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1. Preliminaries and Results

Let (2, F,P) be a probability space on which all our random quantitied wi
be defined. LetZ¢ be the set ofd -dimensional integer lattice. We consider Mhark
chain onZ¢ with a transition function? X,y ). We denote b#, x,(y ) the -th tran-
sition function of the Markov chain. We are interested in aynaptotic behaviour
of P,(x,y) asn — oo, that is, a local limit theorem for the Markov chain. Spitzer
showed a uniform estimate of a local limit theorem for randealk in Z¢ (see, [10,
Remark to P7.9 and P7.10]). The purpose of this paper is tendxhis result to
the Markov chain with the following assumptions.

AssumpTion 1.1.  There exists = (s1, s2,...,5q4) € Z¢ with s, > 0, 1 <[ < d,
such that

P(x +s1€,y +s1€)=P(x,y)

for everyx,y € Z¢ andl, 1< [ < d. Heree, 1 <1 < d, denotes the basis vector

0,...,0,1,0,...,0) in 2%
1

We call a Markov chain with this assumpti@nrandom walk in periodic environ-
ment (RWPEfor abbreviation), and the vectar period of RWPE

AssumpTion 1.2.  The Markov chain is irreducible and aperiodic, thatfas,every
x, y € Z%, there exists a positive integep(x, y) such thatP, £,y )> 0 for all n >

no(x, y).
We set
E={(nJj2-»jd)€Z|0< j1<s1—1,...,0< jg <s4— 1}.

Forx € Z andl, 1< < d, we denote byT; X ) the remainder obtained when s
divided bys; , and putl’ X ) =T1(x1), Ta(x2), . . ., Ta(xq)) fOr x = (x1, x2, ..., xq) € Z9.
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Let k be a point inZ, then we sayx irZ? a point oftype k if T(x) = k. Let Q =
(9jx)j.re= be a transition matrix, of which each component is given by

g =Y P(j.x) forj, ke&.
T (x)=k

By Assumption 1.2, we see that the matrx is ergodic. Thgn  dadationary
distribution® = ;) e=, that is,

(1.1) lim 4% = m.

n—oo

AssumpTion 1.3,  For eachj € E,

> Ix|P(j.j+x)<oco and Y m; > xP(j.j+x)=0.

xezd JEE  xezd

AssumpTioN 1.4. The Markov chain has finite second moment, that is,

> [x[?P(j, j+x) < oo for eachj € E.
XEZ‘I

Let j, k € E andx € Z%. For gj > 0 we define

1
—P(j,j+x)if T(j+x)=k
Fir(x) =S 4k
0 otherwise,

and forg;x = 0,Fjx &) =1ifx =k — j and O otherwise. Note thak; -)(is the
jump size distribution of theRWPEunder the condition that the transition from a point
of type j to a point of typek occurs. Define the mean vecioss= (ujk:1, - - -, tjka)
and the covariance matric&S;,  &fim)1<i.m<a Of Fir(:), j, k € &, that is,

ikt = Y X Fu(x) and cm =Y 00— ) m — fjkm) Fix(x)
xEZ" xEZ"
for 1 <[, m <d. Note that by Assumption 1.3
(1.2) > migikmie = 0.
JkeE

Put

(1.3) 00) = (gje’ ™), e and f0,2)=zl - Q)|
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for # € R? andz € C. Note thatQ =Q (). Since the matrixQ is ergodic, by Perron-
Frobenius theorem, 1 is a simple root of the characterigjicagon f Q, z) = 0. See,
e.g., Karlin [4]. Thus we see that

(3.4) a—f(o, 1) #0.
0z
Set
*f of

1. m = ;1) / =2(0,1) for 1<, m <d,
(1.5) bin = 55950 )/az(o ) for1<i, m<d

B = (blm)lgl,mgd and D = Z Wijijk'FB.

jke=E

In Lemma 6.9, we will show that the matri® is positive definifethe transition
function P (x, y) satisfies Assumptions 1.1 through 1.4. L& denote the cardinarity
of the set=. Now let us state our result.

Theorem 1.1. Suppose that the transition functioR(x, y) satisfies Assump-
tions 1.1through 1.4. Then
(1.6)

lim. ((2wn)d/2Pn(x, y) — (#2)|D| Y2 exp{—% (v —x. DYy —x)) } w) =0

uniformly for all x, y € Z¢.

Theorem 1.2. Suppose that the transition functioR(x, y) satisfies Assump-
tions 1.1through 1.4. Then

(1.7)

2
"mu

n— 00 n
1
X <(27T")d/21’n(x, y) — (#5)|D|/? exp{—z(y —x, D7y —x)) } 7TT(y)) =0
uniformly for all x, y € Z¢.

First we shall prove the relations (1.6) and (1.7) under tamithl assumptions
given below and thereafter remove them.

AssumpTion 1.5.  For somej k € E for which ¢ > 0, Cj; is positive definite.
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Let ¢«(}), j, k € &, denote the characteristic function &f, -),(that is,

Gi(0) =Y e OIFy(x) for j, keE, R
xezd

AssumpTioN 1.6, On [-7/s1, w/s1] X -+ X [—=7/Sa, 7/$4], HMGE |ojx(6)| equals
1 if and only if 6 =0.

Lemma 1.1. Under Assumptions 1.lthrough 1.6, the formula(1.6) holds.
Lemma 1.2. Under Assumptions 1.lthrough 1.6, the formula(1.7) holds.

For eachj ,k € &, let {Y,{k}nzl be a family of independent identically dis-
tributed random vectors, anfl,}.>0 be an ergodic Markov chain with a finite state
spaceE. Assume that{Y,/*}7$% and {y,}.,>1 are mutually independent. Set, =
Y% + ...+ ¥, Then such a process may be caledandom walk defined on
a finite Markov chain By Lemma 2.1 in Section 2, we will show th&WPEmay be
realized as such a process. In 1-dimensional case, Millest{flied an asymptotic be-
haviour of P{X,, = x | x» = j, xo = k}, and Keilson and Wishart [5] proved the central
limit theorem of the process.

