOk—1 + Yk—1ax) — Yr(T104 — Tq01 — Tpap_1 + Tp_1ay)

= 1 (Y10a — Yaa1) — Ye(T100 — T401) + ag. O

We next introduce the notion of lattice polytopes, which is extremely important

objects in the study of divisors on toric surfaces.

Definition 2.4.7. For a divisor D ~ Ele a;D; on S, the lattice polytope Op C R? is
defined by
Op = {(z,w) e R? | ziz + yw < a; for 1 <i < d}.

Though Up can change according to how we describe the linear equivalence class
of D, those differences induce only parallel translations of [Jp. Hence the shape of the
lattice polytope is determined uniquely. The lattice polytopes has many information
about a divisor. For example, the dimension of cohomology group of D can be read off

the lattice points contained in Uy :
Theorem 2.4.8 ([28, Lemma2.3]). The equation h°(S, D) = #(0p N Z?) holds.

Several useful facts follow immediately from Theorem 2.4.8. First, the irregularity
of S vanishes. If D is effective, then we have h°(S, —D) = 0, especially h%(S, Kg5) = 0.
Besides, for a nonsingular curve C' on S, its genus is computed by the formula g =
8(0ctxs N Z2).

Proposition 2.4.9. Let C' be a nonsingular curve on S. If C is irrational, then C is

nef.

ProOOF. It is sufficient to show C? > 0. Note that since Ty-invariant divisors are
rational curve, C.D; > 0 for each integer 1 < i < d. Moreover, by Corollary 1.0.3 and
Theorem 1.0.4, we have

1
g:§C.(C’+Ks)+121,

which implies that C? > Y>%  C.D; > 0. O
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In fact, the Picard number of S is d — 2. The Picard group of S is freely generated
by the classes of Tiy-invariant divisors except two adjacent divisors (e.g. Da, ..., Dg_1).

Hence, for a divisor D on S, we can write the linear equivalence class of D as
d
D~ Z aiDi (ai € Z, ay = aqg = O) (22)
i=1

without loss of generality.

Proposition 2.4.10. If |D| has no base points, then in the form (2.2), aj is non-
negative for any integer 2 < k <d —1.

PROOF. In this proof, we admit Proposition 2.4.13 in advance, which will be shown
in the last of this section. Note that Theorem 2.4.4 implies that D.D; > 0 for any
integer 1 <1 <d. If xxy; — yrx1 > 0, then by Proposition 2.4.13, we have

TrpYi — Yty > 1

for any integer 2 < ¢ < k — 1. This means that a, > 0.

Assume that zy; — ypr1 < —1. An easy computation gives the equation
d d
i=1 i=1

Namely, we have

d d d
1=k+1 i=k+1 i=k+1

On the other hand, Proposition 2.4.13 implies that
TRYi — Ypt; < —1
for any integer k + 1 < i < d. Hence the inequality a; > 0 follows from (2.3). O

Our last aim in this section is to show Proposition 2.4.13, which plays an active
role especially in Chapter4. Before proceeding to its claim and proof, we show the

following two lemmas.

Lemma 2.4.11. Let (z,w), (z1,w1) and (z2,ws) be lattice points such that zjwy —

wy29 # 0. Then there is a unique pair of real numbers (o, 5) such that
(z,w) = a(z1,w1) + B(22, wa).

In particular, if zywy — w29 = £1, then a and (B are integers.
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Lemma 2.4.12. Let i and j be integers with 0 < i < d and 1 < j < d. Let o and (3

be integers such that
(@5, y5) = (@i, yi) + B(@it1, Yirr)-
Then at least one of o and [ is not positive. Furthermore, if either a or (3 is zero,

then the other is one or minus one.

Proposition 2.4.13. Let i and j be distinct integers with 0 <1 < d and1 < j < d+1.
If v;y; — yix; <0, then

Tit1Yj — Yir1x; <0,

TiYj—1 — Yirj—1 < 0.
The equalities hold if and only if j =1+ 1.

PrOOF. We will show only the first inequality. One can similarly verify the second

one. By Lemma2.4.11, we can write
(z5,9;) = (T, yi) + B(Tiy1, Yig1)
with integers a and 3. Then we have
0 < zjy; — ¥z = B(Tig1yi — Yir17:) = B.

Recall that j # i. In the case of 3 = 0, by Lemma2.4.12, we have (z;,y;) = — (i, ¥:).
Hence

Tit1¥j — Yir1Tj = —Tip1Yi + Yirrri = — L

In the case of > 1, we have a < 0 by Lemma2.4.12. Hence

Tis1Yj — Yir1Tj = (Ti1Yi — Y1) = a < 0.

If 241y — yit1z; = 0, then we have a = 0. Hence, by Lemma 2.4.12, we have # = 1,
which means j =i+ 1. O



Chapter 3

The gonality conjecture for curves

on toric surfaces

This chapter contains the author’s first result. Concretely, we will prove that the go-
nality conjecture affirmatively for curves on toric surfaces which have only one toric
morphism to the projective line P!. In this chapter, a curve will always mean a nonsin-
gular projective curve unless otherwise stated. Note that, as mentioned in Chapter 1,

we often identify the notions of invertible sheaves, line bundles and divisors.

3.1 Preliminaries and the main result

3.1.1 Gonalities of curves

For a curve C, the gonality is defined as the minimal degree of surjective morphisms
from C to P!:

gon(C') = min{degy | ¢ : C' — P! surjective morphism}
=min{k | C has a g} },

where gi denotes a one-dimensional linear system of degree k on C. A curve is said to
be k-gonal if its gonality is k. By definition, C' is one-gonal (resp. two-gonal) if and
only if it is isomorphic to P! (resp. elliptic or hyperelliptic).

Let us review the developments of the study of gonalities roughly. First of all, it
is classically well known that a nonsingular plane curve of degree d is (d — 1)-gonal
(cf. Theorem0.0.2). Coppens and Kato generalized this result to the case of singular
plane curves. They computed the gonality of its normalization under certain numerical

conditions on the degree d and the number of singular points:

23
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Theorem 3.1.1 ([5]). Let C be a singular plane curve of degree d with § ordinary nodes
or cusps. If there is a positive integer n such that d > 2(n+1) and 6 < nd—(n+1)?+2,
then the gonality of the normalization of C' is d — 2.

Ohkouchi and Sakai studied more general cases :

Theorem 3.1.2 ([29]). Let C be a singular plane curve of geometric genus g and
of degree d, n the number of singular points (including also infinitely near singular
points) and my, ..., m, their multiplicities. Put v = max{m; | ¢ = 1,...,n} and

a(v)=(2—-+/1=2/v)* Defined=(d—1)(d—2)/2—g, n=">1,(mi/v)* and

L V(v —2) d—v v—241i\’
R == 0=+ 1/—1+(21/—2>’

where we let d = i (modv). Then the gonality of the normalization of C' is d — v in the

following cases :
d
(i) —> R(v,9,1).
v

n+1

; >T (5377<G(V)),
(i) v=3and —§ >2./5— <1+%> (a(v) <n <4),
>3 (4 <n<5h).

On the other hand, Martens determined the gonalities of nonsingular curves on

Hirzebruch surfaces with some trivial exceptions.

Theorem 3.1.3 ([24]). Let X, be a Hirzebruch surface of degree a > 0 with the ruling
7Y, — P and C a nonsingular curve on ¥,. Denote by Ay and F the minimal
section and a fiber of w, respectively. Assume that C' & F. Then the gonality of C' is
C.F unless a =1 and C ~ a(Ag + F) with o > 2 in which case C is isomorphic to a

plane curve of degree .

3.1.2 The gonality conjecture

The gonality is one of important invariants in the study of linear systems on curves,
although, in general, it is often difficult to determine it for a given curve. One of
the central problems around the gonality is the so-called gonality conjecture (Conjec-
ture 3.1.5 below) posed by Green and Lazarsfeld in [13]. In order to give its precise
statement, we introduce the following vanishing property (M) (we use the notation of
Koszul cohomology defined in Section 3.2).
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Definition 3.1.4 ([13]). Let L be a line bundle over a curve C, and k a non-negative
integer. We say that the pair (C, L) satisfies the property (M) (or, simply, L satisfies
the property (My)) if a Koszul cohomology K,(C, L) vanishes for any integer p >
h°(C, L) — k — 1.

If C' is a k-gonal curve of genus g, then it is well known that a line bundle over
C' does not satisfy (My) if its degree is greater than or equal to 2g + k. The gonality

conjecture predicts the converse of this fact.

Conjecture 3.1.5 ([13, The gonality conjecture]). Let C' be a curve of genus g
and k a positive integer. If the property (My) fails for any line bundle L over C' with
degL > 2g, then C has a g;.

