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1. Introduction. In 1984, V. Jones [8] introduced a new polynomial
invariant of link isotopy types which is now called the (one variable) Jones
polynomial, which was subsequently generalized to the two variable Jones
polynomial [4], [13]. These invariants are closely related to the traces of ir-
reducible representations of Iwahori algebras (or Hecke algebras) [2], [7] asso-
ciated with the symmetric groups (see [5], [9]).

The purpose of this paper is to show that the Kauffman polynomial [12]
can also be interpreted as a function F' on a certain associative algebra. We
define a knit semi-group D, of degree n which is generated by the generators of
the braid group B, on = strings and elements e, ¢,, -+, ¢,_, in Figure 4. We
call an element of D, an n-knit. We get a link d” in the 3-sphere by closing
an n-knit d. We call d” a closed n-knit coming from d. We also define an
algebra E,(a, B) for non-zero complex numbers a, BC— {0} as a quotient of
a semi-group algebra C[D,] of D, over C. Then the Kauffman polynomial of
a closed n-knit is obtained through E,(«a, B).

From Section 7 on, we treat the case #=3. Then we can show that the
function F is a sum of traces of irreducible representations of the algebra
E{(a, B) (Theorem 10.1). The author expects the same is true for general .
In Sections 12-16, we apply our formula to closed 3-braids and 2-bridge links,
since they are special types of closed 3-knits. For example, if two closed 3-
braids have the same writhe (or twist number) and the same Jones polynomial,
they also have the same Q-polynomial (Theorem 13.1). Thus for the closed
3-braid, the Alexnader polynomial and the writhe determine the two variable
Jones, Jones, and Q-polynomials. In the actual claculation of the examples in
Sections 14 b), c) and 16, the author used a personal computer (NEC PC-9801)
with muMATH-83 (Symbolic Mathematics Package) for MS-DOS.

Acknowledgments. I am profoundly indebted to A. Gyoja who gave me
many informations about Iwahori algebras. As well, the notion of knit semi-
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groups arose in discussions with him. I would like to thank T. Kanenobu who
introduced me the statement of Theorem 13.1 holds for every example he cal-
culated.

2. The Kauffman polynomial and the L-polynomial. Fix non-zero
complex numbers a, 8. Let L(a, B, +) be the L-polynomial [11] which is a re-
gular isotopy invariant of unoriented link diagrams defined by following rela-
tions (2.1), (2.2) and (2.3):

(2.1) L(e, B,0) =1 for a planar circle O,

(2'2) L(a) B; |K+ | )+L(ay B) IK— l)
= (B+87) (L(a, B, | Ko|)+L(a, B, | Kal)),

L(a’ B) {Kl+|) = aL(a) ﬁ) IK-'[)’

3 L, 8, 1K) = a L(a, B, IK-1),

where | Ky |'s are unoriented link diagrams, identical without a circle where they
are as in Figures 1 and 2.

DU

Figure 1

L

Figure 2

For an oriented link K, the writhe (or twist number) w(K) is the sum of
the signs of all crossings. The sign of a crossing point is defined as in Figure 3.
The Kauffman polynomial F(a, 8, K) [12] for an oriented link diagram K is
defined by:
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X X

sign=--1 sign=—1
Figure 3
(24) F(a,8,K)=a™® L(a, B, |K]),

where |K| is an unoriented link coming from K in disregard of its orientation.
Then it is an ambient isotopy invariant and is an invariant of link isotopy types.

1 i—1 i i1 42 n

o7t

1 i—1 ¢ i+1 42 n

1 i—1 7 i+l 42 n
Figure 4
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3. Rectangular diagrams. Fix a positive integer #n. Let G,={o;, 07",
eli=1,2, .-, n—1}. Let F, be a free semi-group with identity element 1
generated by G,. Then F,={w, w,--w,|rEN,w,€G,} U{l}. A rectangular
diagram R(w) corresponding to wE G, are defined as in Figure 4. A rectangular
diagram R(w) corresponding to wE F, is defined as in Figure 5.

w,
W,
| | [ | [ [
Wr
1 2 3 n—2 n—1 n
Figure 5

As in Figure 6, we get an unoriented link diagram %" associated with wEF,,
connecting upper end points and lower end points of a rectangular diagram
R(w).

4. Basic deformations. The three basic deformations of rectangular
diagrams are as shown in Figure 7. It shows representative situations for each
deformation. If a rectangular diagram has the local forms as shown in this
figure, the deformation is performed without disturbing the rest of the diagram.
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|

ot

1 2 3 n—2 n-1 g
7

Two rectangular diagrams R and R’ are called regular isotopic iff there is a se-
quence of basic deformations of types II and III carring R to R’. They are
called ambient isotopic iff there is a sequence of basic deformations of types I,
IT and III carring R to R'.

