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Let G be a compact, simply connected, simple Lie group and QG the
space of loops on G. Bott [4] showed that H4(QG) has no torsion and vanishing
odd dimensional part. Since QG is a homotopy commutative H-space, Hy
(QG) becomes a commutative Hopf algebra over the integers Z. Bott [5]
also gave a general method for computing its Hopf algebra structure, and de-
termined it explicitly for G=SU(/4-1), Spin(2/+1), Spin(2/) and G,.

The object of this paper is to determine the Hopf algebra structure of
H,(QF,), where F, is the compact exceptional Lie group of rank 4.

Let 4 denote the coproduct of C=H(QG) induced by the diagonal
OG- OGXQG. Since Y is commutative, we may introduce a map r: C—
C Q C satisfying

Y(0)—o®1—1Q0 = J{(o)+ T(o)
for all c=C, where T: CQ C—CQ C is defined by
TR0 if o+

0 fo=r.

16 - {

Then {o)=0 if and only if s P(C), where P denotes the primitive module
functor.
We can now state our main result.

Theorem 1. The Hopf algebra structure of H «(QF,) is given by:
(i) HW(QF)=Z[0,, 04, 03, 05, 04, o11]/(0:—20,, 0501 — 303) where deg o;=2i.
(i) Im suitable choice of generators o, o4, 0y, the coproduct is given by
V(o) =£§ka'i®a'j (k=1,2,3),
¥r(o5) = 0,Q01+203;Q0,,
V¥ (07) = (0501—06) Q01+ 05Q 0, +0,R a3,
\TP(O'n): 2(—0403+050401—0604) Q0 1+2(—070,+ 30504 —0603) R 7,
+2(—0701+ 30503+ 0602) Qo3+ (— 0710350, 1 8040,) Qo
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+120,Q 040,
where o, —=o03—030, and cs=0c3—40}5.
(ili) PH4(QF)=Z{o},0¢,07,01:} where
0§ = 505—ay0,,
o4 = 70,—14050,+ 10040, ,

oii= 116,,—33cic,+1l6,0,+ 220504+ 600,40, .

The paper is organized as follows. In §1 we prove part (i) by an easy
spectral sequence argument. §2 is devoted to review Bott’s work. In §3

we apply the argument in §2 to F,. Finally in §4 we discuss parts (ii) and (iii).

1. The algebra structure of H.(QF,)

It is well known that Spin(9)CF, and the quotient F,/Spin(9) is the
Cayley projective plane [], whose cohomology is given by

H¥(IT) = Z[x]/(+")

where deg x=8.
Let A( )and T'[ ] denote exterior and divided polynomial algebras over

Z, respectively. Then we have
Lemma 2. (i) As a Hopf algebra,
H*QII) = A@®TH]
where deg a="7 and deg b=22.
(ii) As a Hopf algebra,
Hy(QII) = Ma)®Z[S]
where deg a="7 and deg 3=22.

Proof. It is sufficient to show (i), because (ii) is just the dual statement of
(i). Consider the integral cohomology spectral sequence {E,, d,} of the
fibration

Il - PII—1I,

so that E3'=H(I1)QH*QII) and E%?=0 except for (p, 9)=(0,0). A routine
spectral sequence argument shows that H*(Q[]) has an additive basis consis-
ting of elements

{bo = 1’ ay, bl) a, bz’ @z .N}

with deg @;=22i4-7 and deg ;=227 (>0) such that
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d8(1®d,) = x@b, fOl‘ iZO )
d16(1®bi) == x2®a"_1 for izl .

In terms of this basis we compute products a;a;, a;b; and b,. Clearly a;,a,=0.

Now ah;=a; since dy(1Qab;)=xQ@b;. Let e; ; be the integer such that b,b,=

e; bir; Then ab,=ahb=e; ab;. ,=e; a; ;. Therefore

di(1Rbb)) = ¥*Qa;_1b,+5*Rb,a,_,
= (ei—l,,-—|‘3,-—1,i)x2®ai+,-—1 .
Hence we get a relation e; ;=e;_, ;+e,_,;, which implies that e; .=(i+j)!/z!j!.
Thus setting a=a, and b=5b,, we obtain the desired algebra structure. It

remains to prove that a and b are primitive. But it is immediate from degree con-
siderations. q.e.d.

Here we quote the following result from [5;Proposition 9.1]:
(1.1) H(QSpin(9)) = Z[oy, o3, 03, 05, 77] /(03 —207)
where deg o,=2i.