Hence, if this conjecture is true, then we can read off the gonality of a curve from
any one line bundle of sufficiently large degree over it. Green has shown this conjecture
affirmatively for £ = 1,2 in [11]. The case where & = 3 has been done by Ehbauer
in [2]. As for curves on the Hirzebruch surfaces, we have not only Martens’ result
(Theorem 3.1.3) but also an affirmative answer to the gonality conjecture. This work
was done by Aprodu in [1]. So it is a natural question to extend their results to curves
on more general surfaces, e.g., toric surfaces. In this chapter, we restrict ourselves to a
class of toric surfaces admitting a unique toric morphism to P!. Our aim is to determine
the gonality of curves on such surfaces and also show that the gonality conjecture is

valid for them. Namely, we shall show the following :

Theorem 3.1.6. Let S be a toric surface which has a unique toric morphism to P! and
denote its fiber by F'. Let C' be a nonsingular irrational curve on S and put C.F = k.
Then one of the following holds :

(i) C is isomorphic to a plane curve of degree k,

(ii) C is k-gonal, and the gonality conjecture is valid for C.

The proof owes much to [1] and will go with the induction on the sum of k£ and the

Picard number of S.

3.2 Koszul cohomology

In this section, we will introduce the notion of Koszul cohomology of a line bundle over
a projective variety, and review several previous results. See [1] and [11] for further
details.



26 CHAPTER 3. THE GONALITY CONJECTURE

Let V be a finite dimensional complex vector space, SV the symmetric algebra of
V,and B = @ ez Bg a graded SV-module. Then there is a natural map between

vector spaces

dy: AV@B, = AV&Bu
(e, N---Nej,) @b — é(—l)jl(% A NG A Ae) @ (eg,b),
which yields a Koszul complex
p+1 dpi1,9-1 d

P q P—1
.._)/\V®Bq_1 /\V®Bqﬂ> /\V®Bq+1_>...

The Koszul cohomology is defined by
K, .(B,V) = Ker dp,q/Im dpi1,g-1-

It is a well-known fact (the so-called Syzygy theorem) that a complex vector space K, ,
is isomorphic to the syzygy of order p and weight p+ ¢ for B (cf. [11, Theorem 1.b.4]).
Besides, it is also essential that a morphism of graded SV-modules canonically induces

linear maps of Koszul cohomologies :

Theorem 3.2.1 ([11, Corollary 1.d.4]). Let 0 — P — @Q — R — 0 be a short exact
sequence of SV -modules with maps preserving the gradings. Then, for any integer p,

there is a Koszul cohomology long exact sequence

c—= Kpo(R,V) — Kpi(PV) — Kpi(Q,V) — Kp (R, V) — Ky 1(PV) —
- = Kop1(PV) = Kopi1(Q, V) = Kopi1 (R, V) — 0.

Remark 3.2.2 ([1, Remark 1.1]). In the above situation, if Ry = Ry = 0, then K, ; (P,
V)~ K,1(Q,V) for any integer p.

For a projective variety X, a line bundle L over X and a vector bundle E over X,
we define
K, (X,E L) = KM(@ H(X,F®iL), H(X, L)),
i€Z
KX 1) = Ky @ HOCXAL) (X)),
i€Z

For a restriction of the Koszul cohomology to the hypersurface, we have the following

isomorphism :
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Theorem 3.2.3 ([1, Remark 1.3]). Let X be a nonsingular projective variety, L a line
bundle over X and Y € |L| an irreducible divisor on X. If the irreqularity of X is
zero, then K, 1(X, L) ~ K,1(Y, L|y) for any integer p.

Here we shall see two vanishing theorems.

Theorem 3.2.4 ([11, Theorem 3.a.1]). Let X be a projective variety, L a line bundle
over X and E a vector bundle over X. Then K, ,(X,E,L) =0 for any integer p >
(X, E ® qL).

Theorem 3.2.5 ([11, Theorem 3.c.1]). Let L be a line bundle over a curve C. Then
K,1(C,L) =0 for any integer p > h°(C, L) — 1.

Lastly, we see Aprodu’s results which played a central role in his work and also in
the proof of Theorem 3.1.6.

Theorem 3.2.6 ([1, Theorem 1]). Let C' be an irrational curve, L a nonspecial and
globally generated line bundle over C', and k a non-negative integer such that L satisfies
(My). Then, for any effective divisor D on C, L 4+ D also satisfies (My).

This proposition gives us a simple criterion for verifying the gonality conjecture,
which reduces it to the problem of finding a single line bundle with the property (My_1)

over C'.

Corollary 3.2.7 ([1, Corollary2]). Let C' be an irrational curve which has a g.. If
there is a nonspecial and globally generated line bundle over C satisfying (Mg_1), then

C' is k-gonal, and the gonality conjecture is valid for C.

3.3 Proof of Theorem 3.1.6

3.3.1 Toric surfaces with a unique ruling to P!

Let us see some properties of surfaces dealt with in this chapter. We keep the notation
introduced in Section 2.4.

Let S be a toric surface associated to the fan A composed by d cones, which has a
unique toric morphism ¢ to P*. We denote its general fiber by F. In terms of the fan,
this condition means that there is only one cone ¢ € A such that —¢ is also contained
in A. We put 01 = 0, 04, = —0o and label T-invariant divisors in the way defined in

Section 2.4, that is, we assume the equality

TilYi—1 — YiTi— = 1
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\
0dy

Figure 3.1.

for each integer 1 < i < d. Hence we can draw A as in Fig.3.1. Remark that, in this

case, we can classify the primitive elements of the cones in A roughly as follows:

(=0 (i=1d), (0=1),
=0 (Z = do - ]_),
= (Z = 2, do — 1),
1 (i=do+1,d) - (6= do), (3.1)
X = - 1= ) 9 % . .
0 Y =p2 >1 (i=do+1),
21 (3§Z<d0—2)7 0
. > 1 (2<i<dy—2),
< -1 (do+2<i<d-1), ,
* (> -2, +1 (do+2<i<d)
Moreover, we have
do—1 d
Dgy ~ > yiDi+ > y:D;. (3.2)
i=1 i=do+1
The linear equivalence class of F' is written as
do—1 d
i=2 i=do+1

Hence, by (3.1) and Theorem 2.4.5, we have

1 (=1
F.D; = (i =1,do), (3.4)
0 (otherwise).

3.3.2 Several lemmas

In this subsection, we prove several lemmas needed in the proof of Lemma 3.3.8 which
is a key to proving Theorem 3.1.6. We keep the notation in the previous section. Let
C be a curve of genus g on S and put £ = C.F. As mentioned in Section 2.4, we can

write the linear equivalence class of C' as

d
C~ > piD; (pi €Z, pp =pqg=0).
i=1
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Note that pg, = k follows from (3.4). We first consider the case where C' is isomorphic

to a plane curve.

Definition 3.3.1. We say that the pair (S, C') satisfies the property (#) (or, simply, C
satisfies (f)) if D5 =1 and C' ~ kDyg,.

Lemma 3.3.2. If (S,C) satisfies (§), then C is isomorphic to a nonsingular plane

curve of degree k.

PRrOOF. In this case, an easy computation shows that

CDZ: k (i:do_]-?d()udo_’_l))
0 (otherwise).

Considering the construction of S, if d > 5, then there is at least one Tx-invariant
divisor D; with self-intersection number —1 such that ¢ # 1,dy — 1, dy, dy + 1. Hence,
by a finite succession of blowing-downs along such divisors, we can obtain an embedding

of C in ¥;. In particular, the image of D; becomes the minimal section of the ruling

A

o9 91 AZ1

R\ 72 \ , o (M)
A\ . \ I

.~

'\

2

l ruling
IP)l

Figure 3.2.
map of ¥y (Fig.3.2). We denote it by M. Since M has self-intersection number —1

and does not meet C', by blowing it down, C' can be embedded in the projective plane

as a curve of degree k. a

By the following lemma, we can clarify the case where C' is rational, which is a

special case of Lemma 3.3.2.
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Lemma 3.3.3. Assume that k > 2 and C is nef. Then C' is rational if and only if
k=2 and (S,C) satisfies ().

PROOF. The sufficiency is easy: If D7 =1 and C' ~ 2Dy, then we have C.(C +
Kg) = —2 by computing. Then g = +C.(C + Kg) +1 = 0.
To prove the necessity, we assume g = 0. By noting (3.2) and py, = k, we have

do—1 d
C+Ksg~(k=2)D1+ > (pi+(k=1y; —1)D;+ > (pi + (k= 1)y, — 1)D;.
=2 i=do+1

Here we note that Proposition 2.4.10 implies that p; is non-negative for 2 <i < d — 1.
Hence, by (3.1), we have p; + (k — 1)y; — 1 > 0 except for i = 1,dy — 1,dp. On the
other hand, since h%(S, K5) = h°(C, K¢) = 0, we have h°(S,C + Kg) = 0. This means
that C' + Ky is not linearly equivalent to an effective divisor. Hence the coefficient
Pdo—1 + (kK — 1)yg,—1 — 1 must be negative, which implies that pg,_; = 0. We thus have
C.Dgy—1 = pay—2 + k > k. Considering the equation C.F = C.(Zf‘); X Z) = k and
(3.1), we can conclude

<1 < —
CDZ: 0 (?_Z_do 2),
k (Z:dg—l).

We next write the linear equivalence class of C'+ Kg as

do—1
C+Ks=C+Ksg+F—-F~C+Ks+ > x;D;+ Z x; D
1=2 i=dp+1
do—1
~(k=2)Di+ > (pi+zi+(k—1)y, — 1)D;
=2 d
i=do+1

Since h%(S, C+ Kg) = 0, the coefficient pg, 11+, 11+ (k—1)y4,-1 — 1 must be negative.
This implies that k£ = 2, DflO =1 and pgy+1 = 0. We thus have C. Dy, 11 = k+pgy+2 > 2.

