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List of notation

C : the complex number field,

Pn : the n-dimensional projective space over C,

Σa : the Hirzebruch surface of degree a,

H i(X,F) : the i-th cohomology group of a sheaf F ,

hi(X,F) : the dimension of H i(X,F),

χ(X,F) : the Euler characteristic of a coherent sheaf F ,

Pic(X) : the Picard group of a variety X,

Div(X) : the Cartier divisor class group of a variety X,

OX(D) : the invertible sheaf associated to a divisor D on a variety X,

ωX : the canonical sheaf of a nonsingular variety X,

KX : the canonical divisor of a nonsingular variety X,

D ∼ D′ : linear equivalence of divisors,

|D| : the complete linear system of a divisor D,

D.D′ : the intersection number of divisors,

D2 : the self-intersection number of a divisor D,

g1
k : a one-dimensional linear system (i.e. a pencil) of degree k on an algebraic curve,

TN : the algebraic torus defined by a free Z-module N ,

¤D : the lattice polytope of a divisor D on a toric surface (cf. § 2.4 in detail),

Int¤D : the interior of ¤D (cf. § 4.2 in detail),

]A : the cardinality of a set A.
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Introduction

In this thesis, the author studies algebraic curves on toric surfaces and provides two

results which are independent each other. Throughout this thesis, we assume that

algebraic varieties are irreducible and defined over the complex number field.

In the study of algebraic curves, a computation of invariants such as intersection

numbers and cohomology dimensions is one of the most essential operation what we

have to do, although it is not so easy in general. On the other hand, the theory of

toric varieties has been established at the beginning of the 1970’s independently by

Demazure, Mumford, Satake, Miyake, Oda and others. It revealed the close relation

between algebraic geometry and the geometry of convex polytopes in real affine spaces,

and produced various interesting applications. We can utilize this relation to reduce

to elementary convex geometry a lot of problem in the study of toric varieties. In fact,

for curves on toric surfaces, one can easily compute invariants mentioned above by

investigating the properties of the associated lattice polytopes (see Section 2.4). Then

it seems plausible to expect that we should understand such curves more precisely than

other general curves. It is a consistent motivation in the author’s works.

This thesis consists of four parts. The first chapter is devoted to review the classical

and fundamental facts in the study of algebraic geometry. In the second chapter, we

introduce toric surfaces which are the main stage of our consideration in this thesis.

The third and fourth chapters contain the author’s two main results Theorem 3.1.6 and

4.1.3 which are explained in detail below.

The first work is about the so-called gonality conjecture. The gonality is a significant

invariant in the study of linear systems on curves, which is defined as the minimal degree

of surjective morphisms from a complete nonsingular curve C to P1 and denoted by

gon(C). Clearly, gon(C) = 1 means that C is a rational curve. Besides, gon(C) is

equal to two if and only if C is elliptic or hyperelliptic. The following classical result

gives an upper bound of the gonality.

Theorem 0.0.1. Let C be a nonsingular curve of genus g. Then

gon(C) ≤ g + 3

2
.
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8 INTRODUCTION

For a nonsingular plane curve of degree d (≥ 2), it is well known that its gonality

is equal to d − 1 :

Theorem 0.0.2 ([26]). Let C be a nonsingular plane curve of degree d ≥ 2. Then

gon(C) = (d − 1) and any pencil of degree d − 1 is cut out by lines passing through a

fixed point on C.

For singular plane curves, there are results of Coppens, Kato, Ohkouchi and Sakai

(Theorem 3.1.1 and 3.1.2). On the other hand, Martens has computed the gonality

of a nonsingular curve on a Hirzebruch surface (Theorem 3.1.3). Although there are

many attempts to compute the gonality, in general, it is not so easy to determine it.

Under such circumstances, the gonality conjecture proposes a new way to approach

this problem. This conjecture predicts that one can read off the gonality of a curve

from the minimal resolution of any one line bundle of sufficiently large degree (Conjec-

ture 3.1.5). Aprodu has shown this conjecture holds for curves on Hirzebruch surfaces

(cf. [1]). The author’s first work is a natural continuation of this result, e.g., it treats

the gonality conjecture for curves on compact nonsingular toric surfaces. Such a toric

surface is obtained from a projective plane or a Hirzebruch surface by a finite succes-

sion of blowing-ups with TN -fixed points (i.e. points which are invariant with respect

to the action on a toric surface by the algebraic torus) as centers, and has finite P1-

fibrations by toric morphisms. In Chapter 3, we will prove the conjecture affirmatively

for nonsingular irrational curves on compact nonsingular toric surfaces which have only

one toric morphism to P1 (Theorem3.1.6). As we shall see in Chapter 2, a Hirzebruch

surface is one of the simplest examples of such toric surfaces.

The second work deals with Weierstrass gap sequences. For a point P on a complete

nonsingular algebraic curve C, a positive integer j is called a gap value at P if

h0(C, jP ) = h0(C, (j − 1)P ).

The set of all gap values is called a Weierstrass gap sequence (or, simply, gap sequence)

of C at P . By Riemann-Roch theorem, its cardinality is equal to the genus of C.

The gap sequence {1, 2, . . . , g} is said to be trivial, and a point on a curve is called a

Weierstrass point if its gap sequence is nontrivial. The following classical result is a

basic tool in the study of gap sequences.

Theorem 0.0.3 (Weierstrass gap theorem). Let C be a nonsingular projective

curve of genus g ≥ 1, and P a point on C. Then any gap value at P is less than 2g.

For a point on a hyperelliptic curve, there are two types of gap sequences :
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Theorem 0.0.4. Let P a point on a hyperelliptic curve C and Φ|KC | : C → P1 the

holomorphic map associated to |KC |.

(i) If P is a ramification point of Φ|KC |, then the gap sequence of C at P is the set of

odd numbers {1, 3, . . . , 2g − 1}.
(ii) If Φ|KC | is unramified at P , then the gap sequence of C at P is {1, 2, . . . , g}.

Namely, in the case of hyperelliptic curves, the notion of Weierstrass points coincides

with that of ramification points of the canonical morphism. For trigonal curves, the list

of the gap sequences has been obtained by Coppens and Kim (Theorem4.1.1 and 4.1.2).

Besides, Coppens and Kato studied inflection points of plane curves with δ ordinary

nodes, and gave a list of all possible gap sequences for δ ≤ 5 ([7]). In Chapter 4, the

author aims to establish the new technique to compute gap sequences on curves on toric

surfaces which is based on the theory of toric surfaces. As a result, for certain points on

a nonsingular nef curve on a compact nonsingular toric surface, we obtain a sufficient

condition for a positive integer to be the gap value at these points (Theorem 4.1.3).

Furthermore, under the suitable condition, it becomes the necessary and sufficient

condition. This means that we can determine the gap sequence in its entirety. In the

last section of Chapter 4, we will see some examples to which we can apply our new

technique.





Chapter 1

Fundamentals of algebraic geometry

In this chapter, let X be a nonsingular projective variety of dimension n defined over

the complex number field, and denote by g its genus in the case where n = 1. We

collect some fundamentals needed in this thesis without the proofs. For the proofs of

these facts, we refer the reader to [14].

The following two theorems are extremely important to compute the dimension of

the cohomology group of a sheaf on X.

Theorem 1.0.1 (Serre duality theorem). Let F be a locally free sheaf on X. Then

H i(X,F) and Hn−i(X,ωX ⊗F−1) are dual each other for any integer 0 ≤ i ≤ n.

Theorem 1.0.2 (Riemann-Roch theorem). Let D be a divisor on X.

(i) If n = 1, then χ(X,OX(D)) = degD + 1 − g.

(ii) If n = 2, then χ(X,OX(D)) = 1
2
D.(D − KX) + χ(X,OX).

Corollary 1.0.3. If dimX = 1, then degKX = 2g − 2.

Combining Corollary 1.0.3 and the following theorem, we obtain a quick method of

computing the genus of a curve on a surface.

Theorem 1.0.4 (Adjunction formula). Let D be a nonsingular prime divisor on

X. Then KD = (D + KX)|D.

Besides, Theorem 1.0.2 gives elementary but useful criterions to know some prop-

erties of divisors on X :

Theorem 1.0.5 ([14, IV, Example. 1.3.4, Corollary 3.2]). Assume n = 1 and let D be

a divisor on X. Then the following hold :

(i) If degD ≥ 2g − 1, then D is nonspecial.

(ii) If degD ≥ 2g, then the complete linear system |D| has no base points.

11



12 CHAPTER1. FUNDAMENTALS OF ALGEBRAIC GEOMETRY

The following Theorem1.0.6 plays an essential part in the study of the linear sys-

tems.

Theorem 1.0.6 (Bertini’s theorem). Let D be a divisor on X. Then a general

member of |D| is nonsingular outside the set of base points of |D|. Besides, if n ≥
2, dim|D| ≥ 2 and |D| has no fixed components, then a general member of |D| is

irreducible.

Lastly, we see the identity between sheaves, line bundles and divisors on X.

Theorem 1.0.7 ([14, II, Ex. 5.18]). There is a one-to-one correspondence between

isomorphism classes of invertible sheaves on X and isomorphism classes of line bundles

over X.

Theorem 1.0.8 ([14, II, Proposition. 6.15]). There is an isomorphism Div(X)/∼ '
Pic(X), where ‘∼’ denotes linear equivalence.

Because of Theorem1.0.7 and 1.0.8, we often use the notion “invertible sheaf ”,

“line bundle” and “Cartier divisor” interchangeably, if no confusion seems likely to

result.

Proposition 1.0.9 ([14, II, Lemma7.8]). Let D be a divisor on X. Then the following

are equivalent :

(i) |D| has no base points.

(ii) OX(D) is globally generated.



Chapter 2

Toric varieties

As declared in the introduction, throughout this thesis, we consider curves on toric

surfaces. Hence, first of all, we shall review the theory of toric varieties. As is well

known, it has the close connection with the geometry of convex polytopes. This fact is

the greatest advantage of considering curves on toric surfaces. Many basic properties

of toric varieties and divisors on them can be interpreted in terms of the elementary

geometry of fans. Many of the theoretical facts included in this chapter owe a lot to

[15] and [28].

2.1 Cones and fans

We first define elementary objects in convex geometry called cones and fans. Let

N ' Zr be a free Z-module of rank r and M = HomZ(N, Z) its dual Z-module. By

scalar extension to the rational number field R, we have r-dimensional R-vector spaces

NR = N⊗ZR and MR = M⊗ZR. Then there is a canonical Z-bilinear (resp. R-bilinear)

pairing 〈 , 〉 : M × N → Z (resp. 〈 , 〉 : MR × NR → R).

Definition 2.1.1. A subset σ of NR is called a convex rational polyhedral cone if there

exist a finite number of elements n1, . . . , ns in N such that

σ = R≥0n1 + · · · + R≥0ns.

Moreover, σ is said to be strongly convex if σ ∩ (−σ) = {O} holds. The dimension of

σ is defined by dim σ = dimR(σ + (−σ)).

For a convex rational polyhedral cone σ, we define the subset σ∨ of MR as

σ∨ = {m ∈ MR | 〈m,n〉 ≥ 0, ∀n ∈ σ}.

In fact, σ∨ becomes the convex rational polyhedral cone in MR ([15, Theorem1.2.2]).

13



14 CHAPTER2. TORIC VARIETIES

Definition 2.1.2. A subset τ of σ is called a face if there is an element m0 ∈ σ∨ such

that τ = {n ∈ σ | 〈m0, n〉 = 0}, and is denoted τ ≺ σ.

We are now in a position to introduce the most fundamental notion in the toric

theory.

Definition 2.1.3. A nonempty set ∆ of strongly convex rational polyhedral cones in

NR is called a fan in N if it satisfies the following properties :

(i) Every face of a cone in ∆ is also a cone in ∆,

(ii) The intersection of any two cones in ∆ is a face of each.

2.2 Toric varieties

In this section, we will see the process of constructing toric varieties from fans. Since

a cone yields the normal integral domain naturally (Proposition 2.2.2), we can obtain

the affine algebraic variety. We construct a toric variety by gluing together such affine

toric varieties which are associated to cones contained in the fan. From now on, a cone

will always means a strongly convex rational polyhedral cone.

Theorem 2.2.1 ([28, Proposition 1.1]). Let σ be a cone in NR and put S(σ) = M ∩σ∨.

Then S(σ) is a finitely generated additive subsemigroup of M .

For a cone σ in NR, let C[S(σ)] =
⊕

m∈S(σ)C e(m) be the semigroup algebra of

S(σ) over C, where {e(m) | m ∈ S(σ)} is the set of indeterminates and the ring

multiplication is defined by

e(m)e(m′) = e(m + m′),( ∑
m∈S(σ)

cme(m)

)( ∑
m′∈S(σ)

cm′e(m′)

)
=

∑
m′′∈S(σ)

( ∑
m+m′=m′′

cmdm′

)
e(m′′).

The quotient field of C[S(σ)] is equal to that of C[M ] ([15, Lemma5.5.2]).

Theorem 2.2.2 ([15, Theorem5.5.1]). Let σ be a cone in NR. Then the semigroup

algebra C[S(σ)] is finitely generated over C, and is a normal integral domain.

