<table>
<thead>
<tr>
<th>Title</th>
<th>Point interaction potential approximation for ((-\Delta + U)^{-1}) and eigenvalues of the Laplacian on wildly perturbed domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ozawa, Shin</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 20(4) P.923–P.937</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1983</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td><a href="https://doi.org/10.18910/4566">https://doi.org/10.18910/4566</a></td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/4566</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

_Osaka University Knowledge Archive : OUKA_

[https://ir.library.osaka-u.ac.jp/repo/ouka/all/](https://ir.library.osaka-u.ac.jp/repo/ouka/all/)
POINT INTERACTION POTENTIAL APPROXIMATION FOR \((-\Delta + U)^{-1}\) AND EIGENVALUES OF THE LAPLACIAN ON WILDLY PERTURBED DOMAIN

SHIN OZAWA

(Received June 4, 1982)
(Revised February 17, 1983)

1. Introduction. We remove \(m\) balls of radius \(\alpha/m\) with centers \(\{w_r^{(m)}\}_{r=1}^m\) from a bounded domain \(\Omega\) in \(\mathbb{R}^3\). If \(m\) balls are dispersed in a specific configuration as \(m \to \infty\), we give a precise asymptotic behaviour of the \(k\)-th eigenvalue of the Laplacian in \(\Omega \setminus m\) balls under the Dirichlet condition on its boundary. We use perturbational calculation concerning the Green function of the Laplacian to obtain our theorem. The present work is closely related with Kac [2], Rauch-Taylor [6], Huruslova-Marchenko [3], Papanicolaou-Varadhan [5] and Ozawa [4].

Let \(\Omega\) be a bounded domain in \(\mathbb{R}^3\) with smooth boundary \(\gamma\). Let \(w(m)\) be a set of \(m\) points \(w_1^{(m)}, \ldots, w_m^{(m)}\) in \(\Omega\). Let \(B(\varepsilon; w)\) be the ball defined by \(B(\varepsilon; w) = \{x \in \mathbb{R}^3; |x - w| < \varepsilon\}\). Let \(0 < \mu_1(\varepsilon; w(m)) \leq \mu_2(\varepsilon; w(m)) \leq \cdots\) be the eigenvalues of \(-\Delta (=-div \, grad)\) in \(\Omega_{r,w(m)} = \Omega \setminus \bigcup_{i=1}^m B(\varepsilon; w_i^{(m)})\) under the Dirichlet condition on its boundary \(\partial \Omega_{r,w(m)}\). We arrange them repeatedly according to their multiplicities.

To state our Theorem we need some assumptions on a distribution of \(w(m)\) as \(m \to \infty\). A sequence satisfying the following conditions \((C-1), (C-2)\) is said to be of class \(\mathcal{C}\) and is written as \(\{w(m)\}_{m=1}^\infty \in \mathcal{C}\).

\((C-1)\) There exists a constant \(C > 0\) independent of \(m\) such that

\[
|w_r^{(m)} - w_s^{(m)}| \geq C m^{-1/3} \quad (r \neq s)
\]

\[
\text{dist} (w_r^{(m)}, \gamma) \geq C m^{-1/3} \quad (1 \leq r \leq m)
\]

\((C-2)\) Fix \(p \in (0, 1)\). Then, there exists a constant \(C_p\) independent of \(f, m\) such that

\[
\left| \frac{1}{m} \sum_{r=1}^m f(w_r^{(m)}) - \int_\Omega f(x) V(x) dx \right| \leq C_p m^{-p/3} \|f\|_{C^p(\bar{\Omega})}
\]

holds for any \(f \in C^p(\bar{\Omega})\) as \(m \to \infty\). Moreover
max \( \frac{1}{m} \sum_{j=1}^{m} G(w_j^{(m)}, w_j^{(m)}) f(w_j^{(m)}) - \int_{\Omega} G(y, w_j^{(m)}) V(y) f(y) dy \)\n\leq C \mu^{m - \beta} ||f||_{C(\partial \Omega)},\n
where \( G(x, y) \) denotes the Green function of the Laplacian in \( \Omega \) under the Dirichlet condition on \( \gamma \), that is, it satisfies
\[
\Delta G(x, y) = -\delta(x-y) \quad x, y \in \Omega
\]
\[G(x, y) = 0 \quad x \in \gamma, \quad y \in \Omega.\n\]

**Example.** If \( V(x) = (\text{volume of } \Omega)^{-1} \) and
\[
\{w^{(m)}\}_{m=1} = (\Omega \setminus \{x; \text{dist}(x, \gamma) \leq C m^{-1/3}\}) \cap \text{(the cubic lattice points in } \mathbb{R}^3/(\omega m^{1/3} \mathbb{Z})) \}, \quad \text{(for suitable } \omega)\n\]
then it is easily seen that \( \{w(m)\}_{m=1} \in \mathcal{O} \).

We are now in a position to state the following:

**Theorem.** Suppose that \( \{w(m)\}_{m=1} \in \mathcal{O} \) and \( \alpha > 0 \). Then
\[
(1.2) \quad \mu_k(\alpha/m; w(m)) = \mu_k^Y + O(m^{-1/6})\n\]
holds as \( m \to \infty \), where \( \varepsilon' \) is an arbitrary fixed positive number. Here \( \mu_k^Y \) denotes the \( k \)-th eigenvalue of \( -\Delta + 4\pi \alpha V(x) \) in \( \Omega \) under the Dirichlet condition on \( \gamma \).