Considering the equation C.F = C.( — Z?:doﬂ 2;D;) =2 and (3.1), we can conclude

cp, =1 2 i=dt1),
0 (do+2<i<d).

Moreover, we have C.Dg, = pay—1 + kD3, + Pao+1 = 2, and
do—1 d
C.Dl (Ddo Z yzD — Z Y z) CDdo yd0+1C.Dd0+1 = O
i=do+1

Consequently, if C' is rational, then Dfio =1, k =2 and C is numerically equivalent to

2D,,. Since S is simply connected, we also have C' ~ 2Dy, . O
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We next see the properties of the Koszul cohomology of a divisor obtained by

subtracting an effective divisor from C.

Lemma 3.3.4. Let I be a nonzero effective divisor on S and put H = C — 1. If
HY(S,—1) =0, then K, (S, H) ~ K, (C, H|c) for any integer p > h°(S,H —I) + 1.

PRrROOF. The short exact sequence of sheaves 0 — Og(—1) — Os(H) — Oc(H) —

0 induces the cohomology long exact sequence

0— H°(S,—I)— H°S,H) — H°(C,H|¢) — H'(S,—1I) —
Since HY(S,—I) = H'(S,—1I) = 0, we have H°(S,H) ~ H°(C, H|c). We put V =
H(S,H), B=@,,H(S,qH), B' = @, H°(S,qH —C) and Q = B/B'. Consider-

ing the short exact sequence of graded SV-modules 0 — B’ — B — () — 0, we obtain

the Koszul cohomology long exact sequence
= Kpu(BLV) = Kpa(B, V) = Kpa(Q V) — Kpo1(B, V) —

Then Theorem 3.2.4 shows that
K,1(B',V)=0 forp>h°(S,H—C) =0,
K, 12(B,V)=0 forp> h°(S,2H — C)+1=h°(S,H—1)+1.

We thus have K, 1(S, H) ~ K, 1(Q, V) for any integer p > h°(S, H — I) + 1.
Next, let us consider the short exact sequence of graded SV-modules

0—Q— @ HC,qH|c) — R := (@HOC’qH|C)/Q—>O

q=>0 q>0
The isomorphisms Qo ~ C and Q; ~ H°(C, H|¢) imply Ry = R; = 0. Hence we can
apply Remark 3.2.2 to obtain

Ko (Q.V) = K, ( @ HO(C, qiH|), H(C. H|c>) _ K, (C He)

q>0

for any integer p. O

Lemma 3.3.5. Assume C'is irrational. Let I be a nonzero effective divisor on S and
put H=C — 1. If all of the following (1)—(v) hold, then Oc(C') satisfies (My).

(i) Og(H) is globally generated,
(i) H* >0,

(iii) H|c is nonspecial,

(iv) h°(S,H) — h°(S,H — ) > 3,
(v) HY(S,—I)=0.
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PROOF. We can take a nonsingular irreducible curve Y € |H| by (i), (ii) and
Bertini’s theorem. Then Theorem 3.2.5 shows that K, (Y, H|y) = 0 for any inte-
ger p > h%(Y,H|y) — 1. On the other hand, the short exact sequence of sheaves
0— Os — Os(H) — Oy (H) — 0 induces the cohomology long exact sequence

0— H°(S,05) — H*(S,H) — H'(Y,H|y) — H'(S,0g) — - -

Since H(S,05) = C and H'(S,Os) = 0, we obtain h°(Y, H|y)

ho(S,H) — 1.
Consequently, we have that

Ky (Y, Hly) =0

(3.5)
for any integer p > h%(S, H) — 2.

By Theorem 3.2.3, we have K, 1(Y, H|y) ~ K,1(S, H) for any integer p. Besides,
Lemma3.3.4 gives the isomorphism K, (S, H) ~ K,,1(C, H|c) for any integer p >
hO(S,H — I) + 1. Hence, by combining these facts with (3.5) and (iv), we have

Kp,1<c7 H’C) =0
for any integer p > h°(S, H) — 2.
We next consider the short exact sequence 0 — Og(—1) — Og(H) — Oc(H) — 0

It induces the cohomology long exact sequence

0— H(S,—I)— H°(S,H) — H°(C,H|c) — H'(S,—I) — ---

Then the equalities H°(S,—1) = H'(S,—1I) = 0 implies h°(S,H) = h°(C, H|¢). In
sum, we can conclude

Kp71(0, H|C) - 0

for any integer p > h°(C, H|¢) — 2, that is, H|¢ satisfies (M;). Recall the condition
(iii) and note that O¢(H) is globally generated. Therefore, by Theorem 3.2.6, O¢(C)
also satisfies (M).

O
In the rest of this section, we define

di =min{i > 2| D? > -1},

>
dy = max{i < d| D? > —1},

di—1 d
I=> Di+ > D;+F,
i=1 i=do+1

H=C-1
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Considering the construction of A, it is obvious that d; < dy — 1 and dy > dg + 1.
The short exact sequence of sheaves 0 — Og(—I) — Og — O; — 0 induces the

cohomology long exact sequence
0— H°(S,—I) — H°(S,0s) — H°(I,0;) — H'(S,—1) — H'(S,08) — - - - .
Since H°(S,—1I) = H'(S,0g) = 0 and H°(S,Os) = H(I,O;) = C, we have
HY(S,—1) =0.

Lemma 3.3.6. Assume that k > 2 and C is nef. If C.Dy, > 1 and C.Dgy, > 1, then
the following (1)—(iii) hold :
(i) Og(H) is globally generated,
(ii) H* >0,
(i) H|c is nonspecial.
PROOF. By Theorem 2.4.4, it is sufficient for (i) to verify that H has non-negative

intersection numbers with D; for each 1 < i < d. First, for 2 <1¢ < d; — 2, we have

In the case where d; > 3, we have H.Dy,_y =C.Dg,_y—Dj —1>-Dj ; —1>1.
Besides, we have H.Dy, = C.Dyg, —1 > 0and H.D; =C.D; > 0ford;+1 <i < dy—1.

A similar argument can be adapted for integers dy + 1 <7 < d. In sum, we obtain

0 (i#1,d—1,do, do+1),
HD;>{ 1 (i=dy —1if dy > 3),
1 (i=dy+1ifdy <d—1).

For Dg,, we have
H.Dgy = C.Dgy, — I.Dgy = pag—1 + kD3, + pagr1 —1 >k —1>1.

It remains to check that H.D; is non-negative. Since

1 (di =2, dy = d), 1 (di =2, dy = d),
ID/=D+{ 3 (>3, dy<d—1), D?<{ =3 (dy >3,dy <d—1),
2 (otherwise), —2 (otherwise),

we obtain /.D; < 0. We thus have H.D; > C.D; > 0.
(ii) Since Og(H) is globally generated, by Proposition 2.4.10, we can write the linear
equivalence class of H as

d—1
H~ Y bD;

=2
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with non-negative integers b;. The equation H.F' = k — 1 and (3.4) implies that
pa, = k — 1. Then we have H? > (k—1)H.Dgy > k — 1> 1.
(iii) Recall Corollary 1.0.3, the adjunction formula (Theorem 1.0.4) and Theorem 1.0.5.

Then the last claim can be verified by a simple computation :

do
degH|C—29:C’.(—I—KS)—Q:C.( 5 DZ-—F) _9

i=d,
> C.(Dy, + Day + Dy, — F) —2 > C.(Dyy — F)
= Pdg—1 + kD, + pag+1 — k > 0. O

Lemma 3.3.7. Assume that k > 2 and C' is nef and does not satisfy (8). If C.Dg, > 1
and C.Dg, > 1, then h°(S,H) — h%(S,H — I) > k + 1.

PROOF. By Lemma3.3.6, Og(H) is globally generated and H*> > 0. Then by
Bertini’s theorem, we can take a nonsingular irreducible curve Y € |H|. We denote by
gy its genus. As we saw in the proof of Lemma 3.3.5, we have h°(S, H) = h°(Y, H|y )+1,
and h°(S,H — I) = h°(Y,(H — I)|y). Hence it is sufficient for the proof to verify
RO(Y, H|y) — h°(Y,(H — I)|y) > k. By Corollary 1.0.3 and the adjunction formula, we

have

d
degH|y — 29y = —Y.Kg—2=YHD;—2> HDy —2> —1.

=1

Hence H|y is nonspecial by Theorem 1.0.5. Similarly, we have

d
deg(H — I)|y — 29y = Y.(—I—KS)—Z:H.( 5 Di—F> _9
i=dy

> H-(Ddo — F) -2 = Pdo—1 +]€D§O +pd0+1 — k-2

If pgy—1 = payr1 = 0 and D = 1, then we can show that C' satisfies (f) by the
same argument as in the proof of Lemma 3.3.3. Hence at least one of the inequalities
Pdog—1 > 1, Pag+1 > 1 and Déo > 2 holds. It follows that deg(H — I)|y — 2gy > —1,

which means that (H — I)]y is also nonspecial. Hence, by Riemann-Roch theorem,

WY, Hly) = KV, (H = I)ly) = degHly + 1 — gy — (deg(H — D)ly + 1 — gy)
= YH-Y.(H-I)=H.I.