In [7] Kotani gave a Martingale approach to the central lithikorem and related
problem for a class of periodic Markov chains. Kotani, Shaad Sunada [6] consid-
ered local limit theorem for a class of Markov chains on annitdi graph satisfying
a certain periodic condition. They treated the reversiblerkdv chain with the prop-
erty that a particle at a given site can move to only finitelyngpnaites in one unit
of time.

In Section 2, in order to prove Lemma 1.1, we introduce theisege of lemmas.
In Section 3, we prove Lemma 1.1. In Section 4, we give someriasnon which our
proof of Lemma 1.2 is based. In Section 5, we prove Lemma h2Sdction 6, we
give some lemmas for Theorems 1.1 and 1.2. In Section 7, weepittese theorems,
extending Lemmas 1.1 and 1.2.

2. Some Lemmas for Lemma 1.1

In this section, we introduce some lemmas on which our preffsemmas 1.1
and 1.2 are based.

Lemma 2.1. Suppose that the transition functio®(x,y) satisfies Assump-
tion 1.1 Then for alln, n > 1, and x, y € Z%, we have

@1 P, y)= Y @i Dt Frg * Fuj * - % Fjy_r(y —x),
Jiseosjn—1€E
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where F * G is the convolution off andy

Lemma 2.1 is suggested by Shiga. See Chapter 7 of his book [9].
By Lemma 2.1 and the inversion formula for Fourier transfoip(x, y) equals
(2.2)

1 —i —Xx
> QT(x)jl"'CIj,,_lr(y)W/[ 116 @9 hr9,,(0) - - b, 1) (0) dB.

Jisees jnflea

Then by Assumption 1.1, we have the following lemma.

Lemma 2.2. Suppose that the transition functio®(x,y) satisfies Assump-
tion 1.1 Then for alln > 1 and x, y € Z¢ we have

23) P(e.)) = > qren Giarw)
Jiseees Jn—1€EE
) o
8 e 961005(0) - bj,_11»)(0) 6.
(27T)d [_%’%]XX[_ﬁ’% T( )jl J 1T(.‘)

Proof. By Assumption 1.1, we hawgj«(6 + (2r/s;)er) = exp{i(2m/s1)(ki — ji)} %
¢jx(0). By applying this formula to (2.2), we obtain (2.3). U

Denote by{¢,}.>o0 the Markov chain orE with the transition matrixQ . Set

Ni* =#{l<m<n|&-1=j &=k},
My = > piNi* and M, = M1, Myz, ... Mya).
jkEE

Put v x(0) = jx(0)e~'@ 10 for j, k € 2. Then we have

#=)

(2m)? [ Z.Zlox[-E. &

sS4 54

(2.4) Py(x,y) = exp{—i(0,y —x)}

< E | J] vn@®™ expli(6. M)}:& =T () | &0 =T(x)| db.

Jj.ke=E

It follows from the weak law of large numbers for ergodic Mavkchains that, forj
ke &,
Jjk

25 n s
( ) " — T4 jk

in probability asn — co. Moreover we have the following large deviation type esti-
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mate. Set

Ni*
(2.6) Anc = ﬂ L, ik

Jjke=E

<<}.

Lemma 2.3. Suppose that the transition functio®(x,y) satisfies Assump-
tions 1.1and 1.2 Then for all{ > 0, we have

(2.7 P{A:} < Ke™ Lrfor j, k€ E,
where K andL are positive constants depending¢obut not onn .
See, e.g., Dembo and Zeitouni [2, p. 64].
Recall Assumption 1.3 and (2.5). We have the following c@niimit theorem for

M,.

Lemma 2.4. Suppose that the transition functio®(x, y) satisfies Assump-
tions 1.1through 1.3 Then
o= J}

1
= exps —=(w, Bw) pm, for j, k € B,
2

(2.8) nILmOO E {exp{i\/iﬁ(w, Mn)}; &=k

where the matrixB is non-negative definite.

Proof. For a proof in the 1-dimensional case, see Hatori amdi 8, p. 124].
We will show (2.8) in the multi-dimensional case.

We denote byq(”)(e) 6 € RY, the component of the matrig AY'. Note that we
have

(2.9) q%(0) = E[expli(0. M,)}; & =k | &= j].
We will show lim, .o g%} (w//n) = exp{(—1/2)(w, Bw)}m. For everyz withlz| <

1, z € C, we haveZn:0 oO)'z" = (I — zQ(9)~1. We denote byR {, z)
(rjx(0, 2))j.ke= the co-factor matrix off — zQ(0), so that

(n) n— rjk(asz)
(2.10) Zq O = = 5w

Let x,(0), v = 1, 2...,#=, denote the eigenvalues @ 0)( Since Q Q) = Q, we
may taker1(0) = 1 and max<,<= |x.,(0)| < 1. Moreover there exist a neibourhotd
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of & = 0 and constanp, 0 < p < 1, such thatx;(0) is analytic inU (see, Bochner
and Martin [1, p. 39]) and:,(0), 1 < v < #=, are continuous irR? (see, Takagi [11,
p. 56]) and

(2.11) inf |[k1(0)] > p and supk.(O)| <p forv=2 ... #=E.
ocU ocU
Since f 0,k,(0))=0,v=1, 2...,#2, we may write
= 1
11 -20(0)|="f (9, E) = (1 rm(0)2)8(0, 2),

whereg 0, z) is a polynomial of degree®— 1 in z, andg ¢, 1/x,(0)) = 0 if x,(0) #
0,v=2,...,#=. Thus we have

rjk(O, Z) — rjk(O, Z) - O’jk(e) " Tjk(e, Z)
11 —z0(0)] (1-r1(0)2)g0,2) 1—-r(0)z g0,2)°

where o, (0) = rj(0, 1/k1(0))/g(0, 1/k1(9)) and 7.(0, z) is a polynomial of degree
#2 — 2 in z. Put

(2.12)

(2.13) ul)= , X |k (0)]-

Then (0, z)/g(9, z) is analytic inz for|z| < 1/u(f). Thus we may write

Tjk(g, Z) }
8(0,2)

ij(gv Z) Jjk m jk 1o {
= E 07", h J = —
( ’ Z) ~ Cin ( )Z wnere c¢;, 6 1 9z

Since this series has the radiugu{9) of convergence, we have

u(f) = lim sup |c/*(@)[¥/™.

m— 00

Therefore by (2.10), (2.11), (2.12) and (2.13), we have
(2.14) g5(0) = 7 (0)sa(0)" + ¢ (0) and ¢} 0) = o(ra(0)").