By Theorem2.2.2, for a cone σ in NR, we can obtain an r-dimensional irreducible

affine algebraic variety Uσ whose coordinate ring is C[S(σ)], which is called an affine

toric variety associated to the cone σ. Here we note that by the general theory of

algebraic varieties, we can identify Uσ with the set of C-valued points of C[S(σ)], i.e.,
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the set of C-algebra homomorphisms C[S(σ)] → C. Moreover, the map

{C-valued points of C[S(σ)]} → {u : S(σ) → C | u(0) = 1,

u(m + m′) = u(m)u(m′) for ∀m,m′ ∈ S(σ)}
f 7→ uf (m) := f(e(m))

is one-to-one. Consequently, Uσ can be canonically identified with the set of subsemi-

group algebras from S(σ) to multiplicative semigroup C which map zero to one.

We are now ready to construct toric varieties. Our construction is carried out by

gluing together affine toric varieties, where the following proposition plays an important

role.

Theorem 2.2.3 ([28, Proposition 1.3]). Let σ be a cone in NR and τ a face of σ. Then

there exists m0 ∈ S(σ) such that τ = {n ∈ σ | 〈m0, n〉 = 0}. Hence τ is also a cone in

NR. Moreover, the equalities S(τ) = S(σ)+Z≥0(−m0) and Uτ = {u ∈ Uσ | u(m0) 6= 0}
hold.

By Theorem 2.2.3, for a cone σ in NR, an affine toric variety associated to a face

of σ becomes an open subset of Uσ. For a fan ∆ in N and σ, τ ∈ ∆, the intersection

σ ∩ τ ∈ ∆ is clearly a face of both σ and τ by the definition of a fan. Thus by

Theorem2.2.3, Uσ∩τ is naturally an open subset of both Uσ and Uτ . Therefore we can

naturally glue {Uσ | σ ∈ ∆} together to obtain an r-dimensional irreducible normal

algebraic variety TN(∆), which is called a toric variety associated to the fan ∆. For

TN(∆), its nonsingularity and compactness can be dealt with by means of the properties

of the fan ∆.

Theorem 2.2.4 ([28, Theorem1.10]). A toric variety TN(∆) is nonsingular if and

only if each σ ∈ ∆ is generated by a part of a Z-basis of N .

Theorem 2.2.5 ([28, Theorem1.11]). A toric variety TN(∆) is compact if and only if

σ ∈ ∆ is finite set and its support |∆| =
∪

σ∈∆ σ is the hole space NR.

2.3 A torus action

In this section, let X = TN(∆) be a toric variety associated to a fan ∆ in N ' Zr. We

will see an action of an algebraic torus on X.

A cone {O} is contained in ∆, and is a face of every σ ∈ ∆. Obviously, S({O}) = M

and U{O} is an r-dimensional algebraic torus TN ' (C×)r. Thus we have that TN is an

open subset of Uσ for any σ ∈ ∆ by Theorem2.2.3. Consequently, X contains TN as an
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open subset. For t ∈ TN and u ∈ Uσ, we define tu : S(σ) → C by tu(m) := t(m)u(m)

for m ∈ S(σ). Since tu is an element of Uσ, this gives an action of TN to Uσ. In the

case of X, we can obtain an action of TN on X called a torus action by natural gluing

of the above action.

A prime divisor on X is called a TN -invariant divisor if it is invariant with respect

to the torus action, and a group consisting of TN -invariant divisors is denoted by

TNDiv(X). In order to examine their properties of in detail, we next consider orbits

of toric varieties. For a cone σ, we define σ⊥ = {m ∈ MR | 〈m,n〉 = 0, ∀n ∈ σ} and

orb(σ) = {u : M ∩ σ⊥ → C× group homomorphism}.

Theorem 2.3.1 ([28, Proposition 1.6]). For any σ ∈ ∆, we can regard orb(σ) as a

TN -orbit in X by an embedding

orb(σ) ↪→ Uσ

u 7→ ũ(m) =

{
u(m) (m ∈ M ∩ σ⊥),

0 (m /∈ M ∩ σ⊥).

Moreover, every TN -orbit is of this form, and in this way, ∆ is in one-to-one corre-

spondence with the set of TN -orbits in X.

Corollary 2.3.2 ([28, Corollary 1.7]). Assume that X is compact. Then, for σ ∈ ∆,

a closure V (σ) of orb(σ) in X becomes an (r − dim σ)-dimensional normal closed

subvariety of X.

We define ∆(a) = {σ ∈ ∆ | dim σ = a} for a non-negative integer a. Then a set

{V (σ) | σ ∈ ∆(1)} is a Z-basis of TNDiv(X). For σ ∈ ∆(1), n ∈ N ∩ σ is called

a primitive element of σ if there are no elements of N on the line segment from the

origin to n. Consider a compact nonsingular toric variety X. Then by Theorem2.2.4

and 2.2.5, we can take a subset of ∆(1) such that their primitive elements compose a

Z-basis of N . For any such subset {σ1, . . . , σr}, there is a group isomorphism

Pic(X) ' TNDiv(X) =
⊕

σ∈∆(1)

ZV (σ)

/
r⊕

i=1

ZV (σi)

([28, Corollary2.5]). Hence the Picard number of X is equal to ]∆(1) − r. Besides, a

set of TN -fixed points (i.e. points which are invariant with respect to the torus action)

on X coincides with a set of subvarieties defined by r-dimensional cones.
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2.4 Toric surfaces

From now on, we restrict our interest to two-dimensional toric varieties, i.e., toric

surfaces. Namely, we consider toric varieties associated to fans in NR such that N ' Z2.

Let S = TN(∆) be a toric surface associated to a fan ∆.

In Subsection 2.4.2, for divisors on toric surfaces, we will define the associated lattice

polytopes. Then one can read off basic invariants (e.g. the intersection numbers and the

cohomology dimensions) of such divisors from the information of the lattice polytopes.

2.4.1 Classification of toric surfaces

We first construct a holomorphic map between two toric surfaces. A fan ∆′ in N is

called a subdivision of ∆ if for every cone σ′ in ∆′, there is a cone σ in ∆ including

σ′. It is obvious that S(σ) ⊂ S(σ′) in this case. Hence we naturally obtain a surjective

holomorphic map Uσ′ → Uσ. Obviously, this map is equivariant with respect to the

torus action. Hence we obtain an equivariant holomorphic map TN(∆′) → S by gluing

affine pieces together ([28, Theorem1.13]). Moreover, this map is proper, that is, the

inverse image of each compact subset is also compact ([28, Theorem1.15]). For instance,

a blowing-up of S with center a TN -fixed point can be described as a subdivision of ∆

as follows :

Theorem 2.4.1 ([28, Proposition 1.26]). Let S = TN(∆) be a nonsingular toric surface

and P = V (σ) a TN -fixed point defined by a cone σ = R≥0n1 + R≥0n2 ∈ ∆(2). Put

σi = R≥0ni + R≥0(n1 + n2) for i = 1, 2, and define the subdivision

∆∗(σ) = (∆ \ σ) ∪ {the faces of σi | i = 1, 2}

of ∆. Then the equivariant holomorphic map TN(∆∗(σ)) → S coincides with the

blowing-up of S with center P .

For a toric surface, a composite of a finite succession of blowing-ups with TN -fixed

points as centers is called a toric morphism. In the study of toric surfaces, the following

theorem is one of the most fundamental results.

Theorem 2.4.2 ([28, Theorem 1.28]). Any compact nonsingular toric surface is iso-

morphic to the surface obtained from the following (i) or (ii) by a toric morphism :

(i) the complex projective plane P2,

(ii) the Hirzebruch surfaces Σa of degree a ≥ 0.



18 CHAPTER2. TORIC VARIETIES

Let (n1, n2) be a Z-basis of N . Then the fans which define P2 and Σa are

R≥0n1 + R≥0n2 + R≥0(−n1 − n2),

R≥0n1 + R≥0n2 + R≥0(−n1 + an2) + R≥0(−n2),

respectively (Fig. 2.1). Hence any toric surface is defined by a fan which is a subdivision
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of either of these fans.

2.4.2 Divisors on toric surfaces

Here we collect several basic properties of divisors on toric surfaces. In the remaining

part of this section, we assume that S is compact and nonsingular, and let D be a

divisor on S. In the case where the complete linear system |D| has no base points, we

have the following two results.

Theorem 2.4.3 ([28, Theorem2.7]). If |D| has no base points, then hi(S, D) = 0 for

any positive integer i.

Theorem 2.4.4 ([25, Theorem3.1]). The following are equivalent :

(i) |D| has no base points.

(ii) D has a non-negative intersection number with every TN -invariant divisor on S.

By the fact mentioned in the last paragraph of the previous section, TNDiv(S) is in

one-to-one correspondence with ∆(1), i.e., the set of half-lines starting from the origin.

We denote by D1, . . . , Dd the TN -invariant divisors on S, by σi a one-dimensional cone

corresponding to Di and by (xi, yi) its primitive element. Since
∪d

i=1 Di is a simple

chain of nonsingular rational curves, we can assume the following properties :

Di.Dj =

{
1 (j = i − 1, i + 1),

0 (otherwise),

where we formally set

D0 = Dd, Dd+1 = D1.
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There are essentially two ways to label the TN -invariant divisors according to the value

of xiyi−1 − yixi−1 is one or minus one. In this thesis, we adopt the former, that is, we

assume the equality

xiyi−1 − yixi−1 = 1

for each integer 1 ≤ i ≤ d. This means that the one-dimensional cones σ1, . . . , σd are

arranged clockwise (Fig. 2.2). The self-intersection numbers of TN -invariant divisors
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are computed by the following formula.

Theorem 2.4.5 ([28, Proposition 1.19]). For any integer 0 ≤ i ≤ d and 1 ≤ j ≤ d,

xiD
2
i = −xi−1 − xi+1,

yiD
2
i = −yi−1 − yi+1.

The Picard group of S is generated (not freely) by the classes of TN -invariant

divisors D1, . . . , Dd. Hence we can write the linear equivalence class of D as the sum

of them with integral coefficients. For example, the canonical divisor KS of S is

KS ∼ −
d∑

i=1

Di, (2.1)

where the symbol “∼ ” means linear equivalence. There is the following relation be-

tween the coefficients of the linear equivalence class of D and the primitive elements

of the cones :

Proposition 2.4.6. Let D ∼
∑d

i=1 aiDi be a divisor on S. Then, for each integer

1 ≤ k ≤ d,

ak = xk(yda1 − y1ad) − yk(xda1 − x1ad) +
k−1∑
i=1

(xkyi − ykxi)C.Di.

Proof. By Theorem2.4.5, an easy computation shows that

x1(yda1 − y1ad) − y1(xda1 − x1ad) = x1yda1 − y1xda1 = a1,

x2(yda1 − y1ad) − y2(xda1 − x1ad) + (x2y1 − y2x1)C.D1 = −a1D
2
1 − ad + C.D1 = a2.
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We proceed by induction on integer k. By computing, we have

k−1∑
i=1

(xkyi − ykxi)C.Di

= xk

k−1∑
i=1

yi(ai−1 + aiD
2
i + ai+1) − yk

k−1∑
i=1

xi(ai−1 + aiD
2
i + ai+1)

= xk

k−1∑
i=1

(yiai−1−(yi−1 + yi+1)ai + yiai+1) − yk

k−1∑
i=1

(xiai−1−(xi−1 + xi+1)ai + xiai+1)

= xk(y1ad − yda1 − ykak−1 + yk−1ak) − yk(x1ad − xda1 − xkak−1 + xk−1ak)

= xk(y1ad − yda1) − yk(x1ad − xda1) + ak. ut

We next introduce the notion of lattice polytopes, which is extremely important

objects in the study of divisors on toric surfaces.

Definition 2.4.7. For a divisor D ∼
∑d

i=1 aiDi on S, the lattice polytope ¤D ⊂ R2 is

defined by

¤D = {(z, w) ∈ R2 | xiz + yiw ≤ ai for 1 ≤ i ≤ d }.

Though ¤D can change according to how we describe the linear equivalence class

of D, those differences induce only parallel translations of ¤D. Hence the shape of the

lattice polytope is determined uniquely. The lattice polytopes has many information

about a divisor. For example, the dimension of cohomology group of D can be read off

the lattice points contained in ¤D :

Theorem 2.4.8 ([28, Lemma2.3]). The equation h0(S, D) = ](¤D ∩ Z2) holds.

Several useful facts follow immediately from Theorem2.4.8. First, the irregularity

of S vanishes. If D is effective, then we have h0(S,−D) = 0, especially h0(S,KS) = 0.

Besides, for a nonsingular curve C on S, its genus is computed by the formula g =

](¤C+KS
∩ Z2).

Proposition 2.4.9. Let C be a nonsingular curve on S. If C is irrational, then C is

nef.

Proof. It is sufficient to show C2 ≥ 0. Note that since TN -invariant divisors are

rational curve, C.Di ≥ 0 for each integer 1 ≤ i ≤ d. Moreover, by Corollary 1.0.3 and

Theorem 1.0.4, we have

g =
1

2
C.(C + KS) + 1 ≥ 1,

which implies that C2 ≥
∑d

i=1 C.Di ≥ 0. ut
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In fact, the Picard number of S is d− 2. The Picard group of S is freely generated

by the classes of TN -invariant divisors except two adjacent divisors (e.g. D2, . . . , Dd−1).