We here explain the main idea of our proof of Theorem. Let \( G_m(x, y; w(m)) \) be the Green function of the Laplacian in \( \Omega_{\omega m, w} \) under the Dirichlet condition on its boundary. It should be noticed that \( \Omega_{\omega m, w} \) may not be connected, however we only treat the case where it is connected owing to the conditions (C-1), (C-2). \( G_m(x, y; w(m)) \) satisfies
\[
\Delta G_m(x, y; w(m)) = -\delta(x-y) \quad x, y \in \Omega_{\omega m, w}
\]
\[G_m(x, y; w(m)) = 0 \quad x \in \partial \Omega_{\omega m, w}.\n\]

Hereafter we abbreviate \( w^{(m)} \) as \( w_i \) for the sake of simplicity. We put
\[
(1.3) \quad h_m(x, y; w(m)) =
G(x, y) + \sum_{i=1}^{m} (-4\pi \alpha/m)^i \sum_{i_{1}, \ldots, i_{j}} G(x, w_{i_1} G(w_{i_2}, w_{i_3}) \cdots G(w_{i_{j-1}}, w_{i_j})) G(w_{i_j}, y).\n\]
Here the indices \( (i_1, \ldots, i_j) \) in \( \sum_{i_{1}, \ldots, i_{j}} \) run over all \( 1 \leq i_0, \ldots, i_j \leq m \) satisfying \( i_1 \neq i_2, i_2 \neq i_3, \ldots, i_{j-1} \neq i_j \). This is a good approximation of \( G_m \) when \( \alpha \) is small enough. For general \( \alpha \), we modify (1.3) to get a nice approximation. It should be remarked that \( h_m(x, y; w(m)) \) tends to
\[(1.4) \quad G(x, y) = 4\pi\alpha \int_{\Omega} G(x, z)V(z)G(z, y)dz\]
\[+ (4\pi\alpha)^2 \int_{\Omega} G(x, z_1)V(z_1)G(z_1, z_2)V(z_2)G(z_2, y)dz - \ldots\]
as \(m \to \infty\), if \(\alpha\) is small enough. We see that (1.4) is equal to the Green function of \(\Delta - 4\pi\alpha V(x)\), if \(\alpha\) is small. Along this line, we can prove that 
\[\mu_k(\alpha/m; w(m)) \to \mu_k^V\] 
of course, we need rigorous step to prove the remainder estimate in (1.2).

We make historical remarks. There are some related papers. Under slightly different situation from above Kac [2], Rauch-Taylor [6] treated a probabilistic problem concerning 
\[\mu_k(\alpha/m; w(m))\] 
when \(m \to \infty\). In their notes the convergence 
\[\mu_k(\alpha/m; \cdot) \to \mu_k^V\] 
in probability when we consider \(w(m)\) as a random variable in a probability space which is the countable product of a probability space \(\Omega\) with the probability measure \(V(x)dx\), was given. Their studies depend on a probabilistic argument using the theory and a notion of Wiener sausage. Our Theorem is different from theirs in the point that the statement of Theorem is concerning a deterministic result. In [3], various boundary value problem in a region with many small obstacles is treated by potential theoretic approach using the notion of capacity of sets. In a suggestive paper Papanicolaou-Varadhan [5] studied the diffusion problem in a region with small holes by using probabilistic method and got both deterministic and probabilistic results. Here the author emphasize that our method is based on a perturbational calculus using the Green function under singular variation of domains (removing holes) and that this method is new as far as the author concerns. Our method enables us to get an error estimate \(O(w^{1/6})\) in (1.2) which also seems to be new.

We make another remark. When \(m=1\), \(h_m\) reduces to the integral kernel function \(h_\epsilon(x, y)\) on p. 771 of Ozawa [4]. By using this integral kernel function, we gave an asymptotic formula for the eigenvalues of the Laplacian under singular variation of domains. See [4]. For any \(1 \leq m < \infty\), we can also prove an asymptotic formula for eigenvalues by using \(h_m\). Thus we can say that \(h_m\) is a nice asymptotic Green function for all \(m=1, 2, \ldots, \infty\).

2. Decomposition of the integral kernel function \(h_m\)

From now on we abbreviate \(\Omega_{\alpha/m, \omega}\) as \(\Omega_\omega\). Also \(B(\alpha/m, \omega)\) is written as \(B\), if there is no fear of confusion. We have the following:

**Lemma 1.** Suppose that \(u \in C^\infty(\Omega_\omega)\) satisfies
\Delta u(x) = 0 \quad x \in \Omega_w
\quad \quad u(x) = 0 \quad x \in \gamma
\max \left\{ |u(x)| \, ; \, x \in \partial B \right\} = M_r(m) \quad r = 1, \ldots, m.

Then, there exists a constant \( C \) independent of \( \{w(m)\} \in \mathcal{O} \) such that
\[ |u(x)| \leq C(\alpha/m) \sum_{r=1}^{m} |x - w_r|^{-1} M_r(m) \]
holds for any \( x \in \Omega_w \).

Proof. See Lemma 6 in [4]. q.e.d.

Now we introduce some integral operators \( G_m, H_m, G \). We put
\[ (G_m f)(x) = \int_{\Omega_w} G_m(x, y) w(m) f(y) \, dy \quad x \in \Omega_w \]
\[ (H_m f)(x) = \int_{\Omega_w} h_m(x, y) w(m) f(y) \, dy \quad x \in \Omega_w \]
and
\[ (G g)(x) = \int_{\Omega} G(x, y) g(y) \, dy \quad x \in \Omega. \]

We put \( \kappa = \sup_m \frac{1}{m} \max \sum_{r \neq i} G(w_i, w_r) \). Then \( \kappa < \infty \), by (C-2). The aim of this section is to prove the following:

**Proposition 1.** Assume that \( \{w(m)\} \subset \mathcal{O} \). Fix an arbitrary \( \varepsilon' > 0 \). Then there exists a constant \( C_{\varepsilon'} \) independent of \( m \) such that
\[ \|G_m - H_m\|_{L^2(\Omega_w)} \leq C_{\varepsilon'} m^{-1+\varepsilon' q_{w,\Omega}}, \]
where \( q_{w,\Omega} = 1 + (\sum_{1 \leq i \leq m-1} (4\pi\alpha)^{\gamma(4\pi+1)\alpha\alpha^{-1}) + m(4\pi\alpha\alpha^{-1})} \) holds. Here \( \|T\|_{L^2(\Omega_w)} \) denotes the operator norm of a bounded operator \( T \) on \( L^2(\Omega_w) \).