Since @ f/0z)(0, 1) # 0 by (1.4), we may use the implicit function theorem foi(0)
to have

1d 8,‘{1

2

(2.15) k() =1+ Z Or S0 +

where

8%1 8f
(2.16) —( 0) = l(O, 1)/8_1(0’ 1)
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and
Pri k(01 21, 1)%(0 1)
@I 5600, 07 Ty T @0y
L@ DE 0.1 F. 1)25 (0,124, 1
(%L(0, 1))2 (ZL(o, 1))3

By (2.14), (2.15) and (2.16),

(2.18) lim g (;) = ;4(0) exp{—z (g—gl(o, 1)/88—?(0, 1)) w,}
=1

for everyw € RY. Setw =0 in (2.18), then by (1.1) we obtain
(2.19) 74(0) = m¢

We show 0f/00,)(0,1) =0 for all/, 1< < d. Note that

(2.20)

= > wjamiqje in probability, 1< <d.
jke=E

n—oo n
By (1.2), the right hand side of (2.20) equals 0. Therefore

ILm E [exp{i (w MT)} &=k

By (2.18) and (2.19),

d
exp{—z (g—gl(o, 1)/88—{(0, 1)) wl} =1 forallweR’,

=1

5024 =m, for al weR%.

so that 0f/06,)(0,1) =0 for all/, 1< < d. Thus we have from (2.15), (2.16) and
(2.17)

(2.21) k1(0) =1 — %(9, BO) +0(0]?).
Substitute (2.21) to (2.14) and sét w/+/n, then we obtain (2.8). O

It follows from the central limit theorem for sums of i.i.damdom variables that

w nT;qjk 1
(2.22) wjk <W) — eXp{—E(w,’]qujijkw)}.
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By (2.8) and (2.22), we have the following lemma.

Lemma 2.5. If the transition functionP(x, y) satisfiesAssumptions 1.1through
1.4, then

li el '“Tfflka = My) e &=k
i, Lo (G5) eloofizonm}i o=

JjkeE

1
= exp{—é(w, Dw)} ks

5021'/}

forw e R, j/, k' € E.
Using P 7.4 and P 7.7 of Spitzer [10], we have the following riean

Lemma 2.6. If the transition function P(x, y) satisfies Assumptions 1.1, 1.4
and 1.5, then there existj, k € = and positive constant§ and A such that|;(6)| <
e~ when 6] < 5.

By Assumption 1.4 and Maclaurin expansion fpf(6), we have the following
lemma.

Lemma 2.7. Suppose that the transition functio®(x,y) satisfies Assump-
tions 1.1, 1.2and 1.4 There exist positive constantsand a such that for every,
0< (<1,

N¥(w)—nm;qjk ) )
) < aclwP exp{aclwl?}

ez 1~ I vn (2

JjkeE
when|w/y/n| <6 andw € A,.

3. Proof of Lemma 1.1

We will prove Lemma 1.1. Suppose tha® x,{ ) satisfies Assumptidnl
through 1.6 in this section. Then by Assumption 1.5 and Len@wg D is positive
definite. We will show the formula (1.6). Take <9 «, { < co. Let § be positive con-
stant satisfying Lemmas 2.6 and 2.7. Set /#0. We may write

(2mn)?/?
(#=)

- | exp i .y -}
= — —]— s —
@m)2 ) -z z1cx- 22D v

a7 5d

Py(x,y)
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Nk
E . i) ) {li s n }; n =
X[QL%%WE exp{i =0 M) | 6,=T0)

= Io(l’l) + I]_(VL, O[) + Iz(l’l, Oé) + 13(’1’ «, 5) + I4(I’l, 5v C)
+ 15(7’1, 55 C) + Iﬁ(nv 55 C) + 17(}’1, 57 C)s

o = T(x)} dw

where

Io(n) = ﬁ /Rd EXP{—i%(w’ y —x)} exp{—%(w, Dw)} Tr(y) dw,

gy ol e} (1 ()

Jjke=

x E [exp{i%(w, Mn)}; & =T(y)

- EXP{—%(w, Dw)} 7TT(y)) dw,

j.ke=

@:T@ﬂ

x E [exp{i%(w, Mn)}; & =T(y)

&= T(x)} dw,

j.ke=
xEFm{g%WJ@ﬁ;&:nwA& @:nm}m,
- 1 1 w Tk
i owl e o} (o ()™

el (LR )

X exp{i\/iﬁ(w, Mn)} ;& =T), Anc | &0 = T(x)} dw,

1 / exp{ = (w,y x)}
1 —l—= ) -
N (B PR S v

[(IL ())

Iﬁ(ns 57 C) =
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x exp{iin(w, Mn)} s & =TO)Auc | 0= T(x)} dw

7

and

L 1
5. 0) = —/ exp{—i—(w,y —x)}
@MY J - g1 <o 20 v

(L))

1
. exp{iﬁ(w, Mn)} 6 =TO)AY | o= T(x)} dw.
A direct calculation shows that
— —1/2 1 -1
Io(n) = |D| exp ~% (y —x,D " (y — x)) ().
It remains to show that the ternis, Io, ..., I; go to zero uniformly inx ,y as —

oo. We have

|y, 0)] < (2m) /2 /

|w|>c

1
exp{—z(w, Dw)} Tr(y) dw,

which can be made arbitary small by takingsufficiently large.
By Lemma 2.5 and Lebesgue’s dominated convergence thedogrsyery «

nwjqjk
|L(n, )| = (27T)—d/2/ § ( H Vjk (%) )

Jjke=E

<€ Jexp{ i} 6 =70) 0= 7(0)

1
_exp{—i(w, Dw)}ﬂr(y) dw — 0 asn — oo.