Hence, for a divisor D on S, we can write the linear equivalence class of D as

D ∼
d∑

i=1

aiDi (ai ∈ Z, a1 = ad = 0) (2.2)

without loss of generality.

Proposition 2.4.10. If |D| has no base points, then in the form (2.2), ak is non-

negative for any integer 2 ≤ k ≤ d − 1.

Proof. In this proof, we admit Proposition 2.4.13 in advance, which will be shown

in the last of this section. Note that Theorem2.4.4 implies that D.Di ≥ 0 for any

integer 1 ≤ i ≤ d. If xky1 − ykx1 ≥ 0, then by Proposition 2.4.13, we have

xkyi − ykxi ≥ 1

for any integer 2 ≤ i ≤ k − 1. This means that ak ≥ 0.

Assume that xky1 − ykx1 ≤ −1. An easy computation gives the equation

d∑
i=1

xiD.Di =
d∑

i=1

yiD.Di = 0.

Namely, we have

ak = −xk

d∑
i=k+1

yiD.Di + yk

d∑
i=k+1

xiD.Di =
d∑

i=k+1

(xiyk − yixk)D.Di. (2.3)

On the other hand, Proposition 2.4.13 implies that

xkyi − ykxi ≤ −1

for any integer k + 1 ≤ i ≤ d. Hence the inequality ak ≥ 0 follows from (2.3). ut

Our last aim in this section is to show Proposition 2.4.13, which plays an active

role especially in Chapter 4. Before proceeding to its claim and proof, we show the

following two lemmas.

Lemma 2.4.11. Let (z, w), (z1, w1) and (z2, w2) be lattice points such that z1w2 −
w1z2 6= 0. Then there is a unique pair of real numbers (α, β) such that

(z, w) = α(z1, w1) + β(z2, w2).

In particular, if z1w2 − w1z2 = ±1, then α and β are integers.
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Lemma 2.4.12. Let i and j be integers with 0 ≤ i ≤ d and 1 ≤ j ≤ d. Let α and β

be integers such that

(xj, yj) = α(xi, yi) + β(xi+1, yi+1).

Then at least one of α and β is not positive. Furthermore, if either α or β is zero,

then the other is one or minus one.

Proposition 2.4.13. Let i and j be distinct integers with 0 ≤ i ≤ d and 1 ≤ j ≤ d+1.

If xiyj − yixj ≤ 0, then

xi+1yj − yi+1xj ≤ 0,

xiyj−1 − yixj−1 ≤ 0.

The equalities hold if and only if j = i + 1.

Proof. We will show only the first inequality. One can similarly verify the second

one. By Lemma2.4.11, we can write

(xj, yj) = α(xi, yi) + β(xi+1, yi+1)

with integers α and β. Then we have

0 ≤ xjyi − yjxi = β(xi+1yi − yi+1xi) = β.

Recall that j 6= i. In the case of β = 0, by Lemma2.4.12, we have (xj, yj) = −(xi, yi).

Hence

xi+1yj − yi+1xj = −xi+1yi + yi+1xi = −1.

In the case of β ≥ 1, we have α ≤ 0 by Lemma2.4.12. Hence

xi+1yj − yi+1xj = α(xi+1yi − yi+1xi) = α ≤ 0.

If xi+1yj − yi+1xj = 0, then we have α = 0. Hence, by Lemma2.4.12, we have β = 1,

which means j = i + 1. ut



Chapter 3

The gonality conjecture for curves

on toric surfaces

This chapter contains the author’s first result. Concretely, we will prove that the go-

nality conjecture affirmatively for curves on toric surfaces which have only one toric

morphism to the projective line P1. In this chapter, a curve will always mean a nonsin-

gular projective curve unless otherwise stated. Note that, as mentioned in Chapter 1,

we often identify the notions of invertible sheaves, line bundles and divisors.

3.1 Preliminaries and the main result

3.1.1 Gonalities of curves

For a curve C, the gonality is defined as the minimal degree of surjective morphisms

from C to P1 :

gon(C) = min{degϕ | ϕ : C → P1 surjective morphism}
= min{k | C has a g1

k},

where g1
k denotes a one-dimensional linear system of degree k on C. A curve is said to

be k-gonal if its gonality is k. By definition, C is one-gonal (resp. two-gonal) if and

only if it is isomorphic to P1 (resp. elliptic or hyperelliptic).

Let us review the developments of the study of gonalities roughly. First of all, it

is classically well known that a nonsingular plane curve of degree d is (d − 1)-gonal

(cf. Theorem 0.0.2). Coppens and Kato generalized this result to the case of singular

plane curves. They computed the gonality of its normalization under certain numerical

conditions on the degree d and the number of singular points :

23
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Theorem 3.1.1 ([5]). Let C be a singular plane curve of degree d with δ ordinary nodes

or cusps. If there is a positive integer n such that d ≥ 2(n+1) and δ ≤ nd−(n+1)2+2,

then the gonality of the normalization of C is d − 2.

Ohkouchi and Sakai studied more general cases :

Theorem 3.1.2 ([29]). Let C be a singular plane curve of geometric genus g and

of degree d, n the number of singular points (including also infinitely near singular

points) and m1, . . . , mn their multiplicities. Put ν = max{mi | i = 1, . . . , n} and

a(ν) = (2 −
√

1 − 2/ν )2. Define δ = (d − 1)(d − 2)/2 − g, η =
∑n

i=1(mi/ν)2 and

R(ν, δ, i) =
ν2 + (ν − 2)i

2ν(ν − 1)
+

√
δ − ν

ν − 1
+

(
ν − 2 + i

2ν − 2

)2

,

where we let d ≡ i (mod ν). Then the gonality of the normalization of C is d− ν in the

following cases :

(i)
d

ν
> R(ν, δ, i).

(ii) ν ≥ 3 and
d

ν


>

η + 1

2
(5 ≤ η < a(ν)),

> 2
√

η −
(

1 +
1

ν

)
(a(ν) ≤ η < 4),

≥ 3 (4 ≤ η < 5).

On the other hand, Martens determined the gonalities of nonsingular curves on

Hirzebruch surfaces with some trivial exceptions.

Theorem 3.1.3 ([24]). Let Σa be a Hirzebruch surface of degree a ≥ 0 with the ruling

π : Σa → P1, and C a nonsingular curve on Σa. Denote by ∆0 and F the minimal

section and a fiber of π, respectively. Assume that C 6∼ F . Then the gonality of C is

C.F unless a = 1 and C ∼ α(∆0 + F ) with α ≥ 2 in which case C is isomorphic to a

plane curve of degree α.

3.1.2 The gonality conjecture

The gonality is one of important invariants in the study of linear systems on curves,

although, in general, it is often difficult to determine it for a given curve. One of

the central problems around the gonality is the so-called gonality conjecture (Conjec-

ture 3.1.5 below) posed by Green and Lazarsfeld in [13]. In order to give its precise

statement, we introduce the following vanishing property (Mk) (we use the notation of

Koszul cohomology defined in Section 3.2).



3.2. KOSZUL COHOMOLOGY 25

Definition 3.1.4 ([13]). Let L be a line bundle over a curve C, and k a non-negative

integer. We say that the pair (C, L) satisfies the property (Mk) (or, simply, L satisfies

the property (Mk)) if a Koszul cohomology Kp,1(C,L) vanishes for any integer p ≥
h0(C,L) − k − 1.

If C is a k-gonal curve of genus g, then it is well known that a line bundle over

C does not satisfy (Mk) if its degree is greater than or equal to 2g + k. The gonality

conjecture predicts the converse of this fact.

Conjecture 3.1.5 ([13, The gonality conjecture]). Let C be a curve of genus g

and k a positive integer. If the property (Mk) fails for any line bundle L over C with

degL À 2g, then C has a g1
k.

Hence, if this conjecture is true, then we can read off the gonality of a curve from

any one line bundle of sufficiently large degree over it. Green has shown this conjecture

affirmatively for k = 1, 2 in [11]. The case where k = 3 has been done by Ehbauer

in [2]. As for curves on the Hirzebruch surfaces, we have not only Martens’ result

(Theorem3.1.3) but also an affirmative answer to the gonality conjecture. This work

was done by Aprodu in [1]. So it is a natural question to extend their results to curves

on more general surfaces, e.g., toric surfaces. In this chapter, we restrict ourselves to a

class of toric surfaces admitting a unique toric morphism to P1. Our aim is to determine

the gonality of curves on such surfaces and also show that the gonality conjecture is

valid for them. Namely, we shall show the following :

Theorem 3.1.6. Let S be a toric surface which has a unique toric morphism to P1 and

denote its fiber by F . Let C be a nonsingular irrational curve on S and put C.F = k.

Then one of the following holds :

(i) C is isomorphic to a plane curve of degree k,

(ii) C is k-gonal, and the gonality conjecture is valid for C.

The proof owes much to [1] and will go with the induction on the sum of k and the

Picard number of S.

3.2 Koszul cohomology

In this section, we will introduce the notion of Koszul cohomology of a line bundle over

a projective variety, and review several previous results. See [1] and [11] for further

details.
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Let V be a finite dimensional complex vector space, SV the symmetric algebra of

V , and B =
⊕

q∈Z Bq a graded SV -module. Then there is a natural map between

vector spaces

dp,q :
p∧

V ⊗ Bq →
p−1∧

V ⊗ Bq+1

(ei1 ∧ · · · ∧ eip) ⊗ b 7→
p∑

j=1

(−1)j−1(ei1 ∧ · · · ∧ êij ∧ · · · ∧ eip) ⊗ (eijb),

which yields a Koszul complex

dp+1,q−1 dp,q
· · · →

p+1∧
V ⊗ Bq−1 −−−−→

p∧
V ⊗ Bq −→

p−1∧
V ⊗ Bq+1 → · · · .

The Koszul cohomology is defined by

Kp,q(B, V ) = Ker dp,q

/
Im dp+1,q−1.

It is a well-known fact (the so-called Syzygy theorem) that a complex vector space Kp,q

is isomorphic to the syzygy of order p and weight p + q for B (cf. [11, Theorem1.b.4]).

Besides, it is also essential that a morphism of graded SV -modules canonically induces

linear maps of Koszul cohomologies :

Theorem 3.2.1 ([11, Corollary 1.d.4]). Let 0 → P → Q → R → 0 be a short exact

sequence of SV -modules with maps preserving the gradings. Then, for any integer p,

there is a Koszul cohomology long exact sequence

· · · → Kp+1,0(R, V ) → Kp,1(P, V ) → Kp,1(Q, V ) → Kp,1(R, V ) → Kp−1,2(P, V ) →
· · · → K0,p+1(P, V ) → K0,p+1(Q, V ) → K0,p+1(R, V ) → 0.

Remark 3.2.2 ([1, Remark 1.1]). In the above situation, if R0 = R1 = 0, then Kp,1(P,

V ) ' Kp,1(Q, V ) for any integer p.

For a projective variety X, a line bundle L over X and a vector bundle E over X,

we define

Kp,q(X,E, L) = Kp,q

( ⊕
i∈Z

H0(X, E ⊗ iL) , H0(X,L)

)
,

Kp,q(X, L) = Kp,q

( ⊕
i∈Z

H0(X, iL) , H0(X, L)

)
.

For a restriction of the Koszul cohomology to the hypersurface, we have the following

isomorphism :
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Theorem 3.2.3 ([1, Remark 1.3]). Let X be a nonsingular projective variety, L a line

bundle over X and Y ∈ |L| an irreducible divisor on X. If the irregularity of X is

zero, then Kp,1(X,L) ' Kp,1(Y, L|Y ) for any integer p.

Here we shall see two vanishing theorems.

Theorem 3.2.4 ([11, Theorem3.a.1]). Let X be a projective variety, L a line bundle

over X and E a vector bundle over X. Then Kp,q(X, E, L) = 0 for any integer p ≥
h0(X, E ⊗ qL).

Theorem 3.2.5 ([11, Theorem 3.c.1]). Let L be a line bundle over a curve C. Then

Kp,1(C, L) = 0 for any integer p ≥ h0(C, L) − 1.

Lastly, we see Aprodu’s results which played a central role in his work and also in

the proof of Theorem3.1.6.

Theorem 3.2.6 ([1, Theorem 1]). Let C be an irrational curve, L a nonspecial and

globally generated line bundle over C, and k a non-negative integer such that L satisfies

(Mk). Then, for any effective divisor D on C, L + D also satisfies (Mk).

This proposition gives us a simple criterion for verifying the gonality conjecture,

which reduces it to the problem of finding a single line bundle with the property (Mk−1)

over C.

Corollary 3.2.7 ([1, Corollary 2]). Let C be an irrational curve which has a g1
k. If

there is a nonspecial and globally generated line bundle over C satisfying (Mk−1), then

C is k-gonal, and the gonality conjecture is valid for C.

3.3 Proof of Theorem3.1.6

3.3.1 Toric surfaces with a unique ruling to P1

Let us see some properties of surfaces dealt with in this chapter. We keep the notation

introduced in Section 2.4.