5. Knit semi-groups. Let
(5.1 D, = F,|/(w = w’, if R(w) and R(w') are regular isotopic).

We call D, a knit semi-group of degree n and call its element an 7-knit or simply
a knit. For an #n-knit 4, we denote by R(d) the regular isotopy class of the rec-
tangular diagram associated to 5. We denote by 5™ the set of link diagrams
obtained by closing the rectangular diagrams associated with the elements of
F, contained in the class of 5. We call ™ the closed n-knit coming from b.

Proposition 5.2. The L-polynomial may be considered as a map from D, to
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type I
type II
—
type IIT

\/ H\ / \/ ._..\ /
7~ A 7~ X
Figure 7

C. We denote it by Ly(a, B, *).

Proof. For x&D,, let Ly(a, B, x)=L(a, B, &) where % is a representative
of x in F,. Because the L-polynomial is a regular isotopy invariant, Ly(a, 8, x)
does not depend on the choice of .

6. An algebra associated with the L-polynomial. The writhe (or
twist number) of a string (or component) of a rectangular diagram is the sum
of the signs of all the crossings of this string with itself. There are two ways
to give an orientation to the string. But the writhe of the string does not de-
pend on the choice of it. The writhe of a rectangular diagram R is the sum of
the writhe of all strings of it. We denote it w(R). It is invariant under the
regular isotopy. Hence we may define the writhe of a knit x&D, by w(x)=
w(R(x)). For x,yeD,, we denote x~y if R(x) and R(y) are ambient isosopic.
Let

(61) E,,(a, ﬁ) — C[D,,]/(U','—"‘o'i_l_(ﬁ"_ﬁ—l) (1_*_3‘) for létén—l ’
a-—w(z)x_a"wu)y for x’yED” s.t. x~y) N
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where C[D,] is the semi-group algebra of D,,.

Proposition 6.2. There is a map Lg(a, B3, +): E,(a, B)—>C commuting with
the map Ly(a, B, *): D,—C and the natural map D,—E,(a, B).

Proof. It is an easy consequence of the definition of the L-polynomial
given in Section 2.

7. A candidate E (o, B) for Ea, B). In the following in this paper, we
will restrict ourselves to the case #=3. In this section we will define an algebra
Ey(a, B) which is a candidate for Ey(a, B). Let

(71) Ea(a’ 18) = C[Fs]/j
where J is a two sided ideal generated by J,UJ,; Ji={owoi'—1, o7'o,—1,

-1 -1
0,07 —1, 07'0,—1, 010,01—0,0103, ee6,—e), ee16,—e;, 010:6,— 68, T30,6,—€6,,
-1___-1 -1 _-1 —
016,07 —07'00,, 007 —o 1’60 ), ,=1{ao.e,—e, aeo,—e, ac,e,—e,, ae,o,—e,,

a"lela'zel——el, a—lezo'lez“—ezv 0'1+0'i_l_(ﬁ+ﬁ_l)(1 ‘|‘31)’ 02+a2—1—(,8+,8'1)(1+e2)} .

Proposition 7.2. There exists a natural surjective homomorphism @ : Eat, 3)

—Ey(a, B).
Proof. Let p,: C[F,]=>E,a, B) and p,: C[F,]>E,(a, B) be the natural

homomorphisms. To show the existence of a surjective homomorphism from
E (e, B) to Ey(a, B) commuting with g, and p,, we must check that kerp, D
ker p,=]. Because the two terms of elements of J; are regular isotopic, they are
contained in ker p, according to the definition (5.1) of D,. Because of the de-
finition (6.1) of Ey(a, B), the elements of J, are all contained in ker p,. Hence
any element of J is contained in ker p, and Proposition 7.2 is proved.

