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Introduction. Let k be an algebraically closed field of characteristic zero.
Consider a pair (V, D) where V is a nonsingular projective rational surface and
D is a reduced effective divisor with only simple normal crossings. We employ
the terminology and notations in MT[7 and 8]. By MT[7; Lemma 2.1], there
exists a birational morphism u: (¥, D)—(V, D) such that u,D=D, (V, D) is almost
minimal and #(V—D)=#=(V—D). In particular, if V—D is affine-ruled, so is
V—D. The divisor D+ Ky can be decomposed into D+ K, =(D*+Ky,)-+Bk(D)
(cf. MT[7; §1.5]). Suppose hereafter that (¥, D) is almost minimal. Then
®(V—D)=0 iff D*K, is numerically effective (cf. MT[7; §1.12]). In this
case D+ Ky=(D*+K,)+ Bk(D) is nothing but the Zariski decomposition.

By Theorem 2.11 in MT[7] and by Main Theorem and Theorem 7 in
MT 8], on the case where #(V—D)=—oo, V—D is affine-uniruled except the
unknown case where (V, D) is a logarithmic del Pezzo surface of rank one with
contractible boundaries (cf. Definition 1.1 below). Professor M. Miyanishi con-
jectured

Conjecture (1) (the weaker form). If (¥, D) is a log del Pezzo surface of
rank one with contractible boundaries then VV'—D is affine-uniruled.

Conjecture (2). Let (V, D) be the same as in the conjecture (1). Then
there exists a finite subgroup G of PGL(2, k)=Aut,(P?) such that ¥ is isomor-
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phic to P?G, where g: V—V is the contraction of all connected components
of D and in fact, g is a minimal resolution of singularities on V.

Although the conjecture (2) implies the conjecture (1), our joint work with
M. Miyanishi shows that the conjecture (2) is false (cf. [12; forthcoming]). To
attack them, some work has been done in the unpublished notes of Miyanishi
[5]- On the other hand, we defined in Zhang [11] an Iitaka surface and clas-
sified all of them. This class of surfaces will play an essential role in the sub-
sequent arguments. Let (7, D) be a log del Pezzo surface of rank one with con-
tractible boundaries. By definition, —(D*+4Ky) (==0) is numerically effective.
We fix an irreducible curve C on V such that —(C, D*4-Kj) attains the smallest
positive value. In §3, we classify all log del Pezzo surfaces (V, D) of rank one
with contractible boundaries and with |C+D+K;|#¢. We also proved:

Theorem 3.6. Let (V, D) be a log del Pezzo surface of rank one with con-
tractible boundaries. Suppose that every connected component of D is contractible
to a Gorenstein quotient singularity. Then V—D is affine-uniruled.

Let the pair (V, D) be as in the conjecture (1) above. In §8§5 and 6 we
proved that V'—D is affine-uniruled provided that |C+D-+Ky|=¢ and some
additional conditions on the configuration of C+D.

In §7, we consider normal surfaces P?/G with a finite subgroup G of PGL
(2,k). Let g: V—>P?G be a minimal resolution such that D:=g™* (Sing P?/G)
has only simple normal crossings. Then (V, D) is a log del Pezzo surface of
rank one with contractible boundaries (cf. Proposition 7.1). We give some ex-
amples of normal surfaces P?/G in §7.

I would like to express my gratitude to Professor M. Miyanishi for showing
me the notes [5] and giving me very useful suggestion. I also thank Professor
S. Tsunoda for helpful comments.

TerMINOLOGY. The terminology is the same as the one in MT[7 and 8§].
For example, the definitions of almost minimal models, rods, twigs, forks, Bk(D),
etc. are found there. By a (—n) curve we mean a nonsingular rational curve
with self-intersection number (—#). A reduced effective divisor D is called an
SNC divisor (an NC divisor, resp.) if D has only simple normal crossings (normal
crossings, resp.). V—D is said to be affine-ruled (affine-uniruled, resp.) if
there is an open immersion (a dominant morphism, resp.) ¢: A'X U—-V—D
where U is an affine curve.

NOTATIONS.

K,: the canonical divisor on V.

#(V—D):  the logarithmic Kodaira dimension of an open surface V—D.
p(V): the Picard number of V.

Dy the rational map defined by a complete linear system |C|.
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S.(n=0):  a Hirzebruch surface of degree n.

D} = D—Bk(D).
#D: the number of all irreducible components in D.
K(D): = dim H{(V, D).

1. Preliminaries

We work in this paper on an algebraically closed field & of characteristic
zero. Let V be a nonsingular projective rational surface over k and let D be
a reduced effective divisor with simple normal crossings (SNC, for short).

DerFiNiTION 1.1, A pair (V, D) is called a log del Pezzo surface of rank
one with contractible boundaries if the following conditions are met:
(1) each connected component of D is contractible to a normal point with
quotient singularity; in other words, Supp Bk(D)==Supp(D) (for the definition
of Bk(D), see MT[7]); there are no (-1) curves in D;

(2) the anti-canonical divisor —Ky is ample and is a generator of NS(V)e,
which is isomorphic to @, where g: V—V is the contraction of all connected
components of D.

Remark 1.2. (1) If (V,D) is a log del Pezzo surface of rank one with
contractible boundaries then (V, D) is almost minimal; for the definition of
“almost minimal” we refer to MT[7]. Indeed, suppose that H is an irreducible
curve on V such that (H, D*4-K,)<<0 and the intersection matrix of H-+Bk(D)
is negative definite. Find a Q-divisor D(H) on V such that Supp D(H)CS
Supp Bk(D) and that (D(H), D;)=—(H, D;) for any component D; of Supp
BR(D)=Supp (D). Since p(V)=1, we have (g+H)*=0, while (g+H)*=(g* g«H)*
=(H+D(H))?<0. This is absurd.

(2) The conditions (1) and (2) in Definition 1.1 are equivalent to the condi-
tion (1) in Definition 1.1 and the following condition

)’ p(M)=1 and #(V—D)= —oo.

At first, we assume the conditions (1) and (2) in Definition 1.1. We must
show that #°(V, n(D+Ky))=0 for any integer n>>0. Suppose, on the contrary,
that KV, n(D+Ky))>0 for some 7,>0. Replacing n, by its multiple we may
assume that n(D*+Ky) is an integral divisor. Then AV, ny(D*-+K))=H(V, n,
(D+Ky))>0 by [7; Lemma 1.10]. 'Take an ample divisor H on V. On the one
hand, (H, n(D*+Ky))=0 for |ny(D*+Ky)|#=¢. On the other hand, since
—(D*+Ky) (£0) is a numerically effective divisor on V, we have (H, n(D*+Ky))
<0 by Kleiman’s criterion. This is a contradiction. So, the condition (2)" is
met. Next, we assume the conditions (1) and (2)’. Since p(V)=1, (D*+K;)*=
(g*Ky)*=0. We claim that (D*+K;)*>0. Indeed, suppose, on the contrary,
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that (D*4K;)?’=0. Then (K%)=0 and Ky=0. Hence D'+ K,=g*Ky=0.
Since V is rational, there exists an integer m>0 such that m(D*K;)~0 as an
integral divisor. So, |m(D+Ky)| 2 |m(D*+Ky)|+m(D—D¥ ¢, which is a
contradiction to #(V—D)=-—oco. Thus (D*+K,)*>0. Since p(V)=1, Ky or
—Ky is ample. We assert that — Ky is ample. Suppose that the assertion is
false. Then Ky is ample. So, D} K,=g*Ky is numerically effective and
(D*K,)2>0. Take n>>0 such that n(D*4Ky) is an integral divisor. Then
RV, n(D*+K))=h"(V, K,—n(D*+K}))=0. Indeed, if there is an effective
divisor A with A~K,—n(D*+Ky), taking an ample divisor H, we have
(H, D*+K,)>0 by Kleiman’s criterion and 0=(H, A)=(H, K,—n(D*+K,))<0
for n»0. This is absurd. By the Riemann-Roch theorem, we have A%V, n(D*

+KV))g”§(D'+KV)2—% (D*+Ky, Ky)+1>0if n>0. This implies #(V—D)=

0, a contradiction.
This Remark is due to Miyanishi [5].

Since —(D¥4-Ky) is, by the definition, numerically equivalent to —g*(Ky),
—(D*+Ky) is numerically effective, where D¥:=D—Bk(D), i.e., —(4, D'+ Ky)
=0 for any irreducible curve Aj; furthermore, —(4, D}*+K;)=0 iff AZD.
We also have p(V)=#D-+1, where #D is the number of all irreducible com-
ponents in D.

We give some lemmas as preparations.

Lemma 1.3. Every (—a) curve A with a=2 is in D, where a (—a) curve
A means a nonsingular rational curve with (A*)=(—a).

Proof. Suppose A£D. Then 0<—(4, D'+ Ky)=—(4, Ky)=2+(4)=
0, a contradiction. Q.E.D.

In the following lemma, we only use the fact that p(V)=#D+1.

Lemma 1.4. There is no (—1) curve E such that, after contracting some
(—1) curves and consecutively (smoothly) contractible curves in E4D, E+D be-
comes a union of admissible rational rods and forks ; ‘‘admissible” means that each
irreductble component of the image of E+D has self-intersection number =—2.

