

Title	Traffic-Induced Vibration and Seismic Response Analysis of Rationalized Travel Girder Bridges for Straddle-type Monorail Trains
Author(s)	李, 昌勲
Citation	大阪大学, 2005, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/45800
rights	
Note	著者からインターネット公開の許諾が得られていないため、論文の要旨のみを公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

氏名	季 昌 煉
博士の専攻分野の名称	博士(工学)
学位記番号	第 19529 号
学位授与年月日	平成17年3月25日
学位授与の要件	学位規則第4条第1項該当 工学研究科土木工学専攻
学位論文名	Traffic-Induced Vibration and Seismic Response Analysis of Rationalized Travel Girder Bridges for Straddle-type Monorail Trains (跨座型モノレール合理化鋼軌道桁橋梁の車両走行による交通振動特性と地震応答解析に関する研究)
論文審査委員	(主査) 教授 西村 宣男 (副査) 教授 松井 繁之 教授 常田 賢一 教授 出口 一郎 教授 中辻 啓二 教授 新田 保次 教授 金 裕哲

論文内容の要旨

The modern bridge design requires not only strength but also cost-efficiency as well as aesthetic features, and the situation stimulate structural engineers bring about a concept of rationalized design strategy even in the monorail bridge. A new type of rationalized steel-concrete composite bridges for monorails thus has been developed in Japan. The rationalized monorail bridge adopts a simplified lateral bracing system. The RC track girder is another advanced concept to enhance braking performance of monorail trains. Advantages of such a simplified structural system of monorail bridges include the bracing system simplicity in relation to a life-cycle cost. However, the simplified lateral of the rationalized monorail bridge may engender problems related to vibration serviceability, especially in a lateral direction, as a consequence of moving trains, earthquakes, winds, etc. Dynamic loads continually degrade bridges and develop vibration problem and increase the necessity of regular maintenance and/or countermeasure against vibrations.

Since the dynamic response of a monorail bridge due to moving straddle-type monorail train is not adequately investigated, this study was intended to investigate dynamic characteristics of a rationalized monorail bridge through comparison with those of a conventional bridge under moving trains. Riding comfort of monorail trains on a rationalized bridge was another important purpose of this study. The investigations were base on the analytical procedure developed in this study. The straddle-type monorail train was idealized as a model with dynamic system of 15 degree-of-freedom (15DOF).

Good seismic performance of bridge and building structures is an issue of great concern in the countries located in earthquake-prone regions. The design of civil infrastructures considering a life cycle cost has also been another important consideration. To satisfy both safety and economy in a seismic design, it needs better understanding about the mechanism of structural systems under a ground motion.

For a monorail system with interesting feature like previously noted, the adoption of the bogie system may

allow the straddle-type monorail train act as a sprung mass on the track-girder under earthquakes. No investigation, however, has been carried out for the effect of the train's dynamic system on seismic performance of the bridge with track-girders for a straddle-type monorail system subjected to an earthquake.

In this study, therefore, the seismic response of monorail bridges with steel piers considering the dynamic system of cars in a monorail train was examined by means of a three-dimensional analysis considering a monorail train-bridge interaction. This study also suggests that considering straddle-type monorail train only as a mass in seismic design may overestimate the live load effect on monorail bridges.

論文審査の結果の要旨

ここ 20 年間、日本を含め世界中の大都市にて交通問題による新しい交通手段の必要性を求めつつあった。その結果、新交通手段としてモノレールシステムが導入されるようになった。日本でも昭和 39 年日本初の新都市交通手段として東京モノレールが開通した。以降、各大都市で新交通機関として活発な活躍をしている。しかし近年、建設コスト縮減と省力化の要求の高まりや、橋梁の構造解析技術の進歩によるねじり剛性を有する主桁と横桁、横構の立体骨組み解析が可能となり、構造物の断面力や変形挙動を精度良く把握することにより、適切な横桁、横構配置の追及が可能となっている。そのため、モノレールインフラストラクチャーにおいても、走行面および案内面に鉄筋コンクリート床版を採用し、横桁、横構などの材片数を大幅に削減する合成合理化鋼軌道桁の開発が進められている。

従来の鋼軌道桁は横桁・横構が軌道桁全長にわたって密に配置されており、車両走行による揺れについては特に問題とはならなかった。しかし、今回提案している合理化軌道桁では、構造物を簡略化するために、大幅に横桁・横構を省略したことから、車両走行によって揺れが発生することが懸念される。これより、走行する車両の乗り心地を検討しなければならない。

跨座型のモノレールは自動車や鉄道車両と異なり、桁に対して車輪が鉛直方向だけでなく水平方向にも接地しているため車両のローリング振動が大きくなることが予測できる。そこで、本論文では、合理化軌道桁および従来桁全体を 3 次元構造にモデル化し、固有値解析を行って振動特性を把握する。また、跨座型モノレールの特殊な車両構造を考慮してモデル化した車両と橋梁との連成振動を定式化し提案した解析手法を用い動的応答解析を行うことにより、合理化桁走行時の桁の振動ならびに車両の乗り心地について検討を行っている。

さらに、地震時において跨座型モノレール橋梁は一般高架橋と異なり、軽量の合成軌道桁に同程度の質量の車両荷重が載荷する場合、その車両が地震時の構造物の挙動にどのような影響を及ぼすのか重要な課題と考える。現行のモノレール構造の橋脚の耐震設計では、車両重量を上部構造重量に加算するだけの簡易な取り扱いが採られている。しかし、実際には車両重量は車両ばねで支持されており、現行の耐震設計では車両重量の効果を過大に評価している。本論文では、以上の背景のもとで、モノレール橋梁の地震応答特性に及ぼす活荷重の影響を明らかにするとともに、現行のモノレール構造の橋脚の耐震設計を見直し、より合理的な構造設計法を志向している。本論文により得られた主な知見は、以下の通りである。

1) 跨座型モノレール橋梁システムの特殊構造を基にモデル化し、運動方程式を定式化し、本論文にて提案する解析手法は実測値との比較よりその妥当性を確かめている。2) 従来桁より合理化桁の水平固有振動数は小さいが車両固有振動特性と合理化桁の固有振動特性から共振の恐れは少ないことを明らかにしている。3) 車両走行時の乗り心地については、国際標準化機構 (ISO) が提案する評価基準、人間が感じる振動加速度の疲労能率減退曲線を用い、検討を行ったが、従来桁および合理化桁における車両の乗り心地について両桁間の差は大きくみられなく問題ないことを明らかにしている。4) 跨座型モノレール橋梁 system において Level 1 および 2 の地震波を対象に地震応答解析を行いその結果、共に車両重量固定モデルより車両重量ばね支持モデルの方の動的応答値が小さくなり、さらに Level 2 地震波において橋脚基部と桁端部の横構の顕著な塑性化が同時に発生する可能性は少なく一方の塑性化によるエネルギー吸収が他方の塑性化を防止することを明らかにしている。5) 現行の跨座型モノレール橋梁システムの耐震設計において活荷重を過多評価していることが明らかになり、より合理的な耐震設計のためより多面的な検討が必要である。

あることを示唆している。

以上のように、本論文は近年新交通手段として脚光を浴びているモノレール橋梁システムの合理化鋼軌道桁を対象に交通振動特性や乗り心地について評価し、さらに耐震設計においてより合理的な設計案を提示しており橋梁振動工学、橋梁耐震工学さらに社会基盤工学に寄与するところが大きい。よって本論文は博士論文として価値あるものと認める。