Let S be a toric surface associated to the fan ∆ composed by d cones, which has a

unique toric morphism ϕ to P1. We denote its general fiber by F . In terms of the fan,

this condition means that there is only one cone σ ∈ ∆ such that −σ is also contained

in ∆. We put σ1 = σ, σd0 = −σ and label TN -invariant divisors in the way defined in

Section 2.4, that is, we assume the equality

xiyi−1 − yixi−1 = 1
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Figure 3.1.

for each integer 1 ≤ i ≤ d. Hence we can draw ∆ as in Fig. 3.1. Remark that, in this

case, we can classify the primitive elements of the cones in ∆ roughly as follows :

xi



= 0 (i = 1, d0),

= 1 (i = 2, d0 − 1),

= −1 (i = d0 + 1, d),

≥ 1 (3 ≤ i ≤ d0 − 2),

≤ −1 (d0 + 2 ≤ i ≤ d − 1),

yi



= 1 (i = 1),

= 0 (i = d0 − 1),

= −1 (i = d0),

= D2
d0

≥ 1 (i = d0 + 1),

≥ 1 (2 ≤ i ≤ d0 − 2),

≥ −xi + 1 (d0 + 2 ≤ i ≤ d).

(3.1)

Moreover, we have

Dd0 ∼
d0−1∑
i=1

yiDi +
d∑

i=d0+1

yiDi. (3.2)

The linear equivalence class of F is written as

F ∼
d0−1∑
i=2

xiDi ∼ −
d∑

i=d0+1

xiDi. (3.3)

Hence, by (3.1) and Theorem2.4.5, we have

F.Di =

{
1 (i = 1, d0),

0 (otherwise).
(3.4)

3.3.2 Several lemmas

In this subsection, we prove several lemmas needed in the proof of Lemma3.3.8 which

is a key to proving Theorem3.1.6. We keep the notation in the previous section. Let

C be a curve of genus g on S and put k = C.F . As mentioned in Section 2.4, we can

write the linear equivalence class of C as

C ∼
d∑

i=1

piDi (pi ∈ Z, p1 = pd = 0).
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Note that pd0 = k follows from (3.4). We first consider the case where C is isomorphic

to a plane curve.

Definition 3.3.1. We say that the pair (S, C) satisfies the property (]) (or, simply, C

satisfies (])) if D2
d0

= 1 and C ∼ kDd0 .

Lemma 3.3.2. If (S, C) satisfies (]), then C is isomorphic to a nonsingular plane

curve of degree k.

Proof. In this case, an easy computation shows that

C.Di =

{
k (i = d0 − 1, d0, d0 + 1),

0 (otherwise).

Considering the construction of S, if d ≥ 5, then there is at least one TN -invariant

divisor Di with self-intersection number −1 such that i 6= 1, d0 − 1, d0, d0 + 1. Hence,

by a finite succession of blowing-downs along such divisors, we can obtain an embedding

of C in Σ1. In particular, the image of D1 becomes the minimal section of the ruling
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Figure 3.2.

map of Σ1 (Fig. 3.2). We denote it by M . Since M has self-intersection number −1

and does not meet C, by blowing it down, C can be embedded in the projective plane

as a curve of degree k. ut

By the following lemma, we can clarify the case where C is rational, which is a

special case of Lemma3.3.2.
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Lemma 3.3.3. Assume that k ≥ 2 and C is nef. Then C is rational if and only if

k = 2 and (S, C) satisfies (]).

Proof. The sufficiency is easy : If D2
d0

= 1 and C ∼ 2Dd0 , then we have C.(C +

KS) = −2 by computing. Then g = 1
2
C.(C + KS) + 1 = 0.

To prove the necessity, we assume g = 0. By noting (3.2) and pd0 = k, we have

C + KS ∼ (k − 2)D1 +
d0−1∑
i=2

(pi + (k − 1)yi − 1)Di +
d∑

i=d0+1

(pi + (k − 1)yi − 1)Di.

Here we note that Proposition 2.4.10 implies that pi is non-negative for 2 ≤ i ≤ d − 1.

Hence, by (3.1), we have pi + (k − 1)yi − 1 ≥ 0 except for i = 1, d0 − 1, d0. On the

other hand, since h0(S, KS) = h0(C, KC) = 0, we have h0(S, C + KS) = 0. This means

that C + KS is not linearly equivalent to an effective divisor. Hence the coefficient

pd0−1 + (k − 1)yd0−1 − 1 must be negative, which implies that pd0−1 = 0. We thus have

C.Dd0−1 = pd0−2 + k ≥ k. Considering the equation C.F = C.
( ∑d0−1

i=2 xiDi

)
= k and

(3.1), we can conclude

C.Di =

{
0 (2 ≤ i ≤ d0 − 2),

k (i = d0 − 1).

We next write the linear equivalence class of C + KS as

C + KS = C + KS + F − F ∼ C + KS +
d0−1∑
i=2

xiDi +
d∑

i=d0+1

xiDi

∼ (k − 2)D1 +
d0−1∑
i=2

(pi + xi + (k − 1)yi − 1)Di

+
d∑

i=d0+1

(pi + xi + (k − 1)yi − 1)Di.

Since h0(S,C+KS) = 0, the coefficient pd0+1+xd0+1+(k−1)yd0+1−1 must be negative.

This implies that k = 2, D2
d0

= 1 and pd0+1 = 0. We thus have C.Dd0+1 = k+pd0+2 ≥ 2.

Considering the equation C.F = C.
(
−

∑d
i=d0+1 xiDi

)
= 2 and (3.1), we can conclude

C.Di =

{
2 (i = d0 + 1),

0 (d0 + 2 ≤ i ≤ d).

Moreover, we have C.Dd0 = pd0−1 + kD2
d0

+ pd0+1 = 2, and

C.D1 = C.

(
Dd0 −

d0−1∑
i=2

yiDi −
d∑

i=d0+1

yiDi

)
= C.Dd0 − yd0+1C.Dd0+1 = 0.

Consequently, if C is rational, then D2
d0

= 1, k = 2 and C is numerically equivalent to

2Dd0 . Since S is simply connected, we also have C ∼ 2Dd0 . ut
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We next see the properties of the Koszul cohomology of a divisor obtained by

subtracting an effective divisor from C.

Lemma 3.3.4. Let I be a nonzero effective divisor on S and put H = C − I. If

H1(S,−I) = 0, then Kp,1(S, H) ' Kp,1(C, H|C) for any integer p ≥ h0(S, H − I) + 1.

Proof. The short exact sequence of sheaves 0 → OS(−I) → OS(H) → OC(H) →
0 induces the cohomology long exact sequence

0 → H0(S,−I) → H0(S, H) → H0(C, H|C) → H1(S,−I) → · · · .

Since H0(S,−I) = H1(S,−I) = 0, we have H0(S, H) ' H0(C, H|C). We put V =

H0(S, H), B =
⊕

q≥0 H0(S, qH), B′ =
⊕

q≥0 H0(S, qH−C) and Q = B/B′. Consider-

ing the short exact sequence of graded SV -modules 0 → B′ → B → Q → 0, we obtain

the Koszul cohomology long exact sequence

· · · → Kp,1(B
′, V ) → Kp,1(B, V ) → Kp,1(Q, V ) → Kp−1,2(B

′, V ) → · · · .

Then Theorem3.2.4 shows that

Kp,1(B
′, V ) = 0 for p ≥ h0(S, H − C) = 0,

Kp−1,2(B
′, V ) = 0 for p ≥ h0(S, 2H − C) + 1 = h0(S, H − I) + 1.

We thus have Kp,1(S, H) ' Kp,1(Q, V ) for any integer p ≥ h0(S, H − I) + 1.

Next, let us consider the short exact sequence of graded SV -modules

0 → Q →
⊕
q≥0

H0(C, qH|C) → R :=

( ⊕
q≥0

H0(C, qH|C)

)/
Q → 0.

The isomorphisms Q0 ' C and Q1 ' H0(C,H|C) imply R0 = R1 = 0. Hence we can

apply Remark 3.2.2 to obtain

Kp,1(Q, V ) ' Kp,1

( ⊕
q≥0

H0(C, qH|C), H0(C, H|C)

)
= Kp,1(C,H|C)

for any integer p. ut

Lemma 3.3.5. Assume C is irrational. Let I be a nonzero effective divisor on S and

put H = C − I. If all of the following (i)–(v) hold, then OC(C) satisfies (M1).

(i) OS(H) is globally generated,

(ii) H2 > 0,

(iii) H|C is nonspecial,

(iv) h0(S, H) − h0(S, H − I ) ≥ 3,

(v) H1(S,−I ) = 0.
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Proof. We can take a nonsingular irreducible curve Y ∈ |H| by (i), (ii) and

Bertini’s theorem. Then Theorem3.2.5 shows that Kp,1(Y,H|Y ) = 0 for any inte-

ger p ≥ h0(Y, H|Y ) − 1. On the other hand, the short exact sequence of sheaves

0 → OS → OS(H) → OY (H) → 0 induces the cohomology long exact sequence

0 → H0(S,OS) → H0(S,H) → H0(Y, H|Y ) → H1(S,OS) → · · · .

Since H0(S,OS) = C and H1(S,OS) = 0, we obtain h0(Y,H|Y ) = h0(S, H) − 1.

Consequently, we have that

Kp,1(Y,H|Y ) = 0 (3.5)

for any integer p ≥ h0(S, H) − 2.

By Theorem 3.2.3, we have Kp,1(Y,H|Y ) ' Kp,1(S, H) for any integer p. Besides,

Lemma 3.3.4 gives the isomorphism Kp,1(S,H) ' Kp,1(C,H|C) for any integer p ≥
h0(S,H − I) + 1. Hence, by combining these facts with (3.5) and (iv), we have

Kp,1(C, H|C) = 0

for any integer p ≥ h0(S, H) − 2.

We next consider the short exact sequence 0 → OS(−I) → OS(H) → OC(H) → 0.

It induces the cohomology long exact sequence

0 → H0(S,−I) → H0(S, H) → H0(C,H|C) → H1(S,−I) → · · · .

Then the equalities H0(S,−I) = H1(S,−I) = 0 implies h0(S, H) = h0(C,H|C). In

sum, we can conclude

Kp,1(C, H|C) = 0

for any integer p ≥ h0(C,H|C) − 2, that is, H|C satisfies (M1). Recall the condition

(iii) and note that OC(H) is globally generated. Therefore, by Theorem3.2.6, OC(C)

also satisfies (M1). ut

In the rest of this section, we define

d1 = min {i ≥ 2 | D2
i ≥ −1} ,

d2 = max {i ≤ d | D2
i ≥ −1} ,

I =
d1−1∑
i=1

Di +
d∑

i=d2+1

Di + F,

H = C − I.
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Considering the construction of ∆, it is obvious that d1 ≤ d0 − 1 and d2 ≥ d0 + 1.

The short exact sequence of sheaves 0 → OS(−I) → OS → OI → 0 induces the

cohomology long exact sequence

0 → H0(S,−I) → H0(S,OS) → H0(I,OI) → H1(S,−I) → H1(S,OS) → · · · .

Since H0(S,−I) = H1(S,OS) = 0 and H0(S,OS) = H0(I,OI) = C, we have

H1(S,−I) = 0.

Lemma 3.3.6. Assume that k ≥ 2 and C is nef. If C.Dd1 ≥ 1 and C.Dd2 ≥ 1, then

the following (i)–(iii) hold :

(i) OS(H) is globally generated,

(ii) H2 > 0,

(iii) H|C is nonspecial.

Proof. By Theorem2.4.4, it is sufficient for (i) to verify that H has non-negative

intersection numbers with Di for each 1 ≤ i ≤ d. First, for 2 ≤ i ≤ d1 − 2, we have

H.Di = C.Di − I.Di = C.Di − D2
i − 2 ≥ C.Di ≥ 0.

In the case where d1 ≥ 3, we have H.Dd1−1 = C.Dd1−1 −D2
d1−1 − 1 ≥ −D2

d1−1 − 1 ≥ 1.

Besides, we have H.Dd1 = C.Dd1 −1 ≥ 0 and H.Di = C.Di ≥ 0 for d1 +1 ≤ i ≤ d0−1.

A similar argument can be adapted for integers d0 + 1 ≤ i ≤ d. In sum, we obtain

H.Di ≥


0 (i 6= 1, d1 − 1, d0, d2 + 1),

1 (i = d1 − 1 if d1 ≥ 3),

1 (i = d2 + 1 if d2 ≤ d − 1).

For Dd0 , we have

H.Dd0 = C.Dd0 − I.Dd0 = pd0−1 + kD2
d0

+ pd0+1 − 1 ≥ k − 1 ≥ 1.

It remains to check that H.D1 is non-negative. Since

I.D1 = D2
1 +


1 (d1 = 2, d2 = d),

3 (d1 ≥ 3, d2 ≤ d − 1),

2 (otherwise),

D2
1 ≤


−1 (d1 = 2, d2 = d),

−3 (d1 ≥ 3, d2 ≤ d − 1),

−2 (otherwise),

we obtain I.D1 ≤ 0. We thus have H.D1 ≥ C.D1 ≥ 0.