Proof. Suppose that there exists a (—1) curve £ and a contraction u: V—
W of some (—1) curves and consecutively (smoothly) contractible curves in
E-+D so that uy(E+ D) is admissible; # must be composed with the contraction
of E. Let h: W—W be the contraction of ug(E-+D)=usD. Then $D-+1=
p(V)=p(W)+1—}—m=#u*D+p(W)—}—l+m=#D+l—}—p(W)g#D—}—Z, where m
is the number of all irreducible components in D contracted by ». This is a con-
tradiction. Q.E.D.
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In Lemma 1.5, (2) and (3) below, the result has nothing to do with D, so
it holds generally.

Lemma 1.5. Assume ®: V—P' is a P'-fibration. Then the following
assertions hold:
(1) #{erreducible components of D not in any fiber of ®} _l—l—E{#(( 1) curves
in f) —1}, where f moves over all singular fiters of ®.
(2) If E is a unique (—1) curve in a fiber f then E has coefficient in f more than
one.
(3) If a singular fiber f consists only of (—1) curves and (—2) curves then f has
one of the following graphs:

(111)
Picture (1)

where the integer over a curve is the self-intersection number of the corresponding
curve. In particular, the sum of the coefficients of all (—1) curves in f is two.

Proof. (1) By Lemma 1.3, every singular fiber f consists of (—1) curves
and irreducible components of D. Let u: V-3, (n=0) be the contraction of
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all (—1) curves and consecutively (smoothly) contractible curves in fibers, where
>, is the Hirzebruch surface of degree n. Then $D+1=p(V)=2+4#{(—1)
curves and irreducible components of D in fibers to be contracted by #}. Thence
the assertion (1) easily follows.

As for the assertions (2) and (3), we contract (—1) curves and consecutive-
ly (smoothly) contractible curves in a fiber f one by one, and the assertions can
be verified inductively. Q.E.D.

In the following lemma, the assertions (1) and (2) hold generally.

Lemma 1.6. Let ®: V—P! be a P'-fibration and let f be a singular fiber
of ®. Then we have the following assertions.
(1) If f consists of (—1) curves, (—2) curves and one (—3) curve, then f has one
of the following configurations:
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Picture (2)

(2) the sum of the coefficients of all (—1) curves in f is more than two provided f
contains a (—a) curve with a=3.

(3) Suppose that there exists a singular fiber f, such that f, is of type (i) or (if)
in Lemma 1.5 and C is the unique (—1) curve in f,. Suppose that —(C, D}*+Ky)
attains the smallest positive value in {—(A, D+ Ky); A is a nonzero effective
divisory. Then each singular fiber consists of (—2) curves and (—1) curves, say
E, and E, (possibly E,=E,), with —(E;, D'+ Ky)=—(C, D} Ky).

Proof. (1) We contract (—1) curves and consecutively (smoothly) con-
tractible curves in f one by one. Use the induction argument and Lemma
1.5, (3).

(2) If a=3, the assertion (2) follows from the assertion (1) above. In general,
let u: V—W be the contraction of some (—1) curves and consecutively (smooth-
ly) contractible curves in f so that u(f) satisfies the hypothesis of (1). Then,
retaining f back from u(f), the assertion (2) follows.

(3) If f,(=f,) has a (—a) curve with a=3 then —2(C, D*+-Ky)=—(f,, D'+ Ky)
=—(f, D'+ K)=—3(C, D*+K;) by Lemma 1.5 and by the assertion (2)
above. This is absurd. The rest of (3) is easy to prove. Q.E.D.

We end this section with the following:

Lemma 1.7. Write D= _§j_]D,-. Let {B,, -+, B,} (1=r=<mn) be a part of
{D,, ---, D,}, say B;=D; (1=<i=r), and assign formally the numbers (B?) to B; so

that (DY) <(B})=—2. Write D= Xn‘, a;D;. Define rational numbers by, -+, b, by
the condition -

(S6B+KyB) =0 (j=1,7)

where (B;, B,):=(D;, D,) if i j and (B;, Ky):=—2—(B?). Then a,=b,=0 (i=1,
2

-+, 7). Taking r=1, we obtain a;gl—}—(D?)-
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Proof. Note that the matrix ((B;, B;)) is negative definite. Since ( 2’1 b;B;,
Bj)=—(Ky, Bj)=2+(B?)=0, we see b;=0. We have only to show t};;t (2'1
(a;—b;) B;, Bj)<0(1=<j=<r) in order to prove a;=b;. By using (ga,-D,-—I-K";,
D)=0(1=k=n), we see that ( 3 (a—b) By, B)=( 3 a:Bi+Ky, B)—( 3] biB;
+ Ky, Bj)=( z_“_-l a;D;+Ky, D;)+a;(B})+(B;, Ky)—a;(D})—(D;, Ky)=a;(Bj)—2

—(B)—a /(DY) +2+(D)=(a;—1) (B)—(DH)=0 for j(1=j<r) because 0=a;
<1 (cf. MT [7]). QED.

2. The decomposition of D

In the present section we fix an irreducible curve C such that —(C, D} K)
attains the smallest positive value.

We prove the following three lemmas used in the forthcoming arguments.
The original proofs are due to Miyanishi and Tsunoda (cf. [5]).

Lemma 2.1. Suppose |C+D+Ky,|+¢. We can find uniquely a decom-
position D=D'+-D" such that:
(1) (C,D))=(D", D,)=(Ky, D;)=0 for any component D; of D’.
(2) C+D"+K,~0.

Proof. Write D=3} D;. If C+D+Ky~0, set D=D and D'=0. So,

assume that there exists 0<T'=31m,E;e |C+D-+ K, |, where E; is irreducible.
We may write C=—a(D*+Ky) (mod D) and E;= —e;(D*+Ky) (mod D), where
a>0 and ¢;=0, ;=0 being equivalent to saying that E; is a component of D; the

congruence relation means that C+a(DHKy)= jz b;D; in NS(V)q for some ra-

tional numbers b;'s. Note that (D¥+K,)*=(K2%)>0. So, we obtain 1—a=
—>)me;. By the choise of C, we have e;=a provided ¢,>0. Hence we have
1={1— 3 n}a. Therefore 3} n,=0, ie., every E; is a component of D.

€i>0 €i>0

Write T" anew in the form I'= i a;D; with a;=0. Set D':= >} D; and

d‘->0

D”:=D—D’'. Then we have C+D"+K,~T'—D’'= 3 (a;—1) D(=: A)=0.
450

On the other hand, for any component D; of D', we have (A, D,)=(C, D)+
(D", D,)+(Ky, D;)=0. Therefore we have (A% =0, while the intersection matrix
of D' is negative definite, whence A=0. 'This means that C+ D"+ K, ~0, (C, D)
=(D", D;)=(Ky, D;)=0 and (D?)=—2 for every component D; of D’.

We now prove the uniqueness. Suppose D=A'+A" is another decomposi-
tion for which the assertions (1) and (2) hold. Then A”~D"~—(C+Kjy) and
hence A'—D'=(D—A")—(D—D")~0. Write A'—D'=A—B so that 4=0,
B=0and A4 and B have no common components. Then 0=(4—B, B)=(4, B)
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—(B?). Since the intersection matrix of D' is negative definite, we have 0=(4, B)
=(B%=0. Hence B=0and 4=0. So, A’=D'and A”=D". Q.E.D.

Lemma 2.2. Suppose |C+D~+Ky|=c¢. Then either V—D is affine-
ruled or we may assume that C is a (—1) curve.

Proof. Since |C+D+Ky|=¢, C+D is an SNC diviosr whose compo-
nents are isomorphic to P' and whose dual graph Dual(C+D) is a tree (cf.
Miyanishi [6; Lemma 2.1.3]). Fix an ample divisor L on V. We assume
furthermore that (C, L) is the smallest value among those C’s with | C+D+ Ky | =
¢ and the smallest positive value —(C, D¥4-Ky).

Claim. (C?)=0.

Assume (C?>0. Then dim[CIg%(C, C—K)=(C*+1=2 by the

Riemann-Roch theorem. Let P be a smooth point of D and let P’ be an infinite-
ly near point of P lying on the proper transform of D. Then dim |C—P—P’|
=dim [C]|—2=0. Let C'e|C—P—P’|. We assert that C'=T"+A with T =0,
A>0 and Supp(A)SSupp(D). Indeed, if C' and D have no common com-
ponents then |C'+D+Ky|+¢ by the choise of C’. This contradicts the as-
sumption |C+D-+Ky|=¢. Notice that |T'+D+K,|=¢, —(T, DM K}))=—
(C, D*+Ky) (hence I'>0) and (T, L)=(C’', L)—(A, L)y=(C, L)—(A, L)<(C, L).
This contradicts the choise of C.

Consider the case (C?)=0. Then ®;: V—P' is a P'-fibration. By the
choise of C and by the same arguments as above, there are no singular fibers.
So, V=33,(n=0). If D=0, then D is the minimal section on V. Therefore
V—D is affine-ruled. If (C?))<0 then C is a (—1) curve because (C, Ky)=
(C, D*+Ky)<0. Q.E.D.