Firstly we state the following obvious lemma.

**Lemma 2.** Put \( Q_m = G_m - H_m \). Then
\[ \Delta Q_m f(x) = 0 \quad x \in \Omega_w \]
\[ Q_m f(x) = 0 \quad x \in \gamma \]
holds for any \( f \in C_0^\infty(\Omega_w) \).

The following Lemma 3 is a crucial step to prove Proposition 1.

**Lemma 3.** Assume that \( \{w(m)\} \subset \mathcal{O} \). Fix an arbitrary \( p > 3 \). Then
\[
\sum_{f=1}^{\max_{x \in \mathbb{R}}} |Q_{m}f(x)| \leq \tilde{C}_{f}\|q_{m}\|_{L^{p}(\Omega_{w})}
\]
holds for a constant \(\tilde{C}_{f}\) independent of \(m\) and for any \(f \in C_{0}^{\infty}(\Omega_{w})\).

Before we begin our proof of Lemma 3, we give a proof of Proposition 1 assuming Lemma 3. Using Lemmas 1, 2, 3 we get
\[
\|Q_{m}\|_{L^{p}(\Omega_{w})} \leq C_{p}m^{-(\alpha p)}q_{m,a} \quad (p>3)
\]
for a constant \(C_{p}\) independent of \(m\). Since
\[
\int_{\Omega_{w}} Q_{m}u(x)v(x)dx = \int_{\Omega_{w}} u(x)Q_{m}v(x)dx,
\]
for any \(u, v \in C_{0}^{\infty}(\Omega_{w})\), we have
\[
\|Q_{m}\|_{L^{p}(\Omega_{w})} \leq C_{p}m^{-(\alpha p)}q_{m,a} \quad (p>3)
\]
where \(p'=(1-(1/p))^{-1}\). We see that \(p>3\) and \(p'<(3/2)\). Thus, by the interpolation theorem we get the same bound for \(\|Q_{m}\|_{L^{p}(\Omega_{w})}\) as in (2.2). We can take \(p>3\) sufficiently close enough to 3 and we get Proposition 1.

To show Lemma 3 we use the following decomposition (2.3) of \(H_{m}f\). We put
\[
(I_{f}f)(x) = \sum_{i_{1}+\ldots+i_{n}+i_{1}\ldots i_{2}} G(x, w_{i})G(w_{i}, w_{j})\ldots G(w_{i}, w_{i}) (Gf)(w_{i})
\]
where
\[
-(4\pi \alpha/m) \sum_{j_{1}+\ldots+j_{n}+j_{1}\ldots j_{n}} G(x, w_{j})G(w_{j}, w_{j})\ldots G(w_{j}, w_{j}) (Gf)(w_{j}).
\]
Then, it is easy to see that
\[
(H_{m}f)(x) = (Gf)(x) - (4\pi \alpha/m)G(x, w_{r})(Gf)(w_{r}) + \sum_{i=1}^{n} (-4\pi \alpha/m)^{i}(I_{f}f)(x)
\]
\[
+(4\pi \alpha/m)^{n} \sum_{i_{1}+\ldots+i_{n}+i_{1}\ldots i_{n}} G(x, w_{i})G(w_{i}, w_{i})\ldots G(w_{i}, w_{i}) (Gf)(w_{i}).
\]
Since \(G(x, y) - (4\pi |x-y|)^{-1} = (4\pi/\alpha m)^{-1} S(x, y) \in C_{0}^{\infty}(\Omega \times \Omega)\), we have
\[
G(x, w_{r}) |_{x \in \mathbb{R}} = (4\pi/\alpha m)^{-1} S(x, w_{r}) |_{x \in \mathbb{R}}.
\]
Therefore,
\[
(I_{f}f)(x) |_{x \in \mathbb{R}} = (L_{f}f)(x) |_{x \in \mathbb{R}} + (N_{f}f)(x) |_{x \in \mathbb{R}},
\]
where
\begin{align}
(2.5) \quad (L_i f)(x) \big|_{x \in \partial \mathcal{B}_r} &= \sum_{i_1 + i_2 + \cdots + i_n = n} (G(x, w_1) - G(w_r, w_1)) G(w_2, w_1) \cdots G(w_{n-1}, w_1) (Gf)(w_{n-1}) \\
&= \sum_{i_1 + i_2 + \cdots + i_n = n} S(x, w_r) G(w_2, w_1) \cdots G(w_{n-1}, w_1) (Gf)(w_{n-1}) .
\end{align}

and
\begin{align}
(\mathcal{N}_i f)(x) \big|_{x \in \partial \mathcal{B}_r} &= (-4\pi\alpha/m) \sum_{i_1 + i_2 + \cdots + i_n = n} S(x, w_r) G(w_2, w_1) \cdots G(w_{n-1}, w_1) (Gf)(w_{n-1}) .
\end{align}

We have the following:

**Lemma 4.** Assume that \( \{w(m)\} \in \mathcal{O} \). Then, there exists a constant \( C \) independent of \( m \) such that

\[ \sum_{i=1}^{n} \sum_{j=1}^{m} D_{r,i} \leq C \alpha m , \]

where

\[ D_{r,i} = \max_{x \in \partial \mathcal{B}_r} |G(x, w_i) - G(w_r, w_i)| . \]

**Proof.** We fix \( r_0 \) and we assume that \( w_{r_0} \) is contained in \( \gamma = \{x \in \Omega; \text{dist}(x, \gamma) < \varepsilon\} \). Let \( z_0 \) be the unique point on \( \gamma \) such that \( \text{dist}(w_{r_0}, \gamma) = \text{dist}(w_{r_0}, z) \).