Finally, we shall verify that H.I > k. In the case where d; > 3, as we saw in the
proof of Lemma 3.3.6, the inequality H.Dy,_; > 1 holds. We thus have

d;—1 d
H.I:H.( YD+ Y Di>+k—12H.Dd11+k—12k.
=1

i=do+1
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Similarly, one can show H.I > k in the case where dy < d — 1. Let us assume d; = 2
and dy = d. Then we have HI = HDy +k—1=p,— D} +k—2. If p, > 1 or
D? < —2, then we obtain H.I > k. On the other hand, if p, = 0 and D? = —1, we
have y; + y2 = 1 by Theorem2.4.5 and (3.1). In this case, the type of A has only
one possibility, which is a fan defining Hirzebruch surface ¥; of degree one (Fig. 3.3).

A

I

Figure 3.3.
Since py = 0, we have C' ~ p3Ds. This means that C satisfies (§). Therefore, the
equalities d; = 2,dy = d,py = 0 and D? = —1 do not occur at the same time under the
assumption of the lemma. O

3.3.3 Proof of Theorem 3.1.6

Combining the results in previous subsection, we obtain the following lemma which

plays a central role in the proof of Theorem 3.1.6.

Lemma 3.3.8. If k > 2 and C is nef and does not satisfy (§), then Oc(C) satisfies
(M, _4).

PrROOF. We have g > 1 by Lemma3.3.3. We denote by p(S) (> 2) the Picard
number of S. We shall show the claim by induction on k + p(.5).

In the case where k = p(S) = 2, since d = 4, it is obvious that S is a Hirzebruch
surface. Hence we have dy = 2,dy = d and F ~ Dy ~ Dy. Since C.Dy = C.D, =
C.F =k =2, Lemma3.3.6 and 3.3.7 allow us to apply Lemma 3.3.5 to C'. Therefore,
the claim is true in this case.

We next consider the case of k + p(S) > 5 under the following assumption: Let S’
be a toric surface with a unique toric morphism to P* and C’ a nonsingular irrational
curve on S’. We denote by k' the intersection number of C’ and a fiber of the toric
morphism of S’. We assume that if (S’, C") does not satisfy (£) and &'+ p(S") < k+p(5),
then (C", Oc/(C")) satisfies (Myr_1).

(i) Assume that C.Dg, > 1 and C.Dg4, > 1. If k = 2, then the claim can be verified by
Lemma 3.3.5. Assume that k£ > 3. By Lemma 3.3.6 and Bertini’s theorem, we can take
a nonsingular irreducible curve Y € |H|. Note that Y is nef and Y.F' =k — 1.
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Now we suppose that Y satisfies (f), that is, D] =1 and Y ~ (k — 1)Dg,. Then

we have

di—1 d
C~Y+I1~(k—-1)Dy+ > Di+ > D;+F.
=1 i=do+1

If dy > 3, then C.Dy, 1 = Dfll_l + 1 < —1. This contradicts the fact that C is nef.
Hence we have d; = 2. Similarly, one can obtain dy = d. Hence C' ~ (k—1)Dg,+D;1+F,
and the inequality C.D; = D? + 1 > 0 implies that D? = —1. Then, as we saw in the
proof of Lemma3.3.7, S is a Hirzebruch surface ¥;. In this case, F' ~ D, and (3.2)
implies Dy, ~ Dy + D;. We thus have C' ~ kDy,, which contradicts the assumption
that C' does not satisfy (). Consequently, we have that (S,Y") does not satisfy (f).
Since Y.F + p(S) = k + p(S) — 1, we have that (Y, H|y) satisfies (My_s) by the
hypothesis of the induction. Namely, for any integer p > h%(Y, H|y) — k + 1,

K,1(Y,Hly) =0.

As we saw in the proof of Lemma3.3.5, h°(Y, H|y) = h°(S,H) — 1 = h°(C, H|¢) — 1
hold. Moreover, by Theorem 3.2.3, we have K,(Y, H|y) ~ K, (S, H) for any integer

p. Hence we have
K,1(S,H)=0 (3.6)

for any integer p > h°(C, H|c) — k. On the other hand, by Lemma3.3.4, we have
K,1(S,H) ~ K, (C,H|c) for any integer p > h%(S,H — I) + 1. We remark that
hO(S,H) — h°(S,H — I) > k + 1 holds by Lemma 3.3.7. Consequently, by combining
these facts with (3.6), we obtain

Kpjl(C', H|C> - O

for any integer p > h(C, H|c) — k, that is, (C, H|¢) satisfies (My_1). Since H|c
is nonspecial and globally generated by Lemma 3.3.6, we can apply Theorem 3.2.6 to
conclude that (C, Oc(C)) also satisfies (Mg_1).

(ii) Assume that C.D,; = 0. In this case, we have dy > 4. Indeed, if dy = 3, the
fan A defining S is as in Fig.3.4. Then we have d; = 2 and F' ~ Dy, which yield

A

N\

Figure 3.4.
a contradiction C.F = 0. The fact dy > 4 implies D = —1. Let S’ be a surface
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obtained from S by blowing D, down. Considering the relation between a blowing-up
and a subdivision of a fan (cf. Theorem 2.4.1), S” also becomes a toric surface of Picard
number p(S’) = p(S) — 1 with a unique toric morphism to P!. We denote by F” its
general fiber. If we regard C as a curve on S’, then we have C.F' = k obviously.
Therefore, by the hypothesis of the induction, (C, O¢(C)) satisfies (My_1).

(iii) In the case where C.Dy, = 0, a similar argument to the case of (ii) goes through

to show the claim. 0
We are now in a position to prove Theorem 3.1.6.

PROOF OF THEOREM 3.1.6. We first show that C is rational if £ < 1. If £ = 0,
then C is contained in a fiber, that is, C' is rational. Assume k£ = 1. In this case,
the toric morphism of S induces a surjective morphism from C to P! of degree one.
Namely, C' is rational. Hence we consider the case where k > 2.

If C satisfies (f), then by Lemma3.3.2, C' is isomorphic to a nonsingular plane

curve. Hence we may assume that C' does not satisfy (f). Hence Lemma 3.3.8 shows
that O¢(C) satisfies (Mg_1). On the other hand, since

degOC(C’) — 29 = —C.KS -2 Z C'Ddo —2= Pdy—1 + kDSO +pd0+1 -2 Z 0,

Oc(C) is nonspecial and globally generated by Theorem 1.0.5. Besides, C' is irrational
by Lemma 3.3.3. Therefore, it follows from Corollary 3.2.7 that C' is k-gonal and the

gonality conjecture is valid for C'. ad






Chapter 4

Weierstrass gap sequences on curves

on toric surfaces

In this chapter, we see the author’s second result dealing with Weierstrass gap se-
quences. We consider a curve on a toric surface and its intersection points with Thy-
invariant divisors, and try to compute the gap sequences at such points. As a result of
this attempt, we give a new technique to determine them by using the relation between
certain lines and the lattice polytope associated to the curve. Similarly to the previ-
ous chapter, a curve will always mean a nonsingular projective curve unless otherwise
stated.

4.1 Preliminaries and the main result

4.1.1 Weierstrass gap sequences

First we define Weierstrass gap sequences and review several previous results for them.
Let C' be a curve of genus g. For a point P on C, a positive integer j is called a gap
value of C' at P if

RO(C,jP) = h°(C, (j — 1)P).

The set of all gap values is called a Weierstrass gap sequence (or, simply, gap sequence)
of C'at P. By Riemann-Roch theorem, its cardinality is equal to g. The classical result
so-called Weierstrass gap theorem (cf. Theorem 0.0.3) is a basic tool in the study of
gap sequences. As we saw in Theorem 0.0.4, there are two types of gap sequences at
points on hyperelliptic curves.

For trigonal curves, Coppens has computed gap sequences at their ramification

points.

39
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Theorem 4.1.1 ([3, 4]). Let C be a trigonal curve and ¢ : C — P the trigonal
morphism. A point P on C is called a total (resp. an ordinary) ramification point if
the ramification index of ¢ at P is three (resp. two).

(i) The gap sequence at a total ramification point of ¢ is one of the following two types :

{1,2,4,...,3n—2,3n—1,3n+ 1,3n+4,...,3(¢9 —n—1) + 1},
{1,2,4,...,3n—2,3n—1,3n+2,3n+5,...,3(¢g —n— 1) + 2}.

(ii) The gap sequence at an ordinary ramification point of ¢ is one of the following two

types :

{1,2,3,...,2n—1,2n,2n+1,2n+3,...,29 — 2n — 1},
{1,2,3,...,2n—1,2n,2n+2,2n +4,...,29 — 2n}.

Kato and Horiuchi [16] established a criterion for deciding the kinds of ramification
points and their gap sequences. Besides, Kim studied unramified points and completed

the classification of the gap sequences in the trigonal case.

Theorem 4.1.2 ([18]). Let C' and ¢ be as in Theorem 4.1.1, and denote by g the
genus of C'. Assume that g > 5, and define jo = max{j € N | jP is special}. If
@ 1s unramified at a point P on C, then the gap sequence of C' at P is of the form
{1,2,...,g9} or

{1,2,...,n—1,n+jo—g+1,n—|—jo—g—|—2,...,jo+1}

for some integer n with [(jo + 1)/2] + 1 < n < g, where [x] is the so-called Gauss’

symbol, that s, the greatest integer not greater than x.