Proof of Theorem 1(i). Let f: F,—K(Z,3) be a map which represents the
generator of H¥F,)=Z. As seen from the table in [12; §1], Qf;: z(QF,)—
= (K(Z,2)) is an isomorphism for <6 and an epimorphism for j=7. So, by
the Whitehead theorem, Qfs: H (QF,)— H (K(Z,2)) is an isomorphism for
j<6. Recall that H(K(Z,2))=T[v] with deg v=2. Let o;=(Qf%) (7)€
H,(QF,) for i=1,2,3 (where v;='[i!). Then we have

(1.2) H(QF,) = Z[o}, 03, 05]/(0i—20, 0y0,—30;) for dim. <6 .

(This observation is due to Bott and Samelson [6; Proposition 9.2].)
Consider the integral homology spectral sequence {E",d’} of the fibration

QSpin(9) > QF, — QII ,

so that E} ,=H,(QII)®H (QSpin(9)) and Ej,=GrH,, (QF,). Note that
this spectral sequence is multiplicative with respect to the Pontrjagin product
in the usual sense (see [13; §1]). Using Lemma 2 (ii), we see that E*=FE" and
acE} ,is transgressive. Comparing (1.1) with (1.2) shows that the only element
of E} ¢ which must be killed in E” (for some 7) is o,0,—30;. We therefore
have d'(a®1)=1Q®(o,01,—30;), which gives

B = Z[BI®Z[a, 03, T3, 05, 77][(0F — 204, 0301—3073) .

It follows from dimensional reasons that d"=0 for »>8. Hence E!=FE=. Since
H ,(QF,) is commutative, no extension problem can occur and the result follows.
q.e.d.
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2. Review of Bott’s work

In this section we collect some results concerning the cohomology of QG

and related spaces. For details and proofs see [2], [3] and [5].
Suppose G is simple and simply connected as before. Then the rational

cohomology ring of QG is given by
H*(QG’ Q) = Q[ul) Uy, ul]

where /=rank G and deg u;=2k; with 1=k, <k,<:--<k,. (This last condition
is not satisfied for G=Spin(2/); we shall omit it in the sequel.) Moreover,
each u; can be chosen to be primitive. These facts imply that in H*:(QG)
there exists only one primitive element p; which is not divisible (where we do
not mind the sign), and further that

(2.1) PH*(QG) = Z{py, ps, -+, P} -

Suppose given a homomorphism s: S'—G of the circle into G, whose
image is denoted by T'. Let T be a maximal torus of G containing 7% and C,
be the centralizer of 7' in G. Then we have inclusions T’C C,C G and a fibra-

tion
c/T—GT3Gle,.

Since H*(C,/T), H*(G|T) and H*(G/C,) are all torsion free and even-dimen-
sional [4], it follows that

(2.2) T¥: H¥(G|C,) = H*(G|T) is a split monomorphism.
Consider next the fibration
6)TS BT 5 BG

where BT and BG are the classifying spaces for T and G respectively. The
following isomorphisms are elementary:

Hom (T, 8%)=HY(T)=H*(BT)~H*G|T).

By identifying these, we may view the roots or weights as elements of H*(T) etc.
In particular for the fundamental weights o; (1<i{<I), we have

H*(BT) = Z[wh Way %y CO[]

on which the Weyl group ®(G) acts in a natural way. Then ¢ induces an
isomorphism

(2.3) H*(BT; Q)/Ic=H*(G|T; Q)
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where I; denotes the ideal generated in H*(BT; Q) by homogeneous invariants
of ®(G) having strictly positive degrees.

Suppose given a representation A: G—U(n) with weights gy, gy, g, €
HYBT). Its k-th Chern class ¢,(\) is defined to be the k-th elementary sym-
metric function in the p;: ¢ (N)=0y(t, pg, **+, ). Let T(A)=pi+pb+---+pi.
¢,(A) and J,(\) are related with each other by the Newton formula:

(2.4) 1) = 23 (177600 - (0 (1) ke (0) -

With (an arbitrary homomorphism) s: S'—G, we associate the following
two maps. Let

fs: GIC,— QG
be defined by
fdg) (@) =g-s(2)-¢
for g=gC,eG|C, and t=S'. On the other hand, by the dual isomorphisms
Hom(S?, T\=H(T)=H,BT)=H,G|T),

s (whose image is contained in T) may be considered as an element of H,(T)
etc. Using this convention, we define