Lemma 2.3. Suppose that |C+D—+Ky,|=¢, that C is a (—1) curve and
that C meets at least three components Do, D, and D, of D. Then either G(: =
2C+Dy+D,+D,+K,)~0 or there exists a (—1) curve T such that G~T' and
(C, T)=(D;, T)=0 for 1=0, 1, 2.

Proof. The condition |C+D+ Ky | =¢ implies (C, D;)=1 and (D;, D;)=0
(1=0,1,2 and i#j). Hence (G, C)=(G, D;)=0 and (G*)=(G, Ky). Note that
W(G)=h(Ky—G)=h"(—2C—Dy—D,—D,)=0. By the Riemann-Roch theorem,

h"(G)g%(G, G—Ky)+1=1. AssumeG0. Let 0<T=3nE,&|G|. Write

C =—a(D'+Ky) (mod D) and E;= —e;(D*4Ky) (mod D), where a>0 and
e;=0. Substituting these into G~3)nE; and noting that (D*4K,)*>0, we
obtain (—2a+1)=— 3 me; < —a >} n; (cf. Lemma 2.2). Hence 1=(2— X n)a
and 2 n;él. €;i>0 €;>0 €i>0

>0
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Claim. CNSupp(I')=D;NSupp(T")=¢(:=0,1,2).

If CN Supp(T)=¢ then C<T for (C, T)=(C, G)=0. Hence 0=T'—-Ce
|IT—C|=|G—C|=|C+Dy+D,+D,+Ky|, which implies |C+D+Ky|=+F¢.
This is a contradiction. If D; N Supp(T")=¢ for some i(=0, 1, 2) then['—D; =0
for (D;, T)=0. Since (I'—D;, C)<0, we have 0<I'—D;,—Ce|T'—D;—C]|
which implies |[C+D+Ky|=¢. This is absurd.

Consider first the case 3} 7,=0. Then Supp(I)SSupp(D). It is easy to

€;>0
see that (T, E;)=(2C+Dy+D,+D,+ Ky, E;)=0 for every component E; of T
So, (T)=0. On the other hand, the intersection matrix of D is negative definite.
So, we must have I'=0. This contradicts the additional assumption I'>0.
Thus E, n;=1. Rewrite T=Ty+A where T'y(£D) is an irreducible curve and A

is an effective divisor with Supp(A)SSupp(D). Note that (T3) =(Ty, Ti+A)=
(To, 2C+Dy+Dy+D,+Ky)=(T'y, Ky)<(Ty, D'+ K)<0 by virtue of the above
claim. So, Ty is a (—1) curve and (T';, A)=0. It is easy to see that (2C+D,
+D,+D,+Ky, A)=0 for every irreducible component A; of A. So, (A%
=(T'—T,, A)=(T, A)=(2C+Dy+D,+D,+ Ky, A)=0. This implies A=0 be-
cause the intersection matrix of D is negative definite. Thus G~I'=T,.

Q.E.D.

In the following sections, we treat the case |C+D+Ky|=¢ and the case
| C4+D+ Ky | =¢ separately.

3. Structure theorem in the case |C+D+K,|+¢
We define a quasi-litaka surface as a pair (V, D) such that:

(i) V is a nonsingular projective rational surface and D is a reduced ef-
fective divisor on V,

(i) D admits a decomposition into integral divisors D=A+N, where
A>0, N=0, A+Ky,~0 and N consists only of (—2) rods and (—2) forks.

We call the pair (V, D) an litaka surface provided that 4 is an SNC divisor.
For the relevant results we refer to [11].

Let C be as in §2. We assume further that |C+D+Ky|=+¢. In the
present section we shall verify

Theorem 3.1. Let C be as above. After replacing C by a member of |C |
if mecessary, we have the following results.
(I) There exists a birational morphism w: V—Vy such that if we let Ax=uy
(C+D"), Ny=uyD' and Dy=uyD then Ay+Ky,~0 and Ny consists of (—2)
rods and (—2) forks and such that one of the following cases takes place:
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(1) Ve=P?or 33,(n=0). Ay is an NC divisor and Ny=0.

(2) (Vx, Asx+Ny) is an Iitaka surface. There is a P'-fibration ®: V y—P*
such that Ay consists of a 2-section and a nonsingular fiber and that the components
of Ny are contained in fibers of ® (cf. [11; Lemma 2.5]).

() (Vs, Ax+Ny) is a quasi-Iitaka surface such that Ay is an irreducible
curve with p,(Ax)=1 and that p(Vi)=#Nx+1. If Ax is nonsingular we may
(hence shall) take u to be the identity morphism.

(II) Moreover, V—D is affine-ruled except in the following cases:

(a) The case (2) above.

(b) The case (3) where Ay is singular.

(c) The case (3) where Ay is nonsingular (hence C=Ay) and there exists a
birational morphism v: V—33,(n=0, 1, 2) such that v4«(C+ D) has the configuration
Fig. 6, Fig. 7 or Fig. 8 given at the end of the present paper.

The proof consists of several subsections below.

3.2. With the notations of Lemma 2.1, we have D=D’+D", C+D"+
Ky~0 and D' consists of (—2) rods and (—2) forks. If C4+D” is an SNC
divisor then (V, C+D) is a log K3 surface. We consider two cases D=0
and D" =0 separately.

3.3 Case D”"=0. Then C+K,~0. We shall see later that this case
leads to the case (3) with nonsingular A4 in the statement. Note that p,(C)=
1 and (C, Ky)=(C, D*+K,)<0. So, (C?*)>0. By the Riemann Roch theorem

we get h°(C)g% (C, C—Ky)+X(0y)=(C?+1=2. Since C is irreducible, |C |

has no fixed components. By the Bertini theorem, a general member of |C| is
irreducible and reduced and has singularities only at the base points if at all.
Then we verify

Claim (1). General members of |C| are nonsingular.

Assume the claim is false. Then general members have a common sin-
gularity P which is a base point of |C|. So, P is a singular point of C. Take
a general member C’ (3=C) such that C’ passes through (C?)—1 distinct points
(#P) on C. This is possible because dim |C|=(C?. Then (C*=(C, C")=
44+(CH—1=(C»+3. This a contradiction. Hence the assertion holds true.

So, replacing C by a general member of |C| if necessary, we may assume
that C is a nonsingular elliptic curve. Hence (V, C+D) is a log K3 surface.
In particular, it is an litaka surface with p(V)=#Bk(C+D)+-1. Take u=id
in Theorem 3.1 and we can verify second assertion by the following

Proposition 3.3. Let (V, A+D) be a quasi-Iitaka surface with A+-K;,~O0.
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If V—D is not affine-ruled, then A is a nonsingular elliptic curve and there exists a
birational morphism v: V—33,(n=0, 1, 2) such that vy (A+D) is given in Fig. 6,
Fig. 7 or Fig. 8 at the end of the present paper, where by the abuse of notations we
rewrite v3 A as A.

Proof. Suppose that V"—D is not affine-ruled. Then using the arguments
for the proof of Reduction Theorem in [11], we can show that there exists a
birational morphism v: V—33,(rn=0, 1, 2) such that vyA€|—K; | (possibly
reducible), v4(A4+ D) has one of the configurations Fig. 1, ..., Fig. 9 given at the
end of the paper, and v44 (and hence A4) is a nonsingular elliptic curve if the
configuration of v4(A-+D) is the one given in Fig. 6, Fig. 7 or Fig. 8. So,
there exists a birational morphism v,: V=V such that v;«(4-D) is given below
in the corresponding configuration Fig. 1’, Fig. 2', Fig. 3’, Fig. 4/, Fig. 5" (con-
sisting of Fig. 5.1, Fig. 5.2’ and Fig. 5.3"), Fig. 6, Fig. 7, Fig. 8’ and Fig. 9’;
where v+A4 is possibly reducible and Fig. 6’, Fig. 7’ and Fig. 8’ are given in
Theorem 3.7; furthermore (V, v;«(A4-D)) is a quasi-litaka surface (see [11;
Remark 2.4, Lemmas 3.5, 4.2 and 5.3] and Lemma 3.5 below). It is enough to

__11| ~—1!
¢ NI — )
D,=A !
1 | m
—1 D7 (Ds D4 1
E, | o
D, } g 2
1 66—+
I
—1
|
Fig. 1’
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—1 3 7
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D
' |D,=B, Ds
1 X
A B N
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prove that V,—w+ D is affine-ruled if v4(A+D) is given in one of the configura-
tions Fig. 1, ---, Fig. 5 and Fig. 9. Hence we may assume that v;=id and A4-D
is given in one of the configurations above, where (D})=—2 for all .
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Suppose v4(A+D) has the configuration as given in Fig. 2. Then A4-D is as
given in Fig. 2. Note that E,++33.; D;+Ky~0. Let w: V=W be the con-
traction of E,+ 335 D; and all (—1) curves on V except for E;. Then wyD+
wyFE,+ Ky~0 and there are no (—1) curves contained in W—wyD. By Theo-
rem 3.13 in [6; p. 46], W—w4D (and hence V—D) is affine-ruled. Suppose
that v4(A+D) is given in Fig. 1, Fig. 3, Fig. 4, Fig. 5 or Fig. 9. As shown in
the above picture, there exist a P'-fibration ®: V—P" and two disjoint compo-
nents 4, and B, of D such that every component of D—A4,—B, is contained in
fibers and the conditions of the following lemma are satisfied. So, V—D is
affine-ruled.