Actually, the notion of gap sequence was extended to singular points by Lax and
Widland [23]. In [9], some methods were given by Gatto to compute gap sequences at
singular points on a plane curve. They allowed to determine gap sequences at ordinary
nodes on quartic curves or at cusps on quintic curves. Notari[27] has developed a
technique to compute the gap sequence at a given point on a plane curve, either it is

smooth or singular. Note that a projective plane is a typical example of a toric surface.

4.1.2 The technique to compute gap sequences

In general, however, it is not so easy to determine a gap sequence in its entirety at a
given point. In this chapter, as mentioned before, we restrict ourselves to a curve C' on
a toric surface S and consider its intersection points with Ty-invariant divisors on S.

Theorem 4.1.3 below provides a sufficient condition for a positive integer to be a gap
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value of C' at such points. Moreover, as we will see in Corollary4.1.4, it becomes the
necessary and sufficient condition under the suitable condition. Namely, in such cases,
one can detect all the gap values (i.e. the gap sequence). In Section 4.3, we will apply

this technique to three examples. Concretely, we will consider singular plane curves
3+ 2y +y—1=0,
2°+ 2%y + a2y’ +94° =0,
P +yl+2y =0 (p>g>1,r+s>1)
and the nonsingular models of them. In these cases, we can determine the gap sequences

at the infinitely near points of singularities.

We use the notation introduced in Section 2.4. In order to give a precise statement,
we define a line [;(n) C R? by

lLi(n) = {(z,w) € R* | 7,2 + y;w = n}
for integers 1 < ¢ < d and n. Then our main result in this chapter is stated as follows:

Theorem 4.1.3. Let S be a complete nonsingular toric surface defined by a fan com-
posed by d cones, and C' ~ ZlepiDi a nonsingular nef curve on S. Assume that C
does not pass through any Tx-fixed point on S. For integers ig with 1 < ig < d and
J > 1, if the line l;y,(pi, — ) has at least C.D;, lattice points in the interior of O (see
Definition 2.4.7), then j is a gap value of C' at the intersection points of C' and D;,.

Here we remark that it is not an essential assumption that C' does not pass through
any Ty-fixed point on S. Indeed, if there are Ty-fixed points lying on C', then by a
succession of blowing-ups with those points as centers, we can obtain an embedding of
C in a toric surface which satisfies the assumptions of Theorem4.1.3.

As declared at the beginning of this subsection, under a suitable condition, The-
orem4.1.3 gives the necessary and sufficient condition for j to be a gap value at the

intersection points of C' and D,,. Concretely, the following corollary holds.

Corollary 4.1.4. Let S, C' and iy be as in Theorem 4.1.3. Assume that C.D;, =1 and
the line l;,(p;, — 7) has at most one lattice point in the interior of O¢ for any integer
j. Then j is a gap value of C' at P = C' N Dy, if and only if l;,(p;, — ) has a lattice
point in the interior of L¢.

Indeed, under these assumptions, the gap values at P detected by Theorem4.1.3
are in one-to-one correspondence with the lattice points contained in the interior of
Oe. Since O¢ has g lattice points in its interior (cf. Theorem 2.4.8), this means that
all the gap values at P are completely found by Theorem4.1.3.
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4.2 Proof of Theorem4.1.3

In this section, let C' be a curve of genus ¢ on toric surface S. By renumbering
of Ty-invariant divisors, we can assume 7y = 1 in the Theorem4.1.3. We thus focus
exclusively on the case where iy = 1 henceforth. Furthermore, by (2.2) and the following

Lemma4.2.1, it is sufficient to consider the form of the linear equivalence class

d
C~ > piDi (pi€Z, pp=ps=0). (4.1)
i=1
We denote by Int O the interior of Clg, that is,
Int Oc = {(z,w) € R?* | ;2 + y;w < p; for 1 < i < d}.

Lemma 4.2.1. For a curve C' ~ 25:1 m;D; on S and an integer j, the number of
lattice points contained in ly(mq — j)NInt Oc does not depend on the form of the linear

equivalence class of C.

PRrROOF. Assume C' ~ 25:1 m;D; ~ Z?:1 n;D;, and define maps f; and f, from Z
to itself as

f1(2) = 2z + yan1 — ying — yama + yrima,
fo(w) = w — zgny + z1ng + T4My1 — T1My.

Then, for any integer 1 < k < d and (z,w) € Z?, we have

xkfl(z) + ykfz(w) = Tz + YW + N — My

by Proposition 2.4.6. Considering the definition of O¢, the map (f1, fo) : Z* — Z? gives

a one-to-one correspondence between [;(my; — 7) NInt ¢ and ly(ny — j) NIntOe. O

4.2.1 Key lemma.

The aim of this subsection is to show Lemma4.2.10 which is the key to proving
Theorem 4.1.3. In this subsection we consider the linear equivalence class of C' as
(4.1), and assume C' is nef and C.D; > 1. Let j be a positive integer such that
li(—7) NIntOc N Z? # (), and denote by (29, wp) the lattice point in I;(—75) N Int O¢
closest to the line [4(0). Since C'is nef, |C| has no base points by Theorem 2.4.4. Hence,
by Proposition 2.4.6 and 2.4.10, we have

k=1
pr = > (xryi — yp:)C.D; > 0 (4.2)

i=1
for any integer 2 < k < d — 1. All the remaining lemmas in this subsection are closely
related to the notion of lattice polytope. Hence, for a better understanding, we will

argue together with the following example.
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Example 4.2.2. Let S be a toric surface associated to the fan in Fig. 2.2, and
Co~2Dy+6D35+ 10D, + 5D5 + 7Dg + 16 D7 + 10Dg + 4Dg + 3D1g

a nonsingular nef curve on S. Then the lattice polytope [¢, is drawn as in Fig. 4.1.

X

Ue

0

Figure4.1.

We next define an effective divisor I which plays an important part in the proof of
Theorem 4.1.3.

Definition 4.2.3. We define

a=min{i > 2 | z;(20 — y1) + yi(wo + x1) > 0},
b=max{i <d|z;z0 + y;wo > 0},

ri(yr — 20) — Yi(x1 +wo) (1<i<a—1),
& = —TiZ0 — YiWo (b+1<i<a),

0 (otherwise),
d
I= Z ¢ D;.
i=1

We remark that b < d — 1. Indeed, by the definition of (zg,wy), the inequality
Tq20 — Yqwo < pg — 1 = —1 holds. For instance, in the case of Example4.2.2, for j = 8,

we have a = 5, b = 10 and
] = 8D1 + 4D2 + 4D3 + 4D4 + 2D11 + 5D12.

Then the line [;(—8) and [J; is as in Fig. 4.2. Note that the origin has changed.

KO (_207 —U]())
U7
(Zou}ﬁ DCO O \(yl — 20, —X1 — wo)

Figure4.2.
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Lemma 4.2.4. For any integer b+ 1 < k < d, the inequality

TEyr — Ypr1 < —1
holds. Moreover, if a > 3, then x,y1 — Ymx1 > 1 for any integer 2 < m < a — 1.
PROOF. Since 129 + y1wg = —j # 0, we can write

(w5, ) = a1 (w1, 91) + Br(wo, —20),

(o1, Yot1) = a1, Y1) + B2(wo, —20)

with some real numbers. By the definition of b, we have

Tpzo + YpwWo = a1 (120 + y1wp) = —jag > 0,

Tp+120 + Ypr1Wo = (X120 + Yrwp) = —jae < 0.

Hence we have ay < 0 and as > 0. Now, we suppose that xy, 191 — ypr171 > 0. Then

Proposition 2.4.13 implies that xy; — ypx1 > 0. Hence we have

1 — Yp1 = P1(z120 + Yrwo) = —j61 > 0,
Tpr1Y1 — Y11 = Po(T120 + t1wo) = —j P2 > 0,

which imply 3; < 0 and (3, < 0. Then, by computing, we have
TuYor1 — YorTopr = J(a1Ba — Brag) > 0.

This contradicts the fact that xp 1 yp—ypr120, = 1. We thus obtain that xp 191 —ypr121 <
—1. Then by Proposition 2.4.13,

Ty — Yy > 1

for any integer b+ 1 < k < d. Similarly, by considering the descriptions of (x4_1, Ys_1)
and (z4,Y,) as the sum of (z1,y;) and (1 + wo, y1 — 29) with real coefficients, one can

show the second inequality in the lemma. O

Remark 4.2.5. The inequality a < b + 1 immediately follows from Lemma4.2.4.
Indeed, if a > b+ 2, then we have

Ta-1Y1 = Y121 < —1 (4.3)

by Lemma4.2.4. However, this contradicts the second statement in the lemma in the
case where a > 3. It goes without saying that (4.3) is a contradiction in the case where

a=2.
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Lemma 4.2.6. The complete linear system |I| has no base points.