(ii) Since OS(H) is globally generated, by Proposition 2.4.10, we can write the linear

equivalence class of H as

H ∼
d−1∑
i=2

biDi
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with non-negative integers bi. The equation H.F = k − 1 and (3.4) implies that

pd0 = k − 1. Then we have H2 ≥ (k − 1)H.Dd0 ≥ k − 1 ≥ 1.

(iii) Recall Corollary 1.0.3, the adjunction formula (Theorem1.0.4) and Theorem1.0.5.

Then the last claim can be verified by a simple computation :

degH|C − 2g = C.(−I − KS) − 2 = C.

(
d2∑

i=d1

Di − F

)
− 2

≥ C.(Dd1 + Dd0 + Dd2 − F ) − 2 ≥ C.(Dd0 − F )

= pd0−1 + kD 2
d0

+ pd0+1 − k ≥ 0. ut

Lemma 3.3.7. Assume that k ≥ 2 and C is nef and does not satisfy (]). If C.Dd1 ≥ 1

and C.Dd2 ≥ 1, then h0(S, H) − h0(S,H − I) ≥ k + 1.

Proof. By Lemma 3.3.6, OS(H) is globally generated and H2 > 0. Then by

Bertini’s theorem, we can take a nonsingular irreducible curve Y ∈ |H|. We denote by

gY its genus. As we saw in the proof of Lemma3.3.5, we have h0(S,H) = h0(Y,H|Y )+1,

and h0(S, H − I) = h0(Y, (H − I)|Y ). Hence it is sufficient for the proof to verify

h0(Y, H|Y )− h0(Y, (H − I)|Y ) ≥ k. By Corollary 1.0.3 and the adjunction formula, we

have

degH|Y − 2gY = −Y.KS − 2 =
d∑

i=1

H.Di − 2 ≥ H.Dd0 − 2 ≥ −1.

Hence H|Y is nonspecial by Theorem1.0.5. Similarly, we have

deg(H − I)|Y − 2gY = Y.(−I − KS) − 2 = H.

(
d2∑

i=d1

Di − F

)
− 2

≥ H.(Dd0 − F ) − 2 = pd0−1 + kD2
d0

+ pd0+1 − k − 2.

If pd0−1 = pd0+1 = 0 and D2
d0

= 1, then we can show that C satisfies (]) by the

same argument as in the proof of Lemma3.3.3. Hence at least one of the inequalities

pd0−1 ≥ 1, pd0+1 ≥ 1 and D2
d0

≥ 2 holds. It follows that deg(H − I)|Y − 2gY ≥ −1,

which means that (H − I)|Y is also nonspecial. Hence, by Riemann-Roch theorem,

h0(Y, H|Y ) − h0(Y, (H − I)|Y ) = degH|Y + 1 − gY − (deg(H − I)|Y + 1 − gY )

= Y.H − Y.(H − I) = H.I.

Finally, we shall verify that H.I ≥ k. In the case where d1 ≥ 3, as we saw in the

proof of Lemma 3.3.6, the inequality H.Dd1−1 ≥ 1 holds. We thus have

H.I = H.

(
d1−1∑
i=1

Di +
d∑

i=d2+1

Di

)
+ k − 1 ≥ H.Dd1−1 + k − 1 ≥ k.
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Similarly, one can show H.I ≥ k in the case where d2 ≤ d − 1. Let us assume d1 = 2

and d2 = d. Then we have H.I = H.D1 + k − 1 = p2 − D2
1 + k − 2. If p2 ≥ 1 or

D2
1 ≤ −2, then we obtain H.I ≥ k. On the other hand, if p2 = 0 and D2

1 = −1, we

have yd + y2 = 1 by Theorem2.4.5 and (3.1). In this case, the type of ∆ has only

one possibility, which is a fan defining Hirzebruch surface Σ1 of degree one (Fig. 3.3).

Since p2 = 0, we have C ∼ p3D3. This means that C satisfies (]). Therefore, the
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Figure 3.3.

Since p2 = 0, we have C ∼ p3D3. This means that C satisfies (]). Therefore, the

equalities d1 = 2, d2 = d, p2 = 0 and D2
1 = −1 do not occur at the same time under the

assumption of the lemma. ut

3.3.3 Proof of Theorem3.1.6

Combining the results in previous subsection, we obtain the following lemma which

plays a central role in the proof of Theorem3.1.6.

Lemma 3.3.8. If k ≥ 2 and C is nef and does not satisfy (]), then OC(C) satisfies

(Mk−1).

Proof. We have g ≥ 1 by Lemma3.3.3. We denote by ρ(S) (≥ 2) the Picard

number of S. We shall show the claim by induction on k + ρ(S).

In the case where k = ρ(S) = 2, since d = 4, it is obvious that S is a Hirzebruch

surface. Hence we have d1 = 2, d2 = d and F ∼ D2 ∼ D4. Since C.D2 = C.D4 =

C.F = k = 2, Lemma3.3.6 and 3.3.7 allow us to apply Lemma 3.3.5 to C. Therefore,

the claim is true in this case.

We next consider the case of k + ρ(S) ≥ 5 under the following assumption : Let S ′

be a toric surface with a unique toric morphism to P1 and C ′ a nonsingular irrational

curve on S ′. We denote by k′ the intersection number of C ′ and a fiber of the toric

morphism of S ′. We assume that if (S ′, C ′) does not satisfy (]) and k′+ρ(S ′) < k+ρ(S),

then (C ′,OC′(C ′)) satisfies (Mk′−1).

(i) Assume that C.Dd1 ≥ 1 and C.Dd2 ≥ 1. If k = 2, then the claim can be verified by

Lemma 3.3.5. Assume that k ≥ 3. By Lemma3.3.6 and Bertini’s theorem, we can take

a nonsingular irreducible curve Y ∈ |H|. Note that Y is nef and Y.F = k − 1.
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Now we suppose that Y satisfies (]), that is, D2
d0

= 1 and Y ∼ (k − 1)Dd0 . Then

we have

C ∼ Y + I ∼ (k − 1)Dd0 +
d1−1∑
i=1

Di +
d∑

i=d2+1

Di + F.

If d1 ≥ 3, then C.Dd1−1 = D2
d1−1 + 1 ≤ −1. This contradicts the fact that C is nef.

Hence we have d1 = 2. Similarly, one can obtain d2 = d. Hence C ∼ (k−1)Dd0+D1+F ,

and the inequality C.D1 = D2
1 + 1 ≥ 0 implies that D2

1 = −1. Then, as we saw in the

proof of Lemma3.3.7, S is a Hirzebruch surface Σ1. In this case, F ∼ Dd and (3.2)

implies Dd0 ∼ D1 + Dd. We thus have C ∼ kDd0 , which contradicts the assumption

that C does not satisfy (]). Consequently, we have that (S, Y ) does not satisfy (]).

Since Y.F + ρ(S) = k + ρ(S) − 1, we have that (Y,H|Y ) satisfies (Mk−2) by the

hypothesis of the induction. Namely, for any integer p ≥ h0(Y,H|Y ) − k + 1,

Kp,1(Y, H|Y ) = 0.

As we saw in the proof of Lemma3.3.5, h0(Y, H|Y ) = h0(S, H) − 1 = h0(C,H|C) − 1

hold. Moreover, by Theorem 3.2.3, we have Kp,1(Y, H|Y ) ' Kp,1(S, H) for any integer

p. Hence we have

Kp,1(S, H) = 0 (3.6)

for any integer p ≥ h0(C, H|C) − k. On the other hand, by Lemma 3.3.4, we have

Kp,1(S, H) ' Kp,1(C, H|C) for any integer p ≥ h0(S,H − I) + 1. We remark that

h0(S,H) − h0(S, H − I) ≥ k + 1 holds by Lemma3.3.7. Consequently, by combining

these facts with (3.6), we obtain

Kp,1(C, H|C) = 0

for any integer p ≥ h0(C,H|C) − k, that is, (C, H|C) satisfies (Mk−1). Since H|C
is nonspecial and globally generated by Lemma3.3.6, we can apply Theorem3.2.6 to

conclude that (C,OC(C)) also satisfies (Mk−1).

(ii) Assume that C.Dd1 = 0. In this case, we have d0 ≥ 4. Indeed, if d0 = 3, the

fan ∆ defining S is as in Fig. 3.4. Then we have d1 = 2 and F ∼ D2, which yield
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Figure 3.4.

a contradiction C.F = 0. The fact d0 ≥ 4 implies D2
d1

= −1. Let S ′ be a surface
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obtained from S by blowing Dd1 down. Considering the relation between a blowing-up

and a subdivision of a fan (cf. Theorem2.4.1), S ′ also becomes a toric surface of Picard

number ρ(S ′) = ρ(S) − 1 with a unique toric morphism to P1. We denote by F ′ its

general fiber. If we regard C as a curve on S ′, then we have C.F ′ = k obviously.

Therefore, by the hypothesis of the induction, (C,OC(C)) satisfies (Mk−1).

(iii) In the case where C.Dd2 = 0, a similar argument to the case of (ii) goes through

to show the claim. ut

We are now in a position to prove Theorem3.1.6.

Proof of Theorem 3.1.6. We first show that C is rational if k ≤ 1. If k = 0,

then C is contained in a fiber, that is, C is rational. Assume k = 1. In this case,

the toric morphism of S induces a surjective morphism from C to P1 of degree one.

Namely, C is rational. Hence we consider the case where k ≥ 2.

If C satisfies (]), then by Lemma3.3.2, C is isomorphic to a nonsingular plane

curve. Hence we may assume that C does not satisfy (]). Hence Lemma3.3.8 shows

that OC(C) satisfies (Mk−1). On the other hand, since

degOC(C) − 2g = −C.KS − 2 ≥ C.Dd0 − 2 = pd0−1 + kD2
d0

+ pd0+1 − 2 ≥ 0,

OC(C) is nonspecial and globally generated by Theorem 1.0.5. Besides, C is irrational

by Lemma3.3.3. Therefore, it follows from Corollary 3.2.7 that C is k-gonal and the

gonality conjecture is valid for C. ut





Chapter 4

Weierstrass gap sequences on curves

on toric surfaces

In this chapter, we see the author’s second result dealing with Weierstrass gap se-

quences. We consider a curve on a toric surface and its intersection points with TN -

invariant divisors, and try to compute the gap sequences at such points. As a result of

this attempt, we give a new technique to determine them by using the relation between

certain lines and the lattice polytope associated to the curve. Similarly to the previ-

ous chapter, a curve will always mean a nonsingular projective curve unless otherwise

stated.

4.1 Preliminaries and the main result

4.1.1 Weierstrass gap sequences

First we define Weierstrass gap sequences and review several previous results for them.

Let C be a curve of genus g. For a point P on C, a positive integer j is called a gap

value of C at P if

h0(C, jP ) = h0(C, (j − 1)P ).

The set of all gap values is called a Weierstrass gap sequence (or, simply, gap sequence)

of C at P . By Riemann-Roch theorem, its cardinality is equal to g. The classical result

so-called Weierstrass gap theorem (cf. Theorem0.0.3) is a basic tool in the study of

gap sequences. As we saw in Theorem0.0.4, there are two types of gap sequences at

points on hyperelliptic curves.

For trigonal curves, Coppens has computed gap sequences at their ramification

points.

39
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Theorem 4.1.1 ([3, 4]). Let C be a trigonal curve and ϕ : C → P1 the trigonal

morphism. A point P on C is called a total (resp. an ordinary) ramification point if

the ramification index of ϕ at P is three (resp. two).

(i) The gap sequence at a total ramification point of ϕ is one of the following two types :

{1, 2, 4, . . . , 3n − 2, 3n − 1, 3n + 1, 3n + 4, . . . , 3(g − n − 1) + 1},
{1, 2, 4, . . . , 3n − 2, 3n − 1, 3n + 2, 3n + 5, . . . , 3(g − n − 1) + 2}.

(ii)The gap sequence at an ordinary ramification point of ϕ is one of the following two

types :

{1, 2, 3, . . . , 2n − 1, 2n, 2n + 1, 2n + 3, . . . , 2g − 2n − 1},
{1, 2, 3, . . . , 2n − 1, 2n, 2n + 2, 2n + 4, . . . , 2g − 2n}.

Kato and Horiuchi [16] established a criterion for deciding the kinds of ramification

points and their gap sequences. Besides, Kim studied unramified points and completed

the classification of the gap sequences in the trigonal case.

Theorem 4.1.2 ([18]). Let C and ϕ be as in Theorem4.1.1, and denote by g the

genus of C. Assume that g ≥ 5, and define j0 = max{j ∈ N | jP is special}. If

ϕ is unramified at a point P on C, then the gap sequence of C at P is of the form

{1, 2, . . . , g} or

{1, 2, . . . , n − 1, n + j0 − g + 1, n + j0 − g + 2, . . . , j0 + 1}

for some integer n with [(j0 + 1)/2] + 1 ≤ n ≤ g, where [x] is the so-called Gauss’

symbol, that is, the greatest integer not greater than x.