Lemma 3.3. Let V be a nonsingular projective rational surface and let D be
a reduced effective divisor with SNC. Suppose that there exist a P'-fibration P:
V—P* and two components D, and D, of D such that:

(1) every component of D—D,—D, is contained in fibers and D, and D, are dis-
joint cross-sections;

(i) for every fiber f, except for at most two, say f,, fi(R=2), D;(i=1 or 2, depend-
ing on f) meets a component of f not in D;

(i) of k=2 then f, is singular and D, and D, meet f, in different connented com-
ponents of (fy)reaND which means the reduced effective divisor consisting of all
common components in f, and D, where (f,).eq 5 the reduced effective divisor with

Supp(fo)zea=Supp(fy)-
Then V—D is affine-ruled.

Proof. We consider only the case =2 since the remaining cases are easier.
Note that the dual graph Dual(f,) of f, is a connected tree. By the condition (iii),
there exists a component E in (f,)ea— (f)rea AD and an edge e in Dual(f,)
sprouting from the vertex E such that Dual(f,)—e consists of two connected trees
Ty and T, and D; meets a vertex in I';(z=1, 2). Indeed, consider a connected
path (i.e., a linear chain)  in Dual(f,) connecting D, and D,. Pursueing the
components of D in the path ¢ from D, we first hit a component E which is not
in D. We take the edge e which connects E to a component of D in the path
locating on the side of D,. Let v: V—W be the contraction of all (—1) curves
in f; except for the one meeting D, all (—1) curves in f, except for E and all (—1)
curves in every singular fiber f(=f,, f,) except for some component not in D in
which D, or D, meets. Here and below, by the abuse of terminology, the con-
traction of all (—1) curves means the contraction of (—1) curves as well as con-
secutively (smoothly) contractible components. Then v4D, and 4D, are disjoint
and vx D <04 (D, +D,+f,4(f))rea—E). Note that either vy f,=v4E is nonsing-
ular or v4E is a unique (—1) curve in v4f,. In the latter case, vy(f,)rea—vsE
consists of two connected components A, and A, such that v, D; meets A, (i=1, 2).
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Furthermore, we can deduce that v f, is a rod and v4D, and v4D, intersect with
two different tips because (vyD;, v4f)=1 (i=1,2). Let H=v4(D,+D,+f,+
(f2)eea)—vxE. Then H is reduced and H =v4D. We shall prove that H+v4.E+
Ky~0. Indeed, let w: W—3],(n=0) be the contraction of all (—1) curves and
consecutively (smoothly) contractible curves in vy f,, We see that wyv4 D, and
w4 vy D, are disjoint cross-sections of z:=®y,,q,s,1: 23,—>P'. We have only to
prove the following

Claim. Let A, and 4, be two disjoint cross-sections of z: 3},—P'. Let
L be a general fiber of z. Then A4, or 4, is a minimal section and hence 4,4+
A+-2L4-K5 ~0.

Suppose A4, and A, are not minimal sections of z. Let M be a minimal
section of z. Then A;~M+a;L for some a;>0. We have 0=(4,, 4,)=—n+
a,-+a,=2—n, i.e., n=2. On the other hand, since 4; is irreducible, we have
a;=zn. Hence 0=(4,, 4,)=—n+a,+a,=—n+n+n=n. This is a contradic-
tion.

By Theorem 3.13 in [6; p. 46], it suffices to prove that there are no (—1)
curves in W—H; thus W—H (and hence V—D) is affine-ruled. If there exists
such a curve F, then F is not in any fiber of ®ov™" for v4E is the unique (possible)
(—1) curve in all fibers. So, F must meet vy f; and meets H. This is absurd.

3.4. Case where D”20 and C+D” is not an SNC divisor. We will see
at the end of arguments that this case leads to the case (3) with a cuspidal rational
curve Ay in the statement. Since |C+Ky|=|—D"|=¢, C is a nonsingular
rational curve. Since (C, Ky)=<(C, D'+ Ky)<0, we have (C)=—1. By the
hypothesis, C+D" contains a subgraph (1) or (2):

(1) @)

Picture (3)

The condition C+D"+ Ky, ~0 implies that C+D"” is the one given in (1) or (2)
of Picture (3), i.e., C+D"”"=C+D, in the case (1) and C+D"=C+D,+D, in
the case (2). Note that dim |C|=(C?%+1. So, if (C?)=0 we can find a new
nonsingular member C’ in |C| such that C’4+D” is SNC; this case will be
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considered in the following subsection. Thus, we may assume that (C?*)<—1.
This, together with (C, K,)<<0, implies that C is a (—1) curve.
More precisely, we have the following

Claim. If C+D" is as given in the case (2) of Picture (3) and if we assume
(D)= (D$) then ((D}), (D3))=(—2, —2), (=2, —3) or (—2, —4).

Write (D¥)=—a; with ;=2 and 4,<a,(i=1,2). By Lemma 1.7, D'=
(1—_“zii) Dl+(1—_"1+—1) D, Hence 0>(C, D*+Kv)gl—;"ﬁ1_+1—

a,a,—1 aa,—1 10—

atl g_(@=D@1)—4 o, 1)—22), 2 3)or (2 4).

aa,—1 aa,—1

Let u: V-V, be the contraction of C and consecutively (smoothly) con-
tractible curves in C+D”. Then it is easy to see that this u is the one required.
Note that (42)=1, 2, 3 and #Ny=p(Vy)—1=10—(K3,)—1=9—(42)>0.

3.5. Case where D”’+0 and C+D"” is an SNC divisor. Then (V, C+D)
is an [itaka surface with a rational loop C+D”. We shall show the following

Lemma 3.5. (1) There exists a birational morphism w: V—Vy such that
one of the following three cases takes place for Vy:
(A) Vy=P?or 33,(n=0),
(B) Vy=*P%X,. Thereis a P'-fibration ®: Vy—P" such that all components of
Ny are contained in fibers and p(Vy)=#Nx+2;
(C) Vy=*=P% X, and p(Vye)=4Nx+1,
where Ax=uyx(C+D") and Ny=uw(D"). Moreover, u is a composite of the con-
traction of the following two types:
(i) the contraction of a (—1) curve which is a component of the rational loop (like
C+D") in an Iitaka surface,
(i) the contraction of a rod E+R, where E is a (—1) curve and R (might be zero)
is a connected component of the part D’ of an Iitaka surface.
(2) Ax is an NC divisor with Ay + Ky,~0 and Supp(As) N Supp (Ng) = ¢.
If t is the number of the contractions of type (ii) above involved in u, then t=4 Ax—+
#Ns—p(Vx). (Each E in (ii) of (i) meets onle D" of C+D" by Lemme 1.4.)

Proof. (1) We follow up the arguments in [11, §2]. Noting that C+D
is the boundary divisor of the Iitaka surface (V, C+D) and D'=Bk(C-+D), we
contract all connected components of D’ to obtain a projective normal surface
V' with at worst rational double points as singularities. Applying the Mori
theory, we find an extremal ray / and a numerically effective divisor H on 7
such that AN NE(V)=R,[I]. We have three cases to consider:

(1) H=0. Then p(V)=1and —Ky is ample.

(2) H=0and (H)=0. Then HeR,[I] and (I%=0.
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(3) (H?»>0.

In the case (1), we have the above case (A) or (C). In the case (2), we have
the above case (B). In the third case, let / be the proper transform of / on V.
By Remark 2.4 in [11], [ is either one of the (—1) curves considered in the case
(i) and (ii) in the statement. Consider the contraction of / in the case (i) and
the contraction /4-R in the case (ii). Letitbev: V—V"'. Then (V’, v4x(C+ D))
is again an litaka surface. We apply the same argument all over again. At
the end, we reach to one of the cases (1) and (2). The pair (Vy, A%+ Ny) thus
obtained is a quasi-litaka surface with Ay+Ky,,~0 and N%=0, i.e., Ny con-
sists of (—2) rods and (—2) forks. If $44=2 then A4 is an SNC divisor and
(Vs, Ax+Ny) is an litaka surface. Finally, apply Lemma 2.5 of [11].

(2) The first assertion is clear by the construction of #. We prove the second
assertion. Note that p(V)=#(C+D")+#D’ and that if v: V-V’ is the con-
traction of type (i) or (ii) then p(V')=#v4x(C+D")+#v+D’ or p(V')+1=Hvy
(C+D")+4v4D’, respectively. Thence follows our assertion. Q.E.D.