PrROOF. By Theorem 2.4.4, it is sufficient to verify I.D; > 0 for each integer 1 <
1 < d. Recall Theorem 2.4.5. Then we have

1.Dy = qa+q Di+-dy = =420 —yqwo — 2120 D} —y1wo D} + 2211 — Y21 — 220 — Yawo = 1.
For integers 2 < k1 < a — 2,
I.Dy, = (@p,—1 + 4, DF, + @iy 11) (W1 — 20) — (Y1 + Y DR, + Yry1) (21 + wp) = 0.
For integers b+ 2 < ky < d,
I.Dy, = —(wpy—1 + kuD,%Q + Thyi1)20 — (Yky—1 + y;QD,,%2 + Ygp+1)wo = 0.

Moreover, it is obvious that I.Dy, = 0 for any integer a +1 < ks < b — 1.
Let us check the remaining divisors D, 1, D,, D, and Dyy;. Recall Lemma4.2.4.

Then we have

l‘a(ZO - yl) + ya(w[) + ‘Tl) Z 0 (a’ S b)v
[-Da—l -
—Tp1y1 + Yop121 2> 1 (a=b+1),
—Tq-1(20 — Y1) — Ya—1(wo + 1) > 1 (a<b—-1),
I.D, = ~Zq-1(20 = Y1) = Ya—1(wo + 71) — Tpy120 — Yor1wo = 2 (a = b),
LTa—1Y1 — Ya—1T1 2 1 (CL =b+ 1)
Similarly, we have
—Tpy120 — Yor1Wo = 1 (@ <b—-1),
I.D, = —ifa—l(zo - yl) - ya—l(wo + 931) — Tpp120 — Ypp1Wo = 2 (a = 5)7
—Tp1Y1 + Yop121 2> 1 (a=b+1),
Tpzo + Ypwo > 0 (a <D),
I-Db+1 =
Ta 1Yl — Yar121 > 1 (a=0b+1). O

Very roughly speaking, Theorem 4.1.3 is verified by comparing the cohomology di-
mension h°(C, I|¢) with h°(C, (I — Dy)|c). In fact, however, it is not enough for the
proof to deal with only I. We need to introduce the following auxiliary divisor X and

consider the divisor obtained by subtracting it from I. We define

a—1 d
X=> D+ > D,
i=2 i=b+1

Li(n) ={(z,w) € Z* | z;z + y;w < n}

for integers n and ¢ with 1 < i < d.
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Lemma 4.2.7. The vanishing h*(S,I — X) = 0 holds.
Proor. Consider the cohomology long exact sequence

0— H°(S,I—X)— H°S,I) — H°(X,I|x)
— HYS, I — X) — HYS,I) — HYX,I|x) — H*S, ] — X) — --- .

Lemma4.2.6, Serre duality and Theorem 2.4.8 imply that i'(S,I) = 0 and h*(S, I —
X) = h%(S,Ks + X — I) = 0. Hence Riemann-Roch theorem yields the equality

1 1
RY(X, I|x) = degl|x + 1 — 5X.(X +Ks)—1=1X— 5X.(X + Kg).
We thus have
1
hY(S, T —X)=h"(S, T —X)—h"S, 1)+ 1.X — 5 X (X + Ks). (4.4)

Since I.D; = 0 for any integer 2 <i<a—2or b+ 2 < i <d, we have

I1.D, 1+1.D > 3),
I.X = 1+ 1Dy (a23) (4.5)
I.Db+1 (a — 2)
Moreover, by computing, we have
—4 (3<a<b),
X(X +Kg) = (Bsas<b) (4.6)

—2 (otherwise).

In order to compute the value of h°(S, I) —h°(S, I — X), we first verify the following

inclusions :

a—1
Li(q1) N La—1(qa—1) C ﬂ Li(g) if a > 3,
=2 (4.7)

d
Li(q1) N Ly (qp+1) € () Li(@)-
i=b+1

Assume a > 3 and let (z1,w;) be a lattice point contained in Li(q;) N La—1(qa—1). We

write
(z1,w1) = (1 — 20, =21 — wo) + 1 (y1, —21) + 51 (Ya—1, —Ta—1)
with real numbers a; and (1. Then the inequalities

121 + 1w = @1+ Bi(T1Ya—1 — Y1Ta—1) < G,

Ta-121 + Ya—1W1 = Qa1 + @1 (Tam1Y1 — Ya-171) < Qa1
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implies a; < 0 and 31 > 0, respectively. Let k; be an integer with 2 < k; < a — 1.
Then Lemma4.2.4 and Proposition 2.4.13 imply that xx, y1 — yg, 21 > 1 and 24 1Yk, —
Ya—1Tk, > 0. We thus have

Tk 21 + Yo W1 = @y, + 1 (T Y1 — Yo 1) + B1(Tky Yam1 — Yk Tam1) < @y -

Hence we obtain the first inclusion of (4.7). Similarly, for a point (zq,ws) contained in

Li(q1) N Lot1(gpr1), we write

(29, w2) = (=20, —wo) + a2(y1, —21) + Bo(Yp+1, —Tp41)-

Then one can show ay > 0, f5 < 0 and the second inclusion of (4.7).

The same argument can be applied to show the inclusions

a—1
Li(q1) N Lo-1(ga—1 — 1) € () Li(g; — 1) ifa = 3,
=y (4.8)
Li(q1) N Ly (g1 — 1) € () Li(qs — 1).
i=b+1

Recall the notation /;(n) defined in Subsection4.1.2. Then by (4.7) and (4.8), in the

case where a > 3, we have
08, 1) — h°(S, I — X)
a—1 b d
— r_w L)) ~#( 1) ' e - 00 A L@ Lia-1)

= ¢ (@) 0 L)) = (e 0 Lacss= D0 A L) 0 Lo (a1 1))

i=a—1 i=a

ﬂ(L1 q1) N bejl 1L i(qi) \ (La—l(%—l — 1) N Lys1(qps1 — 1)))

= #((B@n A L@\ Leslaos= 1)U (L) 0 1) L)\ Lol 1))
= #( (2o N lams(au) 0 ) 2@ U (B0 ) o) D) ).
Similarly, if a = 2, one can obtain

b
1) = 15,1 = ) = () Lila) D ealanr) ).
We define
b1
M = Li(q1) Nla=1(ga—1) N ZDG Li(qs),

N = Li(q) N rb] Li(gi) N lp1(qos1)-

i=a—1
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Then we have

IM + 4N — (M N N) (a = 3),

hO(S,])—hO(S,]—X):{ §N (a=2).

Here let us see the case of Example4.2.2. As we saw after Definition4.2.3, in this
example, we have a = 5 and b = 10 for 5 = 8. Hence M and N are the sets of
lattice points contained in l4(4) N A and [1;(2) N B, respectively (Fig.4.3), where A =
La(8) N5 Lig:) and B = Li(8) N (.2, Li(gs).

lll (2)

Figure4.3.
We shall examine M. Let (u,v) be a lattice point contained in M. Since both

(u,v) and (y; — 29, —21 — wp) are contained in I, 1(q,_1), we can write
(u,v) = (1 — 20, =1 — Wo) + Y(Ya—1, —Ta—1)
with some integer v. We obtain v > 0 by Lemma4.2.4 and the inequality
1t + Y10 = ¢ + Y (@1Ya-1 — Y1%a-1) < G1-
Since (u,v) is contained in L,(q,), we have

~[Dyy+v  (a<b),

0 2 Tl + Yo = Ty —20) = YalZ1 + W) +7 =
q Y (1= 20) = Yal@r +wo) +7 {—].Da_1+qa+7 (a=b+1).

Since g, = 0 in the case where a < b, we obtain v < I.D,_;.
Conversely, let us show that for any integer 0 < v’ < I.D,_4, the lattice point

(', ") = (y1 — 20, —x1 — wo) + V' (Ya1, —Ta—1)

is contained in M. Since (v, v') is clearly contained in Ly (q1)Nla—1(qa—1), it is sufficient

b

to verify that it is contained in (.2} L;(¢;). We remark the equality

I.Dy 1(Ta—1,Ya—1)
= (qa—2 + ¢a1D2_| + ¢a)(Ta—1, Ya—1)
(=2a(y1 — 20) + Ya(21 + o) + ¢a)(Ta—1, Ya—1)
= (~wo — 21,20 — Y1) + (Ta—1(20 — Y1) + Ya—1(wo + 71))(Tas Ya) + Ga(Ta—1, Ya—1)-

(4.9)
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We first show that (u',v’) is contained in Lyyq(qps1)-
(1) If Zp41Ya—1 — Yos1Ta—1 < 0, then xp1191 — Ypr121 < 0 by Proposition 2.4.13. We thus

have

! ! !
To1W + Yo4+1V = Tp41Y1 — Yo+121 — Tp4120 — Yp+1Wo + Y ($b+1ya—1 - yb+1xa71)

< —Tp1120 — Yor1Wo = Qog1-

(ii) If xp1Ya—1 — Ypr1Ta—1 > 1, then xp1 1Yy — Ypr17, > 0 by Proposition 2.4.13. By the

equation (4.9), we have

I.Dy 1 (Ty41Ya1 — Yos1%a—1)

= @p41(20 — Y1) + Yor1(wo + @1) + (Ta-1(20 — Y1) + Ya—1(wo + 1)) (To1+1Ya — Yo11%a)
+qa(To11Ya—1 — Ypt1Ta—1)

< wpp1(20 — Y1) + Yo (Wo + 1) + Ga(To41Ya—1 — Yor1Ta—1)-

Hence we have

Tyt 4+ Yor1V" = Top1 (Y1 — 20) + Yor1 (=21 — wo) + ¥V (Tpr1Ya—1 — Yor1%a—1)
< @pi1(y1 — 20) + Yor1(—21 — wo) + 1.Do1(Tp41Ya—1— Yotr1Ta—1)

< Ga(To+1Ya—1 — Yo+1Ta—1)-

If a < b, then ¢, = 0 and we have xp 1t + yp 10" < 0 < gpy1. If @ = b+ 1, then we

have

Qa($b+1ya—1 - yb+1%—1) = Qb+1(37b+1yb - yb+1$b) = Qb+1-

Hence we can conclude that (u',v’) is contained in Lyyq(qpt1)-

In the case where a = b + 1, the above argument is enough to show that (u',v’) is
contained in ﬂzb: L;(g;). On the other hand, in the case where a < b, we have to check
that (u/,v') is contained in (\_, Li(g:), too. Assume a < b and let m be an integer
with a < m < b. Note that g,, = 0 in this case.