8. Structure of E,(a, B)
Proposition 8.1. Ey(a, B)=M,(C)+C+M,C)+C for generic a, 5.

Proof. A basis of E,(at, B) over C is Vo={1, o, 05, 010, 0301, 010307, €y, 08,,
€61, €, 016y, €16, 016,01, 6,05, €,0,}.  Let I(a, B) be the two sided ideal of E (c, B)
generated by e;. Then a bisis of I(a, B) is {e,, 0,6, &:6,, &, 016,, €165, €10, &0,
a.60,} and I(a, B) is isomorphic to M,(C) as an algebra for generic o, 8. We
also have Ey(at, B)/I(ct, B)=<Hy(B) where Hy(B)=C<oy, o)/(c;+07'—(B+B7Y)-
1(:=1, 2), 0y0,0,—0,0,0;), which is the Iwahori algebra ([2], Chapt. IV, §2, Ex.
22-25) associated with the symmetric group S; of degree 3.  Except for finite
numbers of B, H,(B) is known to be completely reducible and isomorphic to the
group ring of S;: Hy(B)==C[S,]=C +M,(C)+C. We also know that dimoH,(R)
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+dim¢ I(a, B)= dim¢ E(a, B) because dimg Hy(8)=6, dim¢I(a, 8)=9 and
dimg Ey(at, B)=15. Hence the cannonical projection Ey(a, 8)—Hy() splits and
we get the proposition.

In the following of this paper, fix generic @, @& C— {0} so that Proposition
8.1 holds.

9. Irreducible representations of D; through E(a, B8). As shown in
Proposition 8.1, Ej(a, B) consists of four simple algebras. Let py, py, 2, ps, be
the cannonical projections from Ey(a, B) to its irreducible components M;(C), C,
M,(C), C, respectively. Then a composition of the cannonical projection C[D;]
—Ey(a, B) and p,(:=0, 1,2, 3) induces an irreducible linear representations of
D, say p;. Representation matrices of p,, p;, p, ps are given as follows:

fa™® 0 2 ro —1 at
polo) =10 0 —1|, pfoy)=1|1 2 o |,

L0 1 2 L0 a2z O

[p a 1 0 0 0
po(&)=10 0 0O, ple)=|0 0 0],

LO 0 O L1l a u

Pl(al) = ﬁ ) Pl(a'z) = ﬁ ’ Pl(el) =0 ) Pl(ez) =0 )

B V-1 Bt 0 00
pod =] Vo wer=| S o] me=ne=[ ¢ |

ps(a) =B, pio) =B, pie) =0, pse) =0,

where 2=8+87 and p=(a+a~!)/z—1. The matrices of p,, p,, p; are obtained
from that of irreducible representations of the Iwahori algebra associated with
S;.  Let W be a subspace of Ej(a, B) spanned by e,, aye,, e,e, then W is invariant
under the left action of Ey(a, 8). The matrix representations of the restrictions
of py(a;), oole;) (=1, 2) on W with respect to the basis {e,, 0,e,, e,¢;} are as above.
For example, o,e,=0a"e;, 0,6,6,=0,¢,, 016,6,=073"e,= — 6,1 2,6, +2e, and so we
have the matrix of py(a).

10. Formulas for the L-polynomial, the Kauffman polynomial and
the @-polynomial of a closed 3-knit

Theorem 10.1. Let K be an oriented link diagram such that the unoriented
link diagram |K | coming from K in disregard of its orientation is euqal to a closed



KAUFFMAN POLYNOMIAL AND REPRESENTATION THEORY 753

3-kmit x~ associated with x&D,. Let X,, X,, X,, X3 be the traces of irreducible
representations p,, p,, ps, ps Of D; defined in Section 9. Then we have

(10.2) L(a, B, | K|) = Xo(x)+aX,(x)+aX,(x)+asXs(x) ,

(10.3) F(a, B8, K) = a™*®(Xo(%)+a,X,(x)+ &, Xy(%) +a5X5(%)) ,

where w(K) is the writhe of K defined in Section 2 and a,, a,, a; are given as fol-
lows:

a, = P(B~¥(p*—3)4+(1—-287%) (ap—z—a™)+(B'—B) &),
(104) a, = P((B—B7") (p*—=3)+(B*—F) (ap—z—a™)+(B—B) &),

a3 = P(—B(r*—3)+(28°—1) (ap—z—a™)+(B7'—B) &),
where 2=B+8", p=(a+aV)/z—1 and P=1/(8~'—B) (8°—1+87).

The Q-polynomial (or absolute polynomial) of an unoriented link |K| is
defined by Q(B, |K|)=L(1, B, |K|), which is an invariant of isotopy types

[31, [6]-
Corollary 10.5. Let K and x be as in Theorem 10.1. Then we have

B 20+ 22— 2
(10 08, 1K1) = )+ 2522 (4,0
24 32 hr—4
+ A—3) Xy(x) .