We treat the above three cases (A), (B) and (C) independently to show that
the above u meets the demand. Consider the case (A). This case leads to the
case (1) in the statement of Theorem 3.1. Indeed, suppose Nx=0. Then V=
>, Ny is the minimal section, and Ay is a nodal curve or a union of two dis-
tinct nonsingular members of | Ny--2f| by virtue of Lemma 3.5, (2); where f is
the fiber of z: 33,—P! passing through a singular point P of Ay. Then one
can decompose % as u=u,ou,, where #, is a composite of the contractions of
type (i) or (ii) in Lemma 3.5 and u, is the contraction of a (—1) curve E such
that u,(E)=P. Instead of E, we blow down uj f4+u;Ng. So, one may assume
that Ny=u4D'=0. Letu,: V-V, anew be the contraction of all E+R given in
the type (ii) to be contracted in % and all (—1) curves E with (E, C)=1. Then
up D'=0, u» C+u» D+ Ky ~0 and there are no (—1) curves in V;—u;«D. So,
Vi—uD (and hence V'—D) is affine-ruled by Theorem 3.13 in [6; P. 46].

Suppose the case (B) takes place. Then t=#A44,—2=0. Hence Ay is a
rational loop and (Vy, Ax+Ny) is an Iitaka surface. After contracting Ny, we
obtain a projective normal surface ¥, which drops in the case (2) in the proof of
the above lemma. Now apply Lemma 2.5 in [11] to conclude that V4 has a P'-
fibration @: V4—P" and Ay copsists of a nonsingular 2-section and a nonsingular
fiber of ®@. Hence =0 and §Ny=p(Vx)—2>0 (since V4=*:P? 33,). So, this
is the case (2) of Theorem 3.1.

Consider the last case (C). This case will lead to the case (3) in the state-
ment of Theorem 3.1 where Ay is a nodal singular curve. By [11, Lemmas 3.1,
(iii), 3.5, 4.2 and 5.3], either there exist a P'-fibration ®: Vy—P* and a com-
ponent B, of Ny such that every component of Ny—B, is contained in a fiber of
® and B, is a cross-section, or Ay is a rational nodal curve and there exists a
birational morphism v: Vy—31,(n=0, 1, 2) such that v4(Ax-+ Ny) has configur-



478 D.Q. Zuanc

ation Fig. 1, ---, Fig. 5 or Fig. 9 given at the end of the paper, where 4:=v4Ax
is a rational nodal curve. Suppose the first case occurs. The condition p(V)
=#N4+1 implies that every singular fiber f of @ is of type (i) or (ii) given in
Lemma 1.5. Let v: V4—3), be the contraction of all (—1) curves and con-
secutively (smoothly) contractible curves in fibers except for those meeting B,.
Then vy fN o4 Ay consists of exactly one smooth point of vy Ay, Where vy f
touches vy Ay with order of contact 2. So, vxAxE|—Ks,| is a nodal curve.
Hence Ay | —Kjy,| is a nodal curve. In particular, one obtain that =0 and
#Nx=p(Vi)—1=2. This completes the proof of Theorem 3.1.

More precisely, we have the following

Theorem 3.6. Let (V, D) be a log del Pezzo surface cf rank one with con-
tractible boundaries. Assume that D consists of (—2) rods and (—2) forks. Then
V—D is affine-uniruled. Namely, there exists a dominant morphism ¢: A X U—
V—D, where U is an affine curve.

RemArk. By Durfee [4], the assumption in Theorem 3.6 is equivalent to
that 7 has only Gorenstein quotient singularities.

Proof. By the hypothesis, we have D¥=0. Hence —(4, Ky)=—(4, D*+
K)=0 for every irreducible curve 4 on V. We may assume that D=0. If
#D=1 then V=3, and D is the minimal section on 3},. V—D is obviously
affine-ruled. So, we assume that $D=2. Hence p(V)=#D+1=3. Note that
1=<(D*Ky)’=(K%)<7. Since there are no (—a) curves with a=3 on ¥V (cf.
Lemma 1.3), V is obtained from P? by blowing up 9—(K%) points on P? (some
points among them might be infinitely near points of the others). So, by Dema-
zure [3; ITI, Theorem 1, p. 39] there is a nonsingular irreducible curve 4 in
| —Ky | because the condition (d) in Theorem 1 there is met. Then (V, A+ D)
is an Iitaka surface. Note that (4, D)=—(Ky, D)=0 because D consists of (—2)
curves. So, it suffices to prove the following

Theorem 3.7. Let (V, A4-D) be an Iitaka surface with A+Ky,~0. Then
V—D is affine-uniruled.

The proof of Theorem 3.7. By Proposition 3.3, we may assume that vy
(A+D) has the configuration Fig. 6, Fig. 7 or Fig. 8 given at the end of the
present paper, where v is the morphism considered in the same Proposition and,
in the figures, v44 is rewritten as 4 by the abuse of notations.

Suppose v4(A-+D) is given in Fig. 7. Then A+D becomes the following
configuration through a birational morphism 2;: V—7V,. In the following con-
figuration, by the abuse of notations we rewrite v,(D;), etc. as D;, etc. In fact,
we may (and shall) assume v,=7d.
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-1,
- ~
1 1 - -
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1 N D, -1
A AE— “1TTE
D,
D, D, D, D,
L 1 J
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Fig. 7"

where (D})=—2(i=1, ---, 8). Let f,=2E,+D,+D; and let ®=P;: VP
Then 2E,+D,+D;+2E;+D;+Dg~2f,. Hence D+ D;+D;+Dy~2 (fo—E,—
Ej). So, there exists a double covering &: V—7 with the branch locus D,+ D+
D,+D;. The configuration B:=§™D is given below, where we denote the
components of B by B} and B;.

| | — _1///1;‘2 —1//;2’
-~ L~
—1)B,—1|B; B4 2 ’ —2 1 —1B,
—2 B, B; —2
AT OB S L TR
B, B; —lB
Picture (4)

Let Se=2F,+B,+B;+B,+Bsand ¥: =d5: V—P!. Then ¥ is a P-fibration
such that B—B,— By is contained in fibers and that B, and B; are disjoint cross-
sections. Thus V—B is affine-ruled by Lemma 3.3. Hence V—D is affine-
uniruled.

Suppose that v4(A-+D) is as given in Fig. 8. Then we may assume that
D+ A looks like the following, where (D})=—2 (i=1, -+, 8).

f Y
D Dy
e N N ey
51T TE
] D, sD
6
i Do p, Ip,
L 1 J
a
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As in the previous case, there exists a double covering &: V—V which is branched
on Dy+D,+D,;+D, The configuration of B:=£"'D is shown as follows:

-2 -
B —
/ > —1 1
N AN )
) Fl I | —4
_____,___:_1 B,
4
1 —_ ’
- —1 —1|B, 137“2 B
B,
N —1
B
—4 B2 4
Picture (5)

Let ®: V—P! be the P!-fibration associated with | F;--F{+B;+B,+B,|. Ap-
plying Lemma 3.3 to ®, B,, Bf, we know that V—B is affine-ruled. So, V—D
is affine-uniruled.

Suppose that v4(A-+D) is as given in Fig. 6. Then we may assume that
the configuration of D is given below. The following arguments are derived

from [5].

|
N M i
|
Al Bz \\\ . [
I —1 1
—_ 1|A3 B3 Bl \\ C3 AN /
e e \
| 0 | \ :
| . 1= B, \ I
A4, | G, —1IC,
| [
| |
N |
Fig. 6’

where D=A,+ A,+B,+B;+C,+M~+N+0Q, every component of D has self-
intersection (—2) and v is the contraction of 4,, A4,, By, Bs, B,, C; and C,. Note
that |v44,| defines a P'-fibration r: 3,—»P'. We have:

(0 M+205A,)~v*vsN = N+ A,+ Ay+B,+2B,+ 3B, ,
0* Qs M+403 A) ~0*040 = O+ Ay+24;+ B,+ 2B+ 3B,+2C,+3C; .
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Hence we get:

30* (0 M+ 204 Ay) ~N-+ O-+24,+3 45+ 2B,+4By+6B,+2C,+3C; ,
N+Q-+24,42B,+By+2C,~3A ,

where A is an integral divisor. Let oy: V;—V be the composite of the blowing-
ups with center {NN4,, B,NB;, ON C;}, the covering morphism of a cyclic 3-
covering with the branch locus (the proper transform of) N+Q-+24,4-2B,+ B,
-+2C, and the normalization of the covering surface. Then o1 D looks like the
following:

Picture (6)

From the P'-fibration zov: V—P! we get an elliptic fibration ¥;: V,—P", all
singular fibers of which are given in Picture (6). The cuspidal singular fiber of
W, comes from the ramification point (0N A;) of zov|o. Let oy V=V, be
the contraction of all (—1) curves as well as consecutively (smoothly) contractible
components in the singular fibers of ¥, except for a7*(B,) (cf. Picture (7) below).
In view of the elliptic fibration W,: =W,007" defined by | 4,+ A+ A3+ E,+2E;5,
we know that N is a cross-section of ¥,. Here V, and ¥, are rational surfaces
and we have Ky,~—(4,+4,+ A3+ E,+2E)+E. Let o3 V,—V; be the
contraction of Q and N. Consider the P'-fibration ®;: V;—>P' defined by
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4,
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Picture (7)

|osEy+a3E,|. We know that (K%,)=—1 and (K7,)=1. Note that o3(FE;) and
ay(P;) (1=1, 2, 3, 4) are cross sections of @;. Let f; be the fiber of ®; containing
o3(4;) (1=1,2,3). Then f;=f;(i=j) for (o3Es f;)=1. Evidently, there are at
least three components in f;, i.e., #;=3. Let &: V;—3), be the contraction of
all (—1) curves in the fibers of ®; except for those meeting o3(P;). Then 8=