Firstly, we examine \( D_{r,i} \) in the following case:

\[ \max (\text{dist}(w_{r_0}, w_r), \text{dist}(w_i, w_r)) \leq 2\varepsilon . \]

By (2.6) we see \( x, w_{r_0}, w_r, w_i \in B(5\varepsilon, z_0) \). We assume that \( \gamma \cap B(5\varepsilon, z_0) \) is flat, that is,

\[ \gamma \cap B(5\varepsilon, z_0) \subseteq \{ (x_1, x_2, x_3) \in \mathbb{R}^3; x_1 = 0 \} . \]

Also we assume that \( \Omega \cap B(5\varepsilon, z_0) \subseteq \{ (x_1, x_2, x_3) \in \mathbb{R}^3; x_1 > 0 \} \). It is easily seen that the assumption (2.7) is by no means restrictive to estimate \( D_{r,i} \) in the case (2.6), since we can use local diffeomorphism, local parametrix, ..., etc. Let \( x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \) be points in \( B(5\varepsilon, z_0) \). Now we put

\[ G_0(x, y) = (4\pi |x - y|)^{-1} \]

\[ G_0(x, y) = (4\pi)^{-1} \left\{ (x_1 + y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2 \right\}^{-1/2} . \]

Then

\[ L(x, y) = G(x, y) - G_0(x, y) + G_0(x, y) \in C^\infty((\Omega \cap B(5\varepsilon, z_0)) \times (\Omega \cap B(5\varepsilon, z_0))) . \]

It is easy to see that

\[ \max_{x \in \partial \mathcal{B}_r} |G_0(x, w_i) - G_0(w_r, w_i)| \]

\[ \leq (4\pi)^{-1} \max_{x \in \partial \mathcal{B}_r} \frac{|w_r - x|}{|x - w_i|} \leq C' \alpha m^{-1} \frac{|w_r - w_i|^2}{|w_r - w_i|} . \]
Here we used (C-1). Let \( \bar{x} = (-x_1, x_2, x_3) \) be the point of reflection of \( x \) with respect to the boundary. Then,

\[
\max_{x \in \partial B_r} |G(x, w_i) - G(\bar{x}, w_i)|
\]

\[
= \max_{x \in \partial B_r} |G(\bar{x}, w_i) - G(\bar{w}_r, w_i)|
\]

\[
\leq C' \alpha m^{-1} |\bar{w}_r - w_i|^{-2} \leq C' \alpha m^{-1} |w_r - w_i|^{-2}.
\]

It is easy to see that \( |L(x, w_i) - L(\bar{x}, w_i)| \leq C' \alpha m^{-1} \). In summing up these facts, we get

\[
(2.8) \quad D_{r,i} \leq C' \alpha m^{-1} (|w_r - w_i|^{-2} + 1),
\]

if (2.6) holds. We also have (2.8) when \( \text{dist}(w_{r_0}, w_i) \leq 2\varepsilon \) and \( \text{dist}(w_i, w_r) > 2\varepsilon \). Thus,

\[
\sum_{i=1}^{m} D_{r,i} \leq C_\alpha
\]

holds for a constant \( C \) independent of \( m, w_\gamma \) satisfying \( \text{dist}(w_r, w_\gamma) < 2\varepsilon \). Notice that \( \gamma_\varepsilon \) is covered by a finite number of open balls which are written as \( B(2\varepsilon, w_{r_j}) \) for some \( w_{r_j} \in \gamma_\varepsilon \). Therefore we get

\[
\sum_{w_\gamma \in \gamma_\varepsilon} \sum_{i=1}^{m} D_{r,i} \leq C_\varepsilon \alpha m.
\]

By a similar argument as above we see that

\[
\sum_{w_\gamma \in \gamma_\varepsilon} \sum_{i=1}^{m} D_{r,i}
\]

does not exceed \( C_\varepsilon \alpha m \). We complete our proof of Lemma 4.

q.e.d.

As a consequence of Lemma 4 we get the following;

**Lemma 5.** Assume that \( \{w(m)\} \in \mathcal{O} \). Then

\[
(2.9) \quad \sum_{i=1}^{m} (4\pi \alpha/m) \sum_{x \in \partial B_r} \max_{t \in [0, 1]} |L_t f(x)| \leq C_1 (\sum_{i=1}^{m} (4\pi \alpha)^i \kappa^{-i} \alpha) \|f\|_{L^p(\Omega_\varepsilon)}
\]

\[
(f \in C_0^\infty(\Omega_\varepsilon))
\]

holds for any fixed \( p > 3/2 \). Here \( C_1 \) is a constant independent of \( m \).

**Proof.** By the Sobolev embedding theorem we see that

\[
\sup_{x \in Q} |(Gf)(x)| \leq C_\varepsilon \|f\|_{L^p(\Omega_\varepsilon)} \quad (f \in C_0^\infty(\Omega_\varepsilon)).
\]
Therefore, we have (2.9) using Lemma 4.

We put

\[ P_m = \sum_{r=1}^{n} \sum_{i=1}^{m} \max_{i \in R} |S(x, w_r)| G(w_r, w_i). \]

Then we have the following:

**Lemma 6.** Assume that \( \{w(m)\} \in \mathcal{O} \). Then \( P_m \leq Cm^2 \) holds for a constant \( C \) independent of \( m \).