By Lemma 2.6,/I3(n, @, 9)| < [, _ |, e~ vqw, which can be made arbitary small by
taking « sufficientry large. By Lemma 2.3,l4(n, 6, ¢)| < K(25y/n)?e~L", where K
and L are positive constants in Lemma 2.3. Note Lemmas 2.6 ahdlBen we have

|I5(n, 0, Q)| < (ZW)*d/ZaC/ |w|2e*(’\*“o|w‘2dw,
Rd

which can be made arbitary small by takiggsufficiently small.
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Let 8 = min{m;qx | qjx > 0, j, k € E} and choose, 0 < ¢ < /2. Then by
Assumption 1.6 there exists a positive constanD < v < 1, such that

e

jke=
™ Vs s w
vevn([ ] ) A
Hence|Ie(n, 4, ¢)| < (2rn)?/?(1—~)"#/2. By analougous way tdy(n, 8), |I7(n, 3, ¢)| <

(2mn)4/2K e Ln,
The proof of Lemma 1.1 is complete. O

N w)
< (1— )2

when

>0 and weA;.

4. Some Lemmas for Lemma 1.2

We introduce thel -dimensional Laplaciaxy = 3¢, (92/967).

Lemma 4.1. Suppose that the transition functio®(x,y) satisfies Assump-
tions 1.1and 1.4 Then we have

#E)

d
(Zﬁ) [*ﬁ,ﬁlx“'XP*%’ﬁ

XA@{E K 11 wjk(a)ank)e,-(e,M,,); ¢ =T ()

Jj.keE

e = yPPu(x, y) = — !0y

€ = T(x)} }de

forall n >1andx, y ez

Proof. Using the formula for integration by parts and Asstioms 1.1 and 1.4,
we have

/81 )
o — xl)z/ e O 11 (0)07,1,(0) -+ - by y7() (0) O,

—m /s

/8 o 92
= [ T s 0030) 61O}
l

— /s

for [, 1 <[ <d. Thus we obtain the relation of the lemma. O
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Lemma 4.2. Suppose that the transition functio®(x,y) satisfies Assump-
tions 1.1through 1.3 Then

i el ) <)

(4.1)

9 1

=, {exp{—é(w, Bw)}ﬂk}
and

9? o1 e .
4.2) " T {E {exp{lx/_ﬁ(w’ M")}’ &=k | &’_1”

0 1
= 5w 9w, {exp{—i(w, Bw)} ﬁk} .
forweR!, j,keZand1<l, m<d.

Proof. Differentiate each side of (2.10). Thus by argumeinslar to that made
for the proof of Lemma 2.4, we obtain (4.1) and (4.2). O

As in Spitzer [10, p. 80], we have

nT gk
@y im Lo () = g {ew{ -G mancan}

and

) 82 nTjqjk 82
(4.4) n'_'[goa—wlz{%k (%) } 5w 2{ XP{ (w’ﬂijjijkW)}},

1<1<d. By Lemma 4.2, (4.3) and (4.4), we have the following lemma.

Lemma 4.3. Suppose that the transition functio®(x,y) satisfies Assump-
tions 1.1through 1.4. Then
=)

(Lo () el o

JkeEE

= A, {exp{—%(w, Dw)} wkz}

forweRY, j, k' € E.
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Lemma 4.4. Suppose that the transition functio®(x,y) satisfies Assump-
tions 1.1through 1.5 There exist positive constanids A and b1 such that

9 w nT;iqjk )
(4.5) Jw, {j;}!;[awjk <W) } < brw| exp{—A|w|"}
and
52 w \ Tk 5 5
(4.6) o j’gaw,-k <\/—ﬁ) < b1(1 +|w|?) exp{—A|lw[“}

for all I, 1< <d, when|w/\/n| <é.

Proof. See, for a proof, Spitzer [10, p. 81].
As in the proof of Lemma 2.7, we have the following lemma.

Lemma 4.5. Suppose that the transition functiow(x, y) satisfies Assump-
tions 1.1, 1.2and 1.4 There exist positive constardsand b, such that for every,
0< ¢ <1, we have

o w NiMw)—n g )
@ ’8_101{1_ I1 v (75) H < balw] explba v’}

jke=
and
92 w \ M@ =nmia , ,
(4.8) ‘8712{1_,{6[5 o (2) }] < baC(L+ w]?) explbaclu [}

when|w//n| < § andw € A,.
By analogous way to Lemma 4.2, we have the following lemma.

Lemma 4.6. Suppose that the transition functio®(x, y) satisfies Assump-
tions 1.1through 1.3 There exist positive constaniésand b3 such that forl </ <d,
j, k€&,

(4.9) ‘% {E {exp{i\/iﬁ(w, Mn)}; &=k ’ o= J} }’ < b3(Jw| +1)

and

0? .1 e - _ . 2
(4.10) {E [exp{z—n(w, Mn)}. §n=k ‘ o= J} H < b3(Jw|” + 1)

la_wf Vn
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when|w//n| < 4.