/ / A
/ F 5—1
// _/__T
/
-2 A3 I
—2|4,
\
\
\ \\
F.,\\—l Fo—1
\ ' J

Picture (8)
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(K%,)=(K%,)+ {the number of blowing-downs in &} =143, (#f—1)=1+1+
{-1(#/;—1)=8, where f moves over all singular fibers in ®;. So, o3 E;+03E,
and f;’s are all singular fibers in ®,, where #f;=3 (i=1, 2, 3). Thus, f; is of type
(i) or (iii) given in Lemma 1.5. By using (£03P;, £03P;)=2 and (£03 Py, £03 P;)=
0(z,j=2, 3, 4), the configuration of f;’s is as given in Picture (8) where we rewrite
oy(Ey), a5(P)), etc. as E,, P, etc., respectively, by the abuse of notations.
Let »: V;—33, be the contraction of all (—1) curves in the fibers of @, except for
E,and 4;’s. Let L=7(E,)and let M be a minimal section on 7: =®,;,: 3},—P".
We see:

*L~E+E,~F+Fyt+ Ay~Fy+ F i+ Ay~Fs+ Fg+- 4, ,
7*M~P,+F\+F,~Py+ Fs+F;~P;+ F)-+ Fy ,
77*(M+L)~P4+F2+F4+F5 .
This implies that 2p*(M+-L)~P,+ F,+F,+ F;+P,+F3-+ Fs+ F3+F,+ A;=P,+
F,+4P,+A;+-2A for some integral divisor A. Denote by o,: V,—V; the com-
posite of the blowing-up with center P,NF, and the covering morphism of a

double covering with the branch locus (the proper transform of) P,+ F,+ P,+A,.
Then the configuration of D: =¢7' o30507" D looks like the following:

—2
-2

)
[
|

—

.
}—2

—1

Picture (9)

Consider the P!-fibration ®,: V,—P" defined by |P,+F,+4,|. Every com-
ponent of D— A4,— P, is contained in a fiber of ®,. 4, and P are disjoint cross-
sections of ®, which do not meet any component of D contained in some singular
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fiber of ®, except for P,+F,+4, So, V,—D is affine-ruled by Lemma 3.3.
Hence V—D is affine-uniruled. Q.E.D.

4. Preparations for the case |C+D+Ky|=¢

In the present section, we assume only that C is a (—1) curve. Then
(C, D'+ Ky)<0 because C£D. Moreover, if —(C, D*+Ky) is the smallest

positive value we will call C' minimal.

Lemma 4.1. Let D,, ---, D, exhaust all irreducible components of D such that
(C, D)>0. Suppose (D})=(D3)=--=(D?). Then {—(D}), -+, —(D?)} is one of
the following:
{2°n} (n22), {2%,3, 3}, {2°, 3,4}, {2%,3, 5}
where 2° signifies that 2 is iterated a-times.
Proof. Write D=3V_, D; and D*=3}/_, a; D;. Denote —(D}) by a;.
Then we have o= 1—g by Lemma 1.7 and 0>(C, D}-K,)=—1+3).,

a;
(1—~—>. Suppose a,=+-=a,=3. Then r—1<2§=,%§% r, whence r<3.

J
If r—2 then 1<2( 1 +i), L6 (0—2) (@—2)<<4. Therefore, {a, as} = {3, 3},
a, a4
{3, 4}, {3, 5}. We modify the above argument and easily verify the assertion.

Q.E.D.

Lemma 4.2. Suppose (C, D)=(C, Dy)=1 with an irreducible component D,
of D. Then (D§)=—2.

Proof. This is a consequence of Lemma 1.4. Q.E.D.

Lemma 4.3. Assume one of the following two conditions:
(1) C meets only one component D, of D;
(2) C meets exactly two components Dy and D, of D with (D})< —3 and (C, D))=1.
Let o: V—>W be the contraction of C, let E=o(D,) and let B=gy(D—D,).
Then we have:
(1) Any connected component of B is either an admissible rational rod or an admis-
sible rational fork. For the definitions we refer to MT[7].
(ii) There exists a birational morphism g: W—W onto a projective normal surface
W carrying at worst quotient singularities such that W-Supp(B)=SW — Sing(W)
and that g: W—W is the minimal resolution of singularities on W.
(iii) (W, B) is a log del Pezzo surface of rank one with contractible boundaries.

Proof. The assertions (i) and (ii) are clear from the construction. Note
that p(W)=p(W)—#B=p(V)—1—(#D—1)=1. We know that
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D+ Ky —(C+D,) in the case (1),

*B+Ky) =
o (BtKy) D+ K,—D, in the case (2).

This, together with #(V—D)=—co, implies #(W—B)=—co. Hence the as-
sertion (iii) holds true by Remark 1.2, (2). Q.E.D.

By virtue of the above lemma, we obtain

Lemma 4.4. Suppose C meets exactly two components D, and D, of D.
Then either (D3)=—2 or (D})=—2.

Proof. Let a;,=— (D} (:=0,1). Suppose a,=a,=3. Then {a,a}=
{3, 3}, {3,4} or {3,5} by Lemma 4.1. If (C, D;)=2 for i=0 or 1, say i=0,
then D'g(l —3) Do+(1—£) Dzt Dyt LD and (c, D)= 2+ 11

a, a, 3 3 3 3

=0. This is a contradiction. Hence (C, D;)=1 for i=0,1. Thus, we can
apply Lemma 4.3. With the notations of the same lemma, we have (E, B*+Ky)
=(E, g*Ky)=(gx+E, Kw)<O0 for —Kg is ample. On the other hand, (E, B})=0
and (E, K)=0 because E £B, p,(E)=0 and (E*)<—2. This is a contradiction.

Q.E.D.

In particular, if |C4+D+Ky|=¢ then for any irreducible component D, of
D with (C, D,)=1 we have (C, D))=1.

S. Structure theorem in the case |C+ D+ Ky|=¢, the part (I)

We assume, throughout this section, that C' is a minimal (—1) curve with
|C+D+Ky|=¢. The goal is to prove Theorem 5.1 below.

Theorem 5.1. Suppose that C meets at least two (—2) curves D, and D,
of D. Then either V—D is affine-ruled, or we are reduced to the situation treated
in §3, or D has the configuration given in Picture (10) below.

/ L VA !
-2 2 2 —1
)A" / ! )
\\ 1 AN \ 1 ><
\— N\ \_‘
C -

\ \\ A
—2/p _/ _/ \Zk
1
4 / _ii

|
Picture (10)
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Our proof consists of the following two lemmas.

Lemma 5.2. Suppose C meets a component D, in D—Dy—D,. Then either
V—D is affine-ruled or we are reduced to the situation treated in §3 by replacing C
by a different curve with the same properties as C.

Proof. Let (D3)=—m. By Lemma 2.3, either 2C+Dy+D,+D,+Ky~0,
or 2C+Dy+D,+D,+Ky,~T, where I is a (—1) curve with (T, C)=(T', D;)=0
(1=0,1,2). Let Sy=2C-+Dy+D, and let ®=®5,: V—P* be the P'-fibration.
Then (D,, S))=2(D,, C)=2 for |C4+D+Ky,|=¢. Hence D,isa 2-section of ®.

Consider the first case where 2C+Dy+D,+D,+ Ky~0. Note that D—D,
is contained in fibers of ®. Indeed, if D;<D—D,—D,—D,, then 0=(D;, Sp)=
(D;, —D,—Ky)<0. So, (D;, Sg)=(D;, D,)=(D;, Ky)=0. Hence D; is a (—2)
curve contained in a fiber and (D;, D,)=0. In particular, D, is isolated in D.
By Lemma 1.5, (1), every singular fiber is of type (i) or (ii) given in the
same lemma. Applying the Hurwitz formula to ®p,, one sees that ® has at
most two singular fibers. Let u: —3], be the contraction of all (—1) curves
and consecutively (smoothly) contractible curves in the fibers. Then =0 or 1
because uyD, is an irreducible curve and uy(S,+D,)€|—Kx, |. Let M be a
minimal section and let L be a fiber of z:=®ou"': 3),—P.. We can write
uyxD,~2M+(n+1) L. Hence (uyD,)’=4. Hence @ has exactly two singular
fibers S, and S;. Write S,=2 (E+D;+:+-+D,_,)+D,_,+D, with a (—1) curve
E and components D;’s of D. We see that 4=(uyD,)’=—m+2+4(r—2), i.e.,
r=m+4=6. We see also that there is a P'-fibration ®,: V"'— P one of whose
singular fibers is an effective divisor supported by D,, E, Dy, +:+, D,,.,. Further-
more, every component of D—D,,,, is contained in a fiber of ®, and D,,, is a
cross-section. So, V—D is affine-ruled.