Actually, the notion of gap sequence was extended to singular points by Lax and

Widland [23]. In [9], some methods were given by Gatto to compute gap sequences at

singular points on a plane curve. They allowed to determine gap sequences at ordinary

nodes on quartic curves or at cusps on quintic curves. Notari [27] has developed a

technique to compute the gap sequence at a given point on a plane curve, either it is

smooth or singular. Note that a projective plane is a typical example of a toric surface.

4.1.2 The technique to compute gap sequences

In general, however, it is not so easy to determine a gap sequence in its entirety at a

given point. In this chapter, as mentioned before, we restrict ourselves to a curve C on

a toric surface S and consider its intersection points with TN -invariant divisors on S.

Theorem 4.1.3 below provides a sufficient condition for a positive integer to be a gap
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value of C at such points. Moreover, as we will see in Corollary 4.1.4, it becomes the

necessary and sufficient condition under the suitable condition. Namely, in such cases,

one can detect all the gap values (i.e. the gap sequence). In Section 4.3, we will apply

this technique to three examples. Concretely, we will consider singular plane curves

x6y3 + x3y + y − 1 = 0,

x5 + x2y + xy6 + y6 = 0,

xp + yq + xrys = 0 (p ≥ q ≥ 1, r + s ≥ 1)

and the nonsingular models of them. In these cases, we can determine the gap sequences

at the infinitely near points of singularities.

We use the notation introduced in Section 2.4. In order to give a precise statement,

we define a line li(n) ⊂ R2 by

li(n) = {(z, w) ∈ R2 | xiz + yiw = n}

for integers 1 ≤ i ≤ d and n. Then our main result in this chapter is stated as follows :

Theorem 4.1.3. Let S be a complete nonsingular toric surface defined by a fan com-

posed by d cones, and C ∼
∑d

i=1 piDi a nonsingular nef curve on S. Assume that C

does not pass through any TN -fixed point on S. For integers i0 with 1 ≤ i0 ≤ d and

j ≥ 1, if the line li0(pi0 − j) has at least C.Di0 lattice points in the interior of ¤C (see

Definition 2.4.7), then j is a gap value of C at the intersection points of C and Di0.

Here we remark that it is not an essential assumption that C does not pass through

any TN -fixed point on S. Indeed, if there are TN -fixed points lying on C, then by a

succession of blowing-ups with those points as centers, we can obtain an embedding of

C in a toric surface which satisfies the assumptions of Theorem4.1.3.

As declared at the beginning of this subsection, under a suitable condition, The-

orem4.1.3 gives the necessary and sufficient condition for j to be a gap value at the

intersection points of C and Di0 . Concretely, the following corollary holds.

Corollary 4.1.4. Let S, C and i0 be as in Theorem4.1.3. Assume that C.Di0 = 1 and

the line li0(pi0 − j) has at most one lattice point in the interior of ¤C for any integer

j. Then j is a gap value of C at P = C ∩ Di0 if and only if li0(pi0 − j) has a lattice

point in the interior of ¤C.

Indeed, under these assumptions, the gap values at P detected by Theorem 4.1.3

are in one-to-one correspondence with the lattice points contained in the interior of

¤C . Since ¤C has g lattice points in its interior (cf. Theorem2.4.8), this means that

all the gap values at P are completely found by Theorem4.1.3.
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4.2 Proof of Theorem4.1.3

In this section, let C be a curve of genus g on toric surface S. By renumbering

of TN -invariant divisors, we can assume i0 = 1 in the Theorem4.1.3. We thus focus

exclusively on the case where i0 = 1 henceforth. Furthermore, by (2.2) and the following

Lemma 4.2.1, it is sufficient to consider the form of the linear equivalence class

C ∼
d∑

i=1

piDi (pi ∈ Z, p1 = pd = 0). (4.1)

We denote by Int¤C the interior of ¤C , that is,

Int ¤C = {(z, w) ∈ R2 | xiz + yiw < pi for 1 ≤ i ≤ d}.

Lemma 4.2.1. For a curve C ∼
∑d

i=1 miDi on S and an integer j, the number of

lattice points contained in l1(m1− j)∩ Int ¤C does not depend on the form of the linear

equivalence class of C.

Proof. Assume C ∼
∑d

i=1 miDi ∼
∑d

i=1 niDi, and define maps f1 and f2 from Z
to itself as

f1(z) = z + ydn1 − y1nd − ydm1 + y1md,

f2(w) = w − xdn1 + x1nd + xdm1 − x1md.

Then, for any integer 1 ≤ k ≤ d and (z, w) ∈ Z2, we have

xkf1(z) + ykf2(w) = xkz + ykw + nk − mk

by Proposition 2.4.6. Considering the definition of ¤C , the map (f1, f2) : Z2 → Z2 gives

a one-to-one correspondence between l1(m1 − j) ∩ Int ¤C and l1(n1 − j) ∩ Int ¤C . ut

4.2.1 Key lemma.

The aim of this subsection is to show Lemma4.2.10 which is the key to proving

Theorem 4.1.3. In this subsection we consider the linear equivalence class of C as

(4.1), and assume C is nef and C.D1 ≥ 1. Let j be a positive integer such that

l1(−j) ∩ Int ¤C ∩ Z2 6= ∅, and denote by (z0, w0) the lattice point in l1(−j) ∩ Int ¤C

closest to the line ld(0). Since C is nef, |C| has no base points by Theorem 2.4.4. Hence,

by Proposition 2.4.6 and 2.4.10, we have

pk =
k−1∑
i=1

(xkyi − ykxi)C.Di ≥ 0 (4.2)

for any integer 2 ≤ k ≤ d − 1. All the remaining lemmas in this subsection are closely

related to the notion of lattice polytope. Hence, for a better understanding, we will

argue together with the following example.
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Example 4.2.2. Let S be a toric surface associated to the fan in Fig. 2.2, and

C0 ∼ 2D2 + 6D3 + 10D4 + 5D5 + 7D6 + 16D7 + 10D8 + 4D9 + 3D10

a nonsingular nef curve on S. Then the lattice polytope ¤C0 is drawn as in Fig. 4.1.
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We next define an effective divisor I which plays an important part in the proof of

Theorem4.1.3.

Definition 4.2.3. We define

a = min{i ≥ 2 | xi(z0 − y1) + yi(w0 + x1) ≥ 0},
b = max{i ≤ d | xiz0 + yiw0 ≥ 0},

qi =


xi(y1 − z0) − yi(x1 + w0) (1 ≤ i ≤ a − 1),

−xiz0 − yiw0 (b + 1 ≤ i ≤ d),

0 (otherwise),

I =
d∑

i=1

qiDi.

We remark that b ≤ d − 1. Indeed, by the definition of (z0, w0), the inequality

xdz0 − ydw0 ≤ pd − 1 = −1 holds. For instance, in the case of Example 4.2.2, for j = 8,

we have a = 5, b = 10 and

I = 8D1 + 4D2 + 4D3 + 4D4 + 2D11 + 5D12.

Then the line l1(−8) and ¤I is as in Fig. 4.2. Note that the origin has changed.
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Lemma 4.2.4. For any integer b + 1 ≤ k ≤ d, the inequality

xky1 − ykx1 ≤ −1

holds. Moreover, if a ≥ 3, then xmy1 − ymx1 ≥ 1 for any integer 2 ≤ m ≤ a − 1.

Proof. Since x1z0 + y1w0 = −j 6= 0, we can write

(xb, yb) = α1(x1, y1) + β1(w0,−z0),

(xb+1, yb+1) = α2(x1, y1) + β2(w0,−z0)

with some real numbers. By the definition of b, we have

xbz0 + ybw0 = α1(x1z0 + y1w0) = −jα1 ≥ 0,

xb+1z0 + yb+1w0 = α2(x1z0 + y1w0) = −jα2 < 0.

Hence we have α1 ≤ 0 and α2 > 0. Now, we suppose that xb+1y1 − yb+1x1 ≥ 0. Then

Proposition 2.4.13 implies that xby1 − ybx1 ≥ 0. Hence we have

xby1 − ybx1 = β1(x1z0 + y1w0) = −jβ1 ≥ 0,

xb+1y1 − yb+1x1 = β2(x1z0 + y1w0) = −jβ2 ≥ 0,

which imply β1 ≤ 0 and β2 ≤ 0. Then, by computing, we have

xbyb+1 − yb+xb+1 = j(α1β2 − β1α2) ≥ 0.

This contradicts the fact that xb+1yb−yb+1xb = 1. We thus obtain that xb+1y1−yb+1x1 ≤
−1. Then by Proposition 2.4.13,

xky1 − ykx1 ≥ 1

for any integer b + 1 ≤ k ≤ d. Similarly, by considering the descriptions of (xa−1, ya−1)

and (xa, ya) as the sum of (x1, y1) and (x1 + w0, y1 − z0) with real coefficients, one can

show the second inequality in the lemma. ut

Remark 4.2.5. The inequality a ≤ b + 1 immediately follows from Lemma4.2.4.

Indeed, if a ≥ b + 2, then we have

xa−1y1 − ya−1x1 ≤ −1 (4.3)

by Lemma4.2.4. However, this contradicts the second statement in the lemma in the

case where a ≥ 3. It goes without saying that (4.3) is a contradiction in the case where

a = 2.



4.2. PROOF OF THEOREM4.1.3 45

Lemma 4.2.6. The complete linear system |I| has no base points.

Proof. By Theorem 2.4.4, it is sufficient to verify I.Di ≥ 0 for each integer 1 ≤
i ≤ d. Recall Theorem2.4.5. Then we have

I.D1 = qd+q1D
2
1+d2 = −xdz0−ydw0−x1z0D

2
1−y1w0D

2
1+x2y1−y2x1−x2z0−y2w0 = 1.

For integers 2 ≤ k1 ≤ a − 2,

I.Dk1 = (xk1−1 + xk1D
2
k1

+ xk1+1)(y1 − z0) − (yk1−1 + yk1D
2
k1

+ yk1+1)(x1 + w0) = 0.

For integers b + 2 ≤ k2 ≤ d,

I.Dk2 = −(xk2−1 + xk2D
2
k2

+ xk2+1)z0 − (yk2−1 + yk2D
2
k2

+ yk2+1)w0 = 0.

Moreover, it is obvious that I.Dk3 = 0 for any integer a + 1 ≤ k3 ≤ b − 1.

Let us check the remaining divisors Da−1, Da, Db and Db+1. Recall Lemma4.2.4.

Then we have

I.Da−1 =

{
xa(z0 − y1) + ya(w0 + x1) ≥ 0 (a ≤ b),

−xb+1y1 + yb+1x1 ≥ 1 (a = b + 1),

I.Da =


−xa−1(z0 − y1) − ya−1(w0 + x1) ≥ 1 (a ≤ b − 1),

−xa−1(z0 − y1) − ya−1(w0 + x1) − xb+1z0 − yb+1w0 ≥ 2 (a = b),

xa−1y1 − ya−1x1 ≥ 1 (a = b + 1).

Similarly, we have

I.Db =


−xb+1z0 − yb+1w0 ≥ 1 (a ≤ b − 1),

−xa−1(z0 − y1) − ya−1(w0 + x1) − xb+1z0 − yb+1w0 ≥ 2 (a = b),

−xb+1y1 + yb+1x1 ≥ 1 (a = b + 1),

I.Db+1 =

{
xbz0 + ybw0 ≥ 0 (a ≤ b),

xa−1y1 − ya−1x1 ≥ 1 (a = b + 1). ut

Very roughly speaking, Theorem4.1.3 is verified by comparing the cohomology di-

mension h0(C, I|C) with h0(C, (I − D1)|C). In fact, however, it is not enough for the

proof to deal with only I. We need to introduce the following auxiliary divisor X and

consider the divisor obtained by subtracting it from I. We define

X =
a−1∑
i=2

Di +
d∑

i=b+1

Di,

Li(n) = {(z, w) ∈ Z2 | xiz + yiw ≤ n}

for integers n and i with 1 ≤ i ≤ d.
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Lemma 4.2.7. The vanishing h1(S, I − X) = 0 holds.

Proof. Consider the cohomology long exact sequence

0 → H0(S, I − X) → H0(S, I) → H0(X, I|X)

→ H1(S, I − X) → H1(S, I) → H1(X, I|X) → H2(S, I − X) → · · · .

Lemma 4.2.6, Serre duality and Theorem2.4.8 imply that h1(S, I) = 0 and h2(S, I −
X) = h0(S, KS + X − I) = 0. Hence Riemann-Roch theorem yields the equality

h0(X, I|X) = degI|X + 1 − 1

2
X.(X + KS) − 1 = I.X − 1

2
X.(X + KS).

We thus have

h1(S, I − X) = h0(S, I − X) − h0(S, I) + I.X − 1

2
X.(X + KS). (4.4)

Since I.Di = 0 for any integer 2 ≤ i ≤ a − 2 or b + 2 ≤ i ≤ d, we have

I.X =

{
I.Da−1 + I.Db+1 (a ≥ 3),

I.Db+1 (a = 2).
(4.5)

Moreover, by computing, we have

X.(X + KS) =

{
−4 (3 ≤ a ≤ b),

−2 (otherwise).
(4.6)

In order to compute the value of h0(S, I)−h0(S, I−X), we first verify the following

inclusions :

L1(q1) ∩ La−1(qa−1) ⊂
a−1∩
i=2

Li(qi) if a ≥ 3,

L1(q1) ∩ Lb+1(qb+1) ⊂
d∩

i=b+1

Li(qi).
(4.7)

Assume a ≥ 3 and let (z1, w1) be a lattice point contained in L1(q1) ∩ La−1(qa−1). We

write

(z1, w1) = (y1 − z0,−x1 − w0) + α1(y1,−x1) + β1(ya−1,−xa−1)

with real numbers α1 and β1. Then the inequalities

x1z1 + y1w1 = q1 + β1(x1ya−1 − y1xa−1) ≤ q1,

xa−1z1 + ya−1w1 = qa−1 + α1(xa−1y1 − ya−1x1) ≤ qa−1
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implies α1 ≤ 0 and β1 ≥ 0, respectively. Let k1 be an integer with 2 ≤ k1 ≤ a − 1.