Lemma 4.7. Suppose that the transition functio®(x, y) satisfies Assump-
tions 1.1and 1.2 Then there exists positive constdnt such that for every > 0

(4.11) ’8% {E [exp{i%(w, Mn)}; &=k As | €= J} }’ < baK /n exp{~Ln}

and

0? .1 C e = c —
(4.12) ’8—11),2 {E {exp{z\/—ﬁ(w, Mn)} 6 =k AL ‘ = j:| H < bsKnexp{—Ln},
where K andL are positive constants givenliamma 2.3

Proof. Note that{M,,| < constantx n for all w € @ and/,l <[ <d. Thus by
Lemma 2.3, we obtain (4.11) and (4.12). ]

Lemma 4.8. Suppose that the transition functio®(x, y) satisfies Assump-
tions 1.1, 1.2, 1.4and 1.6. Let 3 = min{w;qjx | ¢jx > 0, j, k € B} and { < §/2.
Then for everyd, 0 < § < mimn<;<q 7/s;, there exist positive constants; and ~,
0 < v < 1, such that

92 w \ M@ (1/4)8
. — x| —= < — "
6 L () e
j.ke=
when|w| > §v/n, w € \/n([—7/s1, 7/s1] X -+ X [—7/sq, 7/54]) @aNd w € Ayc.
See, for a proof, Spitzer [10, p. 81].

5. Proof of Lemma 1.2

Suppose that the transition functigh x, ¢ ) satisfies Assumpfid through 1.6.
Setw =/n6 in Lemma 4.1, then we have

(5.1)
|y — x| (2mn)*/2
- 1 / exp{ 1
- —— —l—
@m)2 ) iz 21 x - 2. 2D v

Nk 1
wa{EK " (1) )exp{i—(w, Mn)}; & =T0)
ALo i

Py(x,y)

(w.y -0}

&o = T(x)} } dw.



882 T. TAKENAMI

Take 0< «, ¢ < oo and 0< & < mim<;<47/s;. Decompose the right hand side
of (5.1) as follows:

|y — x[? (2mn)"/?
n (#=)
+ ]Z(nv O[) + ]3(7’1, Q, 5) + J4(}’l, 57 C) + Js(}’l, 57 C) + Jﬁ(ns 57 C) + ]7(}’1, 57 C)s

Py(x,y) = Jo(n) + Ja(n, @)

where

J()(}’l) = —ﬁ /R,, eXp{—i%(w, y _.X)} Aw {eXp{_%(ws DU))}}'/TTQ) dw’

1 1 1
Ji(n, a) = i /w|>a EXP{—i\/—E(w, y— x)} Ay {exp{—é(w, Dw)}}m(y) dw,
— 1 . 1 w nT;qjk
o =gy [, oot gy of (s { (I () )

Jj.keE

<E [exp{i%(w, Mn)} 6 =T0) | @= T(x)}

— exp{—%(w, Dw)} WT(y)}) dw,

o 1
J3(n, a, 0) = _—(27r)d/2 /a<|w<\/716 exp{—zﬁ(w,y —x)}
nw;q;jk
INTERAETS
x E {exp{i\/iﬁ(w, Mn)}; &=TW) | &= T(X)Hdw,
1 o1
]4(7’1,5, C) = W/lwg\/ﬁa exp{—l\/—g(w,y —x)}
<af(ILe (7))
w ik \ ——
jkes " \vn
<elowitw M)} 6 =10). 5 | @ =10 fau.
S N iy
1o 0.Q) = Gy /|w<m ero{ ity )

w{(IL(GF) )
X Ay Pik | —F—=
Jj.keEE ! \/E

o (e (2 )
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x exp{iin(w, Mn)} v & =T (), Anc

=70} au,

N
ol 0.0 = _W /lw>ﬁ6;ﬁ([—g,51x-~x[—§,gn exp{_i%(w’ T x)}
L (3 o)
6 =T0) A = 70| fau
and

L 1
5.0 = _—/ exp{—i—(w,y —x)}
(27T)d/2 \/ﬁ([*ﬁ’%]xx[iﬁ’ﬁl) \/ﬁ

ool () el )

&= TO) AL | &= T(x)}} dw.

A direct calculation shows that

- 1
Jo(n) = % eXp{_Z (y —x, DYy - x))} TT(y):

Let us estimate remaining term through J;. We have

1 1
(@n)2 /,M Bu {exp{_i(w’ D“’)}}

which can be made arbitary small by takimgsufficiently large. We apply Lemmas
4.3, 4.4 and 4.6 to get an estimate B{n, «):

(Lo ()™

|J1(n, o) < Tr(y) dw,

o) < 2y |

lw<a JkEE
< E [exp{i%(w, Mn)}; &=T0) | 0= T(x)}

1
- eXp{—E(uh Dw)} FT(y)}‘ dw—0 as n — oo.
By Lemmas 2.6, 4.4 and 4.6, we may choose a positive constas that

|J3(n, , )| < (27r)_d/261/ (1+ |w|2)e_A|""2dw —0 asa— oo.

a<|w|



884 T. TAKENAMI

By Lemmas 4.4 and 4.7, there exists a positive constarduch that|Ja(n, d, ¢)| <
coKne L,

Using Lemmas 2.6, 2.7, 4.4, 4.5 and 4.6, there exists a y@stinstanicz such
that

|Js(n. 8, Q)| < (2m) /¢3¢ /R,(1+ w[*)e N aw — 0 as¢ - +o0.

Take 8 and ¢ as in Lemma 4.8. Then by Lemma 4.8, there exist positive eotst,
and-y, 0 <y < 1, such that

[Je(n, 8, Q)| < ca(@mn)?/?n(1 — )P/4,
By Lemma 2.3, there exists a positive constaftsuch that
[J7(n, 6, Q)| < csK (2mn)??ne 1.

We see from the estimates given above tliagt <(k < 7) tend to zero azs —
uniformly for x, y. This completes the proof of Lemma 1.2. ]

6. Some Lemmas for Theorems 1.1 and 1.2

Let ¢ be a positive integer. Sa  §{);c=. Note thatg$) = 3, -, P(j. x).
In a similar way toFj; () we define, forqj(.’k) >0

1 .
0 Wpt(jsj"'x) if 7(j+x) =k
ij (x) = 9k
0 otherwise,

and forqj(.’,z =0, F}Q(x) =1if x=k— j and O otherwise.