0,: H**\(BT) — H*Y(BT)

to be the derivation which extends the assignment o — <o, s), for o€ H¥BT),
where { , > stands for the Kronecker index.
Now we consider the case of SU(r+1). As is well known,

H*(BSU(n+1)) = Zlc,, €3, **, €441]

where ¢;,, (deg¢;+1=2j+2) is the (j+1)-th universal Chern class for j=1,2,---,n.
Set G’=SU(n+1). Let

o¥: H*(BG') - H(G")
and
o3: HY(G") - H" (QG")
be the cohomology suspensions associated with the fibrations
G’ - EG’" — BG’
and

QG’ — PG’ - G’

respectively. 'Then we have
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Lemma 3. For j=1,2, -, n, the element pi=cbc¥(c,.1) is primitive and
not divisible in H¥(QG’). That s,

PH*(QG') = Z{pi, pt, = pi} -
Proof. Recall first the following results:
H*(G") = A(xy, %55 *+*, X3y11)
with deg x,,,,;=2j+1 and
HAQG') = Z[or, 0 -+, 7]

with dego,=2j. By Borel’s transgression theorem [1; Théoréem 19.1],
0F(¢;+1)=%,;41 and so each Xy;41 18 primitive. Thus the problem reduces to
showing that the map s}: QH*(G’)— PH*(QG’) induced by o% is split
monic. It is then enough to verify that the dual map si: QH(QG’)—PH «(G’)
is epic. But this is an exercise of the homology Eilenberg-Moore spectral
sequence (see [8; §4]). q.e.d.

Hereafter we simply write A for the composite
G — Umn)cSU(n+1)=G".

Let ' be the composite As: S'>G’, T/ a maximal torus of G’ containing \(T’),
and Cy the centralizer of M(7") in G’. A similar treatment holds for the pair
(G”, s). Specifically we have, with the obvious notation,

(2.5) * fXrafok = *FOyp* .
This key formula was established in [5; §7].

Proposition 4. Let k=k; for i=1,2,-+,1. Then *0c,,(\)) s an
integer multiple of T¥f¥(p;) in H*(G|T).

Proof. The homomorphism X\ induces a homomorphism A: 7'— 77,
maps X: G/T—G’|T’ and X: G/C,— G’|C so that appropriate diagrams can
be (homotopy) commutative. We first show that *0 BA*=X**§s. By the
naturality of the Kronecker index, {BA*(w), s>=<w, BAy(s)>=<w, s> for we
HX(BT’). Then it follows that 8, BA*—=BX*0 s and hence (*0,BA\*=*B\*0
=X*L*05’.

Now since OA*: H*(QG")—H*(QG) is a homomorphism of Hopf algebras
over Z, we have

Q\¥(ph) = a- p;

for some acZ. But ¥ FON¥(ph)=TEN* fR(ph)=N*T¥ fX(pi)=N*T¥ fohak
(¢4+1), which equals A*c*6p*(c,;) by (2.5). On the other hand, since ¢,;(\)
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=BX*p*(c,,), it follows that ¢*6(c,i(N))=0*0 BA*p*(cpiy)=N**0,p*(Cpor1)-
Combining these, it follows that :*6(c,.,(\))=a- ¥ ¥(p;). q.e.d.

From now on we assume that G has trivial center. Then the simple roots
a(1<i<I) constitute a base for H¥T). According to Bott [5; §§1 and 5], if
seH\(T) is dual to a long root, then (s becomes a generating circle and) f, has
the property that the image of f«: H(G/C,)—H «(QG) generates the algebra
H(QG). Dualization then gives

(2.6) f¥: H¥QG)—H*(G|C,) is a split monomorphism when restricted to
PH*(QG).

To use this fact we shall take such an s.
We can now characterize the generators p; in (2.1).

Proposition 5. Under the hypotheses and notations as above, if k=k; for
i=1,2,.-+,l and g, H*(G|T) is a unique element such that g, is not divisible and

L*as(c‘kﬂ()\.» = ﬁ'qk

for some ac Z, then
(1) The following properties of a primitive element p,= H*(QG) are equivalent :
(1) P, is not divisible, i.e., p=p;,
(2) f¥(P,) is not divisible,
(3) TEfE(D,) is not divisible,
4) TEHEBY=7s
(i1) There is a unique element g, H*(G|C,) such that 7¥(q,)=g,. Then gq,
is not divisible, and p; is uniquely determined by q, via f¥(p;)=q-

Proof. By (2.6), (1) is equivalent to (2). By (2.2), (2) is equivalent to
(3). Clearly (4) implies (3). Conversely, suppose (3) (and so (1)) is given.
By Proposition 4 and the definition of g,, a-7¥f¥($,)=c*0,(c;:.(N))=a-g,.
But by uniqueness, 7¥f¥($,)=g, (and a=a). This completes the proof of (i).
(ii) is only a corollary of (i). q.e.d.