**Proof.** From (C-2) we get

\[ \max_r \left| \frac{1}{m} \sum_{1 \leq i \leq m} G(w_r, w_i) - (GV)(w_r) \right| \leq Cm^{-1/3}. \]

Therefore

\begin{equation}
P_m \leq m \sum_{r=1}^{n} \max_{x \in \mathcal{H}_r} |S(x, w_r)| (GV)(w_r) + Cm^{2/3} \sum_{r=1}^{n} \max_{x \in \mathcal{H}_r} |S(x, w_r)|.
\end{equation}

We again use \( \gamma \) to estimate (2.10). It is easy to see that

\[ \sum_{w_r \in \mathcal{H}_r} \max_{x \in \mathcal{H}_r} |S(x, w_r)| \leq C_2 \]

holds for some constant \( C_2 \) independent of \( \{w(m)\} \in \mathcal{O} \). Let \( w_{r_0}, z_0, G_0(x, y), \ldots \) be as before. We also assume, and it suffices to assume that \( \gamma \cap B(5\varepsilon, z_0) \) is flat. For the case \( \mathcal{B}_r \cap \gamma \neq \emptyset \), we see that

\begin{equation}
\max_{x \in \mathcal{H}_r} |S(x, w_r)| \leq \max_{x \in \mathcal{H}_r} |G_0(x, w_r)| + \max_{x \in \mathcal{H}_r} |L(x, w_r)|
\end{equation}

\[ \leq C_3(d(w_r, \gamma))^{-1} + C(\alpha/m). \]

Here we used (C-1) to estimate \( \max_{x \in \mathcal{H}_r} |G_0| \). By (2.11) and (C-1) we get

\[ \sum_{w_r \in \mathcal{H}_r} \max_{x \in \mathcal{H}_r} |S(x, w_r)| \leq C_3 m^{4/3}. \]

Therefore the second term in the right hand side of (2.10) does not exceed \( Cm^2 \).

We here want to estimate the first term of (2.10). We see that

\begin{equation}
|Gf(w_r)| = |Gf(w_r) - Gf(z_0)| \leq C \|Gf\|_{C^1(\Omega)} \text{dist}(w_r, \gamma)
\end{equation}

\[ \leq \tilde{C} \|f\|_{L^p(\Omega_0)} \text{dist}(w_r, \gamma) \quad (f \in C^0_0(\Omega_0)). \]

for a fixed \( p > 3 \). Combining with (2.11) and (2.12) we see that the first term in the right hand side of (2.10) does not exceed \( Cm^2 \). We have the desired estimate.

q.e.d.
As an easy consequence of Lemma 6 we get the following:

**Lemma 7.** Assume that \( \{w(m)\} \subseteq \mathcal{O} \). Then

\[
(4\pi\alpha/m)^T \sum_{r=1}^{m} \max_{x \in \partial B_r} |N^r f(x)| \leq C_2 (\sum_{r=1}^{m} (4\pi\alpha)^{r+1} e^{r-1}) ||f||_{L^p(\Omega_w)}
\]

\[ (f \in C_0^\infty(\Omega_w)) \]

holds for any fixed \( p > 3 \). Here \( C_2 \) is a constant independent of \( m \).

Proof of Lemma 3. Since we have Lemmas 5, 7, we have only to estimate

\[
\sum_{r=1}^{m} \max_{x \in \partial B_r} |(Gf)(x) - (4\pi\alpha/m)G(x, w_r) (Gf)(w_r)|
\]

and

\[
\sum_r \text{(the forth term in (2.3)).}
\]

It is easy to see that (2.14) does not exceed

\[
\max_{x \in \partial B_r} |Gf(x) - Gf(w_r)| + C' (\alpha/m) \sum_{r=1}^{m} \max_{x \in \partial B_r} |S(x, w_r)| |Gf(w_r)|.
\]

By (2.11), (2.12) we see that the second in (2.16) does not exceed

\[
C' ||f||_{L^p(\Omega_w)} \quad (p > 3, f \in C_0^\infty(\Omega_w)).
\]

The first term in (2.16) also does not exceed (2.17). We see that

\[
|(2.15)| \leq C m (4\pi\alpha)^p ||f||_{L^p(\Omega_w)} \quad (p > 3/2, f \in C_0^\infty(\Omega_w)).
\]

In summing up these facts we get Lemma 3. \( \text{q.e.d.} \)

3. **Proof of Theorem**

Let \( \{\varphi_k(x)\}_{k=1}^{\infty} \) be an orthonormal basis of \( L^2(\Omega) \) consisting of eigenfunctions of \(-\Delta + 4\pi\alpha V(x)\) under the Dirichlet condition on \( \gamma \). Let \( \tilde{H}_m \) be the integral operator given by

\[
(\tilde{H}_m f)(x) = \int_{\Omega} h_m (x, y, w(m)) f(y) dy \quad x \in \Omega.
\]

Then it is easy to see that \( g_m(x) = \chi_{\Omega_w}(\tilde{H}_m \varphi_k)(x) - H_m (\chi_{\Omega_w} \varphi_k)(x) = \chi_{\Omega_w}(\tilde{H}_m (\chi_{\Omega_w} \varphi_k))(x) \) satisfies \( \Delta g_m(x) = 0 \) for \( x \in \Omega_w \) and \( g_m(x) = 0 \) for \( x \in \gamma \), where \( \chi_{\Omega_w} \) (resp. \( \tilde{\chi}_{\Omega_w} \)) denotes the characteristic function on \( \Omega_w \) (resp. \( \Omega \setminus \Omega_w \)). By a simple consideration we see that \( \beta_{m, w(m)} = \sum_{j=1}^{m} \max_{x \in \partial B_j} |g_m(x)| ; x \in \partial B_j \) does not
exceed the term which is given by replacing $f$ in Lemma 3 by $\tilde{X}_{\alpha_0}\varphi_k$. We put $p=4$. By Lemma 1 we get the following:

**Lemma 8.** Assume that $\{w(m)\} \in \mathcal{O}$. Fix $k$. Then

$$\|\chi_{\alpha_0} \tilde{H}_m \varphi_k - H_m(\chi_{\alpha_0}\varphi_k)\|_{L^2(\alpha_0)} \leq C(\alpha/m)^{7/4}q_{m,\alpha}$$

holds for a constant $C$ independent of $m$.