Consider the second case where 2C+Dy+D,+D,+Ky~T. Let S, be the
fiber of ® containing I'. By Lemma 1.6, (3), every singular fiber of ® consists
of (—2) curves and (—1) curves each of which is minimal. Note that (D,, I')=0
and (D,, S;)=2. If S, is of type (i) or (iii) in Lemma 1.5, then there exist a
(—1) curve E (possibly T') and a reduced effective divisor A with Supp(A)<
Supp(D) such that | E4-A+Ky|#¢. In this case, by replacing C by E, we are
reduced to the situation treated in §3. Thus, one may assume that S, is of type
(ii) in Lemma 1.5. Since Supp Bk(D)=Supp (D), D, meets S, as follows:

Picture (11)
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We assert that D—D, is contained in the fibers of ®. Indeed, suppose that
D;<D—D, is not in any fiber of ®. Then (D;, I')=(D;, So+D,+Ky)=(D;, S,)
=1. On the other hand, (D;, Sg)=(D;, S,)=(D;, 2I')>(D;, T'). 'This is absurd.
As in the previous case, we can prove that r=m+-5=7 and that there exists a
P'-fibration ®,: V—P' one of whose singular fibers is an effective divisor

supported by D,, T, Dy, «++, D,,,,. Moreover, D, ., is a cross-section of @, and
other components of D are contained in fibers of ®,. Hence V—D is affine-
ruled. Q.E.D.

Lemma 5.3. Suppose that C does not meet any component of D—D,—D,.
Then either V—D is affine-ruled, or we are reduced to the situation treated in §3,
or D has the configuration as given in picture (10).

Proof. Let S;=2C-+Dy+D, and ®=®s, be the same as in Lemma 5.2.
Let & be the number of components of D—Dy—D, meeting D;(:=0, 1). If
&+&,=1, V—D is clearly affine-ruled. So, we may assume &-}+&=2.

Consider first the case &=2 for i=0 or 1, say i=0. Let D, and D, be
components of D such that (D,, Dy)=(Ds, Dy)=1. Since |C+D+Ky|=¢, we
have (D,, D;)=0. By virtue of Lemma 1.6, (3), we are reduced to the situation
treated in § 3, unless the following case

(*) every singular fiber S of ® other than S, is of type (iii) in Lemma
1.5, and D, and D, meet S in two distinct (—1) curves.

We consider the case (*). Thus, we may assume &§=2,& <2. By Lemma 1.5,
(1), there are exactly &-+&,—1 singular fibers of type (iii) in ®.

Case (&, &)=(2,0). Then the conditions in Lemma 3.3 are satisfied.
Hence V—D is affine-ruled.

Case (&), &)=(2,1). Then there exist exactly 2(=&,+& —1) singular fibers
S, and S, of type (iii) in Lemma 1.5. Write S,=E,+G,+:-+G,+E,, S,=
F+H+---+H+F, Let D, be the component of D such that (D,, D,)=1.
Denote (D?) by —a; (=2, 3,4). May assume that D; meets S; as in Picture (12).
Let u: V—3],, be the contraction of all (—1) curves and consecutively (smoothly)
contractible curves in fibers except for those meeting D,. Then we have:

a, = (uxD,)? = —a,+1+i4j,
a, = (UxDy, uxDy) = 115 .

This implies that a¢,=1, which contradicts Supp Bk(D)=Supp (D).

Case (&,&)=(2,2). Let D, and D5 be the components of D such that
(D4, D)=(Ds, D,)=1. We may assume that for D, and Dj; the condition (*)
above holds. Let u: '—3], be the contraction of all (—1) curves and con-
secutively (smoothly) contractible curves in fibers except for those meeting D,.
Since (uyD,)’=(uxDs)*=a,=2, we may assume that D,, D,, D, and D; meet
singular fibers as in Picture (13).
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Note that there are no other singular fibers. But then (uyD,, usDs)=1=a,.
This is a contradiction.

Now, we consider the case § =<1 (=0,1). Since we have assumed &-}
& =2, we have (&, &)=(1,1). Let D, and D; be the components of D such
that (D,, Dy)=(D;, D;)=1. Let S,, -+, S,, be all singular fibers of type (i) and
let S be the unique singular fiber of type (iii) given in Lemma 1.5. Since
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|C+D+Ky|=4¢, there are no singular fibers of type (i) given in Lemma 1.5,
D, and D, meet different components of D in S; (:=0, 1, -, m), D, or D, say
D,, meets a (—1) curve E, in S, D, and D; are disjoint from each other. Write

S=E,+R,+Ry+ - +R,+E,

, 1R
_ D, |
b e e
— 12
_\1\\C=C(°’ ..... \CmM : I
\ —-1\ a
> +—2 2
—2 D, -2 —2 Ra—b+1 )
15 = =2
/ D3 7
Picture (14)

By virtue of Lemma 1.4, we have (Dj, E)=0. Let (D, R,_;4,)=1 for some
(0<b=a-+1), where Ry: =F, and R,;;:=E, By a straightforward calculation,
we obtain:
D+Ky~ml—3170 C(i)'—El_E2+Ra-b+z+2Ra—b+3+
(1) RADEZ D (R R+ Ry)
+(Ra—b+2+ +(b—1) Ra+bE2)

where [ is a general fiber of ®. The hypothesis #(V—D)=— oo implies m=2.
If m=2, then 6=0, ie., (D, E,)=1, for Supp Bk(D)=Supp (D), and D is
nothing but the one given in Picture (10). Suppose m=1. Then V—D is affine-
ruled by applying Lemma 3.3 to @, D,, D;. Q.E.D.

This completes the proof of Theorem 5.1.

6. Structure theorem in the case |C+D+Ky|=g¢, the part (II)

Now we consider the case where C meets only Dy in D. We shall prove
the following

Theorem 6.1.  Suppose C meets only Dyin D.  Then V—D is affine-uniruled.

Let A be the connected component of D containing D,. We treat first the
case where A is a rod.

Lemma 6.2. If A is a rod then V—D is affine-ruled.

Proof. By virtue of Lemma 1.4, C+A is not negative definite. Hence
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there exist an integer #>>0 and an effective divisor A, such that A, is a rod with
Supp(Ay) SSupp(A) and |nC+A,| defines a P'-fibration ®: V—P'. The
components 4 and B of A adjacent to the tips of A,, (while 4 or B or both might
not exist) are disjoint cross-sections of ®. Every component of D—A—B is
contained in fibers. If 4 or B or both do not exist, V—D is clearly affine-ruled.
Suppose 4 and B exist. Then it is easy to see that the conditions in Lemma

3.3 are met. We can also apply [6; Cor. 2.4.3] to get the same conclusion.
QE.D.

We now treat the case where A is a fork with three twigs 7}, 7}, 7; and a
central component R, hence A=T,+T,+ T5+R. For the definitions of twigs,
etc., we refer to MT[7].

Lemma 6.3. Suppose C meets one of three twigs, say T=1T, and that C+T
is not negative definite. Then V—D is affine ruled.

Proof. We can define A,, f;:=nC+A, ®, 4 and B as in the previous
lemma by considering C+T instead of C+A. We can apply Lemma 3.3 to
conclude that V'—D is affine-ruled. Indeed, if there exists a singular fiber f,
(other than f;) observed in Lemma 3.3, it should contain the connected com-
ponent of A—A, not containing the central component R of A. Hence there
is at most one f, other than f;. We can also apply [6; Cor. 2.4.3]. Q.E.D.

To finish the proof of Theorem 6.1, we have only to prove the following

Lemma 6.4. Assume that one of the following conditions is satisfied:
(1) Dy is the central component of A, i.e., Dy=R;
(i) C meets a twig T among T;'s (i=1, 3, 2) and C+T is negative definite.
Then V—D is affine-uniruled.

Proof. We define a birational morphism u: V—W as follows and set
D=uyD. If the condition (i) is met, we let u be the contraction of C. Suppose
the condition (ii) is met. We let u: '—W be the contraction of all (—1) curves
and consecutively (smoothly) contractible curves in C+7. Since C+ T is neg-
ative definite, either uy (C+7T)=0 or ux(C-+T) is an admissible twig in a rational
fork ugA. In the first case, u4A is a rational rod. This way, we define the
birational morphism u. We denote u4R, usD;, usA, etc. by R, D,, A, etc.,
respectively. By virtue of Lemma 1.4, we see (R?)=—1. So, Supp Bk(D)=
Supp(D—R) and R is an irrelevant component of A. Making use of the
hypothesis that |n(D+Ky)|=¢ for any n>0, we obtain |n(D+Ky)|=¢ for
any 7n>0 and hence #(W—D)=—co. Let g: W—W be the contraction of
Supp Bk(D). Then p(W)=1 because p(V)=4#D-+1.

Claim. (W, D) is a log del Pezzo surface of rank one with non-contractible
boundaries (for the definition, we refre to M'T[8]).
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We have only to prove that —(g4D*+Kp) is ample and (W, D) is almost
minimal. These assertions can be verified in the same fashion as for Remark
1.2.