Therefore we conclude:

(2.7) In order to characterize p;, we must find g, in H*(G/C,) by computing
*0(cp+1(N)) for suitable s and A, where k=k; (1<i<]).

Lemma 6. *0,(I,(\)) = (—1)*%-*0,(c(\)) -

Proof. Since the set {u, ps, ***, p,} is invariant under the action of ®(G),
it follows from (2.3) that ¢*(c (\))=c¢*(I (1))=0. Then the lemma follows from
(2.4) and the derivativity of 6,. q.e.d.
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3. The primitive elements in H*(QF),)

Since F, has trivial center, the argument developed in the previous section
can be applied to F,. In this case, let us carry the project (2.7) into practice.
First note that /=4 and (&, &, ks, R)=(1,5,7,11). We use the root system
given in [7], where the fundamental weights o; are expressed in terms of the
simple roots «; as follows:
(3.1) 0, = 20,4 3a,+4a3+2a, ,
@, = 3116, +8as+4ay ,
wy = 204440, +6034-3ay ,
w, = ay +2a,+ 3034204 .
Here long roots are «;, a, and so forth. Hence we take

s = the dual of —a;, .

Then C, turns out to be T7.Sp(3) with T*NSp(3)=Z,. Set V=F,|T*-Sp(3).
In [11] Ishitoya and Toda have computed the ring structure of H*(V). Their
result is

(3.2) H*(V) = Z[t, u, v, w]/(—2u, v — 3?20+ 2w, 30— tPw, v*—u?)

where deg t=2, deg u=6, deg v=8 and deg w=12. Besides we need the
following information on the generators ¢,u,v and w (see [11; §4]): Put

t= g, yl = ﬁ)z_wa,yz = W3 Wy and ya = 0)4;
let z;=y,(t—y;) and let g;=0(21, 25 2;) for i=1, 2, 3; then
(3.3) =0 ¢=23v and gz=w

where these elements are regarded as those of H*(F,/T; Q)=0[t,31,¥2¥3)/IF,-
For convenience we introduce the notation:

x=%t and x;,=x—y; :=1,2,3).

Then H*(BT; Q)=0Q[x,%,,%,,%;]. In view of (3.1), the derivation associated
with our s is represented by

(3.4) 0, — —% L O, %1, %5, %3] — O[t, %y, &, 5] .

Let p,=o(x},3,%3) (:=1,2,3) and s,=x}+x5+x5 (n>0). We get again the
Newton formula

(3-3) Sen = 23 (— 1) 7 pisau-ait-(—1)""np,

1<i<n
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with the convention p,=0 for #>3. By definition, z;=y,(t—y;)=(x—=x;)
(x+x;)=x*—x}. Then

b = T(1+30) = (1+#—) = S~ g (145
— Y1\ 32\ o
R

which gives a formula

(36) — S (37 ge

i+j=k
Next we take
A = the irreducible representation with highest weight o,.
By making use of 47.8 and 43.1.10 of [10], one can check that dim A=26 and
the set of weights of A is given by
I= {+xtx;, £x,42(1<i<;j<3),0,0}.
Put
J=A{teta},  Ji=205
K= {j:x,j;x,} ’ Kk:ygzyk'
Since I=J UK U {0, 0}, it follows that I,(\)=],+ K, for k>0. Then 0,(I,(\))
=0,/ by (3.4). Since
SR = Fje = (e ) De e )
= (22 27/(24)1)- (22 524/(2m)1)

it follows that ]2,,—4 2 <2]>s2" - ’xz (and J,+1=0). Using these together with

Lemma 6, we obtaln a formula

(37) #0ca) =+ 31 (57 suea®

The above discussion is summarized in the figure below.

L*as(czk()‘)) — Sons X
¢35 69

(3-3)

g —>t, v, w

X .
where “4—B” means that X expresses 4 in terms of B. A direct calculation
following these arrows and using the relations in (3.2) yields:
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(38) B #0.(n(V)
1 6t
5 125 b= tu—>5tv
7 30¢ ¢ = 2uv—3tw
11 270d d = 3tvw—2uv?

Observe that the elements ¢,5, ¢ and d are not divisible in H#*(V) for k=1,5,7 and
11 respectively.