We have the following:

**Lemma 9.** Assume that $\{w(m)\} \in \mathcal{O}$. Fix $k$. Then, there exist constants $C$ and $C_{m'}$ independent of $m$ such that

$$\|\tilde{H}_m - (\mu_k^{-1}) \varphi_k\|_{L^2(\alpha_0)} \leq C' \alpha m^{-1} p_{m,\alpha} + C'(4\pi\alpha)^{m-1/3} + C_{m'} m^{r-(1/6)}$$

holds, where

$$p_{m,\alpha} = 4\pi\alpha m^{1/3} q_{m,\alpha} + (4\pi\alpha\kappa)^{-1/3} m^{5/3} + \alpha^{-1}(4\pi\alpha)^{m+1}\kappa^{m-1}.$$ 

**Proof.**

Let

$$L_m(w_{i_p}; \psi) = \frac{1}{m} \sum_{i_{p+1} \leq i \leq m} G(w_{i_p}, w_{i_{p+1}})\varphi(w_{i_{p+1}}) - (GV\varphi)(w_{i_p})$$

By (1.3) we get

$$\mu_k^r (\tilde{H}_m \varphi_k)(x) = \tilde{H}_m(4\pi\alpha V \varphi_k)(x) - \tilde{H}_m(\Delta \varphi_k)(x)$$

$$= \varphi_k(x) - \sum_{r=1}^{m} R^r_m(x),$$

where

$$R^r_m(x) = m^2(4\pi\alpha/m)^2 \left( \frac{1}{m} \sum_{i=1}^m G(x, w_i)\varphi_k(w_i) - (GV\varphi_k)(x) \right)$$

$$R^2_m(x) = m^2(4\pi\alpha/m)^2 \sum_{i_1=1}^m G(x, w_i) L_m(w_i; \varphi_k), \ldots$$

$$R^{m-1}_m(x) = m^2(-4\pi\alpha/m)^m \sum_{i=1}^m G(x, w_i) G(w_{i_1}, w_{i_2}) \cdots G(w_{i_{m-2}}, w_{i_{m-1}}) L_m(w_{i_{m-1}}; \varphi_k)$$

$$R^0_m(x) = m(-4\pi\alpha/m)^{m+1} \sum_{i=1}^m G(x, w_i) G(w_{i_1}, w_{i_2}) \cdots G(w_{i_{m-1}}, w_i) (QV\varphi_k)(w_i)$$

for $x \in \partial B_r$. We rearrange them as follows: We put

$$T^r_m(x) = R^r_m(x) + m^2(-4\pi\alpha/m)^3 G(x, w_i) L_m(w_i; \varphi_k)$$

$$T^{r+1}_m(x) = m^2(-4\pi\alpha/m)^{r+1} \sum_{i_{1}+i_{2}+i_{3} \cdots +i_{r}+i_{r+1}} (G(x, w_i) - (4\pi\alpha/m) G(x, w_i) G(w_i, w_i))$$

$$\times G(w_{i_1}, w_{i_2}) \cdots G(w_{i_{r+1}}, w_i) L_m(w_i, \varphi_k)$$
for $2 \leq s \leq m - 2$, 

$$ T_{m,r}^{-1}(x) = m^2(-4\pi\alpha/m)^m \sum_{i_1 \neq r, i_2 \neq i_1} G(x, w_{i_1})G(w_{i_1}, w_{i_2}) \cdots G(w_{i_{m-2}}, w_{i_{m-1}})L(w_{i_{m-1}}, \varphi_k) $$

$$ T_{m,r}(x) = R_{m}^r(x). $$

Then \( \sum_{i=1}^{m} R_{m}^r(x) = \sum_{i=1}^{m} T_{m,r}(x) \) for any \( r = 1, \ldots, m \).

By (C–2) we see that \( |L(w_{i_r}, \varphi_k)| \leq C m^{-1/3} ||\varphi_k||_{C^1(\Omega)}. \) Then, by the same argument as before we have

$$ \sum_{r=1}^{m} \sum_{x \in \partial \Omega_r} \max_{r \in \gamma} |T_{m,r}^{*-1}(x)| \leq C(4\pi\alpha m)^{2/3} q_{m,a} $$

It is easy to see that

$$ \max_{x \in \partial \Omega_r} |T_{m,r}(x)| \leq C \alpha^{-1}(4\pi\alpha m)^{2/3} m^{-1}. $$

Here we used the following fact to get (3.5).

$$ \max_{x \in \partial \Omega_r} |G(x, w_{i_r})| \leq C(m/\alpha). $$

We see that \( \sum_{r=1}^{m} R_{m}^r(x) \) is harmonic in \( \Omega_w \) and is zero on \( \gamma \). Thus, by Lemma 1 we get

$$ \sum_{r=1}^{m} R_{m}^r(x) \leq C(4\pi\alpha)^{2/3} m^{-1/3} q_{m,a}. $$

We now want to estimate \( ||R_{m}^1||_{L^2(\Omega_w)} \). We have

$$ ||R_{m}^1||_{L^2(\Omega_w)} \leq C m^{-1/2} q_{m,a} + C'(4\pi\alpha)^{3} m^{-1/3}. $$
where
\[ X_1(m) = \left| \frac{1}{m} \sum_{i=1}^{m} (G^2V\varphi_k)(\omega_i)\varphi_k(\omega_i) - \int_{\Omega} (GV\varphi_k)(x) dx \right| \]
\[ X_2(m) = \frac{1}{m} \sum_{i,j=1}^{m} G^{(2)}(\omega_i, \omega_j)\varphi_k(\omega_i)\varphi_k(\omega_j) - \sum_{i=1}^{m} (G^2V\varphi_k)(\omega_i)\varphi_k(\omega_i). \]