Thus, by Main Theorem and Theorem 7 in [8; p. 272], W—D (and hence
V—D) is affine-uniruled. Q.E.D.

We have classified the case where C meets exactly three components D,
D,, D, of D with {(D3), (D), (DY} ={—2, —3, —3}, {—2, —3, —4} or {—2,
—3, —5}. 'This will be treated in our forthcoming paper. However, it remains
to consider the case where C meets exactly two components D, and D, of D with
(D§)=—2 and (D))= —3.

7. Normal surfaces P*/G

Let G be a finite subgroup of PGL(2, k)=Aut(P3). Consider the quotient
surface V:=P?/G. Let z: P>V be the natural morphism which is finite.
It is easy to see that ¥ is a projective, normal surface with only quotient sin-
gularities. Let g: V-7V be 2 minimal desingularization such that D: =g *(Sing
V) is an SNC divisor.

Proposition 7.1.  The pair (V, D) is a log del Pezzo surface of rank one with
contractible boundaries.

Proof. We can find a sequence of blowing-ups f and a morphism 7 such
that zof=gor and V is nonsingular;
P? 1 14
7y VT

g
V <V

where g: V-V is the minimal resolution of the singularity of V. Note that deg
r=deg =. Since V is dominated by a rational surface V, V is a nonsingular
projective rational surface. We can define Weil divisors z4«H and g4«4 as usual,
where He Div(P?), A€Did (V). Since ¥ has only quotient singularities, there
exists an integer N>>0 such that N4 becomes a Cartier divisor for every Weil

divisor Aon 7.  So, we can define the intersection(4,, Ez):z—]\li—?( g*NA,, g*NA,)

for Weil divisors 4, and 4, on V (cf. MT[7; Lemma 2.4] and Artin[1; Th 2.3
and Cor. 2.6]). Since p(P?=1 we have p(V) (: =rank NS(V)g)=1. We verify
that the anti-canonical divisor — Ky is ample. We have the adjunction form-
ulas Ky ~f*Kp2+R,, Ky~1*Ky+R,, where R, R, are the ramification divisors
of f and 7, respectively and codim (fR;)=2. Let F (=%0) be an effective
Cartier divisor on 7. Note that g*Ky=D*+Ky and (R,, 7*¢*F)=0 since
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p(")=1. We have (Ky, F)=(g*Ky, g*F)=(D*+ Ky, g*F)= (K,,, gF)=

deg
(K, 7 *F)— 1 (Ky—R, T g*F)<——(KV, P = — ( F*Kp+R,,
frarF)= 1 f*Kpf frz *F)—-——(sz n*F)<0 So, by irtue of p(V)=
1, — Ky is ample Q.E.D.

We now turn to a problem of finding all singularities on a normal surface
P?/G. Consinder the following natural exact sequence:

(0)— Z/3Z — SL(3, k) &> PGL(2, k) — (1)

Let G: =p~%G) which is a finite subgroup of SL(3,k). We denote by k[X,,
X,, X,]° the invariant subring of the polynomial ring k[X,, X;, X,] with respect
to the linear action of G. The multiplicative group G,,: =k* acts naturally on
k[X,, X,, X,] and k[X,, X;, X,J°. Hence we have

PYG—(A*—(0))/k*|G=(A*—(0))/G/k*=(A%|G— (0) k¥,

where A3/G=Spec k[X,, X, X,]¢ has a unique fixed point (0) under the k*-
action. To give a k*-action on the affine scheme A3%/G is equivalent to giving a
Z,-grading on k[X,, X,, X,]6=®7., A;, where A,={fEk[X,, X, X,°| f(aX,,
aX,, aX,)=a’ f(X,, X, X,), for every ack*} (cf. Orlik and Wagreich [9; P. 47]).

Hence P?G==Proj k[X,, X,, X, ¢ where k[ Xy, X, X, ]G is given the gradmg
@5.0 A;. Notice that a finite group is linearly reductive. So, k[X,, X;, X,]¢

is a finitely generated graded ring over &.

Remark 7.2. If there is a finite subgroup H of GL(3, k) such that the
image of H by the natural map GL(3, k)—GL(3, k)[k*=PGL(2, k) is G, then
P?G=(AH—(0))/k*.

Here are several examples.

ExampLE 7.3. Let G=S; be the symmetric group which is thought of as a
subgroup of PGL(2, k) through the natural action of GSGL(3, k) on k[X,, X,
X,]. Let uy=X+X,+X,, u,=X, X,+X, X;+X, X,, 4,=X, X, X, be elemen-
tary symmetric polynomials. Then k[X,, X;, X,|°=Fk[u,, u,, u;] and P?/G=<Proj
k[uy, u,, us] where u; has weight 7 for /=1, 2,3. We shall see that there are
exactly two rational double points of type A, and 4,, respectively on P?/G.
Indeed, we have

Proj k[, u, us] = Spec k[u,/()’, s/ ()] U

Spec k[(w)/u, (u; us)/(ug)?, (u)?/(,)°]U
Spec k[(w)[us, (uy ) uts, () ()] -
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Hence there are rational double points, one of type 4, in the second open piece
and one of type 4, in the third open piece.

ExampLE 7.4. Let T be a finite subgroup of GL(2,k). Embed T into

GL(3, K)as G:{[g ﬂ;gel"}. Let G be the image of G in PGL(2, k). Then

P?|G contains AT as an open set, and Z: =P?G— AT is P'|T’, where T acts
on P! via its image in PGL(1, k). The natural G,-action on AT, defined by
the Z, -grading on k[x, y]*, gives a P'-fibration ¢: VV—P* a suitable desingulariz-
ation V of P?/G (not necessarily the minimal one), for which the proper transform
Z' of Z is a cross-section.

To wit, let T' be a binary icosahedral subgroup of SL(2,%). Then one
can take 7 to be the minimal resolution of the singularity of P?/G, and its P'-
fibration ¢ is illustrated as

Picture (15)

Let T now be a cyclic group of order #, which is identified with the group
of n-th roots of the unity, I'={{*; 0=<i<<m}. Let ¢ be an integer such that 0<
g<n and (n,q)=1. Consider an embedding I‘:;C,,,q={ [g‘ 2qi]; 0§i<n}§
GL(2,k). Suppose g=n—1. Then A*C,,-, has a rational double point of
type A,-;, while P?/G (with the above notations) has two more singularities lying
on Z provided n>2. If n is odd, V is obtained from the minimal resolution S
of P?/G by blowing up one point P

Picture (16)
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where n=2m+-1 and {E,, -+, E,,} is the exceptional locus on S of the singular
point on A?%/C, ,—,. If nis even, we can take Sas V.
This example is due to M. Miyanishi.

ExamPLE 7.5. Let G be the reflection group of order 336 (cf. Springer
[10; p. 98]). Then C[X,, X;, X,]=C [fis fo» fus] for homogeneous polynomials
fo fo [ of weights 4, 6, 14, respectively. Let G be the image of G by the natural
map GL(3, C)—>PGL(2,C). Then we see

P?|G=Proj C[f, fe, ] = U,U U, U U,, where
U, = Spec C[(f[(£)s (S I(fFs (RIS,
U, = Spec C[(£F/(fe)s (ffud(f)’s (fulI(f)],
Us = Spec C[(£Z fo)lfuw (S (i)’ (FSN(fu)?
(fI(fu)] -
Then there are exactly two rational double singularities, one of type 4, on U, and
the other of type 4, 0on U,. Note that C[X,, X,]/C,;=C[X} X,, Xi, X, X1, X1].

Hence there is exactly a cyclic quotient singularity of type C?/C;s on U; whose
dual graph is _02 -2 =3

o o’

ExampLE 7.6. Let G be the reflection group of order 648 (cf. [10; p. 101]).
Then the invariants subring of the polynomial functions is C[X,, X;, X, 6=
C[fs fo fi2) where fs, fo, fi, are homogeneous polynomials of weights 6, 9, 12,
respectively. Therefore, we have

P?|G=Proj C[f;, fo fro] = U,U U, U U, where
U, = Spec C[ful(£)" (foy’[(f6)]

U, = Spec C[(fe)*/(fo’s (fo fi|(f)s (Fu)’/(fo)]
Us = Spec C[(feflfrer (f6 f8)(fr2)s (fo)!](f12)] -

Hence there are two rational double singularities of type 4, and 4, on U, and
U,, respectively. They exhaust all the singularities of P?/G.

Our recent joint work with Miyanishi shows that the conjecture (2) is false.
Hence it becomes important to know criteria for log del Pezzo surfaces of rank
one to be wirtten in the form P?/G. For these observations, see a forthcoming
joint work with M. Miyanishi [12].

Applying the classification theory for log del Pezzo surfaces developed in the
present paper, we have gotten a complete classification of surfaces ¥ with smaller
multiplicity at each singular point of it (cf. [13]).
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where a natural number encircled between two curves means the order of con-
tact by which the corresponding curves intersect each other. A4 is a reduced
effective divisor in | —K5 |. In Fig. 6, Fig. 7 and Fig. 8, A is a nonsingular
elliptic curve. Otherwise, 4 is possibly reducible.
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