Suppose that the transition functioh x,( ) satisfies Assumpti@.1 and 1.3.
Then we may seps.’,z;, =Y ez x,F}Q(x) and G!) = (qj(-tk)ﬂylz;z)j,kea fori, 1<1 <d.
Let Gfo), 1< <d, be the null matrices.

Lemma 6.1. Suppose that the transition functio®(x, y) satisfies Assump-
tions 1.1and 1.3 Then for every positive integer, we have

t—1
(6.1) Gl(f) = Z QnGEl)Qtfl—n‘

n=0
Proof. The lemma is trivial for = 1. Let us consider for- 1. By the definition
of GY,

(6.2) G =cG{ Mo +0 'GP,
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Indeed,
A=Y Y HEae) X p(r i)
JEBR T(j+x')=j" T(j+x)=k
+2 > Pealra) Y - aP(j et x)
JIEBT(j+x")=j" T(j+x)=k
= > al e+ Yl e
je= =

Suppose that the lemma is true for = 1. Then by (6.2) and the induction hypoth-
esis, we have

t'—2 '—1
G;t) - Z QnGgl)Qt —1-n 4 Qt 71G;1) - Z QnGl(l)Qt 717n.
n=0 n=0
The proof now follows by mathematical induction. O

Suppose that the transition functighx, (¢ ) satisfies Assumptib.1, 1.2 and 1.4.
Denote byl the (#)-dimensional column vector with all the components eqoal t
Then, by multiplying both sides (6.1) on the left iy and on tight by 1, we have

(6.3) o omiaRully =0 Y miqpnp for 1<i<d.

JjkeE Jjke=E

By Assumption 1.4, we may séztﬁ’,z;,m =D ez xlme;tk)(x), 1<, m<d. Put Hl(’;) =

@0n% ) ke, Gy = (@080, 168).,) 1 ke= and

S =D (= 1) Con — 1) FRO00)
xeZ

for 1 <1, m <d. Then we have

(6.4) Z 7quyk)cylz;lm =mH{)1-xG)L.
Jjkes

Let H,Sf? and GESB, 1<1, m <d, be the null matrices.

Lemma 6.2. Suppose that the transition functio®(x, y) satisfies Assump-
tions 1.1and 1.4 Then for every positive integer

1—1
Hl(riz) = Z Q" Hl(ri)Q,_l_n
n=0

+ Z Z (Q"ZGl(l)Qt_z_”l_”zG,(,})in + QnZG’(;Il.)Qt—Z—nl—nZGEI) in)‘

0<n1<r—2 0<n<t—2—n3
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Proof. The lemma is trivial for = 1. By analogous way to (6.2 have
(6.5) HY) =HP0+ 0 *HY + G I6M + G- HIGM

for every positive integer . Suppose that the lemma is true for'—1. Then by (6.5)
and the induction hypothesis, we have

t'=2
Hl(rl;ll) — (Z QnHl(ri)QtLan + Z Z (anGl(l)Qt'73*n1*nng-)Qn1

n=0 0<n1<t’'—3 0<n2<t’—3—n1

+ QI‘LZGI(/;L)Q{’_3—I‘L1—I‘L2 Gl(l)in) ) Q + Q]’_lHl(’i)

t'—2 t'—=2
+ (Z QnGl(l)Qt/2n> G;(/,:gL) + (Z QnGSV})QIIZn) G;l)

n=0 n=0
-1 t' =21 —2—n1
— Z QnHl(ri)Qt —1-n 4 Z Z anGEl)Qt 727n17nzG$i-)Qn1

n=0 n1=0 ny=0

t' =21 —2—ny
+Z Z anG(l)Qf,—z—nl—nzGl(l)in

m .
n1:0 nzIO
The proof follows by mathematical induction. O

Suppose that the transition functighx, ¢ ) satisfies Assumptib.1, 1.2 and 1.4.
Then, by (6.4) and Lemma 6.2, we have, for every positivegitte,

(6.6) > miagcily,
Jjke=E
=mHY 1+ Y (1 —1-n)(GPQ"GY+GP0"GM)1 - n G
0<n<t—2

Denote byIT a matrix of order &) with all the row vectors equal ta

Lemma 6.3. Suppose thaQ is ergodic. Théh— Q +I1) has its inverse matrix
and (I — Q+I)~t=3""2 (0 — T)".

See, for a proof, Hatori and Mori [3, p. 107].
Suppose thaD) is ergodic. Let be a positive integer. Then, &yrha 6.3, we
may define

o0
’

(6.7) 20= () e = (1 - Q'+ =30 (0 - M),

n’=0
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and we have
(6.8) ZOm=nz" =n.
Define z =zW. Set
)= (10 i), 00O) = (Vi) o and £90,2) = |21 — 0V0)]

for § € RY andz € C. Note thatQ®(0) = Q'. By (1.4), ©f®/dz)(0,1) #0. Thus we
may set

9% f0 YA
) = 0 = (p®
by 26,50, (0, 1) / 5z (0,1) and BY = (b

Lemma 6.4. Suppose that the transition functio®(x,y) satisfies Assump-
tions 1.1 through 1.4. Then

(6.9) b = (GY +GPZOGY + GVZOGY)1
for every positive integer .
Proof. Let{¢"},>o be a Markov chain ofE with the transition matrixQ’ . Set

(6.10) NOF=#1<a' <n | =j 9=k} and M= 4 NOK,

n’
Jjke=E

Under Assumptions 1.1 and 1.2" is ergodic. Moreover, by)(&& have

> miqQul), =0 for1<i1<d.