(i) If 2 ¥Ya—1 — YmTa—1 > 0, then we have z,,y, — ymx, > 0 by Proposition 2.4.13. Then

by the equation (4.9), we have

Tt + Y’
= (’7/ - I-Da*1)<xmya71 - ymxafl) + (xafl(ZO - yl) + ya—l(wo + xl))(xmya - ymya)
S 0= dm-

(il) If ZpYa—1 — YmTa—1 < —1, then Proposition 2.4.13 yields the inequalities =,y —

YmT1 < —1, xpy1 — ypr1 < —1 and 2, yp — Ymapy < 0. Thus we can write

(x'md ym) - 6<I17 yl) + g(xbu yb)
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with real numbers § < 0 and € > 0. Recall that (zg,wp) lies on [1(—j). Then we have

Tm~”o + YmWo = (5(%’120 + y1w0> -+ 6(.77520 + ybwo) Z 0,

l‘mu/ + ymv/ = Ti¥Y1 — YmT1 — Tm20 — YmWo + VI(xmya—l - ymxa—l) <0 =qpnm.

Hence we have that (u/,v') is contained in (._, Li(g).

In sum, we can conclude that
M = {(y1 — 20, =71 — wo) + Y(Ya—1, —Ta—1) | 0 <y < [.Dy 1}
A similar argument can be applied to show that

N = {(—20, —wo) — C(Yos1, —Tp41) | 0 < ¢ < 1Dy}

Next we examine M N N under the assumption that a > 3. By the definition of M
and N, the intersection M N N includes at most one point 1, 1(qa—1) N lpr1(qos1)-
(i) In the case where x,_1yp+1 — Ya—1Zp+1 = 0, we have (Tpr1,Ypr1) = —(Ta—1, Ya—1)-
Let (uq,v1) be a lattice point on l,_1(g,—1). Then by Lemma4.2.4, we have

Tp+1U1 + Ypr1V1 = —Ta-1U1 — Ya—-1V1 = —Ga—1 = T1Ya—-1 — Y1%a—1 + Ta—120 + Ya—1Wo

< Ta—120 + Ya—1Wo — 1 = —Tp120 — Ypr1wo — 1 = @y — 1.

Hence (u1,v1) does not lie on ly41(gp+1). This means M NN = .

Assume x,_1Ypr1 —Ya—1%p+1 7 0. In this case, the intersection l,_1(qa—1) N lps1(qpr1)
clearly consists of only one lattice point. We denote it by (ug, vg).
(i) Consider the case where x,_1yp+1—Ya—12p41 > 1. Since both (ug, vo) and (—zg, —wy)

lie on ly11(gpy1), We can write
(w0, v0) = (=20, —wo) + N(Yps1, —Tpt1)
with some integer 1. Then the inequality

—Zq-120 — Ya—1Wo + N(Ta—1Yb+1 — Ya—1Tb+1)

= Tq1Up + Ya—1V0 = Ga—1 = %—1@1 - Zo) - ya—l(% + wo) > —Tq-120 — Ya—1Wo + 1
implies n > 1. Hence we have
T1ug + Y1vo = @1 + (T 1Yt — Y1Tp41) = @ + 1

This means that (ug,vg) is not contained in Li(q;), that is, M NN = (.

(iii) Consider the case where z,_1Yp+1 — Ya_12p11 < —1. We write

(w0, v0) = 0(Ya—1, —Ta—1) + t(Yp+1, —Tp41)
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with real numbers 6 and ¢. Since (ug, vg) is contained in I, _1(q,—1) Nlps1(gps1), we have
0 >0and ¢ <0.
(iii)-(a) If @ < b, then ¢, = 0. Since Proposition 2.4.13 implies that x,_1Yp — Ya_12Tp <

—1, we have
wyuo + Ypvo = O(TpYa—1 — YpTa—1) —t >0 — 1 >0 = q.
This means that (ug,vg) is not contained in L;(gp), that is, M N N = 0.
(iii)-(b) If @ = b+ 1, then M NN = Li(q1) N la—1(qa—1) N lpr1(gps1). Since ¢ =

—T129 — Y1wo = J > 1, we have
1o + Y190 = 0(X1Ya—1 — Y1%Ta—1) + L(T1Yp41 — Y1Tp11) < =0+ <0< gy — 1.

Hence, in this case, (ug,vg) is contained in L;(q;) and we have M NN = {(ug, vo)}.
Here we note that a < b in the case of (i) and (ii). Indeed, if a = b+ 1, then
Ta—1Ybt1 — Ya—1Tp+1 = —1. We thus conclude that

0 (3<a<b),

MMDN):{ 1 3<a=b+1).

In sum, we have

].Da_1+ I-Db—l—l -+ 2 (3 S a S b),
RO(S, 1) — (S, I—X) =14 I.Dy1+I.Dyy+1 (3<a=>b+1), (4.10)

[.Db+1 + 1 (a - 2)
Therefore, combining (4.4), (4.5), (4.6) and (4.10), we can obtain h'(S,7—X)=0. O

In order to compute the difference between the dimensions of global sections of
(I — X)|c and (I — X — Dj)|¢, we examine their cohomologies of higher order in

Lemma4.2.9 below.
Lemma 4.2.8. If §(l1(—j) NIntOc N Z?%) > C.Dy, then a > 3.

PrROOF. We put ¢ = C.D;. Let (z,w) be a lattice point contained in /; (—j)NInt Ce.
Then we can write
(z,w) = (20, wo) + a(y1, —z1)
with some integer a. Since (zg,wp) is the lattice point in [;(—7) N Int O closest to
14(0), we have a > 0. Hence, by assumption, the point (zo, wo) + (¢ — 1)(y1, —21) have
to be contained in Int (Jo. We thus have

xa(20 + (¢ = D)y1) +y2(wo — (¢ = )a1) = @2(20 — y1) + Y2(wo + 21) +c < py = ¢,

where the last equality follows from (4.2). Hence we have x2(20 —y1) + y2(wo+ 1) < 0,
which means a > 3. O
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Lemma 4.2.9. If #(l;(—j) NInt Oc NZ?%) > C.Dy, then
RS, Ks+C —T1+X+Dy)=h"(S,Ksg+C—T+X)+C.Dy.

Proor. We put ¢ = C.D;. Recall that p; = 0 and ¢; = 5. Then by Theorem 2.4.8,
we have

(S, Ks+C—1+X+Dy)—h"(S,Ks+C—1+X)
= ﬂ(h(—j) afj: Li(pi — @) N ﬁ Li(pi — 1) N ﬁ Li(pi — C]z))

i=a i=bt1
a—1 b d
—ﬂ(Ll(—j )N - a) 0 () L= D0 () Lo - q@-))
= i=a i=b+1
a—1 b d
= 1(bD N Lo = )N O L= D0 () L= ) ).
i= i=a i=b+1
We define
] a—1 b d
K=5hL(—j)N ﬂ2 Li(pi —q:) N () Li(ps — 1) N O Li(pi — q).
i= i=a i=b+1

Now our purpose is to show that K = c¢. Let (u,v) be a lattice point contained in

K. Since both (zg,wp) and (u,v) lie on l1(—7), we can write
(u,v) = (20, w0) + (y1, —1)
with some integer a.. Since p; = 0, we have
Tqu + Yav = —qa + (Tayr — Ya1) < Pa — 44 = —a;

which implies @ > 0. On the other hand, since a > 3 by Lemma 4.2.8, (u, v) is contained

in Ly(ps — g2). Hence we have
Toll + YU = To2p + Yowo + & < pa — g2 = ¢+ Ta2p + Yowp — 1,

that is, a < ¢ — 1.