Then Lemma4.2.4 and Proposition 2.4.13 imply that xk1y1 − yk1x1 ≥ 1 and xa−1yk1 −
ya−1xk1 ≥ 0. We thus have

xk1z1 + yk1w1 = qk1 + α1(xk1y1 − yk1x1) + β1(xk1ya−1 − yk1xa−1) ≤ qk1 .

Hence we obtain the first inclusion of (4.7). Similarly, for a point (z2, w2) contained in

L1(q1) ∩ Lb+1(qb+1), we write

(z2, w2) = (−z0,−w0) + α2(y1,−x1) + β2(yb+1,−xb+1).

Then one can show α2 ≥ 0, β2 ≤ 0 and the second inclusion of (4.7).

The same argument can be applied to show the inclusions

L1(q1) ∩ La−1(qa−1 − 1) ⊂
a−1∩
i=2

Li(qi − 1) if a ≥ 3,

L1(q1) ∩ Lb+1(qb+1 − 1) ⊂
d∩

i=b+1

Li(qi − 1).
(4.8)

Recall the notation li(n) defined in Subsection 4.1.2. Then by (4.7) and (4.8), in the

case where a ≥ 3, we have

h0(S, I) − h0(S, I − X)

= ]

(
d∩

i=1

Li(qi)

)
− ]

(
L1(q1) ∩

a−1∩
i=2

Li(qi − 1) ∩
b∩

i=a

Li(qi) ∩
d∩

i=b+1

Li(qi − 1)

)
= ]

(
L1(q1) ∩

b+1∩
i=a−1

Li(qi)

)
− ]

(
L1(q1) ∩ La−1(qa−1− 1) ∩

b∩
i=a

Li(qi) ∩ Lb+1(qb+1− 1)

)
= ]

(
L1(q1) ∩

b+1∩
i=a−1

Li(qi) \
(
La−1(qa−1 − 1) ∩ Lb+1(qb+1 − 1)

))
= ]

((
L1(q1) ∩

b+1∩
i=a−1

Li(qi) \ La−1(qa−1− 1)
)
∪

(
L1(q1) ∩

b+1∩
i=a−1

Li(qi) \ Lb+1(qb+1− 1)
))

= ]

((
L1(q1) ∩ la−1(qa−1) ∩

b+1∩
i=a

Li(qi)
)
∪

(
L1(q1) ∩

b∩
i=a−1

Li(qi) ∩ lb+1(qb+1)
))

.

Similarly, if a = 2, one can obtain

h0(S, I) − h0(S, I − X) = ]

(
b∩

i=1

Li(qi) ∩ lb+1(qb+1)

)
.

We define

M = L1(q1) ∩ la−1(qa−1) ∩
b+1∩
i=a

Li(qi),

N = L1(q1) ∩
b∩

i=a−1

Li(qi) ∩ lb+1(qb+1).
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Then we have

h0(S, I) − h0(S, I − X) =

{
]M + ]N − ](M ∩ N) (a ≥ 3),

]N (a = 2).

Here let us see the case of Example 4.2.2. As we saw after Definition 4.2.3, in this

example, we have a = 5 and b = 10 for j = 8. Hence M and N are the sets of

lattice points contained in l4(4) ∩ A and l11(2) ∩ B, respectively (Fig. 4.3), where A =

L1(8) ∩
∩11

i=5Li(qi) and B = L1(8) ∩
∩10

i=4Li(qi).
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Figure 4.3.

We shall examine ]M . Let (u, v) be a lattice point contained in M . Since both

(u, v) and (y1 − z0,−x1 − w0) are contained in la−1(qa−1), we can write

(u, v) = (y1 − z0,−x1 − w0) + γ(ya−1,−xa−1)

with some integer γ. We obtain γ ≥ 0 by Lemma4.2.4 and the inequality

x1u + y1v = q1 + γ(x1ya−1 − y1xa−1) ≤ q1.

Since (u, v) is contained in La(qa), we have

qa ≥ xau + yav = xa(y1 − z0) − ya(x1 + w0) + γ =

{
−I.Da−1 + γ (a ≤ b),

−I.Da−1 + qa + γ (a = b + 1).

Since qa = 0 in the case where a ≤ b, we obtain γ ≤ I.Da−1.

Conversely, let us show that for any integer 0 ≤ γ ′ ≤ I.Da−1, the lattice point

(u′, v′) = (y1 − z0,−x1 − w0) + γ ′(ya−1,−xa−1)

is contained in M . Since (u′, v′) is clearly contained in L1(q1)∩la−1(qa−1), it is sufficient

to verify that it is contained in
∩b+1

i=a Li(qi). We remark the equality

I.Da−1(xa−1, ya−1)

= (qa−2 + qa−1D
2
a−1 + qa)(xa−1, ya−1)

= (−xa(y1 − z0) + ya(x1 + w0) + qa)(xa−1, ya−1)

= (−w0 − x1, z0 − y1) + (xa−1(z0 − y1) + ya−1(w0 + x1))(xa, ya) + qa(xa−1, ya−1).

(4.9)



4.2. PROOF OF THEOREM4.1.3 49

We first show that (u′, v′) is contained in Lb+1(qb+1).

(i) If xb+1ya−1 −yb+1xa−1 ≤ 0, then xb+1y1 −yb+1x1 ≤ 0 by Proposition 2.4.13. We thus

have

xb+1u
′ + yb+1v

′ = xb+1y1 − yb+1x1 − xb+1z0 − yb+1w0 + γ ′(xb+1ya−1 − yb+1xa−1)

≤ −xb+1z0 − yb+1w0 = qb+1.

(ii) If xb+1ya−1 − yb+1xa−1 ≥ 1, then xb+1ya − yb+1xa ≥ 0 by Proposition 2.4.13. By the

equation (4.9), we have

I.Da−1(xb+1ya−1 − yb+1xa−1)

= xb+1(z0 − y1) + yb+1(w0 + x1) + (xa−1(z0 − y1) + ya−1(w0 + x1))(xb+1ya − yb+1xa)

+qa(xb+1ya−1 − yb+1xa−1)

≤ xb+1(z0 − y1) + yb+1(w0 + x1) + qa(xb+1ya−1 − yb+1xa−1).

Hence we have

xb+1u
′ + yb+1v

′ = xb+1(y1 − z0) + yb+1(−x1 − w0) + γ ′(xb+1ya−1 − yb+1xa−1)

≤ xb+1(y1 − z0) + yb+1(−x1 − w0) + I.Da−1(xb+1ya−1− yb+1xa−1)

≤ qa(xb+1ya−1 − yb+1xa−1).

If a ≤ b, then qa = 0 and we have xb+1u
′ + yb+1v

′ ≤ 0 < qb+1. If a = b + 1, then we

have

qa(xb+1ya−1 − yb+1xa−1) = qb+1(xb+1yb − yb+1xb) = qb+1.

Hence we can conclude that (u′, v′) is contained in Lb+1(qb+1).

In the case where a = b + 1, the above argument is enough to show that (u′, v′) is

contained in
∩b+1

i=a Li(qi). On the other hand, in the case where a ≤ b, we have to check

that (u′, v′) is contained in
∩b

i=a Li(qi), too. Assume a ≤ b and let m be an integer

with a ≤ m ≤ b. Note that qm = 0 in this case.

(i) If xmya−1−ymxa−1 ≥ 0, then we have xmya−ymxa ≥ 0 by Proposition 2.4.13. Then

by the equation (4.9), we have

xmu′ + ymv′

= (γ ′ − I.Da−1)(xmya−1 − ymxa−1) + (xa−1(z0 − y1) + ya−1(w0 + x1))(xmya − ymya)

≤ 0 = qm.

(ii) If xmya−1 − ymxa−1 ≤ −1, then Proposition 2.4.13 yields the inequalities xmy1 −
ymx1 ≤ −1, xby1 − ybx1 ≤ −1 and xmyb − ymxb ≤ 0. Thus we can write

(xm, ym) = δ(x1, y1) + ε(xb, yb)
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with real numbers δ ≤ 0 and ε > 0. Recall that (z0, w0) lies on l1(−j). Then we have

xmz0 + ymw0 = δ(x1z0 + y1w0) + ε(xbz0 + ybw0) ≥ 0,

xmu′ + ymv′ = xmy1 − ymx1 − xmz0 − ymw0 + γ ′(xmya−1 − ymxa−1) < 0 = qm.

Hence we have that (u′, v′) is contained in
∩b

i=a Li(qi).

In sum, we can conclude that

M = {(y1 − z0,−x1 − w0) + γ(ya−1,−xa−1) | 0 ≤ γ ≤ I.Da−1}.

A similar argument can be applied to show that

N = {(−z0,−w0) − ζ(yb+1,−xb+1) | 0 ≤ ζ ≤ I.Db+1}.

Next we examine M ∩N under the assumption that a ≥ 3. By the definition of M

and N , the intersection M ∩ N includes at most one point la−1(qa−1) ∩ lb+1(qb+1).

(i) In the case where xa−1yb+1 − ya−1xb+1 = 0, we have (xb+1, yb+1) = −(xa−1, ya−1).

Let (u1, v1) be a lattice point on la−1(qa−1). Then by Lemma 4.2.4, we have

xb+1u1 + yb+1v1 = −xa−1u1 − ya−1v1 = −qa−1 = x1ya−1 − y1xa−1 + xa−1z0 + ya−1w0

≤ xa−1z0 + ya−1w0 − 1 = −xb+1z0 − yb+1w0 − 1 = qb+1 − 1.

Hence (u1, v1) does not lie on lb+1(qb+1). This means M ∩ N = ∅.
Assume xa−1yb+1−ya−1xb+1 6= 0. In this case, the intersection la−1(qa−1)∩lb+1(qb+1)

clearly consists of only one lattice point. We denote it by (u0, v0).

(ii) Consider the case where xa−1yb+1−ya−1xb+1 ≥ 1. Since both (u0, v0) and (−z0,−w0)

lie on lb+1(qb+1), we can write

(u0, v0) = (−z0,−w0) + η(yb+1,−xb+1)

with some integer η. Then the inequality

−xa−1z0 − ya−1w0 + η(xa−1yb+1 − ya−1xb+1)

= xa−1u0 + ya−1v0 = qa−1 = xa−1(y1 − z0) − ya−1(x1 + w0) ≥ −xa−1z0 − ya−1w0 + 1

implies η ≥ 1. Hence we have

x1u0 + y1v0 = q1 + η(x1yb+1 − y1xb+1) ≥ q1 + 1.

This means that (u0, v0) is not contained in L1(q1), that is, M ∩ N = ∅.
(iii) Consider the case where xa−1yb+1 − ya−1xb+1 ≤ −1. We write

(u0, v0) = θ(ya−1,−xa−1) + ι(yb+1,−xb+1)
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with real numbers θ and ι. Since (u0, v0) is contained in la−1(qa−1)∩ lb+1(qb+1), we have

θ > 0 and ι < 0.

(iii)-(a) If a ≤ b, then qb = 0. Since Proposition 2.4.13 implies that xa−1yb − ya−1xb ≤
−1, we have

xbu0 + ybv0 = θ(xbya−1 − ybxa−1) − ι ≥ θ − ι > 0 = qb.

This means that (u0, v0) is not contained in Lb(qb), that is, M ∩ N = ∅.
(iii)-(b) If a = b + 1, then M ∩ N = L1(q1) ∩ la−1(qa−1) ∩ lb+1(qb+1). Since q1 =

−x1z0 − y1w0 = j ≥ 1, we have

x1u0 + y1v0 = θ(x1ya−1 − y1xa−1) + ι(x1yb+1 − y1xb+1) ≤ −θ + ι < 0 ≤ q1 − 1.

Hence, in this case, (u0, v0) is contained in L1(q1) and we have M ∩ N = {(u0, v0)}.
Here we note that a ≤ b in the case of (i) and (ii). Indeed, if a = b + 1, then

xa−1yb+1 − ya−1xb+1 = −1. We thus conclude that

](M ∩ N) =

{
0 (3 ≤ a ≤ b),

1 (3 ≤ a = b + 1).

In sum, we have

h0(S, I) − h0(S, I−X) =


I.Da−1+ I.Db+1 + 2 (3 ≤ a ≤ b),

I.Da−1+ I.Db+1 + 1 (3 ≤ a = b + 1),

I.Db+1 + 1 (a = 2).