Proof of Theorem 10.1. According to Propositions 5.2 and 6.2, we already
know that L(e, B, | K|)=Lp(a, B, x)=Lg(a, B, p(p(x))). Because of the de-
finition of the L-polynomial, we have Lz (a, B, (p(x)))=Lz(a, B, #(p(gxg™")))
for x€D, and geB,CD,. But p(B;) generates Ey(ar, 8) as a C-algebra and
Eya, B) is semi-simple, and so Lg(a, B, @(p(x))) is the sum of traces of irre-
ducible representations of D, coming from the irreducible components of E;(e, 3)
treated in Section 9, i.e. Lg(a, B, @(p(x)))=aeXo(x)+a,X,(x)+a;X,(%)+asXs(x).
But the values of X, X;, X,, X; and Ly(a, B, *) for 1, o, 0,05, €, in D; are given
as follows:

D, Xo X X, Xs | Lp(a, B, *)
1 3 1 2 1 u?
109 o |B+B e B BB B an
7,0, 0 32 1 L2 a?
e I 0 0 0 "
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Hence we have g)=1 and a,, ,, a; as in (10.4).

11. Ey(a, B) is isomorphic to Fy(«, B)

Corollary 11.1.  The cannonical projection @: Ey(a, 8)—Es(a, B) defined in
Proposition 7.2 is an isomorphism for generic o, 5.

Proof. Assume that ker 2 {0}. Then ker @ contains at least one ir-
reducible component of Ej(a, 8). But in this situation, the coefficient @; in
(10.5) corresponding ot above irreducible component must be zero. But g,=1
and a,, @, a; are all non-zero for generic @, B according to (10.4). It con-
tradicts the assumption and we get ker p={0}. Hence @ is an isomorphism.

12. The Kauffman polynomials of closed 3-braids. ILet B; be a
braid group on three strings. Bj; is contained in D; as a sub-semigroup. Let
b be a 3-braid and " be its closed braid, then the writhe w(5") is equal to the
exponent sum &(b) of b. Let

(12.1) C = {(b,b")EB; X B, | V(b) = V(b"), £(b) = &(b")}
where V: {link} —C(#/*) is the Jones invariant of links.

Theorem 12.2. Let (b, b,) be a pair of 3-braids in C. Then F(a, B, b")=
F(ay ﬁ; bzA) 1]7 XO(bl):xo(b2)

Proof. For (b, b,) in C, w(b,")=w(d,") and X,;(b,)=X,(b,) for i=1, 3 since
&(b,)=E&(b,). Because

1 1 0
(12.3) ﬁ'P_lf’z("‘)Pz[ 31} ﬁ'P_l”’(az)P=[t _J’
vV—1-8 0

where t=—* and P=[ 0 1 :|, we have X,(b,)=X,(b,) as shown in [1].

Using (10.3), we get F(a, B, b )—F(a, B, b, )=a~"®(Xo(b)—Xo(b;)). This

proves Theorem 12.2.

13. The Q-polynomial of closed 3-braids

Theorem 13.1. Let C be the subsft of B3 X B, defined in Section 12. Then
for (b, b)EC, we have Q(8, b)=0(8B, b").

Therefore, we have, from [1], [8] and [9],

Corollary 13.2. For the closed 3-braid, the two variable Jones, Jones, and
O-polynomials are determined by the Alexander polynomial and the writhe.
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Proof of Theorem 13.1. Let p,, p, be the representations of D; and X,, X,
be their traces defined in Section 9. We also denote po(y)=po(@, B, ¥), Xo(¥)=
Xo(a, B, ), p(¥)=p2(B, ¥) and X,(y)=X,(B,y) for a 3-knit y if the parameters
a, B are needed. Because of Theorem 12.2 and Q(g, l/;)———F(l, 8, b), we get
08, 5)—0(8, b)=x(1, B, b)—X(1, B, ). Let

1 —18 07 -1 0 0
(133 P=|0 1 0| |—v"i1-BB, B, —/—1-BB;
0 —8 111 0 0 —v/—1

where B,=R"*— R and B,=1/(8%*4-87%). Then we have

( B V—1-p* —1 1
P7p(1,8,0) P = 0 1 2/ =187 |,
L0 0 B-—l |
o8 0 0 W
P—IPO(I: B, 0;) P = 2\/-;—1.13-1/2 1 0.
L —1 \/-——1',81/2 ,8 |

The representation matrices of o, and o, of the symmetric tensor of degree 2 of

p(B, ), say p(B, +), are equal to those of P~'py(1, 8% +) P, where the matrix
of symmetric tensor of degree 2 of a 2 by 2 matrix is given as follows:

(13.4)

, @ ab B

(13.5) S“’:A:[a ]—» 2ac ad-+be 2bd
(4

¢ d &

An elementary calculation shows that S®(AB)=S®(4) S®(B) for 4, BE M,(C)
and the trace of S®(A4)is equal to trace(4)*—det(4). Hence we get Xq(1, 3, -)
=%X,(B, +)*—1and Q (8% 5)=Q(182, l;'). But this equality holds for every generic
complex number B and so we have Q(R3, 3)= 0B, 3').