Conversely, let us verify that, for an integer o with 0 < o/ < ¢ — 1, the point

(u',v") = (20, w0) + o' (y1, —11)

is contained in K. Let k; be an integer with 2 < k; < a — 1. By Lemma4.2.4 and

Proposition 2.4.13, we have

LleyYm — Y1 Tm 2 1
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for any integer 1 < m < k; — 1. Hence we have py, > ¢(zg,y1 — Yr, 1) by (4.2) and
xklu/ + yklv/ = Tk (ZO - yl) + Yk, (wo + 1’1) + (O/ + 1)(xk1y1 - yk1x1>
< =y (T Y1~ Yr 1) < Pry — Q-
For integers b+ 1 < ky < d, we have
Tt + Yro V' = Ty 20 + YroWo + & (ThyY1 — Yro®1) < —Ghy < Phy — G-

Finally, we shall check that (u/,v’) is contained in (\o_, Li(p; — 1). Since (zo,wp) is the
lattice point in [;(—7)NInt O¢ closest to 4(0), we have that (2o, wo) + (y1, —x1) is not
contained in Int g if < —1. On the other hand, by the assumption of the lemma,
l1(—7) has at least ¢ lattice points in Int Os. We thus have that (v',v’) is contained
in Int O¢ (in particular ﬂ’i’:a Li(pi—1)) for 0 <« <c¢—1. In sum, we can conclude
that (u',v') is contained in K. It follows that K = c. O

By using Lemma4.2.7 and 4.2.9 in cohomology long exact sequences, we can obtain

the following equality :
Lemma 4.2.10. If £(l;(—j) NInt Oc N Z?) > C.Dy, then
h(C, (I = X)|e) = h(C.(I = X = Dy)lc).
PROOF. It is sufficient to verify the inequality h°(C, (I — X)|c) < h%(C,(I — X —

Dy)|e). By Lemma4.2.7, we have the cohomology long exact sequence
0— HY(C,(I-X)|c) > H*(S,]—X—-C)— H*(S, ] -X)—---.
By Serre duality and Theorem 2.4.8, we have
R*(S, I — X —C)=h(S,Ks+C — I+ X),
h2(S, I — X) =ho(S,—I — D, = >0 D;) = 0.
Hence, by Riemann-Roch theorem, we have

h(C, (I = X)le) = h'(C,(I = X)|e) +deg(I = X)lc+1—g
=h(S,Ks+C—IT+X)+(I—-X)C+1—g.

On the other hand, the cohomology long exact sequence
= HY(C,(I =X —Dy)|¢) — H*(S,] - X — D, —C) — H*(S,] — X — D) — -~
and the vanishings h2(S, T — X — D;) = h%(S, -1 — Y20__ D;) = 0 lead the inequality
RYC, (I — X —Dy)|¢) > h°(S,Kg+C — I+ X + Dy).
Hence, by Riemann-Roch theorem and Lemma4.2.9, we have

WO(C, (I — X — Dy)|e) > (S, Ks+C — T+ X+ D))+ (I —X—D)).C+1—g
= h(C, (I = X)|o). O
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4.2.2 Proof of Theorem4.1.3

Finally, let us show Theorem4.1.3.

PrROOF OF THEOREM 4.1.3. We first consider the case where g = 0. In this case,
the gap sequence at P is empty. Indeed, the equation h°(C, jP) = j — 1 holds for any
positive integer j. On the other hand, by Theorem 2.4.8, there are no lattice points in
Int L. Hence the statement is obviously true.

We assume that g > 1 and put D;,|c = {P,..., P.}. Lemma4.2.10 implies that

W(C, (I = X)) = K(C, (I = X)|e — Py).

Namely, P, is the base point of |(I — X)|C}. Note that ¢; = j. We define

a—1 b d
I'=1-jDy—=X=3% (¢ —1)Di+ > ¢Di+ > (q—1)D:
i=2 i=a i=b+1
It is clear that I’ is effective by Definition 4.2.3. Besides, since P; lies on neither Dy
nor Dy by assumption, I'|¢ does not contain P;. Therefore, P; is also the base point

of the complete linear system
(I = X)|lc =I'lc — jP— -+ —jP.| =|jP]

on C, that is, h°(C,jP,) = h°(C, (j —1)P,). The same argument as above goes through
for the points P, ..., P.. O

4.3 Examples.

In this section, we shall apply Corollary 4.1.4 to concrete examples in practice. Our
attempt is to compute the gap sequences at the infinitely near points of a (possibly
singular) point on a plane curve. Let () be a point on plane curve C’; and consider the
resolution of singularities of C’ by a succession of blowing-ups. Then, for some cases,
we can determine the gap sequences of the nonsingular model of C’ at the infinitely
near points of () by Corollary 4.1.4.

Let P?(X, : X; : X5) be the projective plane. We denote z = X /X,, y = X5/ Xj
the local coordinates on the affine open subset Uy = {(xg : 71 : 22) € P? | 7y # 0}.

Example 4.3.1. Let C’ be a plane curve defined by the local equation

2% + 2y +y—1=0.



4.3. EXAMPLES. 95

One can obtain a toric morphism ¢ : S — P? such that S is a nonsingular compact

toric surface and the proper transform C := ¢;*(C’) is a nonsingular nef curve on S

of genus 3. The fan Ag and ¢ associated to the surface S and the curve C are as in
Ag

02 ) \

01

\\

N
AN O X

011 °

Figure4.4.

Fig.4.4. The linear equivalence class of C' is written as

Consider the point @ = (0,1) on C"'NUy. Then @ has only one infinitely near point P
on C, which is in fact the intersection point C'N D;. The cone oy corresponding to D,
has the primitive element (—1,0). Since the line X = j has at most one lattice point

in Int U for any integer 7, by Corollary 4.1.4, the gap sequence of C' at P is
{j € N | the line X = j has a lattice point in Int Oc} = {1,2,4}.
Example 4.3.2. Let C’ be a plane curve defined by the local equation
2° + 2y + 2y’ + ¢y =0,

and ¢ : S — P? a toric morphism such that C := ¢ (C") is a nonsingular curve on S.
Then the genus of C is equal to 8 and the fan Ag and the lattice polytope g are as

Ag Y.

) 7 \o

/ A 9 X

*0201013°

W
"

AL\

Figure4.5.

in Fig.4.5. The linear equivalence class of C' is written as

C~ —5Dy —4Dy —3D3 — 5Dy — 12D5 — 6Dg 4+ 6 Dg + 7Dg + 15D19 + 10D11 + 5Dq5.
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Consider the origin O = (0,0) on C" N Uy, which is a singular point on C’. Then the
infinitely near points of O on C' are P, = C N Dy and P, = C'N D5. The primitive
elements of o, and o5 are (—1,—3) and (=5, —2), respectively.

It is obvious that the lines X + 3Y = k and 5X + 2Y = [ have at most one lattice
point in Int e for any integer k£ and [. Hence, by Corollary4.1.4, the gap sequences
of C' at P, and P, are

{j € N | the line X 4+ 3Y = j 4+ 5 has a lattice point in Int Oc} = {1,2,3,4,6,8,9, 11},
{j € N | the line 5X+2Y = j+ 12 has a lattice point in IntO¢} = {1,2,3,4,5,6,7,9},

respectively.
Before proceeding to the last example, we define the following function.

Definition 4.3.3. For a positive integer m and a non-negative integer n, we define a

function f as

Flmon) = { ged(m,n) (n>1),

m (n=0).
Example 4.3.4. Let C’ be a plane curve defined by the local equation of the form
’+yt 42"y =0,

where p > ¢ > 1 and 7 +s > 1. One can obtain a toric morphism ¢ : S — P?
such that C := p;!(C") is nonsingular. We write the linear equivalence class of C' as

C~ Z?:l p;D;. The genus of C' can be computed by the formula

_J slpa—ra—spl—f(p,p—a) = f(p—7.5) = flg—s,7)) + 1 (pa—rq—sp#0),
0 (pg —rq—sp=0).

In this case, the lattice polytope Lo become a triangle and we can place it such
that its vertices are (p,0), (0,¢) and (r,s). Then, by Corollary 4.1.4, we can compute
the gap sequence of C' at the infinitely near points of the origin O = (0,0) on C” in the

following cases:

(i) pq—rq—sp=0,
(i) pg—rg—sp<0and f(p,p—q) =1,
(i) pg —rq—sp>0and f(p—r,s) = f(¢—s,7) = 1.

The case (i) do not require Corollary4.1.4. Since g = 0, the gap sequence is empty

at every point on C'.



4.3. EXAMPLES. o7

In the case (ii), the fan Ag is as in Fig.4.6. The point () has one infinitely near

Ag %
07 )
(0,9) = (r;s)
(=4, -p) O (p,0) X
Ok
Figure4.6.

point P on C', which is the intersection point C' N D,. The primitive element of o}, is

(—q,—p) and p, = —pq. Hence, by Corollary 4.1.4, the gap sequence of C' at P is

{j € N | the line ¢X + pY = pq + j has lattice points in Int O¢}.

In the case (iii), the fan Ag and the lattice polytope ¢ are as in Fig.4.7. The

Ag
Y
(0,9)
O
(r AN
%(—s,r—p) O] (p,0) X
Figure4.7.
infinitely near points of @) on C' are P, = C' N Dy, and P, = C' N Dy,. The primitive
elements of oy, and oy, are (—s,r —p) and (s — ¢, —r), respectively. Since py, = —sp

and pg, = —rq, by Corollary 4.1.4, we see that the gap sequences of C' at P, and P, are

{j € N| the line sX + (p — r)Y = sp + j has lattice points in Int O¢},
{j € N | the line (¢ — s)X +rY = rq+ j has lattice points in Int O¢},

respectively.
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