Here \( G^{(2)}(x, y) \) is given by
\[ G^{(2)}(x, y) = \int_{\Omega} G(x, z)G(x, y) dz. \]

It is well known that \( G^{(2)}(x, y) \) has the diagonal singularity of the type \( |x-y| \), thus,
\[ \max_{x \in \Omega} \|G^{(2)}(\cdot, x)\|_{C^1(\Omega)} \leq C' < \infty \]
for any fixed \( 0 < p < 1 \). Therefore, by (C-2) we have
\[ X_1(m) \leq C_{C'} \max_{i \in \Omega} \left| \frac{1}{m} \sum_{i=1}^{m} G^{(2)}(\omega_i, x)\varphi_k(\omega_i) - (G^2V\varphi_k)(x) \right| \leq C_{C'} m^{-p/3} \quad (0 < p < 1). \]

By (C-2) we have \( X_2(m) \leq Cm^{-1/3} \). In summing up these facts we see that there exists a constant \( C_{\varepsilon'} > 0 \) independent of \( m \) such that
\[ \|R^1_\varepsilon\|_{L^2(\Omega)} \leq C_{\varepsilon'} m^{-(1/6)} \]
holds for any fixed \( \varepsilon' > 0 \). We sum up (3.3), (3.7), (3.8) we get the desired result. q.e.d.

By Proposition 1, Lemmas 8, 9 we have the following:

**Lemma 10.** Assume that \( \{\omega(m)\} \in \mathcal{O} \) and \( \alpha \) satisfies \( 4\pi\alpha \kappa < 1/2 \). Fix \( k \).

Then
\[ \|G_{m} - (\mu \xi)^{-1}\|_{L^2(\Omega)} \leq C_{\varepsilon'} \|H_m\|_{L^2(\Omega)} \quad (\varepsilon' > 0) \]
holds for a constant \( C_{\varepsilon'} \) independent of \( m \).

We have the following:

**Lemma 11.** Assume that \( \{\omega(m)\} \in \mathcal{O} \) and \( \alpha \) satisfies \( 4\pi\alpha \kappa < 1/2 \). Then
\[ \|\tilde{\mathcal{H}}_{m}\|_{L^2(\Omega)} \rightarrow 0 \]
as \( m \rightarrow \infty \).

**Proof.** Notice that
\[
\left( \int_{\Omega \setminus a_m} dx \int_{\Omega} | \sum_{i \leq m} G(x, w_{i_1}) \cdots G(w_{i_s}, y) |^2 dy \right)^{1/2} \\
\leq C(km)^{-1} \left( \int_{\Omega} |G(x, w_{i_1})|^2 dx \right)^{1/2} \leq C''(km)^{-1} \quad (s \geq 1).
\]

Since \( 4\pi \alpha \kappa < 1/2 \), we get
\[
\lim_{m \to \infty} \left( \int_{\Omega \setminus a_m} dx \int_{\Omega} |h_m(x, y; w(m))|^2 dy \right)^{1/2} \to 0. \quad \text{q.e.d.}
\]

**Lemma 12.** Suppose that \( \alpha \) satisfies \( 4\pi \alpha \max (||GV||_{L^2(\Omega)}, \kappa) < 1/2 \). Assume that \( \{w(m)\} \subseteq \mathcal{O} \). Then
\[
||\tilde{H}_m - H_m||_{L^2(\Omega)} \to 0
\]
as \( m \to \infty \), where \( H_m \) denotes the operator given by
\[
G + \sum_{i=1}^s (-4\pi \alpha)^s (GV)^s.
\]

**Proof.** We fix \( u, v \in L^2(\Omega) \). We estimate
\[
\frac{1}{m^3} \sum_{i \leq m} (Gu)(w_{i_1}) G(w_{i_1}, w_{i_2}) G(w_{i_2}, w_{i_3}) (Gv)(w_{i_3}) - \int_{\Omega} u(x)(G(VG)^3v)(x)dx \\
= J_1(m) + J_2(m) + J_3(m),
\]
where
\[
J_1(m) = \frac{1}{m} \sum_{i_1 \leq m} (Gu)(w_{i_1}) \left[ \frac{1}{m} \sum_{i_2 \leq m} G(w_{i_1}, w_{i_2}) \right] \\
\times \left\{ \frac{1}{m} \sum_{i_2 \leq m} G(w_{i_2}, w_{i_3}) (Gv)(w_{i_3}) - (GVGv)(w_{i_3}) \right\},
\]
\[
J_2(m) = \frac{1}{m} \sum_{i_1 \leq m} (Gu)(w_{i_1}) \left[ \frac{1}{m} \sum_{i_2 \leq m} G(w_{i_1}, w_{i_2}) (GVGv)(w_{i_3}) - (GV)^3v)(w_{i_3}) \right],
\]
\[
J_3(m) = \frac{1}{m} \sum_{i_1 \leq m} (Gu)(w_{i_1}) (GV)(w_{i_1}) - \int_{\Omega} u(x)(G(VG)^3v)(x)dx.
\]
We have
\[
J_1(m) \leq C ||u||_{L^2(\Omega)} m^{-1/6} ||GVv||_{C^{1/2}(\Omega)} \leq C' \kappa m^{-1/6} ||u||_{L^2(\Omega)} ||v||_{L^2(\Omega)} ,
\]
\[
J_2(m) \leq C ||u||_{L^2(\Omega)} m^{-1/6} ||GVv||_{C^{1/2}(\Omega)} \leq C'' m^{-1/6} (8\pi \alpha)^{-1} ||u||_{L^2(\Omega)} ||v||_{L^2(\Omega)}
\]
\[
J_3(m) \leq C m^{-1/6} (8\pi \alpha)^{-2} ||u||_{L^2(\Omega)} ||v||_{L^2(\Omega)}.
\]
Thus
\[
||m^{-3} \sum_{i \leq m} \cdots - G(VG)^3||_{L^2(\Omega)} \leq C m^{-1/6} (\kappa + (8\pi \alpha)^{-1} + (8\pi \alpha)^{-1})
\]
Similarly,
In summing up these facts, we get
\[ ||(m^{-1} \sum_{\omega} \cdots) - G(VG)^{\prime} ||_{L^2(\Omega)} \leq C m^{-1/4} (2 \pi \alpha)^{-1} \sum_{k} \kappa^{-k} (2 \pi \alpha)^{2-k} \quad (s \geq 4) \]
and
\[ ||(m^{-2} \sum_{\omega} \cdots) - G(VG)^2 ||_{L^2(\Omega)} \leq C m^{-1/4} (1 + (2 \pi \alpha)^{-1}) \]
In summing up these facts, we get
\[
||\tilde{H}_m - (C + \sum_{\omega} (-4 \pi \alpha)^j G(VG)^{\prime}) ||_{L^2(\Omega)} \leq C m^{-1/4} \{ (1 + (2 \pi \alpha)^{-1}) + (4 \pi \alpha)^2 \sum_{\omega} \{ (\omega - 1) + (2 \pi \alpha)^{-1} \}^{2-s+j} \}.
\]
We complete the proof of Lemma 12. q.e.d.