Proposition 7. There exists a unique primitive element a, [resp. bs, ¢; and d;]
of H*(QF,) such that f¥(a,)=t [resp. f¥(bs)=b, f¥(c;)=c and f¥(dn)=d]. Then

PH*(.Q,FO = Z{al, bs, €7, dn} .

This is a consequence of Proposition 5 (ii) and (3.8).

4. The coalgebra structure of H.(QF),)

In this section we display our computation of the cohomology ring H*(QF,)
for dim.<10, which gives a partial proof of parts (ii) and (iii) of Theorem 1.
To prove the whole we need to determine it for dim. <22 (see Theorem 1 (i)).
However, as will be seen, the remainder is no more than a tedious computation

and is left to the reader.
We choose an additive basis of H*(¥V) for dim. <22 as follows (cf. [11;

Corollary 4.5]):

4.1) deg=0 2 4 6 8§ 10 12 14 16 18 20 22

1 ¢t 2 u tu b v ¢ tuv uv vw d

v bV w ¢ P x tx d

where x=uw—1?; b,c,d are given in (3.8); and ¥, ¢/, d’ are determined by the
following equations:

5() = () () = () () = (@)
where B,C,D are 2X?2 matrices over Z whose determinant is 1; for example,
B=(} 7}) with k,1€Z such that Sk-+1=1, and then b=k tu-+1 to.
With respect to this basis, let a, B, ¥ and § be the duals of ¢, b, ¢ and d
respectively. Then we may set

gy =fs*(a)’ Os =fs*(18)’ g7 =fs*('y) and on =fs*(8) ’

for this notation fits in with that used in Theorem 1(i). In fact, Proposition 7
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assures us that o;,05,0; and o), are indecomposable and not divisible in
H.(QF,).

Next, by Theorem 1(i), we choose an additive basis of H4(QF,) for dim.
<22 as follows:

deg=0 2 4 6 8 10 12 14 16 18 20 22
1 o, 0, 03 0, 0,0, 05 0O, T, T3 OOy OO0

05 050, 050, 0503 0504 050407 0506

Oy 070] 0.0, 0,03 070,

ol oloy

S
1 a a a4 a a a o ag a9 ay an
bs b b, bg by by, by
¢ Cg Co C1o (4%
b i
dy

where o,=0c%—0,0, and os=03—40c3; the reader should notice that the relations
0,=01[2, o3=0i]6, o,=01[12 and o=0%/72 hold in H4(QF,; Q). The lower
table indicates the corresponding dual basis.

Then the aspect of our computation is described by the following table:

deg coproduct relation base  f¥-image
2 o) =0 a t
4 W(oy) = 0,Q0, ai = a, a,=at #
6 Wo3) = 0,Q0, a,a, = a, a; = a,a, 2u
8 Woy) = 203Q0,+20,Q0, aa, = 2a,, a5 = 2a, a,= %@al tu

Now we confront the case of degree 10. A base for H,,(QF,) is given by {o,0,
os}. Since o,0,=03/12, it follows that /(o ,0,)=50,Q0,+100;Q@0c, Suppose
that J(o5)=mo,Qao,+ -+, for some meZ. Then a,a,=5a;+mb; and hence
5f*(as)=f ¥(a,a,—mbs)=1t"u—mb=(1—m)t*u+5mtv. On the other hand, since
{f¥as), B>=Xas, f {B)>={<as, o5)=0, it follows that f¥(as)=nd" for some nc
Z. Conbining these gives
(1—m)t*u+5Smto = Sn(kt*u+Itv) .
Since {t’u, tv} is a base, we have

1—m =75kn and m=1In.

But since 5k+/=1, it follows that #=1. For simplicity we may take m=1;
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simultaneously k=0 and /=1. Thus we have shown:

deg coporduct relation base  f¥-image
10 &‘(0401) - 50'4®0'1+100'3®0-2 a4al = 5a5+b5 as =—;"a4al_b5 bl =1v
W(os) = 0(Q01+20;Q0, aza, = 10a;+-2b;, bs b

In this way we can determine the cohomology ring H*(QF,) so as to realize
the situation (2.6). In practice, we have settled

¢ =uv—tw and d' = —tow}-t’x
in (4.1).

Note. There is a misprint in Bott’s result on H4(QG,) [5;p.60]. The
coproduct formula for we H,(QG,) is an error. It is corrected by exchanging
2 for 3. In this connection see also [9;Note on p.17].
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