(4.10)

Therefore, combining (4.4), (4.5), (4.6) and (4.10), we can obtain h1(S, I−X) = 0. ut

In order to compute the difference between the dimensions of global sections of

(I − X)|C and (I − X − D1)|C , we examine their cohomologies of higher order in

Lemma 4.2.9 below.

Lemma 4.2.8. If ](l1(−j) ∩ Int ¤C ∩ Z2) ≥ C.D1, then a ≥ 3.

Proof. We put c = C.D1. Let (z, w) be a lattice point contained in l1(−j)∩Int ¤C .

Then we can write

(z, w) = (z0, w0) + α(y1,−x1)

with some integer α. Since (z0, w0) is the lattice point in l1(−j) ∩ Int ¤C closest to

ld(0), we have α ≥ 0. Hence, by assumption, the point (z0, w0) + (c− 1)(y1,−x1) have

to be contained in Int ¤C . We thus have

x2(z0 + (c − 1)y1) + y2(w0 − (c − 1)x1) = x2(z0 − y1) + y2(w0 + x1) + c < p2 = c,

where the last equality follows from (4.2). Hence we have x2(z0−y1)+y2(w0 +x1) < 0,

which means a ≥ 3. ut
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Lemma 4.2.9. If ](l1(−j) ∩ Int ¤C ∩ Z2) ≥ C.D1, then

h0(S, KS + C − I + X + D1) = h0(S, KS + C − I + X) + C.D1.

Proof. We put c = C.D1. Recall that p1 = 0 and q1 = j. Then by Theorem2.4.8,

we have

h0(S,KS + C − I + X + D1) − h0(S,KS + C − I + X)

= ]

(
L1(−j)

a−1∩
i=2

Li(pi − qi) ∩
b∩

i=a

Li(pi − 1) ∩
d∩

i=b+1

Li(pi − qi)

)
−]

(
L1(−j − 1)

a−1∩
i=2

Li(pi − qi) ∩
b∩

i=a

Li(pi − 1) ∩
d∩

i=b+1

Li(pi − qi)

)
= ]

(
l1(−j)

a−1∩
i=2

Li(pi − qi) ∩
b∩

i=a

Li(pi − 1) ∩
d∩

i=b+1

Li(pi − qi)

)
.

We define

K = l1(−j) ∩
a−1∩
i=2

Li(pi − qi) ∩
b∩

i=a

Li(pi − 1) ∩
d∩

i=b+1

Li(pi − qi).

Now our purpose is to show that ]K = c. Let (u, v) be a lattice point contained in

K. Since both (z0, w0) and (u, v) lie on l1(−j), we can write

(u, v) = (z0, w0) + α(y1,−x1)

with some integer α. Since pd = 0, we have

xdu + ydv = −qd + α(xdy1 − ydx1) ≤ pd − qd = −qd,

which implies α ≥ 0. On the other hand, since a ≥ 3 by Lemma4.2.8, (u, v) is contained

in L2(p2 − q2). Hence we have

x2u + y2v = x2z0 + y2w0 + α ≤ p2 − q2 = c + x2z0 + y2w0 − 1,

that is, α ≤ c − 1.

Conversely, let us verify that, for an integer α′ with 0 ≤ α′ ≤ c − 1, the point

(u′, v′) = (z0, w0) + α′(y1,−x1)

is contained in K. Let k1 be an integer with 2 ≤ k1 ≤ a − 1. By Lemma4.2.4 and

Proposition 2.4.13, we have

xk1ym − yk1xm ≥ 1
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for any integer 1 ≤ m ≤ k1 − 1. Hence we have pk1 ≥ c(xk1y1 − yk1x1) by (4.2) and

xk1u
′ + yk1v

′ = xk1(z0 − y1) + yk1(w0 + x1) + (α′ + 1)(xk1y1 − yk1x1)

≤ −qk1 + c(xk1y1 − yk1x1) ≤ pk1 − qk1 .

For integers b + 1 ≤ k2 ≤ d, we have

xk2u
′ + yk2v

′ = xk2z0 + yk2w0 + α′(xk2y1 − yk2x1) ≤ −qk2 ≤ pk2 − qk2 .

Finally, we shall check that (u′, v′) is contained in
∩b

i=a Li(pi − 1). Since (z0, w0) is the

lattice point in l1(−j)∩ Int ¤C closest to ld(0), we have that (z0, w0)+β(y1,−x1) is not

contained in Int ¤C if β ≤ −1. On the other hand, by the assumption of the lemma,

l1(−j) has at least c lattice points in Int ¤C . We thus have that (u′, v′) is contained

in Int ¤C (in particular
∩b

i=a Li(pi − 1)) for 0 ≤ α′ ≤ c − 1. In sum, we can conclude

that (u′, v′) is contained in K. It follows that ]K = c. ut

By using Lemma4.2.7 and 4.2.9 in cohomology long exact sequences, we can obtain

the following equality :

Lemma 4.2.10. If ](l1(−j) ∩ Int ¤C ∩ Z2) ≥ C.D1, then

h0(C, (I − X)|C) = h0(C, (I − X − D1)|C).

Proof. It is sufficient to verify the inequality h0(C, (I − X)|C) ≤ h0(C, (I − X −
D1)|C). By Lemma 4.2.7, we have the cohomology long exact sequence

0 → H1(C, (I − X)|C) → H2(S, I − X − C) → H2(S, I − X) → · · · .

By Serre duality and Theorem2.4.8, we have

h2(S, I − X − C) = h0(S, KS + C − I + X),

h2(S, I − X) = h0(S,−I − D1 −
∑b

i=a Di) = 0.

Hence, by Riemann-Roch theorem, we have

h0(C, (I − X)|C) = h1(C, (I − X)|C) + deg(I − X)|C + 1 − g

= h0(S, KS + C − I + X) + (I − X).C + 1 − g.

On the other hand, the cohomology long exact sequence

· · · → H1(C, (I − X − D1)|C) → H2(S, I − X − D1 − C) → H2(S, I − X − D1) → · · ·

and the vanishings h2(S, I − X − D1) = h0(S,−I −
∑b

i=a Di) = 0 lead the inequality

h1(C, (I − X − D1)|C) ≥ h0(S, KS + C − I + X + D1).

Hence, by Riemann-Roch theorem and Lemma 4.2.9, we have

h0(C, (I − X − D1)|C) ≥ h0(S, KS + C − I + X + D1) + (I − X − D1).C + 1 − g

= h0(C, (I − X)|C). ut
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4.2.2 Proof of Theorem4.1.3

Finally, let us show Theorem4.1.3.

Proof of Theorem 4.1.3. We first consider the case where g = 0. In this case,

the gap sequence at P is empty. Indeed, the equation h0(C, jP ) = j − 1 holds for any

positive integer j. On the other hand, by Theorem2.4.8, there are no lattice points in

Int ¤C . Hence the statement is obviously true.

We assume that g ≥ 1 and put Di0 |C = {P1, . . . , Pc}. Lemma4.2.10 implies that

h0(C, (I − X)|C) = h0(C, (I − X)|C − P1).

Namely, P1 is the base point of
∣∣(I − X)|C

∣∣. Note that q1 = j. We define

I ′ = I − jD1 − X =
a−1∑
i=2

(qi − 1)Di +
b∑

i=a

qiDi +
d∑

i=b+1

(qi − 1)Di.

It is clear that I ′ is effective by Definition 4.2.3. Besides, since P1 lies on neither D2

nor Dd by assumption, I ′|C does not contain P1. Therefore, P1 is also the base point

of the complete linear system∣∣(I − X)|C − I ′|C − jP2 − · · · − jPc

∣∣ = |jP1|

on C, that is, h0(C, jP1) = h0(C, (j−1)P1). The same argument as above goes through

for the points P2, . . . , Pc. ut

4.3 Examples.

In this section, we shall apply Corollary 4.1.4 to concrete examples in practice. Our

attempt is to compute the gap sequences at the infinitely near points of a (possibly

singular) point on a plane curve. Let Q be a point on plane curve C ′, and consider the

resolution of singularities of C ′ by a succession of blowing-ups. Then, for some cases,

we can determine the gap sequences of the nonsingular model of C ′ at the infinitely

near points of Q by Corollary 4.1.4.

Let P2(X0 : X1 : X2) be the projective plane. We denote x = X1/X0, y = X2/X0

the local coordinates on the affine open subset U0 = {(x0 : x1 : x2) ∈ P2 | x0 6= 0}.

Example 4.3.1. Let C ′ be a plane curve defined by the local equation

x6y3 + x3y + y − 1 = 0.
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One can obtain a toric morphism ϕ : S → P2 such that S is a nonsingular compact

toric surface and the proper transform C := ϕ−1
∗ (C ′) is a nonsingular nef curve on S

of genus 3. The fan ∆S and ¤C associated to the surface S and the curve C are as in

-
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Figure 4.4.

Fig. 4.4. The linear equivalence class of C is written as

C ∼ D2 + 2D3 + 3D4 + 3D5 + 6D6 + 3D7 + 3D8 + D9.

Consider the point Q = (0, 1) on C ′ ∩U0. Then Q has only one infinitely near point P

on C, which is in fact the intersection point C ∩D1. The cone σ1 corresponding to D1

has the primitive element (−1, 0). Since the line X = j has at most one lattice point

in Int ¤C for any integer j, by Corollary 4.1.4, the gap sequence of C at P is

{j ∈ N | the line X = j has a lattice point in Int ¤C} = {1, 2, 4}.

Example 4.3.2. Let C ′ be a plane curve defined by the local equation

x5 + x2y + xy6 + y6 = 0,

and ϕ : S → P2 a toric morphism such that C := ϕ−1
∗ (C ′) is a nonsingular curve on S.

Then the genus of C is equal to 8 and the fan ∆S and the lattice polytope ¤C are as

-
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in Fig. 4.5. The linear equivalence class of C is written as

C ∼ −5D1 − 4D2 − 3D3 − 5D4 − 12D5 − 6D6 + 6D8 + 7D9 + 15D10 + 10D11 + 5D12.
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Consider the origin O = (0, 0) on C ′ ∩ U0, which is a singular point on C ′. Then the

infinitely near points of O on C are P1 = C ∩ D1 and P2 = C ∩ D5. The primitive

elements of σ1 and σ5 are (−1,−3) and (−5,−2), respectively.

It is obvious that the lines X + 3Y = k and 5X + 2Y = l have at most one lattice

point in Int ¤C for any integer k and l. Hence, by Corollary 4.1.4, the gap sequences

of C at P1 and P2 are

{j ∈ N | the line X + 3Y = j + 5 has a lattice point in Int¤C} = {1, 2, 3, 4, 6, 8, 9, 11},
{j ∈ N | the line 5X+2Y = j +12 has a lattice point in Int¤C} = {1, 2, 3, 4, 5, 6, 7, 9},

respectively.

Before proceeding to the last example, we define the following function.

Definition 4.3.3. For a positive integer m and a non-negative integer n, we define a

function f as

f(m,n) =

{
gcd(m,n) (n ≥ 1),

m (n = 0).

Example 4.3.4. Let C ′ be a plane curve defined by the local equation of the form

xp + yq + xrys = 0,

where p ≥ q ≥ 1 and r + s ≥ 1. One can obtain a toric morphism ϕ : S → P2

such that C := ϕ−1
∗ (C ′) is nonsingular. We write the linear equivalence class of C as

C ∼
∑d

i=1 piDi. The genus of C can be computed by the formula

g =

{
1
2
(|pq − rq − sp| −f(p, p−q) −f(p−r, s) −f(q−s, r)) + 1 (pq − rq − sp 6= 0),

0 (pq − rq − sp = 0).

In this case, the lattice polytope ¤C become a triangle and we can place it such

that its vertices are (p, 0), (0, q) and (r, s). Then, by Corollary 4.1.4, we can compute

the gap sequence of C at the infinitely near points of the origin O = (0, 0) on C ′ in the

following cases :

(i) pq − rq − sp = 0,

(ii) pq − rq − sp < 0 and f(p, p − q) = 1,

(iii) pq − rq − sp > 0 and f(p − r, s) = f(q − s, r) = 1.

The case (i) do not require Corollary 4.1.4. Since g = 0, the gap sequence is empty

at every point on C.
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In the case (ii), the fan ∆S is as in Fig. 4.6. The point Q has one infinitely near

point

-
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point P on C, which is the intersection point C ∩ Dk. The primitive element of σk is

(−q,−p) and pk = −pq. Hence, by Corollary 4.1.4, the gap sequence of C at P is

{j ∈ N | the line qX + pY = pq + j has lattice points in Int ¤C}.

In the case (iii), the fan ∆S and the lattice polytope ¤C are as in Fig. 4.7. The

infinitely

-
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infinitely near points of Q on C are P1 = C ∩ Dk1 and P2 = C ∩ Dk2 . The primitive

elements of σk1 and σk2 are (−s, r − p) and (s − q,−r), respectively. Since pk1 = −sp

and pk2 = −rq, by Corollary 4.1.4, we see that the gap sequences of C at P1 and P2 are

{j ∈ N | the line sX + (p − r)Y = sp + j has lattice points in Int ¤C},
{j ∈ N | the line (q − s)X + rY = rq + j has lattice points in Int ¤C},

respectively.
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