14. Examples for Theorem 12.2. In [1], Birman gave examples of
pairs of knots coming from closed 3-braids for whihc the Jones invariant does
not work well. According to Theorem 13.1, the Q-polynomial is not good for
them, too. Here we show the Kauffman invariant is good enough for some of
them.

a) Let x=ch ol ol of(p,>0, ;<0 for 1<i<s, &(x)=p,+ - +Ps+ 0+
voo4¢,=6r=%0) and y=(oy0,0,)"x"". Then V(£)=V(P) and Q(B, £)=0(B, )
but F(a, B, £)+F(a, B, 9) because the highest degree of ¢ in X,(x) is equal to
—(¢1+¢;+++-+4.) but that of o in X,(y) is equal to (p,+p,+-+++p,)/3—2(q+
¢;++++¢,)/3 and they are different since p,+-++p,+¢++++¢,40. These
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pairs are examples treated in Proposition 2 of [1].

b) 8 =oTctoi'a}, =010}, S;=01% o, ¥v=5, 8, §; and p=34, &, 9,
Then V($)=V{(a) and Q(B, $)=0(B, i) but F(a, B, 9)*F(a, B, i1).

c) di=ci’olor ol 8t=0i" o}, =01t a7}, v =8/ 85 8} and u' =381 8% 83.

Then V(9")=V{(4") and Q(B,9")=0Q(B, i’) but F(a, B, 9")*F(a, 5, a’).

15. The Kauffman polynomials of 2-bridge links. Let m be a posi-
tive odd integer. A 2-bridge link K(ay, a,, *+, a,,) is an oriented link associated
to a closed 3-knit (¢, 051 ofz+a3)™ with an orientation as in Figure 8.

2-bridge link

\

P pm o
a,
o

Where

1 [ =]

(A>0) k half twists

Figure 8

Theorem 15.1. For an oriented 2-bridge link K=K (ay, a, ***, a,,), we have

(15.2) F(a, 8, K) = a5 Xy(e, 0% otr-a)

00
Proof. Becaue p,(e;)=0, pz(e,):’: -], ps(e;)=0, we get (15.2) from
(10.3). 00
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16. Examples for Theorem 15.1. In Theorem 7 of [10], arbitrarily
many 2-bridge links with the same 2-variable Alexander, 2-variable Jones and
QO-polynomials are given. The Kauffman polynomials with specialized values
of a and B of some of above links are calculated and it turned out that they
can be distinguished by the Kauffman polynomials.

Let 4 be a map from invertible elements of Ey(e, B) to Ey(et, B) defined by
Yr(x)=xai x7%.

a) Let x,=a} o 0% o1* 07%, y1=07" 07° 0% 01 0}, H="r(%,), Y.=V (), 1=
e, %, 2y=e,y,. Let K, K, be oriented links associated with the closed 3-knits
2" and 2,~ with orientations as in Figure 8 in Section 15. Then K, and K,
have the same 2-variable Alexander, 2-variable Jones and Q-polynomials but
have distinct Kauffman polynomials.

b) Let 2,=v(x1"), ys5=Ar(¥17"), xa=V(%2), Ye=(52), x5=Ar(%3), Ys="(3),
3= Xy, B, =0, Y,, B5=6 X5, Zg=6, V5. l.et K;, K,, K5, K be oriented links as-
sociated with the closed 3-knits 237, 2, , 25", 2 with orientation as in Figure 8
in Section 15. Then Kj;, K,, K;, K; have the same 2-variable Alexander, 2-
variable Jones and Q-polynomials but have distinct Kauffman polynomials.

¢) Let xg=vr(x7"), ¥s=U(37"), %="(x3"), 3,=(y3"), Xs="r(%), V5=
Y(Ya)y Xe=r(%5), Yo=A(5), X10="(%6), Y1o="(¥6)s X ="(%7), Yu="(¥1), 2r=
€ Xgy, =€ Ys g=6 X9, 0=01Yy =€ X10, R12=6 Y10, F13=61 ¥11, =61 Yn-
Let K;(i=7, 8, -+, 14) be an oriented link associated with the closed knit 2;” with
an orientation as in Figure 8 in Section 14. Then K, Kj, -+, K,, have the same
2-variable Alexander, 2-variable Jones and Q-polynomials but have distinct
Kauffman polynomials.
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