Now we are in a final step to prove our Theorem. We use the following:

**Lemma 13** (Lemma 2 in [4]). Let \( X \) be a Hilbert space over \( \mathbb{C} \) with the inner product \((,\)\) and the norm \( ||\cdot|| \). Let \( E \) be a compact self-adjoint operator in \( X \). We fix \( \tau \in \mathbb{R} \setminus \{0\} \). Assume that there are \( \psi_j \in X \), \( j=1, \cdots, N \) satisfying
\[ \langle (E - \tau) \psi_j, \psi_j \rangle < \varepsilon, \quad ||\psi_j|| = 1, \quad \langle \psi_j, \psi_k \rangle \leq (2N)^{-2} \text{ for } j \neq k. \]
Then there are at least \( N \) eigenvalues \( \tau_j, j=1, \cdots, N \) of \( E \), counted by multiplicity, satisfying
\[ |\tau_j - \tau| \leq 2N \varepsilon, \quad j=1, \cdots, N. \]

Proof of Theorem. Firstly we treat the case where \( \alpha \) satisfies \( 4 \pi \alpha \max \{ ||GV||_{L^2(\Omega)}, \kappa \} < 1/2 \). Let \( Z = \text{mult}(\mu) \) denote the multiplicity of \( \mu \). Let \( \varphi_\mu^\prime, \cdots, \varphi_\mu^{Z-1} \) be an orthonomal basis of the eigenspace of \( -\Delta + 4 \pi \alpha V \) associated with \( \varphi_\mu^\prime \). We know that
\[
(3.10) \quad \lim_{m \to \infty} \langle \varphi_\mu^\prime, \varphi_\mu^\prime \rangle_{L^2(\Omega)} = \delta_1.
\]
Using Lemma 10 we see that there exists at least \( \text{mult}(\mu) \) eigenvalues \( \mu_j^\prime (m)^{-1} \leq \cdots \leq \mu_k^\prime (m)^{-1} \) of \( G_m \), counted by multiplicities, satisfying
\[
(3.10) \quad |\mu_j^\prime (m) - \mu_k^\prime | \leq C m^{-1/4} \quad (j=0, \cdots, Z-1) .
\]
Here \( Z \geq Z \).

It should be remarked that we restrict ourselves to the case where \( \Omega_w \) is connected, since we suppose that \( \{ \vartheta(m) \} \subset \mathcal{O} \). Let \( \Phi_\mu^\prime (x) \) be the normalized eigenfunction of \( G_m \) satisfying
\[ (G_m - \mu_j^\prime (m)^{-1}) \Phi_\mu^\prime = 0 \]
And let \( \Phi_\mu^\prime (x) \) be an extension of \( \Phi_\mu^\prime (x) \) putting zero on \( \Omega \setminus \Omega_w \). By Proposition 1, Lemmas 11, 12 we have
Since we have (3.10) and \((\Phi_{i,j}^n, \Phi_{i,j}^n)_{L^2(\Omega)} = \delta_j^l, (j, h = 0, \cdots, 2 - 1)\), we see that there exists at least \(Z\)-dimensional eigenspace of \(H_n\) whose eigenvalues is \(\mu_j^y\). Thus, \(Z \leq Z\). As a consequence of these facts we get Theorem under the assumption on \(\alpha\).

We now give a proof of Theorem for general \(\alpha\). Fix \(\alpha\). Let \(\lambda > 0\) be a sufficiently large number such that the Green function \(G_\lambda(x, y)\) and the Green operator \(G_\lambda = (-\Delta + \lambda)^{-1}\) of \(\Delta - \lambda\) under the Dirichlet condition satisfies

\[
(4\pi\alpha) \max_j \sum_{i \neq j} G_\lambda(w_i, w_j) < m/2
\]

and

\[
(4\pi\alpha) ||G_\lambda V||_{L^2(\Omega)} < 1/2,
\]

respectively. It is well known that such \(\alpha\) exists. Using such \(\alpha\) we discuss everything by changing \(\Delta\) to \(\Delta - \lambda\), and we get Theorem q.e.d.

References