Jjke=

Thus we may apply Lemma 4.2 t£®},>0 to have

1
(6.11) by = im — {M,S’.}M,gf.gn; €0 =k ‘ 5g>:j}, 1<1, m<d.
n—00 Tk ’ !

By analogous way to Hatori and Mori [3, p. 123], in which thegdted the case
thatd = 1, we may see that the right hand side of (6.11) equasritiht hand side
of (6.9). Thus we obtain (6.9). [l
Lemma 6.5. If Q is ergodic then ZQ" = — ZZ;%) o" +nll + Z.
Proof. By (6.7) and (6.8), we have

(6.12) ZQ =Z —I+1I.
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Therefore the lemma is true far = 1. Suppose that the lemmeuésforn =n’ — 1.
Then

n'—1
ZQn’ — (ZQn’—l)Q - _ Z Qn” +n'TI + 7.
n’’=0
The proof follows by mathematical induction. O

Lemma 6.6. Suppose that the transition functiow(x, y) satisfies Assump-
tions 1.1through 1.4. Then for every positive integer

(6.13)  b¥

Im

=aGil-n Y (t—1-n)(GP0"GY+GP0"GM)1

0<n<t—2

+1rGP 726V + 1 GV zZGW1.

Proof. By Lemma 6.1, we have

t—1 t—1
(6.14) 2GYZ0G01 = xG® (Z Q”') z0 (Z Q””) M1,

n’=0 n’'=0

By (6.7),
(6.15) (20 =z"1+0- 0"
Multiply both sides (6.15) on the left bg , and on the right 8. Thus we obtain

(6.16) z=20+ Y z(1-0)Q"Z".

1<n<t—1

By applying (6.8) and (6.12) to (6.16),

—1
(6.17) Z = (Z Q”) ZO — (r — D11,
n=0

By multiplying both sides (6.17) on the right bEi;é Q", we obtain

t—1 t—1 t—1
(Z Q”) z0 (Z Q”) =Y 2Q"+i(t — L

n=0 n=0 n=0

By Lemma 6.5, we have

t—1 t—1
(6.18) (Z Q”) z® (Z Q”) == Y (t-n-10"+ gt(t — 1) +1Z.
n=0 n=0

0<n<t—2
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Substitute (6.18) to (6.14), and note Assumption 1.3. Thashave

nGPZ0G01=—n > (t-n-1GP0"GP1+mGPzG1.
0<n<t—2

By Lemma 6.4, we obtain (6.13). The proof is complete. U

Set CY) = (9., )1<im<a and DO = 3> o 7m;¢0CY) + BO. Thus by (6.6) and

Lemma 6.6, we have the following lemma.

Lemma 6.7. Suppose that the transition functio®(x, y) satisfies Assump-
tions 1.1through 1.4. Then for every positive integer D =¢D.

Lemma 6.8. Suppose that the transition functio®(x, y) satisfies Assump-
tions 1.1through 1.4. Put

to = max{no(0, 0), no(0, £s1€), 1 <1 < d}.

Then the transition function defined W/ (x, y) = P,(x, y) satisfiesAssumptions 1.1
through 1.6.

The proof is omitted.

Lemma 6.9. Suppose that the transition functio®(x, y) satisfies Assump-
tions 1.1through 1.4. Let fy be as inLemma 6.8 Then we have

(6.19) nli—>moo ((27T nto)"/2 Py (x, y)

— (#=)| D2 exp —i(y —x, DNy —x)) p 71y ) =0

2}’[[0 ’ Yy
and
oy = x|2 d/2
(6.20)  lim ————( (2nntp)®’ < Pus(x, y)
n—oo Ny
_ 1 _
—(#E)|D|~? exp{—Zn—to(y —x, DYy - X))} 7TT(y)) =0

uniformly for x, y € Z¢, where D is positive definite.
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Proof. SinceP’(x,y) in Lemma 6.8 satisfies Assumptions 1.1 through 1.6, we
have from Lemma 1.1 ¢@)?/?P/(x, y) converges to

1
(#2)| W~/ exp{ —o- (v = 2. (D) Xy —x) } ()

uniformly for x, y € Z¢ and D) is positive definite. By Lemma 6.7) is positive
definite and (6.19) holds. Similary, by Lemma 1.2, we obtd&r2Q). U

7. Proof of Theorems 1.1 and 1.2

Suppose that the transition functighx,( ) satisfies Assumplid through 1.4.
Let 1o be the positive integer given in Lemma 6.8. In order to provedrem 1.1, it
suffices to show that

lim  sup |2 (nto +n"))"/? Pyygin (x, y)

=0y, yezd

—(#’E)ID|1/28XD{— (y—x,Dl(y—x))}wT(y) =0

2(nto+n’)
for everyn’, 0<n’ <1 — 1. By Lemma 6.9, we may write

(27r(nt0 + n/))d/zpmom'(xv }’)

= (#E)IDI_I/ZGXP{— (y—x.D Ny —X))}Wr(y)

2(ntg +n’')
+15(n) + I(n) + o(1),

where

1(n) = ()| D2 eXP{—z,%O(y e Dy - x) } o)

—(#’E)|D|1/2exp{— (y—x, D7y —x))}WT(.v)

2(nto +n')

and

1
1) = (DIDI 2 Y B (5, exp{ v~ 6, D7 ) gy
x'ezd

_ 1 _
— (#2)|D| l/zexp{—zn—to(y—x,D l(y—x))}WT(y)v

ando (1) tends to zero as— oo uniformly for x, y. We will show that the termg;
and I} go to zero uniformly inx ,y as — oc.
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It follows from the inequalityle™ — e | < e *|y — x| for y > x > 0 that
|I{(n)| < ai/n, wherea] is a positive constant.
Since D is a symmetric matrix and positive definite, all itsegigalues{; }1<)<4
are positive and there exists an orthogonal maltfix wum (<i.)<s Such that
(7.1) D =UAU",

where A =diag\;...\;} and U™ is the transposed matrix @ . Then we have

eXp{_Znito(y —x', DYy - x’))} — eXp{_Znito(y —x, DYy - x))}

i zd:(exp{ 2ntoAr (Z it O = ) )2}

oy jor 1 m=1
d 2
1 1
a2 (D) |
1'+1<i<d m=1
Thus
d d 2
)| < GRIDI S Pur(xix) 3 e G (zum,« - |
x'ezd =1 0" \n=1
2
1
—€ - ml’\Ym — Am ) -
xp{ 2ntoy: <;u vl = )) } o)
Note that
(7.2) e/ _ i = /XZBe_UZ/”dv Saéi|y—x|
y I v

wherea) is positive constant. Thus, by Assumption 1.3, there exsisitive constant
a4 such that|Ij(n)| < a}//n. The proof is complete. U
In order to prove the Theorem 1.2, it suffices to show that

. /2
lim - sup |y — x/? (2n(nto+n')) / Pusgtn' (X, y)
n—oo nlg + N’ 74

=0

_ (#®)|D| Y2 exp{— y—x. DYy —x»}my)

1
2(ntg +n’) (
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for everyn’, 0<n’ <1y — 1. We may write

2
u ((27‘(‘(111‘0 +n )) Posgn’ ()C y)

nto+n

1
— (#2)|D| 72 eXp{—W (y—x, DYy —x)) } 7TT(y))
= Ji(n) + Jy(n) + J3(n) + J4(n)

where
1) = B}t—+x’1|2 (nt(;;n )d/z ,GZZH P (x. ) ((27rnto)d/2Pnto(xls)’)
— (#8)|D|*? exp{—z%o (y—x', Dy - X’))} 7TT(>'))v
b()—'t +L(#3UN ”ZE;fVCnf)wm{—Z%ﬂy—xﬁD%y—fﬁ}wu»
- mio exp{ - 5i (- D= 0) e
ntg +n’ 2ntoy
s = (0l VL el (s k07 ) fny
- (#E)|D|_l/2b)t_7+x|, eXp{_Z(Tl-i-n’) (y—x, D Hy—x)) } TT(y)s
T = ((m(,)q;;nl)d/z— 1)(#:)|D| 1/2|nyt +n|
X x;ﬂ exp{—znitO (y —x',D7Y(y - x’))} T (y)-

We will show that the terms/;, J;, J3 and J; go to zero uniformly forx ,y as
n — o0.
Note that

(7.3) y —x <2y =¥+ 2x" —xf%

Thus, by Lemma 6.9 and Assumption 1.4, there exist posithrestantsh; and b5, such
that

1
[Ji(m)| < bi— sup |y
ntp y.x'ezd

nlo(xlv y)

1
— (#2)|D| /2 exp{—zn—tO (y—x'.DYy— x/))} TT(y)
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1
+bh— sup |(2rnte)/ 2Py, (x, y)
nip y’xlezd
1
— (a#/i’E)|D|*l/2 exp{—% (y —x', D7 Yy - x’)) } Tr(y)| — 0
0

asn — oQ.

Since |y — x> = [y —x'[P+ |y — x|* — |y — x'[?), we haveJj(n) < J3y(n) + J5,(n),
where

x'? |

4 = GR)|DI2 Y P
x'ezd

1 _
X eXp{_Zn—to(y —x', DMy —xl))} TT(y)s

Too(n) = (#2)|D|~Y/2

1
X Z P, (x,x") PR ly —x' |2exp{ 2m‘o(y—x/,Dl(}’_xl))}
x'ez?
1 _
—|y—x|2exp{—2n—t0(y—x,D l(y—x))} T7(y)-

Note that the inequality|y — x|?> — |y — x'|?| < |x’ — x|+ 2]y — x'[|x’ — x|. Thus,
by Assumption 1.4, there exists a positive constansuch thatJs,(n) < bin—%/2.
By (7.1), the right hand side afj,(n) equals

1
nto +n’

#E)DIT2 Y Pur(x,x')

x'ez?

(St ) Yo et (S )
(St Yol A

=1

Note that

(35) {557} (7)o -2 37
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xexpy — > 1123 > /\1%3

1<ls<lr—1 Aty t1<lz<d 4
13#11 147'/11
1, 2 1 5 1 5
+ Z (xml exp{_ Xy (7~ Ymy exXp _)\ Ymi expq — Z A Yy
m1=1 mi 1<mp<d ~ ™2
ma#my

Thus we have

HERIDITE s D Pulrx)

/ezd

> (Z< ) oo (S man ) |

- (; tmts (Ym — xm)) exp{ B 2nt:(|)->\13 (mzd: e (Ym = xm)) 2}

=1

TT(y)-

Noting (7.2) and thaty?e~®/m* — x2e=A/m+*| < bl /u |y — x|, whereb) is a positive
constant, we see that there exists a positive constasuch thatJ),(n) < bg/\/n.

By analogous way td;(n) there exists a positive constabf such that|Jj(n)| <
bg/n.

Since x2¢=*" is bounded, by (7.3) there exists a positive constgnisuch that
|J4(n)| < by/n. The proof is complete. O

Remark. Consider aRWPE on Z¢ with the transition functionP A,y ), where
P(x,y) >0if y=x+e,1<1<d, andP ,y) = 0 otherwise. Such RWPE
does not satisfy Assumption 1.2. Nevertheless, for 1 andrukional case, by mod-
ifying the transition function we may apply Theorems 1.1 &h@ to the RWPE
For 1-dimensional case, we may assume that its pesiod is. 8ehP/(x,y) =
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Po(2x, 2y). ThenP’(x, y) is a transition function orZ with period s/2 and satisfies
Assumptions 1.1 through 1.4. For 2-dimensional case, we assyme thas = (s, s).
SetS =(17') and P'(x,y) = Pa(Sx, Sy). Then P'(x, y) is the transition function
on Z? with periods and satisfies Assumptions 1.1 through 